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Abstract— Energy-saving methods like Discontinuous Recep-
tion (DRX) and Power Save Mode (PSM) are commonly used
in Internet of Thing (IoT) applications, allowing for sleep and
awake cycle adjustments to save energy. However, understanding
and configuring these parameters on devices, especially actuator-
type devices, is challenging for IoT service providers. Unlike
sensor types, these devices must complete their sleep cycle
before responding to infrequent downlink commands, making
efficient parameter selection and traffic prediction vital for
energy efficiency and command reception.

To address this, we present ADDER, a network-side solution
leveraging a context-aware traffic predictor. This predictor fore-
casts downlink arrival probabilities, guiding a deep deterministic
policy gradient (DDPG) policymaker that selects energy-saving
parameters based on thresholds defined by the IoT service
providers. ADDER, leverages contextual information like day
of week, hour, weather, holidays, and events, shifting the focus
from individual device histories (often erratic) to analyzing
broader service traffic patterns. This data-driven strategy en-
ables ADDER to adjust energy-saving settings for the best
balance between energy efficiency and latency, customizing to the
unique requirements of each service and removing the burden
of configuring complex network settings. We observed that
ADDER meets latency needs while achieving a 5.9% reduction in
energy consumption for services requiring rapid responses. For
applications prioritizing energy conservation, such as irrigation
systems and city lighting, ADDER achieves a significant 32.7%
reduction in energy consumption with a slight increase (9%)
in messages might not meet the strictest latency requirements.
To evaluate the consequences of prediction inaccuracies from
our predictor, we utilized a real-world shared mobility dataset
provided by Austin’s Transportation Department for a case study.

Index Terms—NB-IoT, LTE-M, energy saving, context bandit,
deep reinforcement learning

I. INTRODUCTION

In 3GPP MTC, protocols such as NB-IoT and LTE-M utilize

energy-saving features like DRX [1], [2] and PSM [3], [4],

enhancing battery life. While sensor-based devices quickly

reconnect to send mobile-originated (MO) messages, resulting

in delays primarily due to reconnection and latency, actuator-

centric applications like intelligent irrigation systems and

smart lockers mainly rely on less frequent downlink commu-

nication for operations, leading to potential delays in response

to urgent downlink messages due to the inactive connection

state of the devices.

This material is based upon work supported by the National Science
Foundation under Grant Number 1827940.

While applications like farm irrigation tolerate delays, un-

locking a bike requires quicker action, and managing traffic

signs demands real-time responsiveness to prevent jams. This

creates a balance challenge between energy efficiency and

response speed that varies by application. Developers must

be familiar with complex cellular network energy-saving con-

figurations and develop adaptable strategies based on each

application’s traffic needs. This necessitates exploring how

to dynamically learn and adjust these mechanisms to meet

specific energy and response time requirements.

We propose ADDER, a novel network-side solution that

goes beyond device-specific approaches to achieve optimal

energy savings while meeting latency constraints for specific

actuator-focused services. ADDER leverages a context-aware

traffic predictor that combines service provider insights with

additional data like weather, traffic, and holidays to forecast

traffic patterns accurately. These predictions then guide the

modified DDPG-based [5] policy maker in selecting the most

suitable DRX and PSM parameters. The network controller

acknowledges these settings to devices, allowing them to adapt

their communication accordingly.

ADDER enhances energy efficiency for IoT actuators with

infrequent and unpredictable traffic, focusing on optimal DRX

settings and underutilized PSM potential. Unlike prior research

[6], [7] that either overlooked PSM or did not distinguish

its unique energy characteristics, ADDER adapts to varying

energy profiles. It considers the wake-up energy cost during

the Tracking Area Update process for more accurate energy

consumption analysis. Furthermore, while majority previous

studies (see Section VII) relied on sparse or aggregated

device data, ADDER incorporates contextual information

like weather, traffic, and holidays from service providers for

precise, application-specific traffic predictions. This enables

ADDER to balance energy savings with service demands,

optimizing network settings for peak to low demand scenarios.

ADDER’s implementation faces two key challenges: the

complexity of its reinforcement learning (RL) framework,

which must navigate a vast state space influenced by con-

textual factors and a varied action space for energy-saving

settings, and the impracticality of online learning due to

latency issues. To tackle these, ADDER uses a simulator for

safe exploration and data collection, the DDPG framework for

managing the high-dimensional action space, and a context-

157

2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

DOI 10.1109/WoWMoM60985.2024.00037

20
24

 IE
EE

 2
5t

h 
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n 

a 
W

or
ld

 o
f W

ire
le

ss
, M

ob
ile

 a
nd

 M
ul

tim
ed

ia
 N

et
w

or
ks

 (W
oW

M
oM

) |
 9

79
-8

-3
50

3-
94

66
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

W
oW

M
oM

60
98

5.
20

24
.0

00
37

979-8-3503-9466-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on April 25,2025 at 20:06:55 UTC from IEEE Xplore.  Restrictions apply. 



aware predictor to simplify the state space by estimating traffic

patterns from contextual data. This approach enables syn-

thetic data generation for various traffic scenarios, facilitating

practical RL model training with limited real-world data and

addressing the data scarcity challenge in IoT applications.

