
Journal of Computational Physics 510 (2024) 113061

Available online 7 May 2024
0021-9991/© 2024 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Journal of Computational Physics
journal homepage: www.elsevier.com/locate/jcp

GrainGNN: A dynamic graph neural network for predicting 3D 

grain microstructure!

Yigong Qin a,∗, Stephen DeWitt b, Balasubramaniam Radhakrishnan b, George Biros c
a Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
b Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
c Oden Institute, The University of Texas at Austin, Austin, TX 78712, USA

A R T I C L E I N F O A B S T R A C T
Keywords:
Grain microstructure evolution
Deep learning
Graph neural network
Phase field simulations
Additive manufacturing

We propose GrainGNN, a surrogate model for the evolution of polycrystalline grain structure 
under rapid solidification conditions in metal additive manufacturing. High fidelity simulations 
of solidification microstructures are typically performed using multicomponent partial differential 
equations (PDEs) with moving interfaces. The inherent randomness of the PDE initial conditions 
(grain seeds) necessitates ensemble simulations to predict microstructure statistics, e.g., grain 
size, aspect ratio, and crystallographic orientation. Currently such ensemble simulations are 
prohibitively expensive and surrogates are necessary.
In GrainGNN, we use a dynamic graph to represent interface motion and topological changes due 
to grain coarsening. We use a reduced representation of the microstructure using hand-crafted 
features; we combine pattern finding and altering graph algorithms with two neural networks, a 
classifier (for topological changes) and a regressor (for interface motion). Both networks have an 
encoder-decoder architecture; the encoder has a multi-layer transformer long-short-term-memory 
architecture; the decoder is a single layer perceptron.
We evaluate GrainGNN by comparing it to high-fidelity phase field simulations for in-distribution 
and out-of-distribution grain configurations for solidification under laser power bed fusion 
conditions. GrainGNN results in 80%–90% pointwise accuracy; and nearly identical distributions 
of scalar quantities of interest (QoI) between phase field and GrainGNN simulations compared 
using Kolmogorov-Smirnov test. GrainGNN’s inference speedup (PyTorch on single x86 CPU) 
over a high-fidelity phase field simulation (CUDA on a single NVIDIA A100 GPU) is 150×–2000×
for 100-initial grain problem. Further, using GrainGNN, we model the formation of 11,600 grains 
in 220 seconds on a single CPU core.

1. Introduction

Let !(𝛽, 𝐻, 𝜖, 𝑐) be the crystal orientation vector as a function of space (𝛽, 𝐻, 𝜖) and time 𝑐. We assume we are given a high fidelity 
model ℱ such that !(𝛽, 𝐻, 𝜖, 𝑐) = ℱ(", #, 𝑑). Here " encodes the meltpool temperature field using two scalars, 𝜋 and 𝑠, where 𝜋

! Notice: This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US 
government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, 
worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US government purposes. DOE will provide public access 
to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy .gov /downloads /doe -public -access -plan).
* Corresponding author.
E-mail addresses: ygqin@utexas.edu (Y. Qin), dewittsj@ornl.gov (S. DeWitt), radhakrishnb@ornl.gov (B. Radhakrishnan), gbiros@acm.org (G. Biros).

https://doi.org/10.1016/j.jcp.2024.113061
Received 28 January 2024; Accepted 26 April 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://energy.gov/downloads/doe-public-access-plan
mailto:ygqin@utexas.edu
mailto:dewittsj@ornl.gov
mailto:radhakrishnb@ornl.gov
mailto:gbiros@acm.org
https://doi.org/10.1016/j.jcp.2024.113061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.113061&domain=pdf
https://doi.org/10.1016/j.jcp.2024.113061


Journal of Computational Physics 510 (2024) 113061

2

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 1. Time evolution of the solidified microstructure of stainless steel 316L predicted by a phase field model and GrainGNN. (a) Phase field simulation. (b) 
GrainGNN predictions. 𝜖𝑣 is the current height of the solid-liquid interface (SLI). The domain size is (120 µm, 120 µm, 50 µm). The microstructure of 900 grains at 
𝜖𝑣 = 2 µm is the input to both phase field simulation and GrainGNN. We apply a temperature field with 𝜋 = 10 K#µm and 𝑠 = 2 m#s. The grains are growing in the 
𝜖-direction and stopped at 𝜖𝑣 = 50 µm. The elapsed simulation time for the phase field model is 48 minutes on one Nvidia A100 GPU. The GrainGNN inference time 
is 19 seconds on one Intel x86 6-core CPU.

is a scalar metric of the temperature gradient and 𝑠 is the pulling velocity (cooling rate divided by 𝜋); # parameterizes the initial 
microstructure !(𝛽, 𝐻, 𝜖, 𝑐 = 0) at the solid-liquid interface (SLI); and 𝑑 = (𝑑𝛽, 𝑑𝐻, 𝑑𝜖) parameterizes the meltpool size, which we 
idealize as a 3D rectangular volume with grain epitaxial growth aligned with the 𝜖 axis (see Fig. 1). In this context, ! is a piecewise 
constant function and grains are defined as connected regions with the same !; # is a random field, and quantities of interest (QoIs) 
that depend on ! can only be statistically characterized and require expectations over #.

Evaluating ℱ can be extremely expensive as it involves multicomponent, multiscale PDEs with moving interfaces. Furthermore, 
additive manufacturing (AM) involves a large number of meltpool simulations: the length scale of an AM component can be of the 
order of meters while the meltpool dimensions are (100 µm). In this context, we seek to find a surrogate model 𝑖! = 𝑖ℱ(", #, 𝑑) that 
approximates ! and the statistics of the quantities of interest. We also require that 𝑖ℱ is much cheaper to compute than ℱ.

Background and significance: High fidelity models are important tools for predicting grain structure formation under rapid 
solidification conditions existing during AM [1]. Common numerical methods include phase field models [2–6], cellular automata 
[7–9], and kinetic Monte Carlo methods [10]. However, these methods are computationally expensive as they require fine spatial and 
temporal discretizations. Furthermore, due to the stochastic nature of AM process, ensemble simulations [6,11–13] are required to 
statistically characterize quantities of interest (QoIs) like grain size, aspect ratio, and misorientation [14–16]. Tasks such as process 
control and optimization require repeated invocation of high fidelity models under variable heating source conditions, feedstock 
composition, and component geometry. These high computational costs have restricted the adoption of high fidelity simulations for 
predicting or controlling the grain structure during AM processes.

Summary of proposed methodology and contributions: Here, following our work in 2D surrogates [17], we focus on epitaxial 
grain growth from the substrate and ignoring grain nucleation and the evolution of the solute concentration field that contributes 
to intragranular features of the solidification microstructure including primary and secondary arms, microsegregation, etc. The key 
phenomena that need to be captured at this modeling level are grain envelope evolution and grain coarsening through competitive 
growth. The latter can be decomposed into grain face elimination and grain elimination [18,19]. The dynamics of ℱ are quite 
challenging to capture due to the evolving interface and the topological changes due to coarsening.

In GrainGNN (Section 2.2), first we reduce the representation of !(𝛽, 𝐻, 𝜖, 𝑐) using aggressive coarsening in space and time. (i) We 
introduce a reduced graph representation of ! that captures grain boundaries, size, edge length, and other geometric features per 
grain (Section 2.3). (ii) Following [18], we introduce a categorization of topological events that need to be tracked (Section 2.4). 
(iii) We use two neural networks to model their dynamics: a regression network to capture the interface motion; and a classification 
network to estimate probabilities of topology-changing events (Section 2.5). (iv) We introduce graph algorithms that combine the 
network outputs to evolve the microstructure graph topology (Section 2.6). (v) We introduce an algorithm that reconstructs 𝑖!(𝛽, 𝐻, 𝜖, 𝑐)
from the reduced graph/feature-based representation of the microstructure (Section 2.7).

GrainGNN is calibrated (trained) using pairs {!𝐷(𝛽, 𝐻, 𝜖𝑣−1, 𝑐𝑣−1), !𝐷(𝛽, 𝐻, 𝜖𝑣 , 𝑐𝑣)}𝐷, i.e., cross-sections of the microstructure at SLI 
heights 𝜖𝑣−1 and 𝜖𝑣 observed at times 𝑐𝑣−1 and 𝑐𝑣 with 𝑐𝑣 > 𝑐𝑣−1; and !𝐷(𝛽, 𝐻, 𝜖, 𝑐) =ℱ("𝐷, #𝐷, 𝑑𝐷), where 𝐷 indicates sampling of AM 
conditions and initial grain microstructure. We used 𝐷 %40K obtained from ∼1,500 high fidelity simulations.

Using these steps, GrainGNN (Algorithm 1) predicts 3D grain microstructure formation under additive manufacturing conditions. 
Given the grain orientation at 𝑐 = 0, 𝜖 = 0 with a liquid region for 𝜖 > 0 (see Fig. 2a) and the prediction is 𝑖!(𝛽, 𝐻, 𝜖, 𝑐) (see Fig. 2b). 



Journal of Computational Physics 510 (2024) 113061

3

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

The error is measured by pointwise mismatch and quantities of interest that include the percentage of eliminated grains, grain size 
distribution, and volume-averaged misorientation.

Our contributions can be summarized as follows.

• We introduce a graph and hand-crafted features that greatly compress the spatial representations of the grain microstructure. We 
create !-to-graph and graph-to-! mappings.

• We introduce two graph-transformer long-short-term-memory (LSTM) networks to predict graph feature evolution and grain 
topological events.

• We propose a graph update algorithm with ℎ(#grains) complexity to reconstruct the next graph with the output of GrainGNN. 
We generalize the algorithm to predict grain microstructure with unseen 𝜋, 𝑠, domain size, grain size distribution, and a larger 
number of grains.

Ground truth data is generated using an established phase-field-based model of epitaxial grain growth (Section 2.1). We remark 
that GrainGNN is independent of the underlying solver/formulation. We train GrainGNN assuming a probability density distribution 
for #, a fixed 𝑑 = 𝑑0, and a grid-sampled " (Section 3.1). Then we evaluate the in-distribution generalization of GrainGNN in which 
we keep 𝑑 = 𝑑0, sample training-unseen values of # from the training distribution, and unseen values of " and measure pointwise 
errors of !− !̃ as well errors in the statistics of QoIs (Section 3.2). We also test the out-of-distribution generalization GrainGNN with 
𝑑 ≠𝑑0 and # sampled from a different distribution (Section 3.3). We discuss the results, extensions, and limitations of GrainGNN in 
Section 4.

Related work: Surrogate models provide an alternative to high fidelity simulations, with the potential for reduced computational 
cost. Trained on either high fidelity simulation results or experimental results, such surrogates have been successful in addressing 
challenges in uncertainty quantification and optimization for a range of applications [20–23]. Specifically in the area of material 
microstructure prediction, machine learning surrogates have received increasing attention in the past few years. Convolutional 
neural networks have been used for 2D and 3D microstructure image reconstruction [24,25]. Generative adversarial networks [26]
are capable of learning microstructure statistics, and can approximate structure-to-material properties forward and inverse maps 
[27,28]. Recurrent neural networks (RNNs) or its subclass long short-term memory (LSTM) networks [29] have been used to rapidly 
predict the time evolution of the microstructure. Existing works consider a representative volume element and use LSTM networks 
to capture evolution statistics for use cases such as: spinoidal decomposition of binary mixtures [30,31], brittle fracture [32], single 
dendrite growth [32], and grain formation [17]. Ref. [33] applied the convolutional autoencoder to map the microstructure of a two 
phase mixture to a latent space and used DeepONet [34] to learn the evolution.

Our previous work [17] introduced GrainNN, a transformer-based LSTM to predict 2D epitaxial grain growth during solidification. 
GrainNN reduces the computational cost by tracking only the grain boundaries instead of each grid point inside the grains. It evolves 
manually crafted grain shape descriptors defined on each grain. GrainNN can predict microstructure with low pointwise error while 
achieving significant speed up over high fidelity simulations. It also utilizes domain decomposition and rectangular-to-curvilinear 
domain mappings to handle systems of many grains and circular geometry. However, in this 2D setting the grain coupling is only one-
dimensional and perpendicular to the temperature gradient, which makes GrainNN hard to model the substantially more complex 
grain-grain interactions in 3D.

To generalize GrainNN to 3D, we utilize graph representations of the grain structure that consist of both grains and the vertices 
of junctions between grains. Vertex representations have previously been used in models [19,35–37] to track the motion of the grain 
junction points in polycrystalline microstructures. In these models, the motion of vertices during grain growth is derived from the 
minimization of the isotropic or anisotropic grain boundary energy. Although for vertex models the update of a grain network is effi-
cient and schemes for handling topological transitions are proposed [35] for curvature-driven grain coarsening, vertex models cannot 
currently describe grain evolution driven by a temperature gradient during AM solidification. A grain-centric graph structure has been 
used to predict grain microstructure evolution during solidification [38]. This physics-embedded graph network (PEGN) approach 
combines classic phase-field (PF) theory into a graph representation of the grains to accelerate PF simulations. Evolution is dictated 
by the minimization of a PF-derived free energy functional. PEGN is able to capture grain statistics in various AM setups but loses 
the accuracy of PF in terms of predicting actual grain shapes, due to the lack of tracking grain boundaries and topological changes.

Graph representations of grains have been used for graph neural networks (GNNs) [39,40] to create static microstructure-to-
material-property maps. Graph convolutions on the grain networks are used to capture the spatial variations of microstructure 
properties and the graph sparsity enables faster evaluations of material behavior than high fidelity models. Beyond applications to 
material microstructures, GNNs have been successful in a wide range of other applications where the data is amenable to a graph 
structure [41–47].

Previous GNNs successful for processing dynamic graphs include GC-LSTM [48], EvolveGCN [49], and dyngraph [50], etc. Most 
use an RNN (LSTM) or autoencoder to encode graph features and a decoder to predict the probability of a node/link formation or 
destruction. In this paper, we add a transformer [51] operator to GC-LSTM encoder to capture grain interactions more accurately.

2. Methods

In this section we discuss the overall methodology. We start with the grain growth model, then we discuss the reduced parame-
terization of !, the !-to-graph map, the graph dynamics, the LSTM neural networks, the graph update algorithm, and the graph-to-!
map. We conclude with details about the phase field solver.



Journal of Computational Physics 510 (2024) 113061

4

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Table 1
Notation table.
Symbol Description (Units)
, temperature field
𝐴. phase field grain index field
! grain orientation field (◦)
𝑑 domain size, 𝑑 = {𝑑𝛽,𝑑𝐻,𝑑𝜖}
𝜋𝜖 temperature gradient (K#µm)
𝑠𝜖 pulling velocity (m#s)
" process parameters, 𝑈 = {𝜋𝜖,𝑠𝜖}
# initial state of the substrate
𝑣 layer index
𝜎𝑣 number of layers
𝑏𝑣 grain index image at height 𝜖𝑣
𝜋𝑣 graph extracted from 𝑏𝑣
𝑜𝑣 features of graph 𝜋𝑣
⊤ grain index
̃ junction index
𝑃⊤ grain vertices of graph 𝜋
𝑃̃ junction vertices of graph 𝜋
𝜎⊤ number of grains of graph 𝜋
𝜎̃ number of junctions of graph 𝜋
𝑌̃⊤ junction-grain edges of graph 𝜋
𝑌̃̃ junction-junction edges of graph 𝜋
𝑚̃ grain neighbors of junction ̃
𝑚⊤ junction neighbors of grain ⊤

2.1. Problem formulation and high fidelity model

Here we describe the model we used to generate the training data. We use a phase field simulation. We would like to emphasize 
that GrainGNN does not depend on any particular model or numerical method for generating the grain microstructure. For example 
level sets, different grain formation models, or cellular automata could be used. The main assumption in our surrogate does not 
capture nucleation.

Regarding the particular grain formation model, we adopt a grain-scale phase field model described in Ref. [52] and ignore 
nucleation.1 Each phase field component 𝐴. is associated with one of 𝜎⊤ different crystalline orientations, where 𝜎⊤ is the number of 
grains. The dynamics of 𝐴. is governed by the following equation.

