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Abstract—Transmitter localization is an important component
of next-gen spectrum sharing and management systems. Recently,
machine learning (ML) methods have shown promising results
for localization in complex environments. However, existing ML
models have significant limitations, such as the need for careful
parameter tuning and the lack of accuracy on out-of-distribution
(OOD) examples. Moreover, current ML models do not typically
provide a “confidence” in their prediction. In this work, we
propose a new training procedure based on the Earth Mover’s
Distance (EMD) that improves on these limitations. The method
improves OOD accuracy by up to 22% while providing more
interpretable results. The EMD-trained model also produces a
confidence score, which can be used to identify high-error and
OOD examples. We demonstrate how model confidence serves as
a guide for hybrid localization models. This includes selecting
the most reliable prediction from multiple models based on
confidence values or resorting to a fallback path loss technique
in cases of low confidence. Our work establishes the importance
of model confidence in improving the accuracy of localization
and as a mechanism for effective decision making in localization
applications.

Index Terms—transmitter localization, uncertainty, model ro-
bustness, spectrum management

I. INTRODUCTION

Radio Dynamic Zones (RDZ) are envisioned as a plat-
form for next-gen spectrum sharing [1]–[3]. They facilitate
secondary spectrum usage inside the zone while ensuring
interference protection outside the RDZ for primary/incumbent
users, including those sensitive to radio-frequency (RF) in-
terference. To aid in managing spectrum in the RDZ, a
digital spectrum twin (DST) has been proposed [4], [5] as a
system that uses environmental features and measurements of
current RF conditions to simulate user activity in the RDZ.
Fundamentally, a DST serves as a platform for simulating
an RF environment based on current, real-world conditions.
This may involve a sophisticated propagation model that uses
physics-based or ML techniques to estimate signal strength
based on environmental factors such as building elevation
and ground surface type [5]. These environmental simulations
allow RDZ management systems to make informed decisions
on operations in the RDZ, such as determining the location
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Fig. 1. A diagram of the Radio Dynamic Zone, with a Digital Spectrum Twin
managing spectrum and locating a transmitter.

and power level at which a user is allowed to transmit in order
to protect sensitive users both within and outside the zone. To
ensure the protection of sensitive users, a fundamental problem
is to localize transmitters, especially ones that may be causing
interference [2] by utilizing real-time data from sensors in the
area of interest, as shown in Fig. 1.

While ML techniques provide a promising approach for
accurate localization in complex environments, previous work
has revealed that ML models can be biased by their training
data and fail when there is a distribution shift between the
training data and input samples encountered during deploy-
ment [6]–[9]. This shift can be attributed to changes in the
environment, alterations to the sensors used for localization,
or the presence of transmitters in regions not covered by the
training data. Deploying an ML localization model on these
out-of-distribution (OOD) input samples is likely to produce
uncertainty in predictions, as these inputs differ significantly
from the data observed in the training set. In such scenar-
ios, providing RDZ management systems with context about
prediction uncertainty can help to allocate resources properly,
inform enforcement actions, and enable hybrid localization
techniques. Our work aims to develop localization techniques
that provide this vital context about prediction confidence
to a spectrum management system and make more accurate
predictions.

Despite tendencies toward model bias, deep learning models
remain the most effective techniques for localization [7], [10].
In this work, we find that existing ML methods for localization
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have the following fundamental problems:
1) Localization models using regression are typically accu-

rate but fail to provide interpretable results [9], [11].
2) Models that provide more interpretable results are more

difficult to train since they solve an image approximation
problem instead of directly minimizing the localization
error during training [7], [10].

3) No existing localization techniques are intended to in-
form users about model uncertainty or the reliability of
predictions. Understanding when a prediction is reliable
is crucial for effective spectrum management.

We make progress on all of these concerns by using Earth
Mover’s Distance (EMD) [12] as a loss function to train local-
ization models (see Section III for definitions). EMD captures
the geometry of the localization setting by directly minimizing
localization error while providing intuitive, interpretable pre-
dictions. Using EMD to train models improves accuracy on
OOD test sets by up to 22% compared to other loss functions,
and it also provides a score for model confidence.

In Section IV, we use model confidence to identify and
understand localization predictions with high error. We inves-
tigate possible indicators of model confidence and then show
how confidence can be used to identify high-error and OOD
samples, which typically have low confidence. To understand
how and why localization models have high error in some
instances, we investigate specific samples from our dataset and
observe that (1) ML models do not generally make predictions
in locations that were not seen in the training data, and (2)
low-confidence predictions often include some interference or
other pathological behavior in the inputs.

