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Abstract—The advent of diverse frequency bands in 5G net-
works has promoted measurement studies focused on 5G signal
propagation, aiming to understand its pathloss, coverage, and
channel quality characteristics. Nonetheless, conducting a thor-
ough 5G measurement campaign is markedly laborious given the
large number of SG measurement samples that must be collected.
To alleviate this burden, the present contribution leverages prin-
cipled active learning (AL) methods to prudently select only a few,
yet most informative locations to collect 5G measurements. The
core idea is to rely on a Gaussian Process (GP) model to efficiently
extrapolate 5G measurements throughout the coverage area.
Specifically, an ensemble (E) of GP models is adopted that not
only provides a rich learning function space, but also quantifies
uncertainty, and can offer accurate predictions. Building on this
EGP model, a suite of acquisition functions (AFs) are advocated
to query new locations on-the-fly. To account for realistic 5G
measurement campaigns, the proposed AFs are augmented with
a novel distance-based AL rule that selects informative samples,
while penalizing queries at long distances. Numerical tests on 5G
data generated by the Sionna simulator and on real urban and
suburban datasets, showcase the merits of the novel EGP-AL
approaches.

Index Terms—Active Learning, SG measurement, Radio Map
Reconstruction

I. INTRODUCTION

The fifth-generation cellular network, commonly known as
5G, expands its spectrum resources across both the low/mid-
frequency bands (<6GHz) and the high-frequency bands
(>24GHz) [1]. This brings a remarkable improvement in
service quality and outperforms 4G, which mainly operates
within frequencies at or below 2GHz. In particular, major
5G operators like ATT and Verizon in the US have been
actively deploying C-band (3.7GHz) and mmWave (26GHz)
technologies, achieving impressive gigabits-per-second-level
throughput and millisecond-level latency [2]-[4].

Nevertheless, applying these frequency bands introduces
new characteristics to mobile networks. For instance, mmWave
has a much shorter wavelength (about 1~12mm) [5], making
its propagation highly directional, easily blocked and reflected
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by obstacles. This can lead to complex signal strength be-
haviors in the real world beyond just distance-based depen-
dency [6], [7].

A plethora of wireless network-related tasks, such as net-
work/radio resource/base station planning, handover optimiza-
tion, quality of Service (QoS) management, etc., critically rely
on a better understanding of radio propagation characteristics
in the real world and require quantifying the signal coverage
quality of specific base stations. To gain such insight, a large
number of in-field measurements need to be conducted.

Obtaining these measurements is a laborious process, since
the collection of valid measurements entails a significant
amount of effort and the collected data may not even cover
all of the locations within the coverage area. The lack of
immediate feedback on data quality during in-field measure-
ments can further lead to many redundant and/or useless
measuring efforts. To cope with these challenges, existing
works [7]-[16] have attempted to reconstruct radio maps only
using limited measurements (see Sec. II). Albeit interesting,
these approaches still fail to fully address the aforementioned
practical issues.

The goal of this work is to improve the efficiency of
obtaining measurements for reconstructing 5G radio maps
by leveraging Bayesian-based active learning (AL) methods.
Building on a statistical model to capture the mapping of any
location within the coverage area to its corresponding received
signal strength (RSS) value, AL leverages a collection of
acquisition criteria (i.e., acquisition functions (AFs)) to select a
few highly informative locations to obtain RSS measurements.
We utilize the Gaussian Process (GP) for the underlying
statistical model, which is a well-motivated Bayesian model
that is able to effectively extrapolate and interpolate RSS
measurements in regions with limited or even no observed
data. Along with accurate RSS predictions at unobserved
locations, the GP model provides valuable information about
the confidence and reliability of predictions by offering a well-
quantifiable notion of uncertainty around each predicted RSS
value [17]. As GPs are non-parametric models by nature, they
do not require explicit assumptions about the functional form
or distribution of the data, making them applicable in complex
settings.

Nonetheless, their performance hinges on a pre-selected
kernel function to evaluate the pairwise similarity of dif-
ferent locations, which subsequently affects the covariance
of the corresponding RSS values. Apriori selection of the
kernel function is a nontrivial task, that may require domain-
knowledge as well. The use of a single pre-selected kernel



in GP modeling confines the expressiveness of the sought
learning function for estimating RSS values. In addition,
the complexity of these methods significantly grows as the
number of available measurements increases. To cope with
expressiveness challenges of single kernel-based GP learning,
and to allow for scalable and online model updates, we will
rely on an ensemble of parametric approximants of GP models,
similarly as in [18] (see also Sec.II).