𝜂.
𝜃𝐴.
𝜃𝑐

=∇ ⋅ (𝑎 2
. ∇𝐴.) +

∑
̃=𝛽,𝐻,𝜖

𝜃̃
[
|∇𝐴.|2𝑎.

𝜃𝑎.
𝜃(𝜃̃𝐴.)

]
+ 𝐴. − 𝐴3

. − 𝜇(1− 𝐴2
.)

2 , − ,<
𝑑𝑢#>𝑈

−?
𝐴. + 1

2
∑
@≠.

(𝐴@ + 1
2

)2
, (𝑑𝛽,𝑑𝐻,𝑑(

𝜖) × (0, 𝑐A ], . = 1, ...,𝜎⊤ , (2.1a)

BCs: 𝐴.(𝛽 = 0) = 𝐴.(𝛽 =𝑑𝛽) (2.1b)
𝐴.(𝐻 = 0) = 𝐴.(𝐻 =𝑑𝐻) (2.1c)
𝜃𝜖𝐴.(𝜖 = 0,𝑑(

𝜖) = 0 (2.1d)

IC: 𝐴.(%, 𝑐 = 0) =
{

tanh
(
𝜖0−𝜖
𝑎0

)
, if (𝛽,𝐻) )Ω.(#)

−1, if (𝛽,𝐻) +Ω.(#)
(2.1e)

where

𝑎. =𝑎0

(
1− 3BC + 4BC

(𝜃𝛽𝐴.)4 + (𝜃𝐻𝐴.)4 + (𝜃𝜖𝐴.)4

|∇𝐴.|4

)
, (2.2a)

𝜂. = 𝜂0

(
1 + 3B𝐷 − 4B𝐷

(𝜃𝛽𝐴.)4 + (𝜃𝐻𝐴.)4 + (𝜃𝜖𝐴.)4

|∇𝐴.|4

)
, (2.2b)

, = ,< +𝜋𝜖(𝜖−𝑠𝜖𝑐). (2.2c)

1 We remark that the model we use neglects the concentration field and only considers the evolution of phase fields with temperature fields in the rapid solidification 
regime. The grain structure can be modeled with even more accurate and even more expensive dendrite-resolving models [53].



Journal of Computational Physics 510 (2024) 113061

5

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 2. A phase field simulation of epitaxial growth of 900 grains. Temperature gradient 𝜋𝜖 = 10 K#µm and pulling velocity 𝑠𝜖 = 2 m#s (a) Initial substrate with 
width 120 µm and height 2 µm. !𝜖 is the angle between the crystal orientation and the 𝜖-axis. (b) Phase field microstructure after 10K time steps. The time step size 
is 2.41 nanoseconds. The final height of the interface is 50 µm. (c) The corresponding grain index field of (b). Each grain is assigned a unique index from 1 to 900. (d) 
Initial grain orientation distribution. (e) Probability distributions of grain size D at 𝑐 = 0 and 𝑐 = 𝑐A . (f) Time evolution of the quantities of interest. 𝜖 represents the 
height of the current solid-liquid interface. As the height of the interface increases, the number of eliminated grains increases and the volume-weight misorientation 
Δ! decreases. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Here 𝑑𝛽, 𝑑𝐻, 𝑑(
𝜖 are the domain dimensions for simulation and 𝑐A is the time horizon; 𝜂0 is the interface attachment time scale; 

𝑎0 is the width of the anisotropic interface; 𝜇 is the thermal coupling constant; 𝑑𝑢 is the latent heat; >𝑈 is the heat capacity; ,<
is the melting temperature; ? is a scalar interaction parameter that sets the repulsive strength between adjacent grains of different 
orientations [3]. BC and B𝐷 are the capillary and kinetic anisotropy coefficients respectively, which are assumed to have a four-fold 
symmetry. In Eq. (2.2c), we assume the temperature gradient 𝜋𝜖 and the pulling velocity 𝑠𝜖 are aligned with the 𝜖-axis and they 
are constants during the simulation. Under this temperature profile, grains are growing in the 𝜖-direction. We name " = {𝜋𝜖, 𝑠𝜖}
the process parameters. " are the main free parameters during AM processes given the alloy with its material parameters. We specify 
the values for the material parameters in the appendix. The discretization of Eq. (2.1a) is discussed in Section 2.8.

We use no-flux boundary conditions at the top and bottom surface (𝜖 = 0, 𝜖 = 𝑑(
𝜖) and periodic boundary conditions at the four 

sides of the domain. We initialize 𝐴. as follows. Assume that the initial SLI is at 𝜖 = 𝜖0, we partition the 𝜖 = 𝜖0 plane into 𝜎⊤ regions. 
For phase field ., if point (𝛽, 𝐻) is in region Ω. we use a tanh function to create a smooth transition from solid (1) to liquid (-1) 
in the 𝜖-direction; if point (𝛽, 𝐻) is outside of Ω. , we set 𝐴. to -1. # parameterizes the initial realization of Ω. . Here we use the 
Voronoi diagram [6] which creates the Voronoi tessellations from a set of seed points. We let # = {%0̃}

𝜎̃
̃=1 ∪ {!⊤}

𝜎⊤
⊤=1, where %0̃ are 

the vertices of the Voronoi diagram and !⊤ are the grain orientation for each phase field. With a crystal orientation angle !⊤ , the 
anisotropy functions Eq. (2.2a) and Eq. (2.2b) are modified by replacing all spatial derivatives by the derivatives with respect to the 
rotated coordinate system (𝛽(, 𝐻(, 𝜖() with angle !⊤ [54]. For each phase field simulation, # is randomly generated. The orientation 
of each grain is sampled from the unit sphere. If & is the vector representing the grain’s orientation, we first sample & ∼ (!, ') and 
set & = &#|&|2. Samplings of %0̃ are discussed in Section 3.1.

Fig. 2 shows an example of a simulation with domain size (120 µm, 120 µm, 50 µm). The interface width 𝑎0 = 0.1 µm and the 
mesh size D𝛽 = 0.08 µm [6]. Therefore the grid size is 1500 × 1500 × 625. The initial conditions for grain microstructure in the 
substrate are generated by sampling %0̃ from a uniform distribution and using a Voronoi diagram with periodic boundary conditions. 
In Fig. 2a, the substrate has 900 grains. In this simulation 𝜋𝜖 and 𝑠𝜖 are 10 K#µm and 2 m#s, respectively. The time step size is 2.42 
nanoseconds. Fig. 2b is the resulting phase field microstructure after 10K time steps, which required approximately 48 minutes on 
one Nvidia A100 GPU.

Given the grain microstructure, we compute several quantities of interest (QoIs): number (or percentage) of eliminated grains; 
grain size distribution; and volume-averaged misorientation. The number of eliminated grains is relevant in epitaxial growth [55]. 
We compute 𝜎𝜋 = 𝜎𝜋(𝜖), the accumulated grain eliminations from the initial interface location to a height 𝜖 (see Fig. 2f). Grain size 
distribution is a common descriptor of grain shape statistics and it affects mechanical properties such as strength and ductility. Grain 
size D of grain ⊤ is defined by its volume-equivalent diameter D⊤ = (6⊤#E)1#3, where ⊤ is the grain volume. Fig. 2d shows the 
probability distributions of the grain size for Fig. 2a and Fig. 2b. Volume-weighted misorientation Δ! quantifies the alignment of 
the polycrystalline orientation with the prescribed temperature gradient direction 𝜖. Δ! =∑

⊤ ⊤!𝜖,⊤# 
∑

⊤ ⊤ and !𝜖,⊤ is the angle 



Journal of Computational Physics 510 (2024) 113061

6

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 3. Graph data extraction from phase field simulations. (a) Snapshots of a phase field simulation. Each snapshot is taken when the solid-liquid interface reaches 
height 𝜖𝑣 = 𝑣Δ𝜖, 𝑣 = 0, 1, 2, ... (b) 𝑏𝑣 is a 2D image of grain index field at height 𝜖 = 𝜖𝑣 . (c) Graph 𝜋𝑣 extracted from the image 𝑏𝑣 . (d) Zoomed-in inset of a region in the 
image 𝑏𝑣 : ̃ 1 is a junction pixel with three neighboring grains, ⊤1, ⊤2, ⊤3 . (e) The same region in the graph 𝜋𝑣 : 𝜋𝑣 has two kinds of vertices and two kinds of edges; ̃ 1
is a junction vertex corresponding to the junction pixel in (d); ⊤1 is a grain vertex; (̃1, ̃ 2) is a junction-junction edge; (̃1 , ⊤1) is a junction-grain edge. (f) A zoomed-in 
region in image 𝑏𝑣−1 : ̃ 1 is a junction with the same grain neighbors as ̃ 1 in (d). We compare the grain neighbors to identify the same junctions in different graphs.

between the crystal orientation of grain ⊤ and the 𝜖-axis. As shown in Fig. 2f, Δ! decreases as the more aligned grains out-compete 
the misaligned grains. Due to random initial condition #, we need to average across several simulations to obtain expectations of the 
QoIs.

2.2. GrainGNN

The input to GrainGNN is the initial state # of the substrate (see Fig. 2a), process parameters " = {𝜋𝜖, 𝑠𝜖}, and a domain size 
𝑑 = (𝑑𝛽, 𝑑𝐻, 𝑑𝜖). The output of GrainGNN is the grain orientation field !(𝛽, 𝐻, 𝜖) in a domain with size 𝑑. Notice that here 𝑑𝜖 is 
the height of the final polycrystal (as shown in Fig. 2b); for phase field simulations we let 𝑑(

𝜖 > 𝑑𝜖 to avoid the effect of the top 
boundary. Table 1 summarizes the major symbols we use in this paper. In Section 2.3-Section 2.6 we explain the basic ingredients of 
GrainGNN.

• Image-to-graph step. We start with a spatial field compression method to reduce the large dimensionality of the phase field 
data. We define a planar graph 𝜋 and hand-crafted features 𝑜 to represent a layer of grain microstructure (see Fig. 3). To 
define these features from {𝐴.}

𝜎⊤
.=1 we first combine the fields to a single image !(𝛽, 𝐻, 𝜖). Then we propose an image-to-graph algorithm 𝐴.(𝛽, 𝐻, 𝜖) → (𝜋𝑣, 𝑜𝑣), 𝑣 = 0, 1, 2, ... to extract vertices and edges of grains at cross-sections defined at 𝜖𝑣 . The features 

contain geometric information about the size of the grains and their boundary. The definitions of the image, graph, and features 
are discussed in Section 2.3.

• Graph evolution step. We now train a network for the map (𝜋𝑣−1, 𝑜𝑣−1) → (𝜋𝑣, 𝑜𝑣). The challenge is that graphs 𝜋𝑣−1 and 𝜋𝑣
can be topologically different due to grain and/or edge elimination events. To address this we need to predict both vertex feature 
evolution Δ𝑜 as well as a set of grain neighbor switching events 𝑌 and a set of grain elimination events 𝜋 . We discuss the graph 
evolution in detail in Section 2.4. The prediction (𝜋𝑣, 𝑜𝑣) is done by first using GrainGNN to predict Δ𝑜 and probabilities of events 
and then using an algorithm to reconstruct 𝜋𝑣 and its features.

– Graph evolution, LSTM substep.We design an LSTM architecture to learn the predictions (Δ𝑜 , 𝑌 , 𝜋) = GrainGNN(𝜋𝑣−1,
𝑜𝑣−1). GrainGNN consists of two networks  and .  is a regressor that outputs Δ𝑜 and 𝜋 ;  is a classifier that predicts 𝑌 . We present the summary of the network architecture Fig. 5 and the details in Section 2.5.

– Graph evolution, graph reconstruction substep. Given the LSTM predictions we introduce a graph update algorithm 
that completes the graph prediction (𝜋𝑣−1, 𝑌 , 𝜋) → 𝜋𝑣 , where we create orderings for 𝑌 and 𝜋 to reconstruct the 



Journal of Computational Physics 510 (2024) 113061

7

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

graph 𝜋𝑣 (see Fig. 6). The features are updated (𝑜𝑣−1, Δ𝑜 , 𝑌 , 𝜋) → 𝑜𝑣 . We give the details of the graph reconstruction 
algorithm in Section 2.6.

• Graph-to-image, microstructure reconstruction. Using GrainGNN we can compute a graph “trajectory”  = {𝜋0, 𝜋1, 𝜋2..., }, = {𝑜0, 𝑜1, 𝑜2..., }, given an initial condition: (𝜋0, 𝑜0) → (,  ). Once the graph trajectory is computed, we introduce a graph-
to-image algorithm (,  ) → !(𝛽, 𝐻, 𝜖) to reconstruct the grain orientation field; the algorithm is described in Section 2.7.

2.3. Graph representation of microstructure

Now, let us describe the compressed representation of the microstructure using hand-crafted features. Consider a solution 
of Eq. (2.1a). From this simulation we sample 𝜎𝑣 layers of field data. We define a “layer” at height 𝜖𝑣 as the microstructure at 
the time 𝑐𝑣 when the solid-liquid interface (SLI) reaches 𝜖𝑣 (see Fig. 3a). More precisely, 𝑐𝑣 is defined as the time at which the lowest 
point (order in 𝜖 coordinate) at the SLI reaches 𝜖𝑣 .

We define 𝑏𝑣(𝛽, 𝐻) to be an image, a 2D scalar representation of the microstructure on the 𝛽 − 𝐻 plane at 𝜖𝑣 . Each layer 𝑏𝑣 is a 2D 
image on the 𝛽-𝐻 plane (Fig. 3b):

𝑏𝑣(𝛽,𝐻) = argmax
.

𝐴.(𝛽,𝐻,𝜖𝑣 , 𝑐𝑣). (2.3)

We solve Eq. (2.1a) to generate training data and verify the predictions of the surrogate. Although a simulation can have thousands 
of time steps, we subsample to 𝜎𝑣 planes using equispaced sampling for 𝜖𝑣 with height increment Δ𝜖, so 𝜖𝑣 = 𝑣Δ𝜖. Typically we use 
𝜎𝑣 = 20. We discuss the choice of Δ𝜖 and 𝜎𝑣 in Section 2.4.

Definition of edges and vertices Once 𝑏𝑣 have been identified, we extract graph (𝜋𝑣, 𝑜𝑣 (Fig. 3c) as follows. 𝜋(𝑃 , 𝑌) is an undirected 
graph where 𝑃 and 𝑌 denote the sets of vertices and edges respectively. In GrainGNN, 𝜋 has two types of vertices 𝑃 = 𝑃⊤ ∪ 𝑃̃ . 
𝑃⊤ = {⊤1, ⊤2, ..., ⊤𝜎⊤ } represents grains. 𝑃( = {̃1, ̃ 2, ..., ̃ 𝜎̃ } are junction vertices, where 𝜎̃ is the number of junctions. A junction vertex 
refers to a point in image 𝑏𝑣 that has three grain neighbors (e.g., ̃1 in Fig. 3d). Notice that the junction vertices are just the vertices 
of the Voronoi diagram. 𝜋 has two types of undirected edges 𝑌 =𝑌̃̃ ∪𝑌̃⊤ . 𝑌̃̃ are the edges between junction vertices and can be 
thought of as a representation of actual inter-grain boundaries on the 𝛽-𝐻 plane. 𝑌̃⊤ are the junction-grain edges (dashed lines in 
Fig. 3e).

As we will see later we need to define a maximum degree (number of edges) for a junction vertex. The maximum number of edges 
for a junction vertex depends on the physical setting of the problem. In rapid solidification of metals, the grain boundary anisotropy 
is relatively weak compared to kinetic anisotropy [56], and a triple junction is more stable than a quadruple junction [19]. Thus we 
only consider triple junctions in this work, which means a junction vertex can only connect to the other three junction vertices and 
three grain vertices. In this case, 𝜎̃ = 2𝜎⊤ , |𝑌̃̃ | = 3𝜎⊤ , and |𝑌̃⊤| = 6𝜎⊤ . Our handling of the graph topological changes discussed in 
Section 2.4 is based on this simplification of the graph structure.

