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Abstract
Let M be an irreducible compact hyperkähler manifold of complex dimension six.
Under an assumption on the Looijenga–Lunts–Verbitsky decomposition of the coho-
mology of M , we prove that the second Betti number of M is at most 23.
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1 Introduction

An irreducible hyperkähler manifold is a Riemannian manifold of real dimension 4n
whose holonomy is equal to Sp(n). The Riemannian metric will be Kählerian with
respect to an S2-family of complex structures, so henceforth we will always use the
complex dimension, 2n. Beauville [2] and Guan [7] independently proved that the
second Betti number of an irreducible compact hyperkähler manifold of dimension
four is bounded above by 23. The Hilbert scheme of two points on a K3 surface has
second Betti number 23, so this bound is sharp.

Looijenga and Lunts [11] and Verbitsky [17] showed that the cohomology of a
hyperkähler manifold admits an action of so(4, b2 − 2), where b2 is the second Betti
number. In this article we prove that the second Betti number of an irreducible com-
pact hyperkähler manifold of dimension six is also bounded above by 23, under the
assumption that only certain irreducible so(4, b2 − 2)-representations appear in the
Looijenga–Lunts–Verbitsky decomposition; see Theorem 3.4 for the precise state-
ment. Up to deformation, there are currently three known examples of such manifolds:
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the Hilbert scheme of three points on a K3 surface, the generalized Kummer variety
(see Beauville [1]), and an example of O’Grady [14]. These examples have second
Betti numbers 23, 7, and 8, respectively, so once again our bound is sharp. More-
over, these examples all satisfy the assumption on the Looijenga–Lunts–Verbitsky
decomposition of the cohomology.

Using the same ideas, we prove that the second Betti number of an irreducible
compact hyperkähler manifold of dimension eight is bounded above by 24, once again
under an assumption on the Looijenga–Lunts–Verbitsky decomposition and assuming
that all odd Betti numbers vanish; see Theorem 4.3 for the precise statement. In this
dimension, the only examples currently known are theHilbert scheme of four points on
a K3 surface and the generalized Kummer variety, which have second Betti numbers
23 and 7, respectively. In particular, it is possible that no example exists in dimension
eight with second Betti number 24.

Why is it important to bound the second Betti number? The first Pontryagin class
p1(M) determines a homogeneous polynomial of degree 2n−2 onH2(M,Z), given by
α "→

∫
M α2n−2 p1(M). Huybrechts [8] proved that if the second integral cohomology

H2 and the homogeneous polynomial of degree 2n − 2 on H2 determined by the first
Pontryagin class are fixed, then up to diffeomorphism there are only finitely many
irreducible compact hyperkähler manifolds of dimension 2n realizing this structure.
(Instead, one can fix H2 and a certain normalization q̃ of the Beauville–Bogomolov
quadratic form on H2 and arrive at the same conclusion; see [8].) A universal bound
on the second Betti number in dimension 2n would mean that there are finitely many
possibilities for H2 as aZ-module; it would then remain to bound the other data on H2,
to conclude that there are finitely many diffeomorphism types of irreducible compact
hyperkähler manifolds of that dimension.

2 Dimension four

Let us recall how to bound the second Betti number in dimension four. Salamon [15]
proved that the Betti numbers of a compact hyperkähler manifold of dimension 2n
satisfy the relation

2
2n∑

j=1

(−1) j (3 j2 − n)b2n− j = nb2n .

Theorem 2.1 (Beauville [2],Guan [7]) Let M be an irreducible compact hyperkähler
manifold of complex dimension four. Then the second Betti number b2 of M is at
most 23.