Finally, in Section V we consider two practical examples
of how confidence can provide more accurate localization
predictions via hybrid localization models. We use a simple
physics-based localization technique as a fallback to improve
accuracy on OOD inputs, with minimal impact on accuracy
for in-distribution samples. We also show how confidence can
be used to select reliable predictions from multiple pre-trained
models.

This work establishes (1) how EMD loss can be used to
train more effective models, (2) how model confidence can
be used to identify OOD and high-error samples, and (3)
how model confidence enables hybrid localization models with
more accurate predictions.

II. BACKGROUND AND RELATED WORK

Transmitter localization in an RDZ can enable better man-
agement of the RF spectrum. Users within an RDZ may cause
harmful interference to spectrum users inside or outside the
zone, so employing localization to detect and identify inter-
ference sources is necessary for operating an RDZ, as noted
by Maeng et al. [2]. Accurate location information allows for
higher opportunistic spectrum reuse since interference can be
reliably estimated based on the transmitter’s position in the
environment, as in [13].

This work considers localization using only received signal
strength (RSS) observations. One primary advantage of RSS

Fig. 2. The CNN localization pipeline. Sensor data is input as an image to
the CNN, which estimates the target location either via regression or as an
image.

localization is that any low-cost RF device such as [14] can
capture RSS values to achieve large-area sensor coverage
at a lower cost. While we only consider RSS localization,
the principles of EMD loss, model confidence, and hybrid
localization, which we introduce in this work, can be applied
to any localization technique and are not specific to RSS
localization.

A. RSS Localization

At a basic level, RSS localization can be seen as either a
physics-based propagation problem, where transmitter coordi-
nates are estimated based on physical models of propagation
in the environment, or as a data-based learning problem, where
ML models are trained to infer the transmitter’s location based
on RSS measurements without any physical models. The most
straightforward data-based approach is fingerprinting, where
RSS measurements are interpreted as a unique identifier of the
transmitter location. Accuracy in fingerprinting and other data-
based approaches depends on the assumptions that (1) nearby
locations will have similar fingerprints and (2) the training
data sufficiently covers the region of interest. Additionally,
this reliance on training data means data-based methods may
inherit bias that exists in the training data due to lack of
coverage, measurement errors, or interference [15].

Most recent works in RSS-based source localization focus
on data-driven approaches. Simple ML models for fingerprint-
ing, such as k-nearest-neighbors and random forests have been
shown to be more accurate than path loss-based trilateration
[16]. In [17], Sarkar et al. interpolate sensor values from
mobile sensors to a set of known locations, which allows for
sensor mobility while using ML fingerprinting.

Current state-of-the-art techniques use significantly more
complex models for data-based localization. A convolutional
neural network (CNN) is used in [7], [9]–[11], [18], where
RSS values are converted into a 2D image and input into a
CNN model. The CNN either directly predicts the transmit-
ter(s) coordinates [7], [9], or outputs a target image showing
probable transmitter locations [10], [18]. This process is shown
in Fig. 2.

In our previous work [7], we explored the robustness of
CNN localization on OOD samples, where the test inputs
differ significantly from the training distribution. We showed
that localization accuracy is 4-10× worse on OOD samples,
implying that although CNN methods are highly effective at
memorizing the distribution of the training set, they fail to
generalize to unseen distributions. Whether this distribution
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TABLE I
DETAILS ON THE LOCALIZATION DATASET FROM [19]

Data Separation Tx Locations Number of Sensors
Random/Grid 4577 9 - 25
April 811 6 - 7
July 3415 17 - 25
November 351 23

shift occurs through natural environmental changes [7], bias
or coverage gaps in the training data [15], or adversarial attack
[8], practical ML models should be robust to some distribution
shift. If this is not possible, the model should alert the user
that a specific prediction may be unreliable. In this work, we
improve existing CNN methods by using model uncertainty to
identify unreliable predictions and improve OOD accuracy.

B. Datasets for Evaluation

In this work, we explore model localization on OOD sam-
ples from our previously published localization dataset [19],
collected on the University of Utah campus in Salt Lake City,
Utah. This dataset consists of GPS coordinates for a single
mobile transmitter at 462.7 MHz (near several LoRa bands
in Asia and TV white space in the US and UK), with GPS
coordinates and uncalibrated RSS values from stationary and
mobile sensors. Transmitter locations cover approximately 3
km2.

To understand localization in both in-distribution and OOD
settings, we create separations of the dataset into training and
test sets, similar to those in [7].

1) Random: Select 20% of the data uniformly at random
as the test set and the remaining 80% for training.

2) Seasonal: Separate data based on the collection date.
Tx samples were collected in April, July, and November
without mobile sensors. In most cases, we do not use
data from April due to the low number of sensors.