Contributions. Our contributions in this work can be summa-
rized in the following aspects:

o To the best of our knowledge, this is the first work that
formulates and implements Bayesian-AL for the 5G radio
map reconstruction problem using only a small number
of measurements.

o We advocate intuitive AL methods that leverage an en-
semble of GPs (EGPs) to enhance the model’s expres-
siveness when dealing with multi-modal and complex
data distributions. We then leverage parametric function
approximants of the GP models in the ensemble using
random features (RFs) to offer online and scalable model
updates. These are particularly appealing in AL settings
where new measurements are processed online.

e To allow for path-efficient acquisition of RSS mea-
surements in new locations, we combine a number of
well-motivated AFs with a novel path efficient rule that
penalizes querying far-distant locations at each iteration
of AL.

¢ We conduct thorough experiments on a total of six simu-
lated datasets with three scenarios and two radio frequen-
cies, and on two real urban and suburban datasets, to cor-
roborate the efficiency and effectiveness of the proposed
EGP-based AL in reconstructing 5G radio maps. Our
numerical tests show that our EGP-based AL approaches
achieve up to 54.8% improvement in terms of normalized
mean square error (NMSE) over the EGP model with
random sampling. In addition, compared to the EGP-
AL methods that do not impose any constraints on the
acquisition of new locations to measure, the EGP-based
AL approaches that consider the novel path efficient
rule, achieve up to 57.1% reduction in terms of required
cumulative traveling distance to obtain measurements.

The remainder of the paper is organized as follows. In Sec.

II related works are discussed. Active learning formulation for
5G radio map reconstruction is introduced in Sec. III, while
the advocated EGP-based AL approach with path-efficient
acquisition functions is presented in IV. Upon discussing
details about data generation in Sec. V, numerical tests on
simulated and real 5G datasets are provided in Sec. VI. Finally,
Sec. VII concludes the paper.
Notations. Scalars are denoted by lowercase, column vectors
by bold lowercase, matrices by bold uppercase, and sets by
calligraphic uppercase fonts. Superscripts ' and ~' denote
transpose and inverse respectively; while 1, stands for the
N x 1 all-ones vector; and N (x;p, K) for the pdf of a
Gaussian random vector x with mean p, and covariance matrix
K. The identity matrix will be represented by I, and the all-
zeros matrix by O.

II. RELATED WORKS

Radio Map Reconstruction. Numerous approaches have been
proposed to reconstruct 5G radio maps, comprising both
non-parametric methods [8]-[10], [19], [20] and classical
parametric ones [11], [12], [21]. More recently, researchers
have explored deep learning-based approaches [7], [13]-[16],
[22] to enhance the accuracy of radio propagation modeling
and better capture its characteristics. However, these methods
primarily concentrate on interpolating or extrapolating unmea-
sured locations based on existing measured points, lacking the
ability to guide future sampling —a critical practical challenge.
In contrast, the novel active learning method adopted in this
paper effectively addresses this challenge by providing a
principled method to search for the most informative location
to query the next measurement.

Active Learning. AL methods can be broadly categorized into
parametric AL [23]-[25] and non-parametric ones [26]-[28].
Although most existing parametric approaches in the literature
excel at learning complex representations from data, they
are deterministic and hence fall short in inherently providing
uncertainty quantification. In addition, they are tailored solely
for classification tasks, and do not account for regression tasks,
such as the RSS prediction problem in this paper; see e.g
[29]. On the other hand, Bayesian non-parametric approaches
such as GPs, inherently offer uncertainty quantification, and
demonstrate superior sample efficiency [17], [27]. Existing
GP-based AL approaches typically rely on a single pre-
selected kernel, which limits their expressiveness when dealing
with data exhibiting multi-modal behavior. To cope with this
challenge, existing deep-learning based approaches aim to
learn the kernel with neural networks, but they typically
require a sufficient number of labels which are not available in
several AL settings; see e.g [30]. The proposed AL method in
this paper uses a more expressive statistical model that relies
on an ensemble of GP models with scalable online model
updates as in [31]. Finally, the proposed acquisition strategies
in the existing literature do not impose constraints on the data
to label, which discourages their application in the 5G map
reconstruction problem where the travelling cost of collecting
5G measurements should be minimized. A recent work [32]
has considered AL methods that choose query points nearby
previously queried ones, though the method is not applicable
to 5G signal reconstruction. To cope with this challenge,
this work incorporates a novel path efficient acquisition rule
into the AL process, where locations at long distances are
penalized.

III. PROBLEM STATEMENT

We now formulate the 5G active measurement problem (see
Fig.1) and then briefly discuss the limitations of AL when it
is directly applied in practice.