Proof Irreducible hyperkähler manifolds are simply-connected, so b1 = 0. Therefore
Salamon’s relation for n = 2 gives

− 2b3 + 20b2 + 92 = 2b4.
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Verbitsky [16] proved that SymkH2(M,R) injects into H2k(M,R) for k ! n. In
particular, we can write

H4(M,R) ∼= Sym2H2(M,R)⊕H4
prim(M,R)

and

b4 =
(
b2 + 1

2

)
+ b′

4,

where b′
4 denotes the dimension of the primitive cohomology H4

prim(M,R). Substitut-
ing this into Salamon’s relation gives

− 2b3 + 20b2 + 92 = b2(b2 + 1)+ 2b′
4,

and therefore

− (b2 + 4)(b2 − 23) = − b22 + 19b2 + 92 = 2b′
4 + 2b3.

The left-hand side is negative if b2 > 23, whereas the right-hand side is clearly non-
negative. Therefore the second Betti number b2 can be at most 23. '(

Example 2.2 Up to deformation, there are two known examples of irreducible compact
hyperkähler manifolds of dimension four: the Hilbert scheme Hilb2S of two points
on a K3 surface S (see Fujiki [3]) and the generalized Kummer variety K2(A) of an
abelian surface A (see Beauville [1]). Their Hodge diamonds are

1
0 0

1 21 1
0 0 0 0

1 21 232 21 1
0 0 0 0

1 21 1
0 0

1

and

1
0 0

1 5 1
0 4 4 0

1 5 96 5 1
0 4 4 0
1 5 1
0 0

1

,

with b2 = 23, b3 = 0, b′
4 = 0, and b2 = 7, b3 = 8, b′

4 = 80, respectively. In fact, it
follows from the proof above that if b2 = 23 then b3 and b′

4 must both vanish.

3 Dimension six

In higher dimensions, the injection SymkH2(M,R) ↪→ H2k(M,R) is insufficient
to produce a bound on the second Betti number. Instead we employ the following
refinement.
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Fig. 1 The Hodge diamond in dimension six

Theorem 3.1 (Looijenga and Lunts [11], Verbitsky [17]) Let M be an irreducible
compact hyperkähler manifold of dimension 2n with second Betti number b2. Then
there is an action of so(4, b2−2) on the real cohomology

⊕4n
k=0 H

k(M,R), and hence
of so(b2 + 2,C) on the complex cohomology

⊕4n
k=0 H

k(M,C).

Remark 3.2 This action is generated by Lefschetz operators: for each Kähler class [ω]
the operators L [ω] and $[ω] generate an sl(2,C)-action on the complex cohomology,
and the amalgamation of all these actions yields the so(b2 + 2,C)-action.

We can decompose
⊕4n

k=0 H
k(M,C) into irreducible representations for this

so(b2 + 2,C)-action. Their highest weights are related to Hodge bi-degrees; indeed,
the Hodge diamond is the projection onto a plane of the (higher-dimensional) weight
lattice of so(b2 + 2,C). We can choose positive roots so that the dominantWeyl cham-
ber projects onto the shaded octant of the Hodge diamond shown in Fig. 1.

The irreducible representation with highest weight vector 1 ∈ H0(M,C) is pre-
cisely the subring of the cohomology generated by H2(M,C). In dimension six, the
remainder of the cohomology comes from irreducible representations whose highest
weight vectors lie in the Hodge groups that are circled in Fig. 1. By considering all
irreducible representations of so(b2 + 2,C) (see Fulton and Harris [4]), and observing
how their highest weights project to the Hodge diamond, we conclude that the only
irreducible representations that could appear are those described in Table 1. In the
second column of this table the highest weights are given in terms of the fundamental
weights. In the fourth column Cb2+2 and C denote the standard and trivial represen-
tations of so(b2 + 2,C), respectively. Thus Vk is the representation given by the kth
exterior power $kCb2+2 of the standard representation of so(b2 + 2,C). Not shown
in the table is that when b2 + 2 = 2m + 1 is odd the largest exterior power $mCb2+2

has highest weight 2ωm . In addition, when b2 + 2 = 2m is even the exterior power
$m−1Cb2+2 has highest weight ωm−1 + ωm while the middle degree exterior power

123



A bound on the second Betti number...

Table 1 Irreducible representations of so(b2 + 2,C) that could occur in the cohomology of M

Highest
weight

Highest
weight vector
in