3) GridN : Split the region into a N × N grid. For 80%
of the grid cells, assign samples with the Tx location
within the cell to the training set, and do the same for
the test set and the remaining 20% of cells.

Location and sensor counts for each of the data separations
are listed in Table I, and plots of transmitter locations for
each separation are shown in Fig. 3. The Random separation
is the best-case scenario often used in ML research but is
quite unrealistic since samples seen in deployment will never
be identically distributed to those seen during training. The
Seasonal split captures distribution shift between data captured
on sunny days in July and during a winter storm in November.
The Grid2 and Grid5 separations simulate gaps in the coverage
of training data, such as might occur when samples cannot
be collected in certain areas. This allows us to study OOD
samples with a known and controlled distribution shift.

III. TRAINING LOCALIZATION MODELS USING
EARTH MOVER’S DISTANCE

Although previous works show the effectiveness of CNN
localization, results have been mixed on what loss func-

Fig. 3. Maps of Tx locations for the Random, Seasonal, Grid2, and Grid5
data separations.

tion should be optimized during the training of the model.
This section explores the loss functions used in previous
works, highlighting the main problems with existing work. We
propose using EMD [12], also known as the Wasserstein-1
metric, as a better-motivated loss function. We evaluate the
EMD loss formulation and find that EMD is well suited for
our localization setting, though other loss functions may be
preferred depending on the practical application.

A. Current Training Techniques

Training a CNN model requires a loss function, or an
objective to be minimized during training. Existing works
with CNN localization use squared error as a loss function,
though with different formulations for predicting transmitter
coordinates. There are two previous techniques that have been
used for CNN localization, both shown previously in Fig. 2:

1) Regression models [9], [11] which directly predict
transmitter coordinates and learn to minimize the local-
ization error (Euclidean distance) during training.

2) Target image models, which produce an image marking
probable transmitter locations [10], [18]. At inference
time, the highest magnitude pixel is selected as the
transmitter location.

In the target image setting, the training process minimizes the
following loss function:

LC(Ŷ , Y ) =
1

MN

M∑
i=1

N∑
j=1

|Yij − Ŷij |2, (1)

where Y is the vector of M ground truth target images each
with N pixels, Yij is the jth pixel of the ith image, and
Ŷ is the vector of predicted images. Each image Yi has a
3× 3 block showing the true location of the transmitter, with
a value of 0.01 on the outer edges and 0.92 in the center
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Fig. 4. Plots of model outputs for CoM, PSE, and EMD (l-r). The CoM
outputs are non-interpretable and do not provide any model confidence values.

pixel. We use the 3 × 3 block instead of a single pixel to
prevent normalization issues and provide model confidence
scores. We refer to this loss as pixel squared error (PSE). One
key weakness of PSE is that since it is computed separately for
each pixel, the loss does not capture the relationship between
the predicted location and the actual transmitter location; in
other words, if a prediction is 5 pixels from the true location,
this receives the same penalty as a prediction 50 pixels away.
The PSE objective is to approximate an image, and it does
not directly minimize the localization error; this results in
difficulty training models and requires a careful tuning of
learning rates and model architectures to achieve low error.

Results on which formulation is more accurate have been
mixed: our work in [7] found the target image setting to be
more effective than regression settings, though Yapar et al.
[9] found their regression formulation to be more accurate
on simulated data. This indicates that metaparameters such
as the model architecture, input resolution, or training data
characteristics may determine which loss function is preferred.

The regression setting in [9] uses the center of mass of
the output image as the predicted coordinates. However, this
“center of mass” (CoM) loss function can only be used
for a single prediction, and it also produces non-intuitive,
uninterpretable results, as shown in Fig. 4 (left). The target
image settings on the left and right produce point predictions
indicating the probable transmitter location, but the CoM
prediction has no such point prediction. Although interpretable
results may not be a requirement in every setting, later in this
work, we show how interpretable point predictions can be used
to indicate model confidence and improve robustness.

In summary, there are two primary problems with existing
loss functions and formulations:

1) Regression settings fail to provide interpretable results
or any score indicating model uncertainty.

2) Target Image settings do not minimize localization error
in the loss functions, making models challenging to train
and often resulting in lower accuracy.

B. Earth Mover’s Distance as a Loss Function
We propose using the Earth Mover’s Distance (EMD) [12],

also known as the Wasserstein-1 metric, for training a local-
ization model. Intuitively, the EMD represents the amount of
“work” that must be completed to move a pile of sand with size
and location given by P to fill a hole with size and location
given by Q. For probability distributions, EMD represents the
“work” to change distribution P to match distribution Q.