In evaluating ADDER’s performance, we compared it with

two baselines: EDRX, set to the longest acceptable delay,

and AC-DRX, an actor-critic approach used for a similar

problem in a previous study [6]. ADDER showed superior

energy efficiency, particularly in low-traffic scenarios. It also

introduces a traffic arrival probability threshold as a practical

metric for service providers to balance energy use against

their needs, simplifying the adjustment process. A case study

in bike-sharing highlighted ADDER’s real-world applicability,

focusing on how prediction inaccuracies affect performance.

This study underscores ADDER’s potential for operational

enhancements and predictive model refinement.

This paper is organized as follows: Section II introduces

the background by explaining Radio Resource Control (RRC)

energy-saving configurations and parameters. Next, Section III

describes ADDER’s architecture, detailing its role in param-

eter configuration, the reinforcement learning problem defini-

tion and solution. The paper concludes with Section IV, which

presents an empirical assessment of our methodology.

II. BACKGROUND

In this section, we provide the necessary background. We

first explain the energy-saving mechanisms, encompassing a

variety of energy-saving parameters, as well as the procedures

for reconfiguring these parameters. Particular attention is paid

to pinpointing the specific parameters that ADDER can op-

timize for actuator applications. Following this, we provide

an overview of several IoT actuator use cases, alongside an

analysis of their respective traffic patterns, which will serve to

formulate the problem in the subsequent sections.

A. Energy Saving Mechanisms and Related Parameters

The RRC layer is the central controller, managing radio

communications between the mobile device and the network.

Regarding energy management, the RRC layer plays a crit-

ical role by negotiating with mobile devices to establish an

agreement on the devices’ communication modules’ sleep

and awake time intervals. Following the schedule, mobile

devices shift between different RRC states, which governs

their radioactivity. This process is crucial for balancing energy

efficiency with the need for consistent and reliable communi-

cation.

DRX and PSM Mechanism. DRX [1], [2] allows devices

to enter a low-power state while periodically checking for

incoming traffic, necessitating maintenance of network syn-

chronization and readiness for immediate wake-up and data

reception. On the other hand, PSM [3], [4] puts the device into

a deeper sleep, shutting down more functionalities, completely

disconnecting from the network and achieving more significant

energy savings.

Energy Saving Parameters. Fig. 1 illustrates the relation-

ship between radio activity, RRC states, and parameters for

DRX and PSM. To save energy during the RRC inactivity

timer, a DRX Mechanism in an RRC-connected state called

cDRX was introduced, and its configurations mainly include

the OnDurationTimer and cDRX cycle.

In the RRC Idle state and PSM, critical parameters such

as Paging Frame (PF), Paging Occasion (PO), Paging Time

Window (PTW), eDRX cycle, and T3324 play vital roles

in balancing device availability and energy conservation. PF

determines the specific periods for the device to wake up

and check for paging messages, while PO specifies the exact

instances within these frames, enhancing energy efficiency.

The PTW defines a sub-duration within the DRX cycle for

receiving paging messages, offering additional power savings.

The eDRX cycle extends these wake-up intervals, allowing

for prolonged low-power states and substantial energy con-

servation. Lastly, T3324 manages the transition duration from

active to idle states, preventing unnecessary state changes and

further contributing to power efficiency. The time following

the expiration of Timer T3324 up until Timer T3412 runs

out is referred to as PSM. At the end of this period, as

marked by Timer T3412’s expiration, UEs send TAU requests

to reconnect to the network.

Fig. 1. RRC states, radio activity and timers for NB-IoT and LTE-M. (While
there are small differences between the RRC parameter options and
NB-IoT has unique and mandatory EPS optimization, the diagram
applies to both protocols within the context of ADDER.)

Traditionally, RRC parameter values are initially determined

during the first RRC setup, followed by negotiations between

UEs and MMEs to refine these settings. These negotiations

employ specific Information Element Identifiers (IEIs) for

the parameters above during RRC Connection Reconfigura-

tion and TAU procedures. However, Early Data Transmission

(EDT) in 3GPP Release 15 [8] has eliminated the need for con-

ventional RRC Connection Reconfiguration, favoring an event-

triggered TAU. This approach offers significant advantages in

specific scenarios, such as low battery situations or unique IoT

application requirements. In Section III, the workflow depicts

how ADDER leverages event-triggered and periodic TAUs for

timely reconfiguration of energy-saving parameters.
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B. Targeted Use Cases and Traffic Patterns

Earlier work performed measurements with IoT devices

over commercial networks in Norway to assess how traffic load

and RCC parameter settings affect battery life expectancy [9].

As expected, message frequency is the dominant factor de-

termining lifetime, followed by the setting of DRX, signal

quality, and finally packet size. These findings further motivate
ADDER’s approach to adapting energy saving parameters
based on traffic behavior.

TABLE I
TYPICAL TRAFFIC PATTERNS IN USE CASES OF INTEREST.