Let’s now discuss how to identify vertices and edges from 𝑏𝑣 . First, we identify the junction locations (𝛽̃ , 𝐻̃ ). For each pixel (𝛽, 𝐻)
of 𝑏𝑣 , we inspect its eight neighbors each associated with a grain index. If there are three distinctive grain indices in eight neighbors, 
we consider pixel (𝛽, 𝐻) to be a junction pixel, for example, ̃1 in Fig. 3d. Every junction ̃ is associated with a unique triplet of grain 
indices 𝑚̃ = {⊤1, ⊤2, ⊤3}. Commonly multiple adjacent pixels will have the same triplet and we only keep one of them.2 Then using 
the triplet indices 𝑚̃ we add three edges to the 𝑌̃⊤ set: e.g., for ̃ 1, the 𝑌̃⊤ edges are (̃1, ⊤1), (̃1, ⊤2), (̃1, ⊤3). We create 𝑌̃̃ edges by 
𝑌̃̃ = {(̃1, ̃ 2) ∶𝑚̃1 ∩𝑚̃2 = 2, 0̃1, ̃ 2 )𝜋}. For example in Fig. 3e, edge (̃1, ̃ 2) exists because ̃1 and ̃2 share the same neighboring 
grains ⊤1 and ⊤2.

Definition of features We clarify that these are input features to the LSTM and serve as a reduced representation of the grain structure. 
They are not the network hidden features, which are of course determined during training. We define vertex and edge features as 
follows:

• Junction vertices: The feature vector of a junction vertex is defined as:

) ̃ =
1
) 0
̃

[
𝛽̃ 𝐻̃ 𝜖𝑣 𝜋𝜖 𝑠𝜖 Δ𝛽̃ Δ𝐻̃ Δ𝜖

]
, (2.4)

where 𝛽̃ , 𝐻̃ , and 𝜖𝑣 are the 3D coordinates of a junction vertex; Δ𝛽̃ and Δ𝐻̃ are in-plane displacements of junctions with respect 
to their locations in the previous layer 𝜋𝑣−1, i.e., Δ𝛽̃ = 𝛽̃,𝑣 − 𝛽̃,𝑣−1, Δ𝐻̃ = 𝐻̃,𝑣 − 𝐻̃,𝑣−1. Δ𝜖 = 𝜖𝑣 − 𝜖𝑣−1 is the distance between 
two sampled images. For 𝑣 = 0, we set Δ𝛽̃ = Δ𝐻̃ = Δ𝜖 = 0. 𝜋𝜖 and 𝑠𝜖 here are constants; they’re repeated at each vertex and 
we allow them to vary for each junction location.

2 If two or more pixels have the same triplet {⊤1, ⊤2, ⊤3}. We count the occurrences of each grain index in the eight neighbors of each pixel and use the one pixel 
whose index occurrences are more even. For example, for pixel 1 the occurrences are {3, 3, 2} and for pixel 2 the occurrences are {4, 3, 1} and we choose pixel 1.



Journal of Computational Physics 510 (2024) 113061

8

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

• Grain vertices: For a grain vertex, we define )* as:

) ⊤ =
1
) 0
⊤

[
𝛽⊤ 𝐻⊤ 𝜖𝑣 F⊤ G⊤ cos!𝛽 sin!𝛽 cos!𝜖 sin!𝜖 ΔF⊤ Δ𝜖

]
, (2.5)

where 𝛽⊤ , 𝐻⊤ , and 𝜖𝑣 are the coordinates of the grain vertices; F⊤ is the grain cross-sectional area; and G⊤ is the grain excess 
volume above the interface height 𝜖𝑣 [17]. For 𝛽⊤ , we average the coordinates of its junction neighbors 𝛽⊤ =

∑
𝐷)𝑚⊤

𝛽̃,𝐷#|𝑚⊤|. 
𝑚⊤ is the set of junctions connected to grain ⊤. !𝜖 is the angle between the 𝜖-axis and the preferred growth direction <100>; 
!𝛽 is the angle between the 𝛽-axis and the projection of <100> direction on the 𝛽-𝐻 plane. ΔF⊤ = F⊤,𝑣 − F⊤,𝑣−1 is the change of 
cross-sectional area; ΔF⊤ = 0 at 𝑣 = 0. In Eq. (2.5) and Eq. (2.4), ) 0

̃ and ) 0
⊤ are constant vectors to normalize features to [0, 1]. 

) 0
̃ =

[
𝑑𝛽,𝑑𝐻,𝑑𝜖,𝜋max,𝑠max,𝑑𝛽,𝑑𝐻,𝑑𝜖

] and ) 0
⊤ =

[
𝑑𝛽,𝑑𝐻,𝑑𝜖,𝑑𝛽𝑑𝐻,𝑑𝛽𝑑𝐻𝑑𝜖,1,1,1,1,𝑑𝛽𝑑𝐻,𝑑𝜖

]. 𝜋max and 𝑠max are maximum 
values of 𝜋𝜖 and 𝑠𝜖 in the training data.

• Edge features: For each 𝑌̃̃ and 𝑌̃⊤ edge, we include its length as the edge feature. Notice the length of an edge is calculated 
with periodic boundary conditions. We neglect the curvature of 𝑌̃̃ edge for simplicity (but notice that the grain boundary 
curvature in the 𝜖-direction is still captured).

In summary, 𝑜 contains three feature matrices 𝑜̃ =
[
) ̃,1 ) ̃,2 ... ) ̃,𝜎̃

]
, 𝑜⊤ =

[
) ⊤,1 ) ⊤,2 ... ) ⊤,𝜎⊤

]
, and edge features 𝑜𝑌 =

{|%H − %̃ |, 0(H, ̃ ) )𝑌}. The values of Δ𝛽̃ , Δ𝐻̃ , ΔF⊤ are obtained by subtracting 𝑜𝑣 and 𝑜𝑣−1, which is discussed in the next section.

2.4. Graph evolution

We now present how to model the graph-to-graph mapping (𝜋𝑣−1, 𝑜𝑣−1) → (𝜋𝑣, 𝑜𝑣). The dynamics observed in epitaxial grain 
growth can be decomposed into three basic types [18,19]: (i) junction vertex movement, (ii) grain neighbor switching, and (iii) grain 
elimination. We remark that (i) does not change the graph, only the value of its features; (ii) changes features and it removes and 
adds edges. (iii) does both (i) and (ii) but also removes vertices, both junction and grain vertices. We define two basic operations that 
compose the topological changes from 𝜋𝑣−1 to 𝜋𝑣 . One is a neighbor-switching operation ℎ𝑌 ; another is a vertex-removal operation 
ℎ𝜋 . By operation we mean a sequence of deterministic actions that add/remove vertices or edges. One neighbor switching event 
causes one ℎ𝑌 ; one grain elimination event causes one ℎ𝜋 and multiple ℎ𝑌 . Next we discuss these operations in detail.

Grain neighbor switching events: Grain neighbor switching happens when a grain edge becomes smaller and eventually disap-
pears. A disappearing edge creates a four-edge junction (Fig. 4a). Since in our PDE model four-edge junctions are unstable, a new 
edge starts growing and the four-junction becomes two triple junctions. This new edge causes the neighbor to switch. Physically, 
a neighbor-switching event involves four grains, where two grains lose one face and the other two grains gain one face. From I to 
II, grain ⊤1 and ⊤2 push the vertices ̃1 and ̃2 to move toward each other. At some intermediate time, ̃1 and ̃2 merge to form a 
quadruple junction. Then from II to III, the quadruple junction separates into two new junctions ̃(1 and ̃(2, which replace ̃1 and 
̃2. This event changes several edges, grain ⊤1 and ⊤2 grain an additional junction-grain edge; ⊤3 and ⊤4 lose one junction-grain 
edge; (̃(2, ̃ 5) and (̃(1, ̃ 4) replace (̃1, ̃ 5) and (̃2, ̃ 4); the total number of edges remains the same. The grain neighbor-switching event is characterized by the removal of (̃1, ̃ 2). We will refer to a grain neighbor switching event as an “edge” event in the following 
discussion.

Grain elimination events: Fig. 4b showcases a grain elimination event on ⊤3 which has three grain neighbors. In this example, 
face (̃1, ̃ 2) shrinks faster than two other faces and triggers a neighbor switch with ̃(1, ̃(2 the new junctions. II to III is an ℎ𝜋
operation. In this operation, we remove vertices ⊤3, ̃(1, ̃3, and edges connected to ̃(1 and ̃3. Finally, we add a new edge (̃(2, ̃ 4). Note that one grain about to be eliminated can have a different number of faces, typically three to seven. Elimination of an |𝑚⊤|-side 
grain needs |𝑚⊤| − 2 ℎ𝑌 operations and one ℎ𝜋 operation. One ℎ𝜋 operation removes one 𝑃⊤ vertex, two 𝑃̃ vertices, three 𝑌̃̃
edges, and six 𝑌̃⊤ edges.

Matching 𝜋𝑣−1 and 𝜋𝑣 and handling elimination events: Our graph update requires computing Δ𝑜 , 𝑌 , 𝜋 . We define

Δ𝑜 = {Δ𝛽̃ ,Δ𝐻̃ ,ΔF⊤ ,G⊤,𝑣 , 0̃,⊤ )𝜋𝑣−1}. (2.6)
To create Δ𝑜 for training data, we first need to match the vertices between 𝜋𝑣−1 and 𝜋𝑣 .

If there were no topological changes, the two graphs can be easily matched as follows. 𝑃⊤ are identical for the two graphs. 
Junction vertices are matched by their grain index triplets 𝑚̃ . For example in Fig. 3d and Fig. 3f, the magnified junctions have the 
same grain neighbors so they are the same junction vertex. Δ𝛽̃ , Δ𝐻̃ , ΔF⊤ are then obtained by subtracting features of their matched 
vertices.

Grain elimination events 𝜋 can also be handled relatively easily. They cause grain vertices in 𝜋𝑣−1 to be missing from 𝜋𝑣 . These 
vertices are defined by the set 𝜋 = {⊤ ∶ ⊤ )𝜋𝑣−1 1 ⊤ +𝜋𝑣}.

Neighbor-switching events are harder to handle: they result in junctions whose triplets 𝑚̃ are different in 𝜋𝑣 and 𝜋𝑣−1. Let 𝑣−1
be the junction vertices in 𝜋𝑣−1 but not matched in 𝜋𝑣 , 𝑣−1 = {̃ ∶ ̃ ) 𝜋𝑣−1 1 ̃ + 𝜋𝑣}. We enumerate every two junctions in 𝑣−1
and check (i) if they have an 𝑌̃̃ edge and (ii) if they become two new vertices of 𝜋𝑣 through a neighbor switching event. For the 
second check, we use their 𝑚̃ triplets. We use Fig. 4a as an example. 𝑚̃1 = {⊤1, ⊤3, ⊤4} and 𝑚̃2 = {⊤2, ⊤3, ⊤4}. If an edge event 
happened on (̃1, ̃ 2), two new triplets 𝑚̃(1

= {⊤1, ⊤2, ⊤3} and 𝑚̃(2
= {⊤1, ⊤2, ⊤4} must have formed at an intermediate time. We check 

that if 𝑚̃(1
and 𝑚̃(2

exist in 𝜋𝑣 , criterion (ii) is satisfied. Thus neighbor-switching events 𝑌 are junction pairs in 𝑣−1 that satisfy (i) 



Journal of Computational Physics 510 (2024) 113061

9

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 4. Topological events with the update of graph connectivity. (a) A neighbor-switching event requires changes of the graph topology: an ℎ𝑌 operation. Grains 
⊤3 and ⊤4 initially are neighbors. After applying ℎ𝑌 , ⊤1 and ⊤2 are neighbors. From I to II, ̃ 1, ̃ 2 merge to a quadruple junction; from II to III, the quadruple junction 
splits into two triple junctions. This event replaces edges (̃1, ̃ 5), (̃2, ̃ 4) (in red color) with the edges (̃(2, ̃ 5), (̃(1, ̃ 4) (in blue color). The total number of edges remains 
the same. (b) A grain elimination event. From I to II, a neighbor-switching event occurs on (̃1, ̃ 2); ⊤3 becomes a 2-side grain. II to III is an ℎ𝜋 operation. It removes 
⊤3 , ̃ (

1 , ̃ 3 , a couple of edges, and replace them with (̃(2, ̃ 4).

and (ii). We remark this method cannot match all the junction vertices. When a junction has been involved in two or more edge or 
grain elimination events (e.g., Fig. 6a), we fail to detect the events. In this case, we mask out (in training) the unmatched junctions 
and 𝑌̃̃ edges. These are typically less than 1% of the total vertices and edges.

Choosing Δ𝜖: Finally, we discuss how to choose Δ𝜖, the distance between 𝑏𝑣−1 and 𝑏𝑣 . If Δ𝜖 is too small, GrainGNN will need 
too many steps during inference, and make the surrogate too expensive. If Δ𝜖 is too large, 𝑏𝑣−1 and 𝑏𝑣 will be exceedingly different 
as they will involve a large number of topological events. With these observations in mind, we choose the number of layers 𝜎𝑣 such 
that:

𝜎𝜋(𝜖 =𝑑𝜖)
𝜎0⊤𝜎𝑣

% 3%,

Δ𝜖 =𝑑𝜖#(𝜎𝑣 − 1),
(2.7)



Journal of Computational Physics 510 (2024) 113061

10

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 5. The LSTM architecture. We use a graph transformer LSTM with a regressor  and a classifier —both having an encoder-decoder structure. The classifier 
and regressor are trained separately. The junction nodes (solid circles) and grain nodes (hollow circles) have vertex features defined in Eq. (2.4) and Eq. (2.5). For 
each target vertex (red circles), graph transformer operators in Eq. (2.8) aggregate the features of the vertex itself with the neighboring vertices into a hidden vector. 
The decoder  then uses Eq. (2.11) to transform the hidden vector to the target outputs, which are displacements of junctions, area change, and excess volume of 
grains. For each junction-junction edge, the model  concatenates the hidden vectors of the two connecting vertices and predicts the probability of the edge event 
(see Eq. (2.13)).

where 𝜎0⊤ is the number of grain vertices of 𝜋0. We allow about 3% of grains to be eliminated per graph update. Notice that 𝜎𝜋 < 𝜎0⊤
so 𝜎𝑣 ∼ ℎ(1). For training data, we count 𝜎𝜋 and calculate 𝜎𝑣 and Δ𝜖 with Eq. (2.7). For example, if we run a 100-grain phase field 
simulation to have 40 grains at the end, 𝜎𝑣 = (100 − 40)#100#3% = 20. For GrainGNN inference, we don’t know 𝜎𝜋 beforehand. We 
first create map Δ𝜖(") using the training " grid. Then for a testing ", we use the nearest neighbor interpolation for Δ𝜖.

2.5. The LSTM architecture

In this section, we discuss the neural network at the heart of the GrainGNN surrogate. It comprises a regressor  and a classifier . Both have an encoder-decoder structure. Graph features of 𝑜𝑣−1 are encoded to intermediate hidden states A𝑣 through the encoder 
and then A𝑣 are decoded to the target outputs (see Fig. 5). We use a graph transformer LSTM as the encoder for both  and . The 
encoders for  and  have the same architecture but they have different weights and they’re trained separately.