Given two signatures composed of locations
and values, P = {(x1, p1), . . . , (xm, pm)} and
Q = {(y1, q1), . . . , (yn, qn)}, the EMD is defined according
to some optimal flow F = (fij) which minimizes the work

W (P,Q, F ) =
m∑
i=1

n∑
j=1

fijdij (2)

where dij = d(xi, yj) is the Euclidean distance between xi

and yj . Once the optimal flow problem is solved, the EMD
between P and Q is defined as

EMD(P,Q) =

∑m
i=1

∑n
j=1 f

∗
ijdij∑m

i=1

∑n
j=1 f

∗
ij

. (3)

where f∗
ij is the optimal flow.

In the localization context, our ML model learns to approxi-
mate the 2D distribution marking the true transmitter location.
Using EMD to train localization models addresses the two
problems with existing loss functions. Unlike the PSE setting,
EMD captures the geometry of localization by placing a larger
penalty on nonzero values that are farther away from the true
location, which improves accuracy and ease of training. And
unlike regression settings, EMD also provides an interpretable
output, as shown in Fig. 4.

However, calculating the EMD in multiple dimensions is
computationally expensive, with a computational complexity
in O(n3 log n), where n is the number of pixels. To reduce
this complexity, we use the sliced EMD from [20], which
takes the average EMD from random 1D-projections or slices
of the distribution and approximates the 2D EMD. With
the differentiable optimal transport library, Python Optimal
Transport [21], we can use the sliced EMD as a loss function
to train our localization model.

C. Evaluation

To motivate the use of EMD, we compare the localization
accuracy of models trained with different loss functions. We
compare against the PSE loss used in [7], as well as the
CoM regression formulation from [9], where the predicted
coordinates are the center of mass of the CNN output. We do
not evaluate other regression settings since our previous work
[7] showed that other regression settings were less accurate
than the PSE loss using the same dataset as in this work. We
find that EMD is effective as a loss function, especially when
there is a distribution shift between the training set and the
test data.

For each of the three loss functions, we train an ensemble of
five UNet localization models, as described in [7] (a similar
model architecture was also used in [9]). We use an input
resolution of 30 meters per pixel, which previous work found
as ideal for this dataset. Although higher-resolution inputs can
improve accuracy, we found that learning at higher resolution
increases training time dramatically and also requires changes
to the model architecture, since a deeper network is necessary
for the impact of sensors to be captured at higher resolution.
Training at higher resolution also provides diminishing returns
on accuracy in terms of the computation required. We use a
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TABLE II
MEDIAN ERROR FOR CENTER OF MASS (COM), PIXEL SQUARED ERROR (PSE), AND EARTH MOVER’S DISTANCE (EMD)

Loss Loss Random July→Nov Nov→July Grid2 Grid5 Training
Function Type Error [m] Error [m] Error [m] Error [m] Error [m] Time Multi Tx? Interpretable?
CoM [9] Regression 35.5 149.7 265.3 334.0 154.1 2.6 s/epoch No No
PSE [7] Target Image 95.4 212.6 298.0 303.2 186.2 2.5 s/epoch Yes Yes
EMD Target Image 47.4 116.5 234.2 277.5 147.6 14.3 s/epoch Yes Yes
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CoM Validation
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EMD Train
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Fig. 5. Training accuracy for a single network on the Grid2 data, comparing
CoM and EMD. EMD is consistently more accurate on OOD Test samples.

constant learning rate of 5 × 10−4 with the Adam optimizer
[22]. We train the ensemble for a variable number of epochs;
training halts after 200 epochs without decresing error on the
validation set, and the best performing model on the validation
set is saved. We report the median accuracy from the trained
models in Table II, along with information on the loss function
and training time.

To demonstrate the training stability for CoM and EMD,
we compare train, validation, and OOD test accuracy during
training in Fig. 5. We show the accuracy for a single network
rather than an ensemble of five. We do not show PSE here as
the training is unstable, often requiring restarting the training
process with different learning rates. As we can see in both
Table II and Fig. 5, EMD is consistently more accurate on the
OOD test data.

For the best-case Random data, CoM is significantly more
accurate. This is an expected result since the Target Image
settings make predictions for a specific pixel, while the CoM
setting can predict with sub-pixel precision. Without sub-
pixel predictions, we expect EMD error to be 7.5 m higher
on average. Accounting for this error, there is still a minor
advantage (<5 m) for CoM. Again, the Random separation is
the best-case scenario for ML models and is quite unrealistic
in practice. In the other OOD settings, EMD is more accurate
by 2.5-22% even without sub-pixel predictions.