Active Learning for SG Measurements. For a 5G coverage
area X C R2, we are interested in estimating the real-valued
received signal strength (RSS) y(x) € R at any desired loca-
tion (or feature vector) x := [Longitude, latitude] €
R?; Let x; denote the i-th probed location with associated
scalar RSS value y; € R. We postulate that there exists a



/

7
Measured
data points

[ T
/ : ; 7

= 7 Go there!
2/ / f
S A 7

i

Fig. 1: Accelerating 5G Measurements via Active Learning.

ground truth function f(x) : R? — R which maps a desired
location x to its associated RSS through

y=f(x)+v 1)
2

where v ~ N (v;0, 07 ;) represents the observation noise.

To efficiently learn an estimate f(x) at any desired x with
only few, but representative, measured RSS data, one can
rely on the active learning (AL) paradigm; see Fig. 1 for
an illustration. AL begins with a relatively small dataset of
labeled (measured) data D, := {(x;,y;)}", (where n is
small). To judiciously update D,, and build an informative
training set, AL leverages an acquisition function (AF) «(-)
to search for the most informative query locations on-the-fly
while updating the underlying model f(-). The next query
location x,, 41 is obtained by solving

= i :D,,). 2
X1 1= arg min a(x; D) @)

To obtain the RSS value y(x,+1) := ynt1 corresponding
to the queried location X,;, a field-test' can be carried
out. Upon obtaining Y11, AL augments the training dataset
Dyt1 = Dy U{(Xn+1,Yn+1)} and updates the estimate f(-)
on-the-fly. Having an updated f(-), the active learner can
predict the RSS at any desired (unmeasured) location x € X'.
Therefore, to learn f(-) in a sample-efficient manner with
AL, we aim to properly select a learning model for f(-) and
design AFs relying on the chosen model, to effectively guide
the acquisition of new query locations to measure in an online
manner.
Challenges Conventional AL methods rely on the ‘indepen-
dent data acquisition’ assumption, meaning that the active
learner can query measurements from any location within the
coverage area independently from the previous measurement
locations. This limits the applicability of conventional AL
in wireless communications, since there exist many practical
considerations that one needs to consider when querying a
new location, such as traveling cost and measurement runtime
complexity. For example, simply selecting a location that may
be informative but requires a much longer travel distance is not
cost-optimized, as the user may have to travel a prohibitively
long distance to take a sufficient number of measurements
and may repeatedly traverse the same regions within the
measurement area (see Sec. VI). In the ensuing sections, we

'One can obtain RSS measurements at different locations within X,
using some off-the-shelf tools, such as Android-based API [33] running on
smartphones or more professional scanners [34].

provide principled methods to facilitate a path- and sample-
efficient data acquisition process.

IV. ACTIVE LEARNING WITH ENSEMBLES OF GPs

To effectively estimate the sought function f with well-
quantifiable uncertainty in a sample-efficient fashion, this work
specifically focuses on Gaussian processes (GPs). GPs belong
to the family of nonparametric Bayesian models, and will be
leveraged in this work to estimate unknown RSS values and
also guide the acquisition of new measurement locations, as
outlined next.

A. Gaussian Processes

We leverage GPs to probabilistically model f(x) for all
x € X, and subsequently obtain a model over RSS values
{y(x),¥x € X}. To this aim, let us define a single GP-based
prior distribution over f(x) ~ GP(u(x), £(x,x)), with mean
1(x) and a pre-specified kernel function x(x, x’). Usually, for
notational simplicity it is assumed that pu(x) = 0,Vx € X.
This prior on f(x) implies that for any finite number n €
N7 of samples, the random vector of function values f, :=
[f(x1) -+ f(xn)] at locations X,, := [x1,...%,]" has a joint
Gaussian distribution; that is p(f,|X,) = N(f,;0:, K,),
where K,, represents the n x n covariance matrix with (i, j)-
th entry [K,.]; ; := cov (f(x:), f(x;)) = (x4, %) [17].

The random vector f,, is related to the (possibly) noisy
observations y,, := [y(x1),...,y(x,)] through the batch
likelihood p(y,|f,;X,) that is assumed to be factored as
P(ynlfn; Xn) = T1h—; p(yn|f(xn:)). Capitalizing on the
GP prior and the batch likelihood, one can express the joint
probability density function (PDF) of the observation vector
v» and the function value f(x) at any unmeasured location x

o]~ e[ ) e

where k,(x) = [k(x1,X),...,%(Xn,X)]. Leveraging this
joint Gaussian distribution in (3), and marginalizing this
distribution over f(x), it can be shown that the predictive
PDF of y(x) is [17]

Py D, x) = N (y(%): 4(%) 110 11 (X)), D)

where

- -1

y(x)n-‘rl\n = k;lr (X) (K” + O—ﬁoiseIn) Yn (Sa)

U'r2L+1|n(X) = '%(X? X) - kr—zr (X> (K’ﬂ + o-leoiseIn)il kn(x)
+ U?}oise' (Sb)

with the notation n + 1|n signifying that all n data samples
are employed to obtain the predictive PDF at the next (n+1)-
th location. The mean in (5a) provides a point estimate of the
RSS value of location x and the variance in (5b) quantifies
the associated uncertainty.