LSTM encoder architecture. Each encoder has several identical LSTM [29] layers stacked on top of each layer. The LSTM 
layer hidden states are denoted by A )ℝIℎ×(𝜎̃+𝜎⊤ ); its cell states by > )ℝIℎ×(𝜎̃+𝜎⊤ ). Here Iℎ, the hidden dimension, is a network 
architecture hyperparameter. Hidden and cell states are intermediate outputs of LSTM to store short- and long-term prior information. 
The inputs to each LSTM layer are the feature matrices 𝑜𝑣−1 and the graph adjacency matrix K𝑣−1 (KH̃ = 1(H,̃))𝑌 ). The outputs are 
the updated hidden and cell states A𝑣 , >𝑣 . Let L𝑣−1 = [𝑜𝑣−1, A𝑣−1] be the input matrix, and one LSTM layer is defined as follows:

H𝑣 = M
(H (L𝑣−1,K𝑣−1

)
+ NH

)
,

𝑢𝑣 = M
(𝑢 (L𝑣−1,K𝑣−1

)
+ N𝑢

)
,

>𝑣 = 𝑢𝑣>𝑣−1 + H𝑣 tanh
(C (L𝑣−1,K𝑣−1

)
+ NC

)
,

O𝑣 = M
(O (L𝑣−1,K𝑣−1

)
+ NO

)
,

A𝑣 = O𝑣 tanh
(
>𝑣
)
,

(2.8)

where H, 𝑢 , C , O are graph transformer operators [57] with trainable weights; M is the sigmoid function; NH, N𝑢 , NC , NO are biases. 
For the first layer, A𝑣−1 and >𝑣−1 are initialized as zeros; for other layers, A𝑣−1 and >𝑣−1 are initialized with A𝑣 and >𝑣 of the 
previous layer.

The graph transformer operator  , is a message-passing neural network [45].  operates on every node in the graph with the 
node’s neighboring nodes. In Fig. 5 (top row), the red circles indicate a node on which we evaluate  and the black circles its 
neighbors. Every neighbor passes its vertex and edge features to the target node.  aggregates the passed information and the 



Journal of Computational Physics 510 (2024) 113061

11

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

features of the target node into a single vector. Let +H = [) H ,H] be the input vector of node H; ,H ) ℝIℎ is node H’s hidden vector.  (L , K)H )ℝIℎ , the output vector for node H, is given by [57]:

 (L ,K)H =𝑎1+H +
∑
𝐷)𝑚H

@H,𝐷
(
𝑎2+𝐷,H +𝑎3) H𝐷

)
, (2.9a)

@H,𝐷 = sof tmax
((

𝑎4+H
)⊤ (𝑎5+𝐷,H +𝑎3) H𝐷

)
√
Iℎ

)
, (2.9b)

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are trainable weights for one  operator; 𝑚H is the set of neighbors of vertex H, 𝑚H = {𝐷 ) 𝑃 ∶K(H, 𝐷) ≠ 0}; 
) H𝐷 is the edge feature of the edge (H, 𝐷); @H,𝐷 ) (0, 1) is the attention coefficient [51] that measures the coupling strength between 
node H and 𝐷. +𝐷,H is the passed input vector of node 𝐷; it is modified from +𝐷. Recall for all vertices, the first three elements of +𝐷 are 
its absolute coordinates %𝐷 = (𝛽𝐷, 𝐻𝐷, 𝜖𝐷). We replace %𝐷 with %𝐷,H, the relative coordinates with respect to node H, and account for the 
periodic boundary conditions:

%𝐷,H = %𝐷 − %H − nint(%𝐷 − %H), (2.10)
where nint is the nearest integer function. For example, if 𝛽𝐷 = 0.8 and 𝛽H = 0.1, nint(𝛽𝐷 − 𝛽H) gives 1 and 𝛽𝐷,H = −0.3. Thus, the 
couplings of nodes are only sensitive to their distance and thus are translation invariant. If we translate the coordinate system, the 
coupling term won’t change. In Section 3.3, we will see this treatment allows GrainGNN to scale to large systems.

Regression decoder. The hidden states A𝑣 of the last LSTM layer are passed to decoders. The decoder of model  is just a single 
layer perceptron: a linear layer with an activation function:

Δ𝛽̃ = tanh(𝑎ℎ𝛽,̃ + N𝛽), (2.11a)
Δ𝐻̃ = tanh(𝑎ℎ𝐻,̃ + N𝐻), for ̃ = 1, ...,𝜎̃ , (2.11b)
ΔF⊤ = tanh

(
𝑎ℎF,⊤ + NF

)
, (2.11c)

G⊤,𝑣 = ReLU
(
𝑎ℎG,⊤ + NG

)
, for ⊤ = 1, ...,𝜎⊤ . (2.11d)

𝑎ℎ𝛽, 𝑎ℎ𝐻, 𝑎ℎF, 𝑎ℎG and N𝛽, N𝐻, NF, NG are trainable weights and biases. Here Δ𝛽̃ , Δ𝐻̃ , ΔF⊤ , G⊤,𝑣 are normalized outputs. We use tanh
activation for Δ𝛽̃ , Δ𝐻̃ , and ΔF⊤ because their values are in [-1, 1]. We use Rectified Linear Unit (ReLU) as the activation function 
for G⊤ to ensure its non-negativity. From Eq. (2.11c) we compute the updated cross-sectional area F⊤,𝑣 = F⊤,𝑣−1 + ΔF⊤ . Grain ⊤ is 
removed from graph when F⊤,𝑣 < B𝜋 , where B𝜋 is a hyperparameter, that is determined by parameter sweep during network training. 
Typically B𝜋 = 10−4 in our experiments.

Regression loss function. Let Δ𝑜 be the training data and Δ𝑜 be the corresponding network prediction, the 𝑑2-loss function 
for  is:

𝑑2 =
1
𝜎̃

𝜎∑̃
̃=1

[(
Δ𝛽̃ −Δ𝛽̃̃

)2 + (
Δ𝐻̃ −Δ𝐻̃̃

)2]+ 1
𝜎⊤

𝜎⊤∑
⊤=1

[(
ΔF⊤ −ΔF̃⊤

)2 + (
G⊤ − G̃⊤

)2] . (2.12)

Classification decoder. The decoder of the classifier  predicts the probability of the edge event R for each 𝑌̃̃ edge. As shown 
in Fig. 5,  forms a vector that concatenates ,H, ,̃ , and ) H̃ . Then  uses a linear layer followed by a sigmoid function to output the 
probability RH̃ ) (0, 1):

RH̃ = M
(
𝑎ℎC[,H,,̃ ,) H̃ ] + NC

)
, 0(H, ̃) )𝑌̃̃ , (2.13)

where 𝑎ℎC and NC are trainable weights and biases. An 𝑌̃̃ edge with probability RH̃ higher than B𝑌 ) (0, 1) is classified as a positive 
event of neighbor switching, where B𝑌 is the edge classification threshold.

Classification loss function. We use a binary cross-entropy (BCE) loss for . Let SH̃ = {0, 1} be the truth labels of whether (H, ̃ )
is eliminated, the loss function is:

𝑑>𝑌 = 1
|𝑌̃̃ |

∑
0(H,̃))𝑌̃̃

−SH̃ logRH̃ − (1− SH̃ )log
(
1− RH̃

)
. (2.14)

Network evaluation metrics. We use several metrics to evaluate the accuracy of the two networks. For the regression network, 
we compute the Relative Root Mean Square Error (RRMSE) of the outputs:

RRMSE =

√√√√
∑𝜎

H=1
(
𝛽H − 𝛽̃H

)2
∑𝜎

H=1 𝛽
2
H

× 100, (2.15)

where 𝛽H and 𝛽̃H are the ground truth and prediction respectively; 𝜎 is the number of samples. For classification accuracy, we use 
𝑜1-score. 𝑜1-score is the harmonic mean of the prediction precision and recall, where precision = TruePositive / (TruePositive + 
FalsePositive) and recall = TruePositive / (TruePositive + FalseNegative). Precision and recall both depend on the classification 
thresholds. We calculate the area under the curve (AUC) of the precision-recall curve drawn from different thresholds; a higher 



Journal of Computational Physics 510 (2024) 113061

12

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 6. GrainGNN graph update orderings given events lists 𝑌 and 𝜋 . (a) Order of edge events. (̃1, ̃ 2) and (̃2 , ̃ 3) are edges with elimination probability 
R12 > R23 > B𝑌 . GrainGNN applies ℎ𝑌 on (̃1 , ̃ 2) before (̃2, ̃ 3). For each ℎ𝑌 , the edge connectivity is updated as shown in Fig. 4a. We assume new junction points 
̃(1, ̃ (

2 are both located at the midpoint of edge (̃1 , ̃ 2). After event (̃2, ̃ 3), ̃ 1, ̃ 2, ̃ 3 are at the same location but the connectivity is as shown in IV. (b) Elimination of 
grain ⊤0 . The list of ℎ𝑌 operations is sorted by the area increment of neighboring grains. Here ΔF⊤15 < ΔF⊤12 < ΔF⊤23 < ΔF⊤45 < ΔF⊤34 . Thus GrainGNN applies ℎ𝑌 in 
the order (̃1, ̃ 5), (̃1, ̃ 2), (̃2, ̃ 3).

AUC represents a more accurate classifier. From the precision-recall curves, we find the optimal classification thresholds B𝑌 and B𝜋
leading to the highest 𝑜1-scores. The details of the training setup are provided in Section 3.1.

2.6. Graph reconstruction and GrainGNN algorithm

Given the trained LSTM networks and classification thresholds, we apply the graph-to-graph update algorithm Algorithm 1 that 
implements (𝜋𝑣−1, 𝑜𝑣−1) → (𝜋𝑣, 𝑜𝑣). This in essence the GrainGNN surrogate along with the image-to-graph and graph-to-image pre-
and post-processing steps.

In GrainGNN’s lines 2-3, the LSTMs  and  compute Δ𝑜 and R (Eq. (2.11), Eq. (2.13)) respectively using the input features 
𝑜𝑣−1. In lines 4-7, we update the features 𝛽̃ , 𝐻̃ , 𝜖𝑣 , F⊤ , G⊤ with Δ𝑜 and create the lists of events 𝑌 and 𝜋 . Next, we update the 
graph with 𝑌 and 𝜋 .

Note that during one graph update, some junctions are involved in more than one event for example ̃ 2 in Fig. 6a. Different orders 
of applying 𝑌 (̃1, ̃ 2) and 𝑌 (̃2, ̃ 3) will result in different graphs. We address this by imposing an operator event ordering based 
on the predicted features. We next discuss this for grain elimination events and grain neighbor switching events.

Ordering grain elimination events. We sort 𝜋 by the predicted grain area F⊤ . Grains with smaller areas are expected to 
be eliminated first. Lines 11-20, define required graph topology updates when grain ⊤ is eliminated. Recall a grain elimination 
event requires |𝑚⊤| − 2 ℎ𝑌 operations followed by an ℎ𝜋 operation. We denote the ℎ𝑌 operations of grain ⊤ by 𝑌,⊤ . An ℎ𝑌
operation includes the updates of the edges as shown in Fig. 4a. If (̃1, ̃ 2) is given as an edge event, we find their neighboring 
nodes ⊤1, ⊤2, ⊤3, ⊤4, ̃ 3, ̃ 4, ̃ 5, ̃ 6 by searching the edge list 𝑌 for edges having node ̃1 or ̃2. Then we perform edge replacements 
(̃1, ⊤4) → (̃(1, ⊤2), (̃2, ⊤3) → (̃(2, ⊤1), (̃1, ̃ 5) → (̃(2, ̃ 5), (̃2, ̃ 4) → (̃(1, ̃ 4). ℎ𝑌 also predicts the coordinates of ̃ (

1, ̃ (
2. Currently, we do not implement this part in the networks; we approximate the coordinates of ̃(1 and ̃(2 simply with the midpoint of the edge (̃1, ̃ 2), i.e., 

𝛽̃(1 = 𝛽̃(2 = 0.5(𝛽̃1 + 𝛽̃2 ) (Fig. 6a). We use this approximation due to the lack of training edge events, which is only about 2% of the 
number of 𝑌̃̃ edges.

Ordering grain switching neighbor events. We need to perform this for both 𝑌 and for switch events 𝑌,⊤ triggered by 
grain eliminations. We discuss the latter first. In line 12 we initialize 𝑌,⊤ as the edges of grain ⊤. Then, we sort 𝑌,⊤ by the area 
change of ⊤’s neighboring grains ⊤H̃ , where ⊤H̃ is the grain which shares the edge (H, ̃ ) with ⊤. In one ℎ𝑌 operation, both ⊤ and 
⊤H̃ lose edge (H, ̃ ). Generally, a grain with an expanding cross-sectional area ΔF is more likely to gain faces rather than lose faces. 
Thus we choose to first update the edge of the grain whose ΔF is the smallest. For example in Fig. 6b, the regressor  predicts 
ΔF⊤15 <ΔF⊤12 <ΔF⊤23 <ΔF⊤45 <ΔF⊤34 , so our updating order is (̃1, ̃ 5), (̃1, ̃ 2), (̃2, ̃ 3). In lines 16-19, we apply ℎ𝑌 on each edge (H, ̃ )
of 𝑌,⊤ and if (H, ̃ ) also appears in 𝑌 , we remove it so that it won’t be updated again. In lines 21-24, we sort 𝑌 by the elimination 
probability R and apply ℎ𝑌 on each event. For example in Fig. 6a, R12 > R23 so (̃1, ̃ 2) is updated first. We want to emphasize that 



Journal of Computational Physics 510 (2024) 113061

13

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

although ̃(1, ̃ (
2, ̃

(
3 are temporarily at the same location, they are three different points and one of each only connects to three other junctions. Finally, in lines 25-28, we check the graph if it has 2-side grains, whose faces were eliminated during other events. We 

remove these grains although their area is still larger than 0.
Overall GrainGNN computational complexity. We analyze the complexity of Algorithm 1. The dominant cost of networks 

and  is the evaluation of graph transformers. In Eq. (2.9), the cost of one matrix-vector multiplication is ℎ(I2
ℎ); therefore, the 

cost of one network inference of the entire graph is ℎ(𝜎⊤I2
ℎ). The cost of lines 4-7 is ℎ(𝜎⊤). For a graph update, the number of 

events |𝜋| ∼ ℎ(𝜎⊤), |𝑌 | ∼ ℎ(𝜎⊤). Sorting 𝑌/𝜋 in lines 10 and 22 is ℎ(𝜎⊤ log(𝜎⊤)) cost. One ℎ𝑌 or ℎ𝜋 consists of a couple of 
vertex and edge searches. Each event is ℎ(𝜎⊤) complexity. Thus the complexity per graph update is ℎ(I2

ℎ𝜎⊤ + 𝜎2⊤). Recall that the 
time complexity 𝜎𝑣 is ℎ(1) so the overall complexity is ℎ(I2

ℎ𝜎⊤ + 𝜎2⊤). In our experiments typically we have 𝜎⊤ <I2
ℎ and the cost of GrainGNN roughly scales linearly with the number of grains 𝜎⊤ .