Usecases MT Message Frequency Delay Tolerance
Lighting control irregular 15 seconds

Smart Irrigation irregular , infrequent 1 minute

Smart appliances irregular, infrequent 3 seconds

Bike Sharing irregular 10 seconds

Table I presents various IoT actuator applications that

predominantly wait for irregular mobile-terminated (MT) mes-

sages, along with their associated delay tolerance as referenced

in [10]. It is worth noting that these applications typically

perform periodic updates of their state or send heartbeat

signals via MO messages. However, our primary focus in

this context is on optimizing energy consumption for MT

messages. Delivering timely and accurate commands to IoT

devices through MT messages is vital, but may come at the

cost of increased energy consumption.

III. METHODOLOGY

A. Problem Formulation

Conserving energy in an IoT actuator needs accurate pre-

diction of packet (paging request) arrival times within a

time window to ensure responsiveness to anticipated requests

while transitioning to sleep mode during periods of inactivity.

However, due to the unpredictable nature of burst traffic, the

actuator must carefully balance entering sleep mode for energy

savings with frequent monitoring to avoid missing packets.

This challenge can be framed into a bandit problem, where

decisions are made without full knowledge of the environ-

ment, akin to choosing between sleep and monitoring without

knowing the exact timing of packet arrivals. Although precise

request times are unattainable, estimating the probability of a

packet arriving within a given time window is feasible. With

such a probability estimation, one can set a threshold to omit

infrequent requests with low arrival probabilities. When the

request probability is moderate, reduced monitoring suffices;

however, frequent checks or ensuring delay tolerance are

inevitable for high-probability scenarios. Historical data are

proved valuable in forecasting these probabilities, with time

series analysis revealing busy and quiet periods. Apart from

time-centric factors, external conditions also play a role. The

influence of days of the week, holidays, and local events must

be considered when shaping these patterns for more accurate

prediction. For instance, fields may not require irrigation

following prolonged rain, and areas experiencing shared-bike

shortages often see increased demand.

B. ADDER Design

ADDER addresses the energy parameter setting challenge,

which is framed as a contextual bandit problem, by employing

a modified DDPG algorithm. DDPG stands out due to its de-

terministic policy, which directly selects the optimal action for

each state. Moreover, its ”deep” neural network architecture

effectively handles the high-dimensional action spaces that

involve numerous energy-saving parameters. This sets it apart

from AC-DRX [6], another actor-critic framework that relies

on tabular learning and stochastic policy gradients. While AC-

DRX reduces the action space dimension to a single parameter

through redefinition, it still necessitates sampling from a distri-

bution encompassing all discrete actions and additional search

efforts to find optimal actions. To train the critic and actor

networks, DDPG needs training data, which can be challeng-

ing for IoT actuators receiving infrequent commands. ADDER

decouples the DDPG model from specific application contexts

to address this data scarcity. It accomplishes this by employing

a simulator to generate training samples encompassing varying

packet arrival probabilities. When configuring parameters for

a specific application, a context-aware predictor estimates the

packet arrival probability based on the context. Subsequently,

the DDPG model utilizes this estimated probability to make

informed action selections. Using synthetic datasets enables

DDPG to undergo efficient training without the reliance on an

extensive volume of real-world data.

C. ADDER Architecture

UE

UE

eNB EPC

Mobile 
Network 

Controller

ADDER
Learning and 

Control 
Application

IoT 
Application

Server

Third Party
Data

Sources

Internet/Cloud

IoT
Devices

Mobile Provider

Fig. 2. ADDER Architecture

Fig. 2 shows how ADDER works and how it fits into the

standard data transmission process between base stations and

IoT actuators. ADDER’s Learning and Control Application

consists of two key components: a context-aware predictor and

a DDPG-based policy maker. The predictor, using information

from IoT servers and external sources, estimates the likelihood

of a data packet arriving from the server in each time window.

Meanwhile, a simulator generates training data for the policy

maker by simulating traffic with varying arrival probabilities

within a time window. This simulation records the resulting la-

tency and energy consumption given the device power profile,
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DRX and PSM parameters, and service latency requirements.

Following the model’s training, the policy maker utilizes the

predicted probability in conjunction with a predefined thresh-

old specific to the service to determine optimal parameter

settings. These newly determined parameter configurations

are then transmitted to the controller, where a parameter

update process is initiated to ensure that both the network

and end devices are effectively prepared for the impending

changes. The updated configurations are included in a TAU

response. When the network receives a TAU request from the

end devices, it sends them the updated settings. This allows

the devices to adjust their local parameters accordingly. End

devices can start the TAU request through periodic updates or

utilize the on-demand TAU. While reconfiguring parameters

through TAU introduces overhead in control signaling, the

infrequent downlink packets (a quarter hour to serval hours)

characteristic of IoT actuator-centric applications makes the

overall signaling overhead manageable.