Although intuitive, the predictive PDF in (5) is subject to
certain limitations. Primarily, the predictive mean and variance
in equation (5) depend on a single pre-selected kernel function
which restricts the expressive capacity of the learned function.



In addition, the mean and variance in (5a) and (5b) entail
O(n?) storage requirements and O(n?®) computational com-
plexity due to the matrix inversion operation involved, which
may become computationally intractable when n is large. In
the subsequent sections, we will outline how to circumvent
these challenges.

B. Ensemble of Gaussian Processes

Instead of relying on a single kernel to estimate f(x), we
target a more expressive function space by utilizing a set of
kernels K := {x!,...,kM} to form a mixture of GP models.
The set K constitutes a diverse collection of kernels with
different hyper-parameters. Each x™ € K induces a unique
GP prior m over the function f(x) ~ GP(0,x™(x,x')).
Constructing a weighted combination of these GP mod-
els yields a mixture of GP priors over f(x), as f(x) ~
Zf\f:l wirGP(0, k(x,x)), subject to Zf\f:l w = 1. The
per-model weight w* signifies the contribution of m-th kernel
in the GP prior over f(x). Using this mixture of GP priors,
the posterior distribution of f(x) can be obtained by

p(f Z wy'p (f

with w)* «x Pr(k = &™)Pr(D,, |k = k™), where Pr(D,|x =
k™) represents the marginal likelihood of data D,, for the
m-th GP. For any desired location x € X, each GP
induces a Gaussian predictive PDF p(y(x)|D,,m,x) =
N (y(x); Unn (%), 0001, (%)) to estimate the corresponding
RSS value. By appropriately updating the mean and variance
for each GP (c.f., (5a) and (5b)) and adjusting the weights
{wm}M_, for all GP models, one can obtain [18] the predic-
tive PDF of y(x)

X)|Dp, k= &™), (6)

p(y(x)|Dp, x) =

Z wit N (y(

m=1

X); U1 (%), (0741 (%))?).
)

Although more expressive compared to (4), the predictive
PDF in (7) still requires large computational complexity; i.e
O(Mn3).

C. Random Feature-based EGPs

To bypass this cubic complexity, one can employ parametric
approximants to the non-parametric models using the so-called
random features (RF) [35]. The main idea of the RF-based
approximation is to rely on a shift-invariant kernel %(x,x’) =
k(x — x'), normalized as k& = /o3, and express it via the
inverse Fourier transformation of its power spectral density
7 (€) [35]; that is

R(x—x'):=E,, [ech(xfx/)dC} ®)

where [ 7,(¢)d¢ = 1, so that it can be thought of as a PDF.
Since the values of k are always real, it holds that R(x—x') :=

E.. {cos(c T(x —x ))} Leveraging this new representation,

one can approximate the kernel by drawing a sufficiently large
number of i.i.d samples {¢;}2, from 7, (¢) yielding

Rk(x Zcos -x)) =

where the random feature vector ¢C(') €

¢ (x)" éc(x'), 9

R2Dx1 ig defined as

Lor. o7 T T ]
X):=——=[sin({; x), cos({; x),...,cos({px)| . (10
Dcl) =5 [sin(¢ %), cos(¢x), . cos(¢px) (10
Relying on the RF vector ¢.(-), a linear and parametric
approximant of the sought function can be obtained as [35]

fx)=0"¢.(x), 6~N(0;0:p,05I>p). (11)

This parametric model over f (x) enables the propagation
of the posterior p(0|D,,) = N(6;0,,%,) using a recursive
Bayesian iteration, which can be updated as new data arrive
on-the-fly, as will be shown next.

D. Ensemble of Parametric GPs

To allow for reduced complexity and online model updates
that are particularly appealing in the AL setting, we consider
an ensemble of parametric GPs. Each GP model m, relies
on a shift-invariant and normalized kernel ™ = k™ /03, to
construct its RF vector ¢¢'(-) by drawing i.i.d random vec-
tors {C } Z, from its corresponding power spectral density
Trm (C) Slmllar to (11), each learner m forms a generative
parametric model as

p(0™) = N(0";02p,05mI2p) (12)
p(f(x)|k = &",0™) = 6(f(x) — ¢Z'(x)"6™) (13)
py(x)[0™,%) = N (y(x); o' (x) 0™, 02 is)- (14)

This generative model allows model m to form the posterior
PDF p(6™|D,) = N(0™; 9:, 37) using available data D,,,
and the advocated parametric EGP model combines them with
the weights {w™}M_, to form the ensemble predictive PDF
over the target y(x ) for all x € X. This predictive PDF not
only offers an estimate of the RSS value at location x, but
will further guide the design of a set of acquisition functions
to find the next locations to obtain measurements, as will be
discussed in the next subsection.