Algorithm 1 GrainGNN graph-to-graph update algorithm 𝜋𝑣−1(𝑃𝑣−1, 𝑌𝑣−1), 𝑜𝑣−1 →𝜋𝑣(𝑃𝑣, 𝑌𝑣), 𝑜𝑣
Parameters: B𝑌 and B𝜋 are classification thresholds.
1: /* GrainGNN components  and  make predictions */
2: Δ𝑜 =(𝑜𝑣−1, 𝑌𝑣−1) feature changes
3: R = (𝑜𝑣−1, 𝑌𝑣−1) edge event probability
4: 𝑜𝑣 ← 𝑜𝑣−1 +Δ𝑜
5: /* find events based on thresholds B𝑌 , B𝜋 */
6: 𝑌 ← {(T, 𝜎) )𝑌̃̃,𝑣−1 ∶ RT𝜎 > B𝑌} edge events
7: 𝜋 ← {⊤ ) 𝑃⊤ ∶ F⊤,𝑣 < B𝜋} grain elimination events
8: /* update graph with 𝜋 */
9: 𝑃𝑣 , 𝑌𝑣 ← 𝑃𝑣−1, 𝑌𝑣−1
10: 𝜋 ← Sort 𝜋 by F⊤,𝑣 in ascending order
11: for ⊤ ) 𝜋 do
12: 𝑌,⊤ = {(T, 𝜎) )𝑌̃̃,𝑣 ∶T, 𝜎 )𝑚⊤} edge events of eliminated grain
13: 𝑌,⊤ ← Sort 𝑌,⊤ by ΔF⊤H̃ in ascending order14: 𝑌,⊤ ← Remove last two elements
15: /* update graph with 𝑌,⊤ */
16: for (H, ̃ ) ) 𝑌,⊤ do
17: 𝑌𝑣 , 𝑜𝑣 ←ℎ𝑌 (𝑌𝑣 , 𝑜𝑣 , H, ̃ ) coordinates of new junctions
18: if (H, ̃ ) ) 𝑌 then
19: 𝑌 ← Remove (H, ̃ ) avoid updating again in 𝑌

20: 𝑃𝑣 , 𝑌𝑣 ←ℎ𝜋(𝑃𝑣 , 𝑌𝑣 , ⊤)
21: /* update graph with 𝑌 */
22: 𝑌 ← Sort 𝑌 by RH̃ in descending order
23: for (H, ̃ ) ) 𝑌 do
24: 𝑌𝑣 , 𝑜𝑣 ←ℎ𝑌 (𝑌𝑣 , 𝑜𝑣 , H, ̃ ) coordinates of new junctions
25: /* remove 2-side grains */
26:  (

𝜋 ← {⊤ ) 𝑃⊤ ∶ |𝑚⊤ | = 2}
27: for ⊤ )  (

𝜋 do
28: 𝑃𝑣 , 𝑌𝑣 ←ℎ𝜋(𝑃𝑣 , 𝑌𝑣 , ⊤)

2.7. Graph-to-image microstructure reconstruction

We conclude with the post-processing step that converts the output GrainGNN to a 3D grain orientation field or directly to 
quantities of interest. Given 𝜋0, 𝑜0 Algorithm 1 computes the trajectory (, ) ∶= {𝜋𝑣, 𝑜𝑣}

𝜎𝑣
𝑣=0. We remark that with , we can 

directly compute the quantities of interest. For instance, the volume of a grain ⊤ is given as ⊤ = Δ𝜖 ∑𝜎𝑣−1
𝑣=0 F⊤,𝑣 + G⊤ . Therefore size, 

aspect ratio, and orientation statistics can be readily computed. If needed, we can also reconstruct the pointwise orientation !(𝛽, 𝐻, 𝜖). 
We first reconstruct slices 𝑏𝑣 of the 𝛽 − 𝐻 plane at different 𝜖𝑣 positions. For each grain ⊤ )𝜋𝑣 , we find its junction neighbors 𝑚⊤ and 
their coordinates. We draw a polygon using the junctions and set 𝑏𝑣(𝛽, 𝐻) = ⊤ at all interior pixels—at any desired pixel resolution. We 
repeat it for 𝜎⊤ grains. To combine all the 𝑏𝑣 slices we use piecewise constant interpolation in 𝜖: we assume that each reconstructed 
𝑏𝑣 has thickness Δ𝜖 and then stack them in 𝜖-direction to form the 3D grain index field . We currently neglect the excess volume 
part of a grain in reconstructed 3D images. The final orientation field !(𝛽, 𝐻, 𝜖) = !⊤((𝛽, 𝐻, 𝜖)), where !⊤ is the orientation of a grain 
with index ⊤.

2.8. Discretization and numerical solution of the phase field PDE

We use a second-order finite difference discretization in space and a forward Euler time stepping in time. The phase field code is 
implemented with Compute Unified Device Architecture (CUDA) in C++. Every grain is associated with a phase field function so one 
simulation will require storage of 𝜎⊤ phase field functions. To reduce the complexity, we adopt an active parameter tracking (APT) 
algorithm [58] to reduce the number of phase field variables stored on each grid point to a constant number R . Each grid point stores 
the largest R numbers of 𝐴. with its index . and treats all the other phase field variables as -1. In each time step at each grid point, 
only . stored in the point itself and its six direct neighbors compute Eq. (2.1a), and the new R largest 𝐴. are found and stored. APT 



Journal of Computational Physics 510 (2024) 113061

14

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

reduces the storage by a factor of 𝜎⊤#(2R ). We find R = 5 is sufficient for our simulation setup. We also utilize the moving-domain 
technique [59] to reduce the height of the computational domain.3 The convergence results of mesh size D𝛽, interface width 𝑎0, the 
number of phase field variables, and the height of the moving domain are reported in the appendix.

But why an explicit scheme? First, most practitioners [6,52] use explicit schemes so this comparison is the most informative. 
Second, although there are situations in which linearly-implicit or implicit-explicit solvers are preferable, this is not usually the case 
because in several rapid solidification regimes either the PDEs are not stiff or the implicit solvers become overly diffusive [53]. Third, 
implicit solvers complicate the implementation of the active parameter tracking.

3. Results

In this section, we present training and testing experiments for GrainGNN. In Section 3.1 we discuss the data generation for 
training, the network architecture parameters and number of parameters, metrics of comparison with simulations, and the training 
accuracy we obtained. In Section 3.2 and Section 3.3, we discuss the testing accuracy. Recall that the input parameters to GrainGNN 
are " = {𝜋𝜖, 𝑠𝜖} (temperature profile), # the grain initial condition at 𝜖𝑣 = 𝜖0 (substrate of meltpool), and the domain dimensions 
𝑑 = (𝑑𝛽, 𝑑𝐻, 𝑑𝜖). For the temperature, we select a range of values for 𝜋𝜖 and 𝑠𝜖 and we select some values for training and different 
values for testing. The range of values corresponds to temperature profiles in metal alloy rapid solidification conditions. For training 
𝑑 is fixed to 𝑑 = 𝑑0 and # is sampled from a fixed distribution. For testing, we consider two settings for 𝑑 and #. (1) In distribution 
generalization (Section 3.2) we use 𝑑 =𝑑0 and # is sampled from the same distribution used for training. (2) In our Out of distribution 
generalization experiments (Section 3.3), we use 𝑑 ≠𝑑0 and # is sampled from a different distribution used in training. The latter is 
critical because although we train for a relatively small number of grains, we can generalize GrainGNN to an arbitrary number of 
grains and initial conditions without further training.

3.1. Training of LSTM regressor and classifier

Selecting input parameter values for training. We use phase field data of different # and " as our training data. For each 
simulation, we use the same domain size 𝑑0. We try to use as small 𝑑0 as possible to minimize training costs. We choose 𝑑0

𝛽 =𝑑0
𝐻 =

40 µm to have a sufficient initial number of grains to avoid the effect of periodic boundary conditions. We choose 𝑑0
𝜖 = 50 µm to 

have sufficient grain coarsening. The percentage of eliminated grains at 𝜖𝑣 = 50 µm is typically 50%−70%. For ", we used a uniform 
grid sampling with 𝜋𝜖 values in (0.5, 10) K#µm [4–6], and 𝑠𝜖 values in (0.2, 2) m#s [6,60]. The sampling grid is shown in Fig. 10a. 
The mesh size we use is Δ𝜋 = 0.5 K#µm and Δ𝑠𝜖 = 0.2 m#s, thus the total number of sampled " points is 1443. For each " point we 
sample a different #. Grain orientations are uniformly sampled from a unit sphere, as discussed in Section 2.1. The sampling of the 
initial junction coordinates %0̃ is as follows.

We first initialize grains as hexagonal lattices of the same size. Here we set their equivalent diameter D0 = 4.1 µm [61]. The 
junction coordinates of the hexagonal grid are %̄̃ . Then we add a perturbation %0̃ = %̄̃ + 0.1𝑑0

𝛽U and U is sampled from a Gaussian 
distribution U ∼ (!, '). For training data, the initial number of grains is in the range of 110−125 and the grain sizes are in the range 
of 2.7−5.7 µm. For in-distribution generalization, testing # is sampled using the same method. For out-of-distribution generalization, 
we sample %0̃ from a uniform distribution %0̃ ∼L (0, 1) to test grain sizes with a larger variance.

Generating training data with phase field simulations. To generate training data we use high fidelity phase field simulations 
with the discretization described in Section 2.8. We use the interface width 𝑎0 = 0.1 µm and D𝛽 = 0.8𝑎0. We performed the 
convergence test to verify that this mesh size provides sufficient accuracy of quantities of interest for the " range we used. The 
number of grid points used is 500 × 500 × 625. The time step is 2.42 nanoseconds. The simulation is stopped when the SLI reaches 
50 µm. The number of time steps varies between 10K for 𝑠𝜖 = 2 m#s to 100K for 𝑠𝜖 = 0.2 m#s. The total cost for generating training 
data was about 15 hours on 24 NVIDIA A100 GPUs.

From each simulation, we extract graph pairs (𝜋𝑣−1, 𝜋𝑣). For 𝜖𝑣 = 𝑑0
𝜖 = 50 µm, the number of eliminated grains varies between 

0−84 so the number of extracted layers per simulation 𝜎𝑣 is 2−21. The total number of graph pairs created is 40K (38K for training 
and 2K for validation). We first train the regressor network  for 50 epochs with the Adam optimizer [62]. The learning rate was 
set to 50% decay every 10 epochs. Then we use ’s weights to initialize the encoder of  which is trained for an additional 20 
epochs again using the Adam optimizer. The network hyperparameters—Iℎ, the number of LSTM layers, the batch size, and the 
initial learning rate—were tuned by grid search. The tuned , have two LSTM layers with Iℎ = 96 for a total 1.2 million weights 
per network. The total training time was 12 hours on a single A100 GPU. We remark that  and  run on both CPUs and GPUs. But 
during inference we also need operations ℎ𝑌 and ℎ𝜋 , which we have implemented only on CPUs. So currently we run our inference 
only on CPUs and the inference can be further accelerated if we run  and  on GPUs.

Fig. 7 shows the training losses and accuracy of GrainGNN. For model , the initial training and validation losses are 0.97 and 
the final training and validation losses are 0.002. The corresponding accuracy of the output features is shown in Fig. 7c. At epoch 
50, the RRMSE for Δ𝛽, Δ𝐻, ΔF and G are 18.7%, 19.5%, 10.6%, and 7.9%, respectively. The average in-plane movement of a junction 
between two sampled 𝜖𝑣 values is roughly 2−3 pixels in 𝛽 and 𝐻 direction. Thus, the error of the predicted junction coordinates is 

3 We track a domain with a height smaller than the actual domain height 𝑑(
𝜖 . The domain is placed around the SLI and moves with the SLI. As the SLI moves one 

grid point in the 𝜖-direction, we add a new layer of liquid on the top of the domain and remove the bottom layer of the solidified part. The removed layer is stored 
and remains “frozen” till the end of the simulation.



Journal of Computational Physics 510 (2024) 113061

15

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 7. Training losses and accuracy. (a) Training and validation losses of the regressor . (b) Training and validation losses of the classifier . (c) Relative errors 
(RRMSE) of the regression outputs for validation data. Δ𝛽, Δ𝐻, ΔF, and G. (d) The area under the Precision-Recall curve (PR AUC) of the predictions of the grain 
elimination events and neighbor-switching events.

about half a pixel per graph update. Accuracy of grain events and edges events is shown as the black and red line in Fig. 7d. The 
final AUCs of grain events and edge events are 0.941 and 0.923 respectively. The optimal classification threshold for grain events we 
find on the precision-recall curves is B𝜋 = 10−4; the corresponding precision and recall are 0.95 and 0.92. For edge events, we find 
B𝑌 = 0.6; precision is 0.91 and recall is 0.87.

Next we evaluate the accuracy of GrainGNN-predicted microstructure. 𝑏0 is the PDE-to-image translation of #, the initial condition 
for both GrainGNN and phase field PDE. We extract 𝜋0, 𝑜0 from 𝑏0 and compare the final predicted microstructure with phase field 
simulations. We use a pixel misclassification rate (MR) to measure pointwise errors. MR(𝜖𝑣) is as the number of grid points classified 
to a wrong grain, normalized by the total number of pixels:

MR(𝜖𝑣) = 1
|𝑏𝑣|

∑
H

∑
̃

1𝑏𝑣,PF(H,̃)≠𝑏𝑣,GNN(H,̃). (3.1)

MR is zero when all grain boundaries are exactly reconstructed. For the quantities of interest, we measure the distributional error 
for grain sizes predicted by phase field simulations and GrainGNN. We use the two-sample Kolmogorov–Smirnov (KS) statistics 
KS = sup𝛽 ||IPF(𝛽)−IGNN(𝛽)||. I represents the empirical cumulative distribution function (eCDF) of grain sizes. KS statistics quantify 
the maximum discrepancy between the predicted and the ground truth grain size distributions. The smaller the KS value is the closer 
the two distributions are. More details about how to interpret KS statistics are provided in the appendix.

3.2. In-distribution generalization

By in-distribution generalization we refer to GrainGNN inference for 𝑑 = 𝑑0, unseen (during training) " values, and unseen # val-
ues sampled by the same procedure we used for training. We show an example of test case in Fig. 8 with " = (1.904 K#µm, 0.558 m#s). 
Using nearest neighbor interpolation in " space we determine that GrainGNN should be used with Δ𝜖 = 2.4 µm, which determines 
the number of GrainGNN steps. Fig. 8a shows the grain microstructure at four different heights. At each height 𝜖𝑣, we show the 𝜋𝑣
and 𝑏𝑣 with 500 × 500 spatial resolution. We compare the reconstructed image with the phase field data at the same height. The mis-
classified grid points are marked in dark red. The error images indicate that the GrainGNN predictions are accurate representations of 
the microstructure obtained by our phase field simulations. The last two columns compare the evolution of the 3D microstructure for 
GrainGNN and phase field predictions. We select two grains to illustrate the grain shape evolution. Fig. 8b-e are different measures 
of GrainGNN accuracy. Fig. 8b shows the cumulative grain elimination events when the SLI reaches different heights. The blue, red, 
and dashed red lines depict grain eliminations that happened in the phase field simulation only, GrainGNN inference only, and in 
both, respectively. We can see that the number of eliminations predicted by GrainGNN is overall accurate but lagged after 𝜖𝑣 = 24 µm
compared to the phase field result. At 𝜖𝑣 = 50 µm, three grains that should be eliminated still exist on the graph, and only one grain 
is falsely eliminated by GrainGNN. The precision and recall for grain events are 72/73 and 72/75 respectively. Fig. 8c plots MR 
for reconstructed images at different heights. MR is 2.4% initially at 𝜖0 = 2 µm because the curvature of the grains is neglected in 
reconstructed images. MR is 11.3% at 𝜖𝑣 = 50 µm. Fig. 8d shows the evolution of the volume-averaged misorientation as the height 
of the SLI increases; the curve is well captured by GrainGNN. The initial average misorientation angle is 23.8◦ and it decreases to 
13.8◦, which indicates the grains are more aligned with the temperature gradients after the epitaxial growth. Fig. 8e shows the grain 
size distribution when the SLI reaches 50 µm. The final average grain size is 9.9 µm. The KS statistic between the phase field and 
GrainGNN distributions is 0.034, which means the two distributions are nearly identical.

We test the accuracy of GrainGNN inference for different values of ". In our first test, we select four values of ", each of which we 
sample ten # to compute microstructure statistics. In Fig. 9, the 2D images show the grain microstructure at height 𝜖𝑣 = 50 µm. We 
can see that lower 𝜋𝜖 and higher 𝑠𝜖 result in more grain eliminations and more misclassified pixels. The MR average and standard 
deviation at 𝜖𝑣 = 50 µm for the four values of " are 16.2%±1.7%, 23.1%±3.2%, 8.6%±0.5%, and 18.8%±2.3%, respectively. The 
blue and red lines are the mean and standard deviation of the phase field and GrainGNN predictions. The KS average and standard 
deviation at 𝜖𝑣 = 50 µm are 4.7%±0.7%, 5.4%±0.9%, 5.2%±0.9%, and 4.4%±0.6% for the four " values.