D. Context-aware Predictor

Accurately forecasting application traffic remains the pri-

mary challenge in setting power-saving parameters. Time se-

ries analysis, a common technique employed in previous stud-

ies, typically concentrates on the traffic patterns of individual

devices. Even when applied to forecast the traffic pattern for a

service, it may not fully capture the infrequent, unpredictable,

and intermittent nature of IoT actuator applications. Consider

a bike-sharing service, where usage patterns can fluctuate sig-

nificantly based on the time of day, day of the week, weather

conditions, and specific events. Even with a consistent usage

pattern, the traffic pattern of each bike is likely to differ. While

primary time series data might be adequate for tracking daily

peaks, identifying variations across weekdays versus weekends

or comprehending seasonal and annual shifts—such as those

observed during pandemic years—requires more training data,

which may be impractical. By integrating more ”context” from

the environment, ADDER can craft more precise traffic fore-

casts. This enables finer power-saving strategies and bolsters

the efficiency of IoT actuator applications. In specific scenarios

detailed in Section IV, our case study with a bike-sharing

service revealed that ADDER surpassed conventional time

series forecasting models like ARIMA [11] and LSTM [12]

in predicting user demand patterns.

E. Modified DDPG

We consider the problem under the scenario that an agent

operates within an independent and identically distributed

(i.i.d) contextual bandit framework that allows for continuous

action choices. At each time step, denoted as t, and gathers a

state vector xt = [xt1, xt2] from the state space X = [0, 1]2.

The completion of each time step is marked by a TAU

update. At the beginning of each step, the new energy-saving

parameters for the step set up, and the timer for the periodic

TAU is reset. If no requests are received before the timer

runs out, the step terminates with the periodic TAU. If a

request arrives before the timer reaches zero, the UE triggers

an on-demand TAU, which completes the current step. xt1

is the estimated packet arrival probability. xt2 stands for

a threshold determined by the IoT service provider. When

xt1 falls below this threshold, energy considerations become

paramount; conversely, if xt1 surpasses the threshold, latency

takes precedence. Following this, the agent selects an action at
from action space A, where A = [−1, 1]N and receives reward

rt = R(xt, at), where R : X × A. To simplify the problem,

we leave out the settings for cDRX and PTW, only focus on

the configurations of T3324, TeDRX (eDRX cycle), and T3412,

which results in N = 3. We modify the values of T3324 and

T3412 in terms of TTI units (equivalent to the duration of a

subframe), TeDRX is expressed in units of 10 TTI (equivalent

to the duration of a radio frame). These values can vary from

0 up to the maximum TTI in the time window of a single

step and are mapped onto the action space respectively. These

values were originally set as fixed values in accordance with

the 3GPP protocol.
The primary objective for ADDER is to prioritize meeting

delay tolerance requirements during service peak hours while

concurrently aiming to maximize energy conservation during

off-peak periods. Thus we define the reward function R as

follows:

R =

⎧⎪⎨
⎪⎩
Dat

+ Lat
if xt1 > xt2, S > d

(1−Dat
) + Eat

+ Lat
if xt1 > xt2, S <= d

αDat
+ Eat

+ Lat
if xt1 <= xt2

(1)

where d represents the delay tolerance, a variable contingent

on the specific requirements of the IoT application and S is the

maximum delay achievable by the selected action set. Eat
and

Lat
, representing the normalized energy cost and normalized

actual latency cost, respectively. Dat
denotes the normalized

distance between the maximum delay of the selected action set

and the delay tolerance, i.e. d−S. The coefficient α is a control

parameter that can be used to specify the relative importance

of the maximum delay cost over energy cost depending on the

IoT application requirements.
Dat

serves as a mechanism for constraining action selection

during peak hours. It imposes a penalty in the form of a

negative reward when an action set chosen results in a waiting

time exceeding the specified delay tolerance. This penalty is

essential for preventing the model from overly prioritizing

energy savings in scenarios where the probability of a request

arrival is low but still categorized as peak hours according to

the IoT application’s requirements. It ensures that the model

maintains latency within the delay tolerance. Conversely, Dat

grants positive rewards for actions when the maximum delay

incurred by the action set closely approaches but remains

below the delay tolerance. This reward system discourages

the model from becoming excessively focused on minimizing

latency costs to the detriment of other factors. The coefficient

α is a control parameter that can be used to specify the

relative importance of the maximum delay cost over energy

cost depending on the IoT application requirements. This

approach may result in longer wait times during off-peak

hours, potentially leading to the loss of some customers.
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Businesses have the flexibility to adjust their threshold xt2

to strike a balance between device maintenance and customer

profitability, striving for maximum overall gain.

The process is then repeated with a new state at time

t + 1. Unlike the standard RL setting, there is no transition

function in the bandit setting. We defined deterministic policy

μθ that maps states to specific actions in A, parameterised

by θ. A deep contextual bandit agent for continuous actions

based upon the DDPG algorithm [13] is used in ADDER to

help deal with the one step RL problem. DDPG is a model-

free, off-policy reinforcement learning algorithm designed

specifically for environments with continuous action spaces.

Combining concepts from Deep Q-Learning (DQN) and Actor-

Critic methods, DDPG utilizes two neural networks: an actor

network that determines the optimal action given a state, and

a critic network that evaluates the quality of a given state-

action pair. The actor produces a deterministic policy, guiding

the agent towards the best perceived actions, while the critic

estimates the Q-value of the chosen action, helping to refine

the actor’s decisions.