As shown in Fig. 4, EMD and PSE produce interpretable
outputs, with the probable transmitter location clearly marked.
Conversely, CoM produces irregular shapes that do not clearly
show the transmitter location. More importantly, the CoM
formulation does not provide flexibility in predictions. For
example, EMD and PSE can allow for some degree of am-
biguity (the transmitter is either in location A or location
B), which can be crucial information for enforcing spectrum
usage since localization with low sensor density may be an

Fig. 6. An example of an ambiguous prediction from an EMD-trained model.

ill-poised problem, depending on the positions of sensors
and transmitters. Fig. 6 shows an example of an ambiguous
prediction. Target Image models can also be extended to
localize multiple simultaneous transmitters (as in [10], [18]).
This is not possible with the CoM regression loss. Although
our dataset consists of only single transmitter samples, we
consider EMD’s ability to provide multiple predictions to be
a significant advantage.

Regarding training time, EMD takes significantly longer
during the backward training pass, though this is of less
concern since training is a one-time cost. Both CoM and
EMD can take over 1000 epochs to finish the training process,
while PSE typically halts learning after less than 300. This
early stopping, along with the poor accuracy, demonstrates
that PSE models are difficult to train and may require careful
metaparameter tuning to achieve higher accuracy, while the
other loss functions are more stable during training.

In summary, we find that the EMD loss function is pre-
ferred. The CoM loss function may be superior in specific
circumstances due to better accuracy on in-distribution data
or when training time is a concern, but the EMD formulation
is more robust on OOD samples. Most importantly, EMD
also naturally learns to estimate model confidence. In the
following sections, we use this model confidence to identify
OOD samples and improve model robustness.

IV. USING MODEL CONFIDENCE TO UNDERSTAND AND
IDENTIFY FAILURE IN ML LOCALIZATION

Prediction on OOD samples remains a significant challenge
for any localization model. This section explores using model
confidence to understand cases of high error and identify OOD
samples. We explore different indicators of model confidence
and find the maximum value in a prediction to be the best
indicator of confidence. We investigate samples with high error
and low confidence to understand why localization fails, and
we show that confidence can be used to identify OOD samples.
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In this section, we consider two main types of distribution
shift: the Grid setting where training data does not include
transmitter locations from parts of the region of interest, and
the Seasonal change where one data partition was collected
during sunny July, and the other partition was collected during
a winter storm in November. These were both described in
Section II-B.

A. Indicators of Confidence

When a model encounters data that differs significantly from
the training distribution, we expect uncertainty to arise. Model
confidence is used in this work to identify such uncertainty.
Ideally, when a model has been trained on a specific sample,
it should have high confidence in the predicted location. Most
loss functions, including our EMD formulation, will penalize
predictions in incorrect locations, so model confidence is
naturally learned during the training process, and we expect
lower confidence when an input is significantly different from
any that the model has been exposed to during training. We
attempt to use confidence as a meta-signal, indicating either
an OOD sample or a high-error, in-distribution sample.

In classification tasks, ML models predict a value for each
possible class, and these values are often interpreted as model
confidence for each class [23]. In our localization context, we
do not have such a convenient confidence score, so we explore
several options here. One option is using the maximum value
in a prediction as the model confidence. However, our early
experiments showed that the value of the maximum prediction
is not stable between models, so we use an ensemble of 5
identical localization models, which are separately trained and
then combined at inference time. The ensemble prediction is
the weighted average of the maximum pixel location from each
ensemble prediction.

In our localization context, we consider the following indi-
cators of model confidence:

• Maximum Prediction: The maximum predicted value
from any ensemble prediction.

• Maximum Mean Prediction: The maximum predicted
value from the mean of the ensemble predictions.

• Maximum Spread: The maximum distance between the
maximum pixel from each ensemble prediction.

• Sum Spread: The sum of distances between the maximum
pixel from each ensemble prediction.

To determine which indicator is most effective, we use model
confidence to identify OOD samples. We evaluate the model
on our validation set, which consists of samples not seen
during training but drawn from the training distribution. We
then define a confidence threshold using the kth percentile
of the indicator values from the validation set. Any samples
with confidence below the threshold are labeled as “low-
confidence”.

In Fig. 7, we compare the effectiveness of these different
indicators of model confidence at identifying OOD samples.
The main finding is that the maximum mean prediction is most
useful as an indicator of model confidence. This is expected
since maximum mean prediction captures the information

Fig. 7. ROC curve, comparing the ability of indicators of model confidence
to identify OOD samples in the Grid2 setting.

Fig. 8. Predictions for OOD targets in the Grid2 (top) and Grid5 (bottom)
settings.

contained in the other indicators, including the confidence of
individual predictions as well as the spread of the ensemble.
For the rest of this work, when we refer to model confidence,
we specifically are referring to Maximum Mean Prediction.