We further test GrainGNN’s MR accuracy on 100 randomly selected " with a single random # for each value of " (see Fig. 10a). 
Fig. 10b show the MR averaged over 𝜖𝑣 for each testing case. MR increases with increasing 𝑠𝜖 and decreasing 𝜋𝜖; the highest MR 



Journal of Computational Physics 510 (2024) 113061

16

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 8. GrainGNN prediction for one testing case with 𝜋𝜖 = 1.904 K#µm and 𝑠𝜖 = 0.558 m#s. (a) The time evolution of the grain microstructure when the 
solid-liquid interface 𝜖𝑣 reaches different heights. At each height from left to right, we show the graph that GrainGNN predicts, the reconstructed microstructure at the 
current height, the corresponding phase field simulation, the pointwise error between the GrainGNN image and the phase field result, the GrainGNN grain structures 
which are formed by stacking reconstructed images, and the phase field microstructures. We also explicitly show two of the grains to illustrate the evolution of the 
grain shape. (b) The number of accumulated grain elimination events when SLI reaches different heights. The solid blue line is the phase field result. The red line is 
predicted by GrainGNN. The red dashed line is the number of true positive (TP) events among the elimination events predicted by GrainGNN. (c) Misclassification 
rate (MR) at different heights. (d) Evolution of volume-average misorientation as the SLI reaches different heights. (e) The grain size distribution when 𝜖𝑣 = 50 µm. 
The blue solid line and the red dashed line are phase field and GrainGNN predictions, respectively.

is 17% for 𝜋𝜖 = 2.450 K#µm, 𝑠𝜖 = 1.753 m#s and 𝜋𝜖 = 3.764 K#µm, 𝑠𝜖 = 1.901 m#s. We didn’t find a correlation between KS and 
"; the maximum KS is 0.11 for 𝜋𝜖 = 5.826 K#µm, 𝑠𝜖 = 1.165 m#s. Fig. 10d shows MR as a function of the height 𝜖𝑣 . At the height 
𝜖𝑣 = 50 µm, the mean and standard deviation are 15.3%±3.8% for 100 ". The total number of grain elimination events across the 
100 cases is 6,597; the number of true positives predicted by GrainGNN is 6,088; the number of false positives is 124.

3.3. Out-of-distribution generalization

Recall that 𝑑0 = (40 µm, 40 µm, 50 µm), mean substrate grain size D0 = 4.1 µm, and grain orientations from the unit sphere. We 
examine GrainGNN’s ability to predict 3D grain formation and QoIs for larger 𝑑 without changing the # distribution. We also test 
GrainGNN’s accuracy for different # distributions. Note that these generalizations do not require any retraining of GrainGNN and 
only involve small modifications when 𝑑 > 𝑑0. We explain each generalization below.

Domain width 𝑑𝛽, 𝑑𝐻: A larger domain width with the same grain size distribution is equivalent to a larger number of grains. 
As discussed in Section 2.3, the dimensional features in Eq. (2.5) and Eq. (2.4), for example 𝛽̃ , 𝐻̃ , F⊤ , G⊤ are normalized by the 
training domain size 𝑑0

𝛽, 𝑑0
𝐻, 𝑑0

𝜖. Although we change the domain size, we still normalize with 𝑑0. As shown in Fig. 11a, we have a 
testing case with domain width 𝑑𝛽 = 𝑑𝐻 = 120 µm. After normalization, the junction coordinates are in the range of [0, 3]. As the 
transformer encodes relative distances between a vertex and its neighbors, adding offsets to the coordinates won’t change the hidden 



Journal of Computational Physics 510 (2024) 113061

17

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 9. GrainGNN predictions compared to phase field simulations of different ". We run 10 # for each ". The simulations are initialized with the same 
# distribution. The 2D images show the grain structures at height 𝜖𝑣 = 50 µm. Different " result in different numbers of grain eliminations and final grain size 
distributions. Each blue/red line shows the mean and standard deviation of the 10 # realizations.

states output by the encoder. Thus, we expect no difficulties in using a large domain. We simply evolve GrainGNN on the entire 
graph and reconstruct the microstructure from the evolved graph.

Fig. 11a shows an example of GrainGNN prediction for a case with domain size (120 µm, 120 µm, 50 µm). 𝜋𝜖 = 10 K#µm, 𝑠𝜖 =
2m#s. The initial number of grains is 1043. At the end of the simulation, the number of eliminated grains is 704, of which 644 grains 
are predicted by GrainGNN. The MR at the top layer is 18.2% and the KS statistic for the grain size distribution is 0.021. We further 
test 20 randomly sampled pairs of (𝜋, 𝑠) with domain size (80 µm, 80 µm, 50 µm), and repeat for domain size (120 µm, 120 µm, 50 µm). 
Their MR statistics are shown in Fig. 10f and Fig. 10e. At 𝜖𝑣 = 50 µm, their average MR and standard deviation are 14.4%±4.0% and 
13.9%±3.6%, respectively. Compared to 15.3%±3.8% for in-distribution generalization (Fig. 10d), we don’t observe a noticeable 
increase in pointwise error when increasing the domain width. The accuracy of accumulative grain events is 92.1% (4,271/4,638) 
for 𝑑𝛽 = 2𝑑0

𝛽 and 92.6% (8,956/9,672) for 𝑑𝛽 = 3𝑑0
𝛽, which is close to 92.3% for 𝑑𝛽 = 𝑑0

𝛽. In Fig. 11c, we showcase a GrainGNN 
inference with a large domain width 𝑑𝛽 = 𝑑𝐻 = 10𝑑0

𝛽. The total number of grains is 11,600. The number of vertex features of the 
graph is 313K. The final grain microstructure only requires 15 iterations of the graph, which takes about 220 seconds on one CPU. 
If we run a phase field simulation with the same configuration, the total number of grid points is 5000 × 5000 × 100 = 2.5 billion. At 
each grid point if we store five phase field variables and their grain indices, the storage required is 25 billion numbers. The number 
of time steps for the phase field solver is 50K.

Domain height 𝑑𝜖: In practice the domain height 𝑑𝜖 is determined by the meltpool depth. Here we test the ability of GrainGNN 
to generalize for 𝑑𝜖 > 𝑑0

𝜖 by simply taking more iterations. Recall that we used 𝑑0
𝜖 = 50 µm. We assume for 𝜖𝑣 > 𝑑0

𝜖, the graph 
evolution follows the same pattern as the previous graph step. In the network inference when 𝜖𝑣 > 𝑑0

𝜖, we set 𝜖𝑣 as 𝑑0
𝜖 in Eq. (2.4)

and Eq. (2.5). As shown in Fig. 10f, we extend the predictions of the 20 runs with width 𝑑𝛽 = 2𝑑0
𝛽 to the height 𝜖𝑣 = 98 µm. From 

𝜖𝑣 = 50 µm to 𝜖𝑣 = 98 µm, MR increases from 14.4%±4.0% to 26.6%±11.6% and the grain elimination accuracy drops from 92.1% 
to 90.6% (5,729/6,323). We can see from 50 to 90 µm MR increases almost linearly with the distance the SLI traveled. From 90 to 
98 µm, the jump of the MR is due to the drastic increase of error for a case with 𝜋𝜖 = 1.774 and 𝑠𝜖 = 1.471, whose MR reaches 
71.5% at 𝜖 = 98 µm. Fig. 11b shows one case with 𝜋𝜖 = 4.827 K#µm, 𝑠𝜖 = 0.690 m#s. The KS of grain size distribution is 0.024 for 
𝜖𝑣 = 50 µm and 0.028 for 𝜖𝑣 = 98 µm.

Initial grain size and orientation: We set 𝑑 = (80 µm, 80 µm, 50 µm) ≠ 𝑑0 and also vary #. As mentioned in Section 3.1, the 
initial junction coordinates are randomly selected from [0, 1]. We change the average grain size by varying the number of sampled 
junctions. Fig. 12 shows the initial (𝜖 = 0) and final (𝜖 = 𝑑𝜖) grain distributions under 𝜋𝜖 = 4 K#µm and 𝑠𝜖 = 0.8 m#s; we also 
test another four " with the values in Fig. 9. For each ", we test ten different size distributions with mean ranging from D0 = 2 µm



Journal of Computational Physics 510 (2024) 113061

18

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 10. Error statistics for in-distribution and out-of-distribution generalization. (a) Black lines are " grid used for training and validation. Black dots are 
100 " values for testing. (b) Misclassification rate (MR) averaged across sampled heights 𝜖𝑣 for each testing ". (c) KS statistics (KS) of grain size distribution at 
the end of simulations for testing ". (d) MR mean and standard deviation for 100 testing " with domain size (40 µm, 40 µm, 50 µm). (e) MR for domain size 
(120 µm, 120 µm, 50 µm). (f) MR for domain size (80 µm, 80 µm, 100 µm). (g) MR and KS for different initial mean grain sizes D0 . (h) MR and KS for different initial 
grain orientation distributions. V0 is the most frequent misorientation angle between the grain orientation and the 𝜖-axis.

(Fig. 12a) to D0 = 7.4 µm (Fig. 12b). Their MR and KS are shown in Fig. 10g where each point is averaged across five different ". 
For D0 in the 4-6 µm range, MR and KS are close to in-distribution errors. MR is higher for runs with smaller grains and is almost 
doubled for D0 = 2 µm. One reason is smaller grains have a higher surface area-to-volume ratio thus higher percentage of pixels 
will update their grain indices under the same physical parameters. Another reason is smaller D0 has higher grain and edge event 
densities thus introducing larger errors. For larger grains D0 > 6 µm, we observe higher variance for different ". For 𝜋𝜖 = 1 K#µm
and 𝑠𝜖 = 1.6 m#s, MR increases when D0 > 6 µm while MR decreases for the other four ". The overall MR for all D0 is 13.9% and 
grain elimination accuracy is 92.3% (14,590/15,801).

In the modified orientation distribution, we select dominant grain misorientation angle V0 with respect to the 𝜖-axis. We vary V0
from 0 to E#4 with ten values sampled for each " and we sample the five " as discussed for grain size distribution. Fig. 12c and 
Fig. 12d show the initial orientation distribution with V0 = 0 and V0 = E#4 respectively. As shown in Fig. 10h, MR is slightly higher 
for larger V0, which is associated with more grain eliminations we observed for misaligned grains. KS is almost the same for different 
V0. The overall MR and grain elimination accuracy are 12.0% and 91.0% (10,529/11,569), respectively.

4. Discussion

4.1. Accuracy

These results suggest that GrainGNN can predict well the microstructure evolution and the statistics of quantities of interest 
when compared to the phase field simulations. It can also generalize to unseen 𝜋𝜖 and 𝑠𝜖 values, domain width and height, and 
initial grain configurations—without retraining. For pointwise microstructure comparisons, the in-distribution generalization errors 
are in the 4%−17% range, with higher errors occurring when we have more grain eliminations. The out-of-distribution error is not 



Journal of Computational Physics 510 (2024) 113061

19

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 11. Generalization with the domain size and the number of grains. (a) Domain size (120 µm, 120 µm, 50 µm) with 1043 grains. 𝜋𝜖 = 10 K# µm, 𝑠𝜖 = 2 m#s. 
The total number of eliminated grains is 704, among which 644 grains are predicted by GrainGNN. The KS statistic for the grain size distribution is 0.021. (b) Domain 
size (80 µm, 80 µm, 100 µm) with 461 grains. 𝜋𝜖 = 4.827 K# µm, 𝑠𝜖 = 0.690 m#s. The left and right plots are GrainGNN predictions at 𝜖𝑣 = 50 µm and 𝜖𝑣 = 98 µm, 
respectively. Their KS for grain size distribution are 0.024 and 0.028. (c) GrainGNN prediction for a case with domain size (400 µm, 400 µm, 50 µm), which is 100 
times the training domain size. The total number of grains is 11600. 𝜋𝜖 = 2 K#µm, 𝑠𝜖 = 0.4 m#s. The GrainGNN inference time is 220 seconds on one CPU.

sensitive to the domain width or the number of grains but increases with decreasing initial grain size. The pointwise errors increase 
gradually with the height of the SLI. When comparing the statistics quantities of interest, we find the distributional error of grain 
size distribution is not sensitive to 𝜋𝜖, 𝑠𝜖, and the domain size. The KS statistics are in the 0.03–0.06 range. In all test cases, grain 
elimination accuracy is above 90%. In total, we ran 280 test phase field simulations with random initial realization and the number of 
grains ranging from 100 to 1600. Demonstrating its robustness, GrainGNN successfully completed all 280 inferences, among which 
only one test case, with 𝑑𝜖 = 2𝑑0

𝜖, yielded significantly different results.
We compare GrainGNN’s accuracy with three other models, (i) a graph convolution LSTM (GC-LSTM) [48], (ii) a graph trans-

former operator (TransformerConv) [57], and (iii) a graph convolutional operator (GraphConv) [43]. We use the same training data 
and 2.4 million weights for all models. The metrics we used are RRMSE for |Δ%| =

√
Δ𝛽2 +Δ𝐻2 and ΔF, AUC for both events, and 

the average MR for the 100 testing simulations. Compared to GC-LSTM, GrainGNN adds the attention coefficient @H,𝐷 in Eq. (2.9). As 
shown in Table 2, GrainGNN outperforms GC-LSTM for all the metrics. The self-attention mechanism of GrainGNN is important to 
learn the spatial correlations between different nodes. If we drop LSTM and only keep the TransformerConv as an encoder, regression 
accuracy RRMSE-|Δ%| and RRMSE-ΔF decrease significantly. GraphConv has a higher AUC-G but lower RRMSE-|Δ%|, RRMSE-ΔF, 
and AUC-E compared to TransformerConv. We also compute the average MR of 100 testing simulations for different models and 
GrainGNN produces the most accurate microstructure images.

We also investigate the effect of the amount of training data on the GrainGNN accuracy. From Table 2, adding more training 
data generally improves the accuracy of GrainGNN. The regression model  is less sensitive to the size of training data. From 5K 
training pairs to 38K training pairs, the relative error of |Δ𝛽| and ΔF improve 1% every doubling the training size, and the AUC 
for grain elimination events stays around 94%. In contrast, the AUC for the neighbor-switching events improves significantly from 
85.2% to 92.3%. The difference between the two types of events is that the neighbor-switching events are highly imbalanced. The 
positive-to-negative ratio is about 1 to 30. Because the positive neighbor-switching events are deficient, adding more training graph 



Journal of Computational Physics 510 (2024) 113061

20

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Fig. 12. Generalization with different initial grain configurations. We use 𝑑𝛽 = 𝑑𝐻 = 80 µm, 𝜋𝜖 = 4 K#µm, and 𝑠𝜖 = 0.8 m#s for all four cases shown above. (a) 
Initial size distribution with mean D0 = 2 µm. (b) Initial size distribution with mean D0 = 7.4 µm. (c) Initial orientation distribution with the maximum frequency at 
V0 = 0◦ . (d) Initial orientation distribution with the maximum frequency at V0 = 45◦ .

pairs can largely enhance the classification precision. To deal with the data imbalance, we have tried to increase the weights of the 
positive events in Eq. (2.14) and downsampled the negative events; the improvement, however, is limited. We plan to use more data 
augmentation techniques to balance the labels and improve the accuracy of edge events.

The ordering of grain and edge events when updating the graph is another factor that affects the accuracy of the prediction. We 
currently choose the sorting method based on the classifier probabilities; we have not tested alternatives. One constraint of using 
Algorithm 1 is the input graph can only have triple junctions and the output graph is guaranteed to have only triple junctions. 
Algorithm 1 has two noteworthy limitations, although they do not seem to limit the overall GrainGNN accuracy. One is the approx-
imation of new coordinates of ̃1, ̃ 2 in an edge event. The other is GrainGNN doesn’t guarantee planar graph outputs, which means 
non-physical edge intersections are possible. The intersections could cause grains to have overlapping areas or create holes in the 
reconstructed images. We currently ignore this issue since it won’t break Algorithm 1 or calculations of quantities of interest.

4.2. Computational efficiency

GrainGNN achieves a substantial reduction in the storage of variables and the number of required time steps, which leads to 
significant speedups over phase field simulations. For the training domain size, the required number of phase field variables is about 
500M despite using the active parameter tracking and moving-domain algorithms, while the number of features of GrainGNN is 
about 3.2K. The network has about 2.4M parameters. Thus, GrainGNN requires 102 − 105 times less storage than the phase field 
solver. The computation efficiency of our phase field solver and GrainGNN is listed in Table 3. Our phase field solver is optimized 
with GPUs [53]. For the 𝜋𝜖 and 𝑠𝜖 values investigated in this paper, the time cost per phase field simulation is 300−3000 seconds 
on one A100 GPU, while the time cost of GrainGNN is 0.2−3 seconds. GrainGNN on a single CPU achieves 150×–2000× speedup 
over our phase field code.