Usually, as a solution for MDP problem, Q-value represents

the expected cumulative future reward an agent can obtain,

starting from state s, taking action a, and thereafter following a

specific policy and is described and updated using the Bellman

equation. As a bandit problem, the selected action won’t affect

the future state, thus the optimal one-step Q-value for (xt, at)
as follows:

Q∗(xt, at) = E[R(xt, at)], (2)

We refine the critic network using the following mean-squared

error (MSE) function to bring our estimated Q-values Qφ

closer to the optimal Q∗.

L(φ,E) = E
(xt,at,rt)∼E

[
(Qφ(xt, at)− rt)

2
]
, (3)

where φ represents the critic network parameters. Given that

our focus is solely on the immediate rewards of each step,

rather than the cumulative reward, we removed the target

networks.

Since the actor network produces a deterministic action for

each state, a behaviour policy β is used for exploration, by

adding noise sampled from a one-step Ornstein-Uhlenbeck

process N to the deterministic actor policy:

β = μ(xt|θμt ) +N , (4)

We update the deterministic policy gradient for the contextual

bandit setting by:

∇θJβ(μθ) =

∫
X
ρβ∇θμθ(a|x)Qμ(x, a)ds,

= Ext∼E

[∇θμθ(xt)∇aQ
μ(xt, at)|at=μθ(xt)

]
,
(5)

where, ρβ(x) defines the state distribution visited under policy

β, which in the bandit setting is equivalent to sampling states

from our environment E.

TABLE II
CURRENT CONSUMPTION PARAMETERS

Symbol Description Value

IPSM PSM floor current 2.7μA
IPO Average current during PO 5913μA
IeDRX Average current during idle edrx 23.82μA
Iinact Average current during RRC inactivity 15345μA

IV. EVALUATION

In this section, we will first describe the configuration of

ADDER, followed by an evaluation of ADDER from three

perspectives: comparing ADDER to other baseline methods

in scenarios involving nonstationary and infrequent traffic,

demonstrating the utility of ADDER across various applica-

tion services with distinct objectives regarding energy con-

servation and latency, and finally, we examine the impact of

traffic prediction errors on the performance of ADDER with

a real-life use case.

A. Simulator

We use a simulator to generate the data samples needed

to train our model. The simulator creates packets based

on a random packet arrival probability within a given time

window. It precisely mimics the behavior of UE as it transi-

tions between different states according to an energy-saving

mechanism when handling downlink packets. We record the

energy consumption and resulting latency for training. The

energy consumption in the simulator is calculated based on the

specifications from the nRF9160 by Nordic Semiconductor,

a System-in-Package (SiP) that facilitates low-power cellular

IoT designs with its modem support. This SiP is compatible

with both PSM and eDRX power conservation techniques.

Table IV-A provides the power characteristics of the nRF9160

rev2 chip operating in NB-IoT network mode with a voltage

of 3.7v. To simplify the simulation, we assume that during

each TAU from PSM, we switch to the RRC connection state

for 2 seconds. It is important to note that no data transmission

occurs within the duration, equivalent to the RRC inactivity

state. Our simulation environment is built on Gymnasium’s

APIs [14]. While there is an ns-3-based model for LTE energy

conservation, ns-3’s extensive components tend to slow down

data acquisition. Our simulator has significantly improved data

collection speed, approximately eight times faster than the ns-

3-based model.

B. DDPG configuration

Since target networks are removed from the DDPG al-

gorithm, we only need to configure the actor and critic

networks. The actor-network comprises three hidden layers,

each employing a ReLU activation function. It culminates in

a Tanh activation function in the output layer. The output

is then mapped to the appropriate parameter value ranges,

and the resultant action values are input into the simulator.

These hidden layers consist of 64 units, 32 units, and the

dimension of the action space, respectively. Meanwhile, the
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critic network utilizes two ReLU hidden layers comprising 32

units to process the observations. It combines these processed

observations with the actions and passes the result through

three additional ReLU hidden layers. These hidden layers in

the critic network also consist of 64 units, 32 units, and finally,

1 unit. During the training process, we employ a batch size

of 256, and both the actor and critic networks use a learning

rate of 0.0005.

C. Performance

Baseline Methods To evaluate our approach, we compare

it with two baselines. The first baseline, EDRX, uses a

static DRX cycle matching the delay tolerance parameter.

Our second comparison is AC-DRX, an Actor-critical-based

approach that combines tabular V value appraisal as a critique

with a stochastic actor policy for improved energy efficiency.

To compare AC-DRX with ADDER, we need to modify

AC-DRX. First, the original AC-DRX framework defines

decision windows (DWs) based on a predetermined number of

incoming requests. Each incoming request is associated with

a corresponding RRC state, and these states are subsequently

used to determine the action to be taken for the next DW.

We redefine the DW to be measured by the number of steps

(corresponding to each TAU update, as detailed in Section 1)

instead of the number of incoming requests. This modification

introduces a new state into AC-DRX to account for cases when

no packets are received within a step. Furthermore, the action

in the original AC-DRX framework is confined to determining

the length of the DRX cycle. It does not encompass the timing

configurations for PSM, which is referred to as the RRC

idle mode in their setup. To align with our method’s action

space for comparative analysis, we adapted the original AC

framework to include the parameter setting for PSM. This

required a transition to a DDPG strategy better suited to our

broader action space. For the critic component in AC-DRX,

we replaced the tabular approach for estimating the V value

for a state with a deep Q-learning algorithm for a state-action

pair. We retained their rule for updating the V value, which

utilizes accumulated rewards to inform the Q-learning process.