We now show how the EGP model parameters will be
updated as a newly acquired measurement at a new location
indexed by n + 1 is obtained. Each model m leverages the
learned posterior p(8™|D,,) to find the predictive PDF of y(x)

at any desired target location x as
p(y(x)[x =E™, Dn,x)

:/mmmW%xmwﬂmem

= N (%) Un1n (%), (0741 ()%, (15)

with mean and variance given by
it (%) = ¢ (x) 70 (162)
(On 1 (%))? = &7 (%) BTG (%) + 0hgie - (16b)



To estimate the RSS value y(x), the EGP model forms a
Gaussian mixture (GM) model by combining all M predictive
PDFs to form the ensemble predictive PDF

X): U1 (%), (07410) (%)).

Z me
17)

Having this Gaussian mixture model over y(x), one can obtain
an estimate of the RSS value along with the corresponding
uncertainty, by considering the minimum mean-square error
(MMSE) estimator of y(x) along with the variance of the
estimator; that is

p(y(x)| D, %)

M
mAm
E Wy, ynJrl\n

yn+1|n (1821)
m];l
() = 3w [wﬂ.n(x»?
m=1
+ (Gngtn(X) = G510 (%)) (18b)

where “n + 1|n” denotes that only the measurement from
location n is needed to predict y at the next location n + 1.

Leveraging the learned PDF in (17) along with the mean and
variance in (18), one can find the next query location x,,4; to
obtain the RSS measurement y,, 1 by minimizing the AFs as
will be elaborated in the next subsection IV-E. Upon obtaining
Xn+1 and y,41, one can update the EGP model parameters.
Specifically, each model m uses Bayes’ rule along with (16)
to update its weight w;* as

w’;”LnN(ynJrl; LZEH‘”, (UZ@+1|n)2>

w;n+1 = M m’ ’ (19)
Zm’:l wm N(:Un-‘rlv yn+1|na ( n+1\n)2)
and its posterior PDF as
o™|D 0" x
p(0m|Dn+1) — p( | n)p(nyln-‘rl‘ n+1)
p(yn+1 |9 , D, Xn+1)
= N(0m7 0n+17 :Ln+1)7 (20)
where
S0 ) W — )
en = On > (213)
+1 (UnL+1\n)2
"o (%, T (Xpy1) T2
AAMED YL oct +2¢< (2 ) B o,
(O-n-l-l\n)

The required complexity of updating the model parameters
in (21) is O(M((2D)? + 2Dn))), which is smaller than the
O(Mn?) complexity of the original EGP-based model.

E. Acquisition functions for EGP-based active learning.

This section introduces a number of EGP-based AFs, which
depend on the learned predictive PDF p(y(x)|D,,) in (17), to
guide the acquisition process; that is to find the next most
informative location within the coverage area, i.e., x,4+1 € X,
and obtain its associated RSS measurement ¥, 1.

1) Weighted variance: To exploit the uncertainty of each
GP model, we leverage the variance of all GP models’ pos-
terior PDFs and combine them to form the weighted variance
AF as

wVar X D Z w
The intuition is that locations with high uncertainty can
be informative for the training dataset. Although a™Var(.)
well captures the uncertainty of each GP model, it ignores
the information offered by the predicted means (c.f. (16a)),
motivating the next AF.

2) Query-by-committee: Considering M GP models as
members of a committee, the Query-by-committee (QBC) AF
chooses the next location to be measured where the committee
members exhibit the most disagreement; that is

n+1|n ))2 (22)

M

>

m=1

0D, = 3wt (G (0 — (X)), (23)

where gj;”H‘n(x) represents the estimated mean of RSS values
at location x by learner m (c.f., (16a)), and g,(x) :=
Z% 1 wmyg’z_l‘ ,,(x) denotes the weighted mean of the com-
mittee. Note that only the predictive means are used in
a¥B€(.) and the predictive variances are not considered.