B. Understanding Localization Failure

Before considering how model confidence relates to lo-
calization accuracy, we must first understand what typical
predictions from our model look like and how exactly they
fail in the case of OOD predictions. We train models for
localization in the Grid2 and Grid5 settings and plot a map
of all predictions on the test sets, which is shown in Fig. 8.
Each red ‘X’ marks a model prediction, with each OOD area
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Fig. 9. Example inputs with ground truth and prediction marked on a Grid5
OOD input (left) and validation sample showing possible interference (right).

outlined in green. In general, model predictions are made
on the border of OOD regions rather than inside the area.
This indicates that, for the most part, localization models
predict coordinates similar to those seen during training. This
is expected mainly due to the data-based nature of ML models.

The trends in model predictions highlight a significant
weakness of this ML localization technique: the localization
predictions are similar to those seen during training, despite
highly informative sensor readings. This is shown very clearly
in the example in Fig. 9 (left), which shows the input RSS val-
ues for an OOD Grid2 sample. The true transmitter location,
indicated by the white triangle, is next to a high-valued RSS
sensor, shown in yellow. The model’s inaccurate prediction,
shown by the red X, is far from the truth even though RSS
values clearly indicate the correct location. Understanding
exactly what causes high error for OOD samples can allow
us to design correction measures, as we will show later in
Section V.

With the understanding that models are heavily biased to
make predictions in previously seen locations, we can now
use model confidence to study failure cases. We manually
investigated the inputs for the 20 lowest-confidence predictions
in the Grid2 and Grid5 settings and found that in both
validation sets, approximately 50% of the lowest-confidence
predictions had high-valued RSS sensors far away from the
actual transmitter location, indicating interference from other
devices or from unusually strong multipath interference. An
example of this is shown in Fig. 9 (right).

The ability to identify samples with unusual RSS patterns
using model confidence is one major advantage of our ML
technique. In practice, a DST or other spectrum management
system might raise flags asking for expert input or could repeat
RSS measurements for additional information.

C. Detecting OOD Samples

As we demonstrated in [7], ML localization methods cannot
accurately localize a transmitter in OOD settings. A natural
question is if the model can self-identify these OOD samples
that have poor accuracy. We conducted a simple experiment to
determine if model confidence is an indicator of OOD inputs.
For each of the data separations, we trained our 5-member

Fig. 10. Scatter plots of error vs. model confidence for the in-distribution
validation set (top) and OOD test set (bottom) in the Grid2 setting. A vertical
line marks the 10th percentile of the validation set confidence.

CNN ensemble for localization using EMD and evaluated the
model on the in-distribution validation set, as well as the
corresponding OOD test set.

In Fig. 10, we compare the model confidence and localiza-
tion error for each prediction in the Grid2 setting, with the
validation set results on top and the OOD results on bottom.
We can see that the OOD samples have much higher error
and lower confidence. The relationship between confidence
and error is visible but not strong, with Spearman correlation
coefficients of -0.40 and -0.32 for the validation and OOD
sets, respectively.

We use confidence values from the validation set to establish
a “low-confidence” threshold, which allows us to classify
difficult samples. The vertical lines drawn in Fig. 10 are at the
10th percentile of confidence values in the validation set. The
10th percentile is near the true positive/false positive “knee”
shown in Fig. 7. A lower percentile can be used, but this fails
to identify most of the OOD samples, and a higher percentile
would classify more of the validation set as low-confidence.

Using the 10th percentile threshold, we identify 66.6% of
the OOD samples as low-confidence. 99% of these samples
have higher error than the validation set median error, and
98% are more than 2× the validation median error. Of the
10% of low-confidence predictions in the validation set, 78%
of these predictions have an error higher than the median error,
and 54% have more than 2× the median error. In other words,
low-confidence samples typically have high error, and model
confidence is a reasonable indicator of prediction accuracy for
OOD and other difficult samples.

Table III shows the rate of OOD samples detected as low-
confidence, along with the median error of the high-confidence
OOD predictions, low-confidence OOD predictions, and in-
distribution predictions. The low-confidence rate represents the
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TABLE III
LOW-CONFIDENCE RATES FOR DIFFERENT OOD SETTINGS

Low-Conf Median Error [m]
Setting Rate (OOD) High-Conf Low-Conf In-Distr.
Grid2 66.6% 231.3 397.5 34.6
Grid5 45.4% 134.0 216.4 32.8
July 40.8% 117.6 115.7 55.1
November 72.8% 84.8 308.6 61.2

effectiveness of model confidence at identifying OOD samples.
As expected, the low-confidence rate is significantly lower

in Grid5 than in Grid2 (45.4% vs. 66.6%), since the Grid5
setting has less separation between the training and OOD sets.
In practice, we expect that no classifier should achieve perfect
accuracy at identifying OOD samples. In this Grid setting,
samples are arbitrarily separated from the training set, with
some points very close to the training data. For points near
this boundary, no classifier should be able to distinguish these
from the training distribution so these samples will not be
identified as low-confidence.