We continue using their defined reward function to ensure the

model benefits from their established conceptual groundwork.

Setup In our analysis, we set a fixed periodic TAU period

for each step and configured the AC-DRX model with DWs

spanning five steps each. While the packet arrival probability

remains constant during a single DW (five steps for ADDER),

it varies across different DWs to replicate the fluctuating

peak and off-hour traffic patterns frequently observed in IoT

environments. ADDER is provided with the arrival probability

and a threshold. This threshold determines the extent of

savings achieved when the actual usage probability falls below

it. ADDER 10 and ADDER 40 come with thresholds of 10

and 40, respectively, symbolizing the service’s varying needs

for real-time responses. The higher the threshold, the greater

the demand for immediate responses. Our primary objective

in this section is to compare ADDER to AC-DRX and EDRX

in nonstationary and infrequent traffic scenarios and showcase

how ADDER adapts to service latency requirements according

to the given threshold.

Results Fig. 3 and 4 show the performance of the methods,

evaluated over time windows of one and two hours per

step, respectively. The time window lengths are pertinent to

applications with infrequent traffic, such as actuators receiving

commands every few hours. The figures employ a Cumulative

Distribution Function (CDF) plot for energy consumption

analysis, measured in 100-step increments. For the one-hour

time window, approximately 7.5% of the samples for the

ADDER 40 had latencies over 10 secondsm which results

from the threshold that disregards packets that are unlikely

to arrive, yielding substantial energy savings. ADDER 40

predominantly shows energy usage under 30 Joules per 100

steps, which stands out against the other methods exceeding

30 Joules. Notably, ADDER 40 achieves a 26% reduction

in total energy consumption compared to EDRX. Meanwhile,

ADDER 10 consistently shows latencies under 10 seconds,

with an average of around 5 seconds and a maximum of 10

seconds, but it only offers a 5.7% energy saving over EDRX.

Clearly, adjusting the threshold allows ADDER to modify

its performance in response to the demand for low latency.

Both EDRX and AC-DRX maintain median latencies below

one second. However, AC-DRX, designed to focus on energy

efficiency, shows a more varied latency range and realizes an

energy saving of 2.9% .

For the two-hour time window, ADDER 40 is more

energy-efficient, saving approximately 32.7% more energy

than EDRX, while ADDER 10 saves around 5.9%. ADDER

40 exhibits a 9% occurrence of samples with latency exceeding

10 seconds, whereas all the samples for ADDER 10 stay

within the latency boundary. We observed that ADDER 40

consumed less energy than in a one-hour time window, result-

ing in ADDER’s tendency to adopt riskier strategies as traffic

becomes less frequent. ADDER switches to PSM when the

probability is low. When the probability is above the threshold

but remains below a certain level, ADDER uses a combination

of PSM and TAU to save energy. On the other hand, AC-

DRX consumes more energy than EDRX. This is because

AC-DRX lacks information about the probability of packet

arrival, often assuming that a higher packet arrival rate during

the on-duration of a DRX cycle in a DW implies a lower

probability of packet arrival in the next DW. Consequently,

AC-DRX is inclined to enter PSM for extended off durations

to maximize rewards while increasing the frequency of packet

checks during the RRC idle mode to avoid potential penalties

on latency. However, their reward function does not consider

the variations in energy costs associated with extended sleep

periods in PSM, the RRC idle mode, and the energy consump-

tion for TAU after PSM. This oversight is one of the reasons

why AC-DRX performs less effectively.

D. Case Study: Shared Micro-mobility Vehicle in Austin, Texas

In this section, we explore ADDER’s performance un-

der nonstationary traffic conditions without providing it with

packet arrival probabilities. Recognizing that a packet arrival
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Fig. 3. CDF for energy consumption when a single packet randomly arrives
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Fig. 4. CDF for energy consumption when a single packet randomly arrives
within a two-hour time window

estimator can only offer approximations, which might affect

ADDER’s effectiveness, we delve into a case study of scooter

sharing in Austin, Texas, to assess potential performance

degradation due to traffic prediction errors. Despite scooters

having larger batteries and less concern for communication

energy than bike sharing, the user behavior and environmental

impacts on usage patterns between the two are similar enough

to make the scooter-sharing scenario relevant to our study.

Given our emphasis on energy-sensitive applications, we will

refer to“scooters” as “bikes” in our analysis to maintain clarity.