3) Variance of GP mixture: To simultaneously account for
the means and variances associated with each GP model’s
predictive PDF, the variance of GP mixture AF combines the
the per-learner uncertainty in (22) and committee disagreement
in ((23) (c.f., (18b)) as

aGPM—var(X’ Dn) — 0_2

n+l|n(x)' (24)

4) Weighted entropy: Relying on the entropy as an alter-
native measure of the associated uncertainty, one can form an
AF using a weighted combination of the entropies associated
with the predictive PDFs of all learners as

Zw log ((

m=1

WEnt X D n+1\71( )) ) (25)

5) Entropy of GP mixtures: Instead of employing the
entropies of individual GP models independently as in (25),
we can leverage the entropy of the learned GP-mixture. While
an analytical closed-form expression for this entropy does not
exist, we leverage a closed-form lower bound; see e.g [31]. To
this aim, let us first define the entropy of the learned function
f(x) at any location x

H(f(x)[Dn)
= _/_ Z erN(f(X)@ZLHm(X), (O;n+1‘n(x))2)
x log(p(f(x)|Dn)) df (x)

where the integration here is taken over all the random function
values that f(x) can take at any desired, but fixed x € X.

(26)



(a) Scenario-1: Open Space.

(b) Scenario-2: Reflection & Blockage.

(c) Scenario-3: Urban Canyon.

Fig. 2: Radio coverage maps of diverse scenarios rendered with Blender (top) and Sionna ray-tracing simulator at 3.7GHz

(bottom left) and 26GHz (bottom right).

Using Jensen’s inequality yields a lower bound for the entropy
H(f(x)|D,,) at any location x € X as follows

H(f(x)|Dn) =
—Zw"ﬂog(/ N

()G 1 (%), (0741 (%))?)

% p(FX)Da) df(x)) . @)

The term inside the logarithm in (27) admits a closed-form
expression and hence the lower-bound can be expressed ana-
Iytically as

GPM Ent X D Z 10g<z w” wmm) , (28)

where w,T’m, captures the intra-GP interactions and is given
by

O 1 90, 521 ) 20
= N(yn+1|n;yn+1\n7 (Un+1|n)2 + (UrTJ,rl|n)2)

OFn11n (%), (071 (%))%)

(29)

While these AFs cover a diverse range of important ideas
within AL, they impose no constraints on the spatial locations
of the next query point, which can lead to prohibitively long
travelling distances required to collect the necessary measure-
ments dictated by the AFs. To address this limitation, we will
couple these EGP-based AFs with a minimum distance-based
criterion, described in the next subsection.

F. Path efficient EGP-based AFs

To allow for efficient and cost-effective data acquisition
strategies, thereby enhancing the practical feasibility and eco-
nomic viability of acquiring measurements and reconstructing
5G radio maps, we consider AFs with the following form

aPCP(x, D)) w.p. €
a(x,Dy,) = {aEGP(X, D,) e(x%,%,-1) wp. l—c¢
(30)

TABLE I: Simulation configurations.

Parameters Descriptions
«  Scenario OpenSpace  Reflection ~ UrbanCanyon
g 3.7GHz Samples 780.5K 841.7K 479K
26GHz Samples 779.8K 744.5K 41.3K
% Rx Pattern Isotropic
€  Tx Pattern TR 38.901
S Tx Power 24.0 dB
£  Ray Interactions 9
£ Clipping Range (0.0, 160.0] dB
i Cell Size Sm x 5m
//).s‘ ; éi‘iz v o ;o \\\ L:g
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(a) Urban Canyon. (b) Suburban.

Fig. 3: Radio coverage maps for real RSS measurements.
Green color represents strong RSS, while red poor RSS.

where ¢(x,x,-1) = is a distance-penalizing

1
Atdist(x,%X5,—1)
EGP ()

function with A being a hyperparameter to be tuned, o
is one of the above EGP-based AFs, and ¢ > 0 is a small
hyperparameter.> With a small probability 0 < ¢ < 1 our
novel AF in (30) allows exploring X while adhering to the
EGP-based AF oP“P(x,D,,). With a much larger probability
1 — € our AF is strongly encouraged to select points nearby
the most recently obtained measurement x, by penalizing
far distant points via the path-cost function ¢(x,X,_1). This
allows the AF to explicitly acknowledge that obtaining mea-
surements from diverse locations in 5G scenarios can be
costly and resource-intensive, while still allowing a user-
controlled degree of exploration through the parameter €. This
is crucial in several AL applications including the 5G radiomap
reconstruction that this paper focuses on.