The number of GrainGNN iterations 𝜎𝑣 scales linearly with the number of eliminated grains; therefore 𝜎𝑣 is a function of 𝜋𝜖
and 𝑠𝜖. In Table 3, 𝜎𝑣 = 5 for 𝜋𝜖 = 8 K#µm and 𝑠𝜖 = 0.4 m#s and 𝜎𝑣 = 20 for other three parameters. We also compute the time 
consumed by network inferences with the domain width of 2𝑑0

𝛽, 3𝑑0
𝛽, 10𝑑0

𝛽. The number of grains per simulation is roughly 400, 



Journal of Computational Physics 510 (2024) 113061

21

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Table 2
Model accuracy comparison for three network architectures and different numbers of training graph pairs. The 
total number of trainable parameters is roughly 2.4 million for all the models. For the regression tasks, we compute 
the Relative Root Mean Square Error (RRMSE) of |Δ%| and ΔF; for the classification tasks, we compare the area 
under the precision-recall curve (AUC) for neighbor-switching events (AUC-E) and grain elimination events (AUC-
G). These metrics are evaluated on the same validation datasets. We also compute the average of misclassification 
rate (MR) for the 100 testing simulations with different ".
model #training pairs RRMSE-|Δ%| RRMSE-ΔF AUC-E AUC-G MR
GrainGNN: LSTM + 
TransformerConv

5K 0.225 0.143 0.852 0.938 0.140
10K 0.208 0.128 0.864 0.947 0.127
20K 0.197 0.119 0.892 0.953 0.121
38K 0.187 0.106 0.923 0.941 0.106

LSTM+ GraphConv [48] 38K 0.231 0.137 0.908 0.930 0.122
TransformerConv [57] 38K 0.311 0.322 0.902 0.919 0.201
GraphConv [43] 38K 0.388 0.394 0.847 0.936 0.250

Table 3
Computational efficiency of GrainGNN for different " and domain size 𝑑. Time for solving phase field equations was measured on 
one NVIDIA A100 GPU with 40 GB memory. The domain size is (40 µm, 40 µm, 50 µm). GrainGNN inference time was measured on 
a single AMD EPYC 7763 CPU core. W𝛽 × W𝐻 × W𝜖 represents the GrainGNN inference time for a domain size of (W𝛽𝑑0

𝛽, W𝐻𝑑0
𝐻 , W𝜖𝑑0

𝜖). 
Every measured time is averaged across 10 initial realizations of grains.
Physical parameters storage time (seconds)
𝜋𝜖 (K#µm) 𝑠 (m#s) PF GrainGNN PF GrainGNN 2 × 2 × 1 3 × 3 × 1 10 × 10 × 1 2 × 2 × 2

1 0.4
500M 3.2K

1474.6 2.9 10.2 23.2 297.0 15.5
1 1.6 478.7 2.6 8.2 20.3 271.2 13.2
8 0.4 1440.9 0.9 3.5 7.8 69.5 6.4
8 1.6 413.4 2.8 9.6 21.8 278.7 15.1

1000, and 10,000, respectively. We can see the time cost scales linearly with the domain size and with the number of grains. If 
further increasing the number of grains to 𝜎⊤ > 104, the ℎ(𝜎2⊤) graph update may start to dominate the cost. In this case, we plan 
to store a hash table of a node to its neighbors. Thus the cost per event can be reduced from ℎ(𝜎⊤) to ℎ(1). Another benefit of 
GrainGNN is that the cost doesn’t increase with the grain size and number of grid points per grain. With increasing 𝑑𝜖 the graph 
size and inference time decrease due to grain eliminations. The inference time for 𝑑𝜖 = 98 µm is only approximately 1.5 times the 
inference time for 𝑑𝜖 = 50 µm (compared to approximately 2 times, if each height increment required a fixed amount of time).

4.3. Extensions and limitations

There are several planned extensions to the current framework of GrainGNN. One is generalizing the computational domain to no-
flux boundary conditions and non-rectangular geometries. For no-flux boundary conditions, we consider padding domain boundaries 
with halo grains that have mirrored properties (e.g., orientation) with respect to the grains on the boundary. The number of padding 
grains depends on the domain and physical parameters. For domain geometry, we plan to follow the rectangular-to-curvilinear do-
main mapping strategy presented in GrainNN [17]. The idea is to find geometric coefficients that map a curved surface to a 2D plane. 
We run GrainGNN in a rectangular domain and use the geometric coefficients to scale the network outputs for example the junction 
displacements. The output structure is mapped back to the original geometry. A second extension is to improve the representations 
of grain boundaries. We neglect the in-plane curvature of the grain boundaries, which can be significant for high 𝑠𝜖 values. Another 
goal is to use experimental design and active learning [63,64] methods for sampling physical parameters used for training. Currently, 
we use a uniform grid of 𝜋𝜖 and 𝑠𝜖 to generate training data. The MR plot in Fig. 10 indicates that more data should be drawn 
from the region with high 𝑠𝜖 and low 𝜋𝜖 to reduce the pointwise error. To make the data generation computationally trackable for 
higher dimensional parameter space, an efficient adaptive sampling algorithm needs to be developed. From the network architecture 
perspective, the current one-to-one LSTM prediction can be extended to sequence-to-sequence prediction to improve accuracy as we 
did in [17]. However it is unclear how to handle topological changes in sequence-to-sequence configurations.

Limitations. The two major limitations of GrainGNN are dealing with complex meltpool geometries and ignoring grain nucle-
ation. We discussed geometry in the previous paragraph. Grain nucleation introduces new grains to the system thus adding vertices 
and edges to the graph. The modifications of the graph are two kinds depending on the nucleation density. For dilute nucleation, we 
can still utilize GrainGNN. We will introduce a new operation ℎ𝑚 that adds vertices and edges, which will be the inverse operation 
of ℎ𝜋 . For dense nucleation, the equiaxed growth dominates the grain formation. This evolution is substantially different enough 
from epitaxial growth that a third network (beyond  and ) will have to be added to predict the graph generation during grain 
nucleation. A third more fundamental limitation is detecting failure cases, in short some kind of a posteriori error estimates for 
network predictions. GrainGNN doesn’t have any performance guarantees other than the empirical evaluation we discussed. A fourth 



Journal of Computational Physics 510 (2024) 113061

22

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

limitation is that the inference phase of GrainGNN runs only CPUs, and thus potential speedups are still possible. We are currently 
working to address these challenges.

5. Conclusions

We presented a surrogate for microstructure evolution in 3D epitaxial grain formation. We introduced a heterogeneous graph 
model and hand-crafted graph features that combined to achieve a significant spatiotemporal compression of grain microstructure. 
We proposed an image-to-graph method to extract graphs from phase field data. We modeled microstructure formation with graph-
to-graph evolution, where we decomposed the evolution into feature changes and topological events. GrainGNN is implemented 
with an LSTM-based regressor and classifier to predict the features and events. The LSTMs include graph transformers and can 
scale to a larger number of grains than those used for training. We also proposed graph and microstructure reconstruction methods 
to address topological changes. GrainGNN is trained with phase field data in a wide range of 𝜋 and 𝑠 values in AM process 
conditions. It can predict both quantities of interest and pointwise accurate microstructure for unseen process parameters and initial 
grain configurations. We also showed that GrainGNN generalizes to domain size, number of grains, and initial grain parameters. 
GrainGNN is orders of magnitude faster than high fidelity simulations and scalable to a large number of grains.

What about training costs? Consider 3D printing a 1 cm3 volume part with an average 106 µm3 meltpool. Directly simulating 
solidification of the entire part would require one million phase field meltpool solidification calculations—without accounting for 
ensemble calculations and meltpool overlaps. Such calculations are currently infeasible. A GPU-optimized GrainGNN on a multi-GPU 
leadership system could perform such a calculation in less than a day. Our long-term goal is to train GrainGNN using 1000s of 
phase field simulations using a small domain and then, by accounting for meltpool geometry, deploy it for inference for entire-part 
microstructure prediction. Thus, training costs will be amortized across the entire build and insignificant compared to the potential 
overall speedup.

CRediT authorship contribution statement

Yigong Qin: Conceptualization, Data curation, Investigation, Methodology, Software, Visualization, Writing – original draft.
Stephen DeWitt: Conceptualization, Methodology, Writing – review & editing. Balasubramaniam Radhakrishnan: Conceptual-
ization, Methodology, Writing – review & editing. George Biros: Conceptualization, Funding acquisition, Project administration, 
Resources, Supervision, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This material is based upon work partially supported by NSF award OAC 2204226 and by the U.S. Department of Energy, 
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program, Mathematical Multifaceted 
Integrated Capability Centers (MMICCS) program, under award number DE-SC0023171. Any opinions, findings, and conclusions or 
recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE, and NSF. Computing 
time on the Texas Advanced Computing Centers Stampede system was provided by an allocation from TACC and the NSF.

Appendix A. Phase field solver

The material parameters of stainless steel 316L are listed in Table A.1. Given values of 2, 𝑑𝑢#>𝑈, and X𝐷, phase field parameters 
𝜇 and 𝜂0 can be derived using asymptotic analysis [53,56]:

2>𝑈

𝑑𝑢
≡ D0 = W1

𝑎0
𝜇

, (A.1)

>𝑈

X𝐷𝑑𝑢
≡ @0 = W1

𝜂0
𝜇𝑎0

− W1W2
𝑎0
Iℎ

, (A.2)

where W1 = 5
√
2#8, W2 = 47#75; D0 is the thermal capillarity length; @0 is the kinetic coefficient; Iℎ is the heat diffusion coefficient. 

The obstacle parameter ? in Eq. (2.1a) is set to 𝜇Y#𝑏 , where Y is the nondimensional undercooling and 𝑏 is a constant, here we 
choose 𝑏 = 1#12 [3]. The anisotropy of 𝜂. requires the spatial derivatives of 𝐴 in the rotated coordinates with angle !. Let V𝜖 be the 



Journal of Computational Physics 510 (2024) 113061

23

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

Table A.1
Material parameters for stainless steel 316L.
symbol meaning (units) value [4,6]
2 Gibbs-Thompson coefficient (Km) 3.47 × 10−7
𝑑𝑢 #>𝑈 latent heat/heat capacity (K) 229
X𝐷 linear kinetic coefficient (m/s/K) 0.217
𝜇 thermal coupling constant 58.3
𝑎0 length scale (µm) 0.1
𝜂0 time scale (ns) 40
,< melting temperature (K) 1783
B𝐷 kinetic anisotropy coefficient 0.11
k partition coefficient 0.791
Iℎ heat diffusion coefficient (m2#s) 3.6 × 10−6
Δ,0 freezing range (K) 15.7
GW absolute stability velocity (m/s) 0.17

Fig. A.1. Convergence test for a phase field simulation. 𝜋𝜖 = 10 K#µm 𝑠𝜖 = 2 m#s. The number of grains is 463. The simulation parameters used for generating 
the training data (blue line) are interface width 𝑎0 = 0.1 µm, mesh size D𝛽 = 0.8𝑎0 , moving-domain height 𝑑(

𝜖 = 8 µm, and five phase field variables per grid point. 
The yellow and green lines show the convergence of the discretizations by halving 𝑎0 or D𝛽. The red line shows the convergence of the moving-domain algorithm by 
doubling the moving-domain width. The convergence of the blue and purple lines indicates the negligible difference between storing five phase fields and ten phase 
fields.

angle between the 𝜖-axis and the preferred growth direction <100> and V𝛽 be the angle between the 𝛽-axis and the projection of 
<100> direction on the 𝛽-𝐻 plane. The derivatives appearing in Eq. (2.2b) should be replaced with:

⎡
⎢
⎢⎣

𝜃𝛽𝐴(

𝜃𝐻𝐴(

𝜃𝜖𝐴(

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

cos(V𝛽) cos(V𝜖) sin(V𝛽) cos(V𝜖) − sin(V𝜖)
− sin(V𝛽) cos(V𝛽) 0

cos(V𝛽) sin(V𝜖) sin(V𝛽) sin(V𝜖) cos(V𝜖)

⎤
⎥
⎥⎦
⋅
⎡
⎢
⎢⎣

𝜃𝛽𝐴
𝜃𝐻𝐴
𝜃𝜖𝐴

⎤
⎥
⎥⎦

(A.3)

Because the capillary anisotropy is much weaker than kinetic anisotropy in the rapid solidification regime, we set BC = 0.
The phase field solver is available at https://github .com /YigongQin /cuPF. The CUDA functions have been optimized. The most 

expensive right-hand side calculations have the performance of 270 GFlops on one Nvidia A100 GPU. We use CUDA-aware MPI 
which scales well on multiple GPUs and multiple nodes.

Fig. A.1 shows the convergence results for D𝛽, 𝑎0, the height of the moving domain, and the number of phase field variables 
per grid point used in the active parameter tracking algorithm. The training data is generated using the configuration: 𝑎0 = 0.1 µm, 
D𝛽 = 0.8𝑎0, 𝑑(

𝜖 = 8 µm, and five phase fields. We can see that the grain size distributions converge well when we halve the mesh 
size or increase the domain height or the number of phase fields.

Appendix B. Kolmogorov–Smirnov test

Kolmogorov-Smirnov test can be used to compare two samples and test whether the two samples could have come from the same 
distribution. If sample A has T data points and sample B has 𝜎 data points, the null hypothesis that two samples coming from the 
same distribution is rejected when:

KS >
√

− ln
(.
2

)
⋅
1 + 𝜎

T
2𝜎 , (B.1)

https://github.com/YigongQin/cuPF


Journal of Computational Physics 510 (2024) 113061

24

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

where KS is the Kolmogorov-Smirnov statistic and . is the confidence level. For our setup, if a testing case has 𝜎 = 120 grains and we 
think GrainGNN and phase field results are the same with a 95% confidence level, the critical KS value is KSC =

√
− ln

(
0.95
2

)
#120 =

0.079. As discussed in Section 3.2, the KS values for in-distribution generalization are mostly in the range of 0.03−0.06, meaning 
that GrainGNN predicts the same grain size distribution as the phase field model. For out-of-distribution generalization we change 
the number of grains. KSC is 0.043 for 𝜎 = 400 and 0.022 for 𝜎 = 1600. In Fig. 10h we vary the initial orientation distribution with 
𝜎 = 400. We can see KS % KSC for all V0, which means we have 95% confidence GrainGNN and phase field have the same grain 
size distributions. In Fig. 10g when we decrease initial grain sizes, KS > KSC for D0 < 3 µm, which indicates a higher distribution 
mismatch for smaller grains.

Appendix C. Code and data availability

GrainGNN codes are available at https://github .com /YigongQin /GrainGraphNN. Codes contain how to create a graph using the 
Voronoi diagram and how to extract a graph from grain microstructure images. The neural networks are developed based on the 
Pytorch Geometric Library. Training and testing of the networks with comparisons against the phase field results are provided. The 
GitHub repository also provides the trained models including the regressor and the classifier. The phase field data used for training 
can be reproduced with the CUDA codes at https://github .com /YigongQin /cuPF.

References

[1] J. Smith, et al., Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental 
support, Comput. Mech. 57 (2016) 583–610.