1) Data Overview: Our dataset comprises two components:

the usage statistics and the contextual information. The usage

statistics source from the Austin Transportation Department’s

“Shared Micro-mobility Vehicle Trips” report [15] related to

a scooter sharing service. We selected a subset of data from

the West Campus neighborhood in central Austin, where the

records from March 2019 to June 2019 are notably com-

prehensive and consistent. This dataset features device ID,

census tract numbers for starting and concluding locations,

trip duration, and a 15-minute interval marking the trip’s

initiation and conclusion (for safeguarding user privacy). The

accompanying contextual data encapsulate local events and

weather information. Publicly available data sources provided

information on campus happenings, such as school vacations

and national holidays. We extracted hourly historical records

from Wunderground [16] for weather data, narrowing our

focus to the Austin-Bergstrom International Airport Station.

This station is located just 9 miles from West Campus and

offers the most detailed weather records nearby.

The demand-supply ratio indicates the probability that a

bike will be unlocked, highlighting service dynamics during

both high-demand (peak) and low-demand (off-peak) periods.

This ratio is derived by dividing the forecasted bike demand

by the bike service companies’ supply. However, the specific

data on the number of bikes in operation is not provided,

necessitating an estimation of the total bike supply. This

estimation is based on the anticipated bike demand and the

average turnover rate, which measures how frequently a bike is

used within a given fleet size and demand context. Our analysis

adopts a turnover rate assumption of twice per vehicle, in line

with the estimation approach outlined in [17]. By dividing

the total number of bike trips by this turnover rate, we can

estimate the available number of bikes, thereby enabling us to

calculate the demand-supply ratio.

2) Performance of Context-aware Predictor: The usage

data are divided into training and testing sets. Any missing

values are filled in with their respective mean values, and

the dataset is subjected to min-max normalization. To assess

the stationarity of the usage data, we utilize the Augmented

Dickey-Fuller (ADF) test. This test, known as a unit root test,

measures the impact of a trend on a time series. The results,

which include the p-value and ADF statistics from the ADF

test, are presented in Table III. Since the p-value is below 0.05,

it confirms that the series is indeed stationary. Therefore, time

series-based algorithms can be employed for usage prediction.

The ARIMA Model We first apply an ARIMA model to

the bike usage dataset and then analyze the residual errors.

The PACF plot in Fig. 5 highlights a distinct peak at lag 1,

suggesting nonseasonal behavior. The ACF follows a dimin-

ishing trend, pointing to an AR(1) component. This suggests a

nonseasonal model component of (1, 0, 0). Regarding seasonal

patterns, the seasonal period is defined as S = 24. The ACF

and PACF exhibit significant autocorrelation at lags of 24 and

48. A notable grouping is seen around lag 24 in the ACF.

Additionally, the PACF presents peaks at two intervals of

S, leading us to choose AR(2). Consequently, the seasonal

portion of the model is designated as (2, 1, 0, 24).
The LSTM Model We then employ LSTM for traffic

forecasting. In bike-sharing, the time series data are converted

into instances with an input-output structure with a lag of

24. The chosen model comprises two hidden layers, each

containing 50 neurons. The Adam algorithm is utilized as the

optimization method, and the mean squared error (MSE) is

the loss metric. The set parameters include a learning rate of

0.0008, a dropout rate of 0.2, a batch size of 50, and 800

epochs.

Context-aware Predictor The ADDER constructs a

Context-aware Predictor utilizing a neural network (NN).
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TABLE III
ADF TEST RESULTS ON THE TIME SERIES.

ADF Statistic p-value Critical Value 1% Critical Value 5% Critical Value 10%
Value -4.71 8.12e−5 -3.43 -2.86 -2.57

Fig. 5. ACF and PACF

TABLE IV
RESULTS OF THE MLPREGRESSOR PERFORMANCES FOR THE

BIKE-SHARING CASE WITH 3 DIFFERENT LOSS FUNCTIONS.

Method
Test Rainy

MAE MSE RMSE MAE MSE RMSE
ARIMA 14.42 359.65 18.96 27.82 1588.60 39.86
LSTM 19.7 591.29 24.31 32.592 2010.48 44.83

NN 14.27 346.92 18.63 21.09 899.22 29.99

Method
Holiday Windy

MAE MSE RMSE MAE MSE RMSE
ARIMA 24.59 789.10 28.09 85.59 10069.63 100.34
LSTM 20.58 500.52 22.37 21.54 731.06 27.038

NN 11.07 176.43 13.28 22.05 752.02 27.42

Features influencing commuting behaviors, such as hourly

temperature, rainfall, wind intensity, holidays, day of the week,

and hour of the day, are employed to train this NN. This net-

work, specifically a multilayer perceptron (MLP) regression,

consists of three hidden layers with five hidden units in each

layer. The Adam algorithm is chosen for optimization, and the

ReLU function is used for activation.

To assess the performance of the models, we used three met-

rics: mean absolute percentage error (MAPE), mean squared

error (MSE), and root mean squared error (RMSE). In addition

to the standard test set, we evaluated the models on data from

rainy days, holidays, and windy days. We selected data for

these specific test sets using control variables, filtering out

entries with normalized hourly precipitation or wind speeds

greater than 0.5. The accuracy results are presented in Table

IV.

The Neural Network (NN) model outperforms the other

two methods regarding predictive accuracy on rainy days and

holidays, while it performs similarly to LSTM on windy days.