2The abbreviation w.p. stands for with probability.
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V. DATASET GENERATION

We now introduce the dataset utilized for evaluation, which
comprises simulated and real measurements. The simulated
dataset replicates three distinct scenes: open space, reflection
& blockage, and urban canyon. Meanwhile, the real measure-
ments consist of two scenes: suburban and urban canyons.
Simulated Dataset. Following [36], we employ Blender [37]
and Sionna [38] to produce radio maps and use them as ground
truth for the evaluation. Blender is an open-source software
that can create different 3D environments. We utilize its Open
Street Map (OSM) and Mitsuba plugins to load the real-world
map and render the digital scenes. Subsequently, these scenes
are imported into Sionna, an open-source link-level ray-tracing
simulator that is compatible with the 3GPP channel models,
to generate radio coverage maps that we sample from.

The upper panel of Fig. 2 depicts the loaded digital scenes,
illustrating three distinct scenarios: (1) a large open space
with the line-of-sight propagation of radio signals; (2) a more
complex wall scenario featuring multiple walls to demon-

strate reflection, diffraction, and signal blockage; and (3) a
highly complex downtown urban canyon, where the signals
are reflected and obstructed by the surrounding buildings. The
lower panel of Fig. 2 shows the simulated radio coverage
maps. We also investigate the propagation characteristics of
different frequency radio waves across 3.7GHz (mid-band) and
26GHz (high-band) in light of commercial 5G networks. For
each scenario-frequency pair, we place the transmitter (Tx) at
the center location with a directional antenna oriented at the
negative y-axis. The map is divided into sets of cells, each con-
taining a receiver (Rx) with an omnidirectional antenna, gen-
erating a total of N unique samples of the form [z, y, RSS].
To determine the RSS value, rays are fired from a Tx at the
origin and are allowed to interact with the environment, i.e.,
reflect, diffract, etc., up to a bounded number of times. The
RSS is aggregated from per intersecting rays [38], clipped to
a range. For specific configuration parameters of our dataset,
we refer the reader to Table I.

Real Measurement Dataset. In addition to simulated datasets,
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and (c) high-band reflect datasets.

we have gathered real RSS radio measurements from urban
and suburban environments. Specifically, we used a smart-
phone as an Rx, which was connected to a commercial
5G network by running the “iperf3” application to maintain
active connection. The phone is also connected to a laptop
equipped with the professional software XCAL [34] to read
RSS measurements from the phone’s chipset-level diagnostics.
This enabled us to collect a total of 27k data samples from
an urban area of size 0.8 km?2, and 18k data samples from
a suburban area of size 1.0 km?2. Similar to the simulated
data, each real data sample is represented by [z, y, RSS]. The
visualization of the collected real radio RSS map is depicted
in Fig. 3.

VI. EVALUATION

In this section, we evaluate the performance of our EGP-
based AL methods on the simulated 5G mid-band, high-band
and real urban and suburban datasets described above. We
will first quantify the advantages of the advocated EGP-based
AL approaches over random sampling with EGPs and then
highlight the benefits of our novel path-aware method. We
will also conduct an in-depth study with visualized results to
demonstrate the efficacy of those AL algorithms in the 5G
measurement problem.

A. Experiment Settings

We denote the advocated EGP-based AL methods that em-
ploy the AFs in (22)-(28) as ‘EGP-WVar’, ‘EGP-QBC’, ‘EGP-
GM-Var’, ‘EGP-Went’, and ‘EGP-GM-Ent’ respectively. We
also implement the ‘EGP-Random’ baseline for comparison,
which relies on the EGP model as well but randomly selects
new locations to query at each time slot. For all competing
approaches, 100 initial labeled (measured) data samples are
considered for training, and at each iteration of the AL process,
one sample is queried from an unlabeled set consisting of
700 available unmeasured locations. Their performance is
evaluated on a test set 7 := {(x, 5"} " consisting
of Nt = 5000 test locations. As a figure of merit the
normalized mean squared error l(_ITIMSE) is used, which is
eiigressed as NMSE,, := i Zg,:l(g};f,s‘tn —yh)? /o2, where

Yyr|, Tepresents the point estimate of the RSS value of test
location n’ upon having processed location n, and 05 =
test test

Ellyfe — E{yFu I where il := [y ...yt

For each method, the EGP model consists of 11 GP learners,
each capitalizing on a distinct radial basis function (RBF)
kernel with characteristic length scale chosen from the set
{10°}6__,. The kernel hyperparameters of each GP learner are
obtained by maximizing the marginal log-likelihood utilizing
the sklearn Python package. To allow for scalability and online
model updates, D = 50 RFs are employed to yield the RF-
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based parametric and approximate GP models in the ensemble.