[2] I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Phys. D: Nonlinear Phenom. 134 (1999) 385–393.
[3] N. Ofori-Opoku, N. Provatas, A quantitative multi-phase field model of polycrystalline alloy solidification, Acta Mater. 58 (2010) 2155–2164.
[4] T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, A. Laukkanen, The significance of spatial length scales and solute segregation in strengthening rapid 

solidification microstructures of 316L stainless steel, Acta Mater. 184 (2020) 1–16.
[5] M. Yang, L. Wang, W. Yan, Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening, npj Comput. Mater. 7 

(2021) 1–12.
[6] A.F. Chadwick, P.W. Voorhees, The development of grain structure during additive manufacturing, Acta Mater. 211 (2021) 116862.
[7] C.-A. Gandin, M. Rappaz, A 3D cellular automaton algorithm for the prediction of dendritic grain growth, Acta Mater. 45 (1997) 2187–2195.
[8] M. Rolchigo, R. Carson, J. Belak, Understanding uncertainty in microstructure evolution and constitutive properties in additive process modeling, Metals 12 

(2022) 324.
[9] Matt Rolchigo, Samuel Temple Reeve, Benjamin Stump, Gerald L. Knapp, John Coleman, Alex Plotkowski, James Belak, ExaCA: a performance portable exascale 

cellular automata application for alloy solidification modeling, Comput. Mater. Sci. 214 (2022) 111692.
[10] T.M. Rodgers, J.D. Madison, V. Tikare, Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo, Comput. Mater. Sci. 135 (2017) 

78–89.
[11] E. Miyoshi, et al., Ultra-large-scale phase-field simulation study of ideal grain growth, npj Comput. Mater. 3 (2017) 1–6.
[12] E. Miyoshi, et al., Large-scale phase-field study of anisotropic grain growth: effects of misorientation-dependent grain boundary energy and mobility, Comput. 

Mater. Sci. 186 (2021) 109992.
[13] K. Chang, L.-Q. Chen, C.E. Krill III, N. Moelans, Effect of strong nonuniformity in grain boundary energy on 3-D grain growth behavior: a phase-field simulation 

study, Comput. Mater. Sci. 127 (2017) 67–77.
[14] J. Burke, D. Turnbull, Recrystallization and grain growth, Prog. Met. Phys. 3 (1952) 220–292.
[15] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965) 227–238.
[16] E.A. Holm, G.N. Hassold, M.A. Miodownik, On misorientation distribution evolution during anisotropic grain growth, Acta Mater. 49 (2001) 2981–2991.
[17] Y. Qin, S. DeWitt, B. Radhakrishnan, G. Biros, GrainNN: a neighbor-aware long short-term memory network for predicting microstructure evolution during 

polycrystalline grain formation, Comput. Mater. Sci. 218 (2023) 111927.
[18] D. Zöllner, P.R. Rios, Topological changes in coarsening networks, Acta Mater. 130 (2017) 147–154.
[19] C. Torres, M. Emelianenko, D. Golovaty, D. Kinderlehrer, S. Ta’asan, Numerical analysis of the vertex models for simulating grain boundary networks, SIAM J. 

Appl. Math. 75 (2015) 762–786.
[20] R. Ohayon, C. Soize, Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification, Cambridge University Press, 2014.
[21] M. Frangos, Y. Marzouk, K. Willcox, B. van Bloemen Waanders, Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical 

inverse problems, in: Large-Scale Inverse Problems and Quantification of Uncertainty, 2010, pp. 123–149.
[22] P. LeGresley, J. Alonso, Airfoil design optimization using reduced order models based on proper orthogonal decomposition, in: Fluids 2000 Conference and 

Exhibit, 2000, p. 2545.
[23] B.R. Noack, M. Morzynski, G. Tadmor, Reduced-Order Modelling for Flow Control, vol. 528, Springer Science & Business Media, 2011.
[24] X. Li, et al., A transfer learning approach for microstructure reconstruction and structure-property predictions, Sci. Rep. 8 (2018) 1–13.
[25] R. Bostanabad, Reconstruction of 3D microstructures from 2D images via transfer learning, Comput. Aided Des. 128 (2020) 102906.
[26] I. Goodfellow, et al., Generative adversarial nets, Adv. Neural Inf. Process. Syst. 27 (2014).
[27] Z. Yang, et al., Microstructural materials design via deep adversarial learning methodology, J. Mech. Des. 140 (2018).
[28] X.Y. Lee, et al., Fast inverse design of microstructures via generative invariance networks, Nat. Comput. Sci. 1 (2021) 229–238.
[29] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735–1780.
[30] D. Montes de Oca Zapiain, J.A. Stewart, R. Dingreville, Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by 

machine learning methods, npj Comput. Mater. 7 (2021) 3.
[31] C. Hu, S. Martin, R. Dingreville, Accelerating phase-field predictions via recurrent neural networks learning the microstructure evolution in latent space, Comput. 

Methods Appl. Mech. Eng. 397 (2022) 115128.
[32] K. Yang, et al., Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks, Patterns 2 (2021) 100243.
[33] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, G.E. Karniadakis, Learning two-phase microstructure evolution using neural operators and autoencoder 

architectures, npj Comput. Mater. 8 (2022) 190.
[34] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nat. 

Mach. Intell. 3 (2021) 218–229.

https://github.com/YigongQin/GrainGraphNN
https://github.com/YigongQin/cuPF
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib551255FF9DD2AFEB27342960E2776C43s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib551255FF9DD2AFEB27342960E2776C43s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib6AAEC5B12F24E274002FD592F83ED511s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibFF34B0791B1212BA50694253525F3CB5s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib797363D26589169053BF6849D78BFAD2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib797363D26589169053BF6849D78BFAD2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2BDC36779D75EFBB83FB8C2148BF76CEs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2BDC36779D75EFBB83FB8C2148BF76CEs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib3A52C45AE1B42AE8B13984BD894A5C7Ds1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib01C0F89839D48390C471036C254ACBEBs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1E543BC6674AFE11C90AB0501BB3E50Ds1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1E543BC6674AFE11C90AB0501BB3E50Ds1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibF89988CC261FE9224326511DB589BB79s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibF89988CC261FE9224326511DB589BB79s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2731E810F483D7AECBF3973D21BF0357s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2731E810F483D7AECBF3973D21BF0357s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib7DE9C705CC3C18E04958816FB9DE73ADs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib80E2A88B46F382692BCF78F91B9568A3s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib80E2A88B46F382692BCF78F91B9568A3s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibA159A0CAEA236FD146F71FA6D55DE99Bs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibA159A0CAEA236FD146F71FA6D55DE99Bs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1A704536F687ADFA470E4A3DA61D3962s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibBB72782C0DD5499267F65CC0BF4822D3s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibCEC159117ABAA29BBA2E3C43EC336A1Ds1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib49ADB582B104D2AD6458EC47F0F323F8s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib49ADB582B104D2AD6458EC47F0F323F8s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib42C841AA051B1D1BA415EB2D068A6A39s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib64863201510A3B61329F411E0B3CE8C7s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib64863201510A3B61329F411E0B3CE8C7s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib9491D7BF717EF35C779F9A7A1CDB4F64s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2D6C0F487D202F4317F1DD7A6C03B405s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib2D6C0F487D202F4317F1DD7A6C03B405s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibBCE5A25550FA58E15A764E5DCDECE159s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibBCE5A25550FA58E15A764E5DCDECE159s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib9983233D616649BF19A99EE6D33885A6s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib44B6BF46FAEB1E743F7C4ECB0088ED24s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib0D7C302BCA64036837C165C99CEB3667s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib763AC3029D65AB2A73CD668A0F39A9DDs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib88299B3B157D846B8671FC984143D3F3s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibCF8B94E44A7943374FCFDA18594AE9ABs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib7D85339CDE4FA18A4E7C453210E638C6s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib7D85339CDE4FA18A4E7C453210E638C6s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib384B3F36AE91F9F83ADD9417F7843354s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib384B3F36AE91F9F83ADD9417F7843354s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib00367B1075F0772FDD357E30C6DBAAA1s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib59481C334E20AE5ACA987C276E259512s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib59481C334E20AE5ACA987C276E259512s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib81EAB26E706334F3E737F5ACF5A3AE3Fs1


Journal of Computational Physics 510 (2024) 113061

25

Y. Qin, S. DeWitt, B. Radhakrishnan et al.

[35] M. Syha, D. Weygand, A generalized vertex dynamics model for grain growth in three dimensions, Model. Simul. Mater. Sci. Eng. 18 (2009) 015010.
[36] K. Kawasaki, T. Nagai, K. Nakashima, Vertex models for two-dimensional grain growth, Philos. Mag. B 60 (1989) 399–421.
[37] F. Wakai, N. Enomoto, H. Ogawa, Three-dimensional microstructural evolution in ideal grain growth—general statistics, Acta Mater. 48 (2000) 1297–1311.
[38] T. Xue, Z. Gan, S. Liao, J. Cao, Physics-embedded graph network for accelerating phase-field simulation of microstructure evolution in additive manufacturing, 

npj Comput. Mater. 8 (2022) 201.
[39] M. Dai, M.F. Demirel, Y. Liang, J.-M. Hu, Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials, npj 

Comput. Mater. 7 (2021) 103.
[40] J.M. Hestroffer, M.-A. Charpagne, M.I. Latypov, I.J. Beyerlein, Graph neural networks for efficient learning of mechanical properties of polycrystals, Comput. 

Mater. Sci. 217 (2023) 111894.
[41] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint, arXiv :1609 .02907, 2016.
[42] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model, IEEE Trans. Neural Netw. 20 (2008) 61–80.
[43] C. Morris, et al., Weisfeiler and Leman go neural: higher-order graph neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 

2019, pp. 4602–4609.
[44] O. Wieder, et al., A compact review of molecular property prediction with graph neural networks, Drug Discov. Today Technol. 37 (2020) 1–12.
[45] D.K. Duvenaud, et al., Convolutional networks on graphs for learning molecular fingerprints, Adv. Neural Inf. Process. Syst. 28 (2015).
[46] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in: International Conference on Machine Learning, 

PMLR, 2017, pp. 1263–1272.
[47] T. Xie, J.C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett. 120 

(2018) 145301.
[48] J. Chen, X. Wang, X. Xu, GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction, Appl. Intell. (2022) 1–16.
[49] A. Pareja, et al., Evolvegcn: evolving graph convolutional networks for dynamic graphs, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 

2020, pp. 5363–5370.
[50] P. Goyal, S.R. Chhetri, A. Canedo, dyngraph2vec: Capturing network dynamics using dynamic graph representation learning, Knowl.-Based Syst. 187 (2020) 

104816.
[51] A. Vaswani, et al., Attention is all you need, in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
[52] T. Pinomaa, et al., Process-structure-properties-performance modeling for selective laser melting, Metals 9 (2019) 1138.
[53] Y. Qin, Y. Bao, S. DeWitt, B. Radhakrishnan, G. Biros, Dendrite-resolved, full-melt-pool phase-field simulations to reveal non-steady-state effects and to test an 

approximate model, Comput. Mater. Sci. 207 (2022) 111262.
[54] D. Tourret, A. Karma, Growth competition of columnar dendritic grains: a phase-field study, Acta Mater. 82 (2015) 64–83.
[55] T. Takaki, et al., Competitive grain growth during directional solidification of a polycrystalline binary alloy: three-dimensional large-scale phase-field study, 

Materialia 1 (2018) 104–113.
[56] J. Bragard, A. Karma, Y.H. Lee, M. Plapp, Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts, Interface 

Sci. 10 (2002) 121–136.
[57] Y. Shi, et al., Masked label prediction: unified message passing model for semi-supervised classification, arXiv preprint, arXiv :2009 .03509, 2020.
[58] S. Vedantam, B. Patnaik, Efficient numerical algorithm for multiphase field simulations, Phys. Rev. E 73 (2006) 016703.
[59] A. Badillo, C. Beckermann, Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification, Acta Mater. 54 (2006) 2015–2026.
[60] T. Pinomaa, et al., Phase field modeling of rapid resolidification of Al-Cu thin films, J. Cryst. Growth 532 (2020).
[61] F. Xu, F. Xiong, M.-J. Li, Y. Lian, Three-dimensional numerical simulation of grain growth during selective laser melting of 316L stainless steel, Materials 15 

(2022) 6800.
[62] Z. Zhang, Improved Adam optimizer for deep neural networks, in: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), IEEE, 2018, 

pp. 1–2.
[63] T. Lookman, P.V. Balachandran, D. Xue, R. Yuan, Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted 

design, npj Comput. Mater. 5 (2019) 1–17.
[64] A. Krogh, J. Vedelsby, Neural network ensembles, cross validation, and active learning, Adv. Neural Inf. Process. Syst. 7 (1994).

http://refhub.elsevier.com/S0021-9991(24)00310-3/bibAED4E63F78A313A2EF0A583893179AFDs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib836E4EA04A9C624984484698DEF197DFs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibE6ECC9233CB4C198872E970E3182CDBEs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib401BCA69CB4D68D76FE8E255D3AB0C74s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib401BCA69CB4D68D76FE8E255D3AB0C74s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibD3AA852D09EB1E339AC357A2205D87D0s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibD3AA852D09EB1E339AC357A2205D87D0s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1265D74AC6D25E9394FBF4670F2F37C2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1265D74AC6D25E9394FBF4670F2F37C2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib4EFBCCF638B63E6C3FFAC5F3E8B26EB3s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibC9C7AD00344C930B7DF68399292595DCs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib9F9BF56E5F9465328AAB4B18B9C8B52As1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib9F9BF56E5F9465328AAB4B18B9C8B52As1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib9E898F1DC693CCFFA72644D7A3EA29DDs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib417D434B094777B555A883A7090D8B6Es1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibD07599E16A30652592E9180A644FD397s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibD07599E16A30652592E9180A644FD397s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib44F7C905D24B10D0F7D6E28347F6D7C4s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib44F7C905D24B10D0F7D6E28347F6D7C4s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib206CBD9567BA9B6A1B18A1DDEB1E0A59s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib6BC135A4FFA1671E4C940F4756BE16A2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib6BC135A4FFA1671E4C940F4756BE16A2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib3F5BF91AE54C13D062A03FB05A5DC3E4s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib3F5BF91AE54C13D062A03FB05A5DC3E4s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibFD09CB9B87F0926161F89A2EB97A8914s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1BF502B07B2D5591AD1CDE6EA19D4280s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib1BF502B07B2D5591AD1CDE6EA19D4280s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib5A14487BE03C9494D139C78A241FD7E8s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib469FCAA315C21DEC20C0F73876347F54s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib469FCAA315C21DEC20C0F73876347F54s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib94EFFF88B600BF1E0DBC246AD36FF1C2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib94EFFF88B600BF1E0DBC246AD36FF1C2s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bibB80397AEA7C9F3B57A567694E7A192ABs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib3AAC6B00AD05C4624113D6D4139AEB7Cs1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib03F5A4F93B928BCBB2E65E467166758As1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib52E219C9E70AF45F764B165B9064B05Ds1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib6D57381D48CF265CA352209CCC05D3F7s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib6D57381D48CF265CA352209CCC05D3F7s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib51257609627D9AB72D80E503F25820C5s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib51257609627D9AB72D80E503F25820C5s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib717516D24774522A39E210ADFF849BB8s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib717516D24774522A39E210ADFF849BB8s1
http://refhub.elsevier.com/S0021-9991(24)00310-3/bib33F72121387EEB4D3F2FFC1445BB3DDEs1

	GrainGNN: A dynamic graph neural network for predicting 3D grain microstructure
	1 Introduction
	2 Methods
	2.1 Problem formulation and high fidelity model
	2.2 GrainGNN
	2.3 Graph representation of microstructure
	2.4 Graph evolution
	2.5 The LSTM architecture
	2.6 Graph reconstruction and GrainGNN algorithm
	2.7 Graph-to-image microstructure reconstruction
	2.8 Discretization and numerical solution of the phase field PDE

	3 Results
	3.1 Training of LSTM regressor and classifier
	3.2 In-distribution generalization
	3.3 Out-of-distribution generalization

	4 Discussion
	4.1 Accuracy
	4.2 Computational efficiency
	4.3 Extensions and limitations

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Phase field solver
	Appendix B Kolmogorov--Smirnov test
	Appendix C Code and data availability
	References