For the Seasonal separations, the July model was trained on
data from July and evaluated on data from November, and vice
versa for the November model. The July model has a relatively
low rate of low-confidence on OOD samples compared to
November (40.8% vs 72.8%). This is likely due to the July data
having 10× the number of transmitter locations and covering
most of the campus, while the November data only covers a
small portion.

Similar to the pattern observed in the Grid case, a higher
low-confidence rate indicates a larger distribution shift, mean-
ing the small set of November data is significantly different
from the more diverse set of July data. This idea is also
supported by the fact that high-confidence OOD samples in
the November setting had the closest accuracy compared to
the in-distribution samples. This indicates that the November
model has specialized on a small set of data, and any high-
confidence predictions closely resemble that data. On the other
hand, the July training data is far more diverse, so the model
is less effective at identifying OOD samples, resulting in both
low rates of OOD detection, as well as high error for high-
confidence OOD samples.

Regarding spectrum management, the low-confidence label
can provide helpful context for decision-making. For exam-
ple, when an RDZ management system is presented with
low-confidence predictions, resources such as crowdsourced
or mobile sensors can be activated within a local area for
improved accuracy. Additionally, if information on the trans-
mitter location can be obtained, low-confidence samples can
be incorporated into training data to continuously maintain the
localization model.

V. HYBRID LOCALIZATION USING MODEL CONFIDENCE

Although detecting OOD samples using model confidence
does provide helpful context to a DST or other spectrum man-
agement system, ideally an accurate localization prediction can
still be made. We consider hybrid localization models, where

the DST can use an alternate technique for localization in case
of low-confidence predictions.

In this section, we perform two case studies on hybrid
localization models. First, we use a path loss-based localiza-
tion approach as a fallback for low-confidence predictions.
Path loss-based approaches generally have much higher error
since they do not capture environmental information such as
buildings and other obstacles, but this means they are also not
biased toward specific locations like CNN-based techniques.
We show that in cases of significant distribution shift, the
fallback predictions can drastically improve accuracy on OOD
samples, with minimal impact on in-distribution predictions.

We then explore how confidence from different ML models
can be used to select the more accurate prediction. Pretrained
ML models are often shared in a model zoo or commons.
For localization on novel samples from unknown distributions,
model confidence can be used to determine which model is
most appropriate for use on a given sample.

A. RSS Ranging Localization as a Fallback
Signal strength ranging methods use a propagation loss

model to estimate the distance between a sensor and a
transmitter. In this work, we choose the classic log-distance
path loss model [24] as a simple example to estimate the
distance. Then we use a Min-Max heuristic, as outlined in
[25], to estimate the transmitter coordinates. In comparison to
ML techniques, this method is extremely noisy as the path
loss model cannot capture the effect of the environment and
multipath on the propagation loss.

We tested several of the propagation models proposed in
[25], and selected the 3GPP Macro-cell log-distance path
model:

di = 10

(
−ri + a

37.6

)
, (4)

where ri is the observed RSS value, di is the estimated
distance between the transmitter and sensor i, and a is an
RSS calibration factor learned from the training data. We
then use a Min-Max heuristic to estimate the transmitter
coordinates. Given a set of sensor locations and distances
from each sensor, we find the maximum of all lower-bound
estimates, the minimum of all upper-bound estimates, and take
the average of the minimum and maximum as our estimated
coordinate. Although least-squares approaches such as in [26]
are commonly used for localization, during our experiments
and in [25], this resulted in high localization error compared
to the Min-Max heuristic.

It should be noted that our path loss model and ranging
heuristic are not the only options for a fallback. Different
propagation models can be used, and more complex localiza-
tion techniques that include details about the environment can
improve the hybrid model’s accuracy. In this work, we intend
to illustrate a generic framework for hybrid localization in
the DST which could be extended through more sophisticated
propagation models or heuristics.

Fig. 11 shows the median error of the CNN, ranging, and
hybrid localization methods for the in-distribution and OOD
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Fig. 11. Comparison of median error vs. grid size for the CNN, ranging, and
hybrid models on the in-distribution (top) and OOD (bottom) data. A smaller
grid size represents a larger distribution shift.

sets at different grid sizes. The in-distribution accuracy (top)
remains constant for the CNN predictions as the grid size
increases, while the OOD error (bottom) decreases with the
grid size. This is due to the reduced separation between the
training and test distributions as the grid size increases. Our
hybrid model, which uses ranging localization when CNN
predictions have low confidence, is nearly identical to the
CNN for the in-distribution set, since few samples have low
confidence. For the OOD samples, our hybrid model has
median accuracy between the ranging and CNN models, and
this dramatically improves the accuracy of predictions on OOD
samples when the grid size is low.