Since ARIMA and LSTM are primarily time series models, it

is expected that the NN would outperform them in less time-

dependent situations. This finding is consistent with previous

studies on bike-sharing system demand prediction [18]–[20],

which suggest that both regular (e.g., time and weather) and

opportunistic contextual factors (e.g., social and traffic events)

play essential roles in forecasting bike usage patterns.
3) Decision Making based on the Context: The discrepancy

between the anticipated and actual traffic patterns could result

in the selection of an alternative action, impacting energy

efficiency and latency. In this paragraph, we demonstrate

how this variance in performance plays out using the bike-

sharing scenario as an example. Fig. 6 depicts the performance

for ADDER act (based on actual packet arrival probability),

ADDER pred (based on estimated packet arrival probability),

and EDRX approaches, respectively. We have set the threshold

at the 30th percentile of the daily packet arrival probability

for both ADDER act and ADDER pred. The latency plot

for the three methods reveals that most latency measurements

range from 0 to 10 seconds, averaging around 5 seconds.

The box plot does not include outliers, which shows that

around 9% of ADDER act samples have latencies over 10

seconds, while about 12.5% of ADDER pred samples exceed

this latency threshold, suggesting that prediction errors can in-

crease latency. Regarding energy consumption, both ADDER

act and ADDER pred are more efficient than EDRX, with

the ADDER act curve higher than ADDER pred, indicating

greater energy efficiency when using actual data. The exper-

imental results demonstrate that devices equipped with the

nRF9160 NB-IoT module save 14.5% of energy using actual

probability and 12.9% with predicted probability over a one-

day period.

V. LIMITATION AND FUTURE WORK

The current simulator oversimplifies energy-saving mecha-

nisms in state transitions by assuming a constant power profile

and ignoring link quality factors such as signal strength and

noise levels. Creating a more practical simulator that accounts

for these real-world complexities is a significant undertak-

ing. This is particularly true when considering link quality,

which demands domain knowledge or extensive samples for

ML-based approaches which necessitate a testing phase to

determine the cost of different actions and retraining after

deployment if environmental conditions change.

Aside from creating a more realistic simulator, it’s essential

to recognize that in actual systems, the action space is not

continuous but rather high-dimensional. The current parameter

configuration relies on binary numbers to represent different

parameter values. To effectively use the Adder’s action spaces,

a more efficient approach for expressing parameter values with

minimal signaling is required.

While we sidestep the energy-intensive process of on-

line training, the implications of this approach on network

providers’ energy usage, particularly in terms of scheduling

parameters, remain uncertain. Moreover, fluctuating dynamic

DRX cycles for various applications within the same cell
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Fig. 6. ADDER’s performance, in terms of energy consumption and latency,
based on packets generated according to the records from the Shared Micro-
mobility Vehicle in Austin, Texas.

complicate the scheduling process, which may lead to less ef-

ficient spectrum use. Exploring the potential of reinforcement

learning to address the challenges of setting energy parameters

and optimizing spectrum and time scheduling could be a

promising direction for future research.

VI. CONCLUSION

We introduced our research on Adder, an adaptive data-

driven method for adjusting energy-saving mechanism pa-

rameters. Adder utilizes contextual data for IoT applications

and employs a machine learning-based approach on the net-

work side to dynamically adjust RRC parameter settings.

Our research demonstrate that Adder offers a customizable

balance between energy efficiency and latency, allowing IoT

service providers to tailor energy-saving network services to

specific service requirements. We assessed the practicality of

our approach through simulations using real-world data from

a mobility-sharing service.

VII. RELATED WORK

Earlier efforts [21] adapt the DRX mechanism for different

services such as web browsing, VoIP service, video and multi-

media services, ultra-reliable low latency communication and

others. These services demand rapid responses, so DRX in the

RRC connection is commonly employed to conserve energy

for such services. On the other hand, for IoT applications

with limited energy resources and infrequent traffic, DRX in

RRC idle mode and PSM are more frequently used [22]–

[25]. The tradeoff between latency and energy motivates many

studies to develop models for setting DRX parameters [26]–

[28]. Adaptive DRX parameter methods have been proposed

to strike this balance by considering traffic characteristics.

For example, a Counter-Driven Adaptive DRX scheme adjusts

DRX cycles based on traffic characteristics through coopera-

tion between base stations and the end devices, and reduces

the signaling required for RRC reconfiguration [29]. Other

earlier work has compared the performance of the DRX

mechanism with adjustable and non-adjustable DRX cycles

for bursty packet data traffic [30]. Quality of service (QoS)

or Channel Quality Indicator (CQI) is essential for service

latency requirements; DRX cycles can be extended or reduced

to satisfy applications’ real-time needs [31]–[33]. Researchers

have also started using AI methods to automatically adjust

DRX configurations. For instance, there have been proposals

to use a trained recurrent neural network (RNN) model to

implement dynamic short or long sleep cycles [34]. Long

short-term memory (LSTM) approaches for forecasting traffic

have also been suggested [35], [36] and these have been

extended to 5G scenarios in [37]. Finally, there have been

RL-based approaches for adjusting DRX cycles by learning

traffic statistics and testing them with different packet arrival

distributions [7].
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