B. Performance of AL in the 5G Measurement Problem

Effectiveness of EGP-based AFs. To demonstrate the signif-
icance of the EGP-based AFs, we first compare them with the
‘EGP-Random’ baseline. To this end, the path-cost function
¢(x,X,—1) is not taken into account; that is € = 1 in (30).
Figs. 4, 5 and 6 illustrate the average NMSE performance
of all competing approaches over 10 independent runs along
with the corresponding highlighted standard deviation, on the
mid-band, high-band and real urban and suburban datasets,
respectively, for 70 iterations of the AL process; that is 70
queried locations that are measured. It is evident that in all
mid-band, in almost all high-band and in all real datasets, the
advocated EGP-based AL methods markedly outperform the
‘EGP-Random’ baseline that does not rely on AL, achieving
up to 54.8% improvement. This showcases the significance of
judiciously selecting the few, but most informative, locations to
measure so as to accurately predict the RSS values in unknown
locations. Although effective, these AFs by themselves do not
impose constraints on the traveling distance needed to collect
the necessary measurements, which may limit their application
in settings with restricted travel budgets.
Path-aware AF. We now show the importance of adopting
the novel path-cost related AF in (30) that allows for accurate
RSS estimates with less required traveling distance. Regarding
the exploration-exploitation parameter € in (30), we set € =
0.3, meaning that our method selects a location to query not
far away with probability 0.7 or selects any location without

any path constraint with probability 0.3, allowing for further
exploration.

In Figs. 7, 8 and 9, the average NMSE performance along
with the corresponding standard deviation are reported, with
respect to the cumulative traveling distance for 70 iterations of
the AL process. It can be clearly seen that in both simulated
mid-band and high-band, and real urban and suburban datasets,
all EGP-AL methods that use (30) with ¢ = 0.3 have
comparable or even lower NMSE compared to the EGP-
AL counterparts that do not consider any path constraint
(¢ = 1), while at the same time requiring significantly less
traveling distance (up to 57.1% reduction in terms of required
cumulative traveling distance).

C. In-depth Results Study

Sampling Trajectory. To further demonstrate the efficiency of
the advocated method, Figs. 10 and 11 depict the trajectories
of the queried locations obtained by the ‘EGP-GM-Ent’ and
‘EGP-GM-Var’ AFs for the mid-band and high-band open
space datasets, respectively, for ¢ € {0,0.3,1}3. As expected,
in both datasets the corresponding required traveling distance
significantly reduces as the value of ¢ decreases. Interest-
ingly, in the mid-band open space dataset, the EGP-GM-Ent
approaches with ¢ = 1 and € = 0.3 query very similar
measurement locations; however, the latter entails much less
traveling cost, as shown in Fig. 10.

3Trajectories of other AL methods and datasets are omitted due to space
limitations.
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Hyper-Parameter Sensitivity. Fig. 12a illustrates the NMSE
performance of the ‘EGP-GM-Ent’ methods with € = 1,0.3,0
respectively for a fixed cumulative distance budget, where it
can be seen that the latter two can query more locations and
thus achieve superior NMSE performance compared to the
€ = 1 case. Similarly, Fig. 12b depicts the NMSE performance
of the EGP-GM-Var approach for different values of € and a
given distance budget for the high-band OpenSpace dataset. It
is evident that the case of € = 0.3 enjoys substantially lower
NMSE compared to the e = 0 and € = 1 cases whereas the
AL methods with € = 0 and € = 1 have similar performance.
This emanates from the fact that although the approach with
€ = 0 queries many more locations compared to € = 1, for
a distance budget of 5.2km, these locations are only from
two clusters and are not from different regions of the radio
map as shown in Fig. 11c. This showcases the importance of
small but non-zero values of ¢ that do not so heavily penalize
distant locations but instead allow for further exploration that
yields improved prediction performance without the need for
large traveling costs. Finally, to evaluate the well-quantifiable
uncertainty offered by the advocated EGP-AL methods, Fig.
12¢ shows the predicted RSS values of the EGP-GM-Var
(¢ = 0.3) method on some test locations of the high-band
OpenSpace dataset along with o-confidence intervals, where
it is intuitive that the ground truth RSS values fall inside these
intervals.

VII. CONCLUSIONS

This work contributes novel Bayesian AL approaches for
sample- and path-efficient 5G radio measurement problems.
The advocated AL approaches judiciously select only a few
representative locations to collect RSS measurements. To ef-
fectively estimate the sought function that predicts RSS values
across the coverage area, an ensemble of GPs is utilized. This
EGP model not only provides accurate RSS predictions with
quantifiable uncertainty, but also offers a suite of pertinent
AFs to guide the acquisition of new locations to measure. To
further accommodate real-world 5G measurement campaigns,
where traveling distances to collect RSS measurements might
be limited, these AFs are coupled with a novel path-efficient
rule that penalizes queries at long distances. Numerical tests on
three simulated scenarios with two different radio frequencies,
showcase the significance of the proposed AL methods in the
5G radio map reconstruction task.
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