However, this hybrid technique is not always preferred.
Since ranging localization has a relatively high error, it only
improves on the CNN baseline at low grid sizes, or in
other words, when a very large distribution shift occurs. If
we suppose the expected OOD error can be estimated, for
example, by measuring the size of areas that are not covered
by the training set, then spectrum managers can determine if
a fallback technique such as this is appropriate in a region,
since the median error for the fallback technique is similar for
in-distribution and OOD samples.

Alternatively, the simple ranging approach we use here can
be replaced by a more accurate physics-based localization
model that accounts for environmental obstacles, but devel-
oping such a model is beyond the scope of this work.

B. Using Confidence from Multiple ML Models

Now, we consider the case where multiple ML models
provide predictions and a model confidence score with each
prediction. The DST can access multiple localization models
in our setting, each with a known threshold indicating low-
confidence. In deployment, these models encounter samples
from an unknown distribution, so the most confident prediction
will be used since it is unknown which model will be more

TABLE IV
RESULTS FROM 2-MODEL HYBRID LOCALIZATION ON SEASONAL DATA

July Model Nov Model Hybrid Model
Data Median [m] Median [m] Median [m] Best Choice Rate
July 55.1 234.2 55.8 87.4%
Nov 116.5 61.2 94.0 57.7%
April 400.6 390.0 391.7 47.2%

accurate. Since confidence values are only relative to one
specific model, we divide all values by the low-confidence
threshold to provide a normalized model confidence. After
normalization, low-confidence values are less than 1 and high-
confidence values are more than 1, and we can compare confi-
dence between the two models to select the better prediction.

In our experiment, two models are trained on the data from
July and November, and our test set is made up of random
samples taken in July and November, with a small set taken
in April, which has significantly fewer RSS sensors. Table IV
shows the results from this experiment. We evaluate the two
models on each test set, and then consider our “hybrid model”,
where the prediction with the higher normalized confidence is
used. We show the median error for each model, as well as
the “Best Choice Rate”, or the rate at which the hybrid model
chooses the best choice from the two predictions.

As expected, the hybrid model is less accurate than each
model on its in-distribution data, but it provides a reasonable
balance of accuracy between the two single models. The
hybrid model makes the best choice over 87% of the time
on July data but on the November data, there is a much lower
success rate of 57.7%. We expect that this lower rate is due
to the more limited set of training data used by the November
model. The July training data is much more diverse in terms
of locations covered, so it is often more confident on the test
samples from November.

Note that for the July and November data, the best choice
rate of the hybrid model is significantly higher than the OOD
detection rates in the previous section. Since our hybrid model
uses two normalized confidence scores to make a decision, it
is ultimately more sensitive than OOD detection which only
uses one confidence score.

The April data is OOD for both models, so we see that
the rate of choosing the best choice is close to random, and
both trained models have similarly poor performance. This
highlights that normalizing our confidence scores is having
the intended effect. For the OOD April inputs, confidence is
equally low for both models, so one model is not preferred
more than the other.

In summary, we can effectively combine predictions from
multiple models to achieve lower error by utilizing normalized
confidence. These results validate the general framework of
model confidence we have established by showing that confi-
dence is a reasonable indicator of which training distribution a
sample resembles and can be used to improve overall accuracy.
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VI. CONCLUSION

In this work, we considered how interpretable predictions
with accompanying confidence scores can be used for more
effective ML localization systems. We proposed using Earth
Mover’s Distance as a loss function for training localization
models. Training models with EMD addressed the primary
challenges of existing loss functions by providing greater
accuracy, interpretable results, and a more stable and robust
training process. EMD improves accuracy on OOD samples
by up to 22% compared to other techniques.

Using EMD also allowed us to explore model confidence,
which can be used to identify high-error and OOD samples,
providing valuable context for decision-making in spectrum
management. We found that model confidence can help find
pathological samples with unexpected behavior such as third-
party interference.

We explored how the context provided by model confidence
can be used for hybrid localization. We gave two examples of
how confidence can be used in utilizing predictions from dif-
ferent models to provide robustness against OOD samples. We
considered a physics-based fallback approach that improves
accuracy on OOD samples in case of large distribution shift,
and we showed how predictions from multiple ML models can
be compared in terms of normalized confidence, allowing the
DST to choose the more accurate prediction.

Our goal is to integrate model confidence as a fundamental
aspect of localization systems. Future research will focus on a
deeper exploration of hybrid models and fallback techniques,
as well as deploying our methods to inform decision-making
in a zone management system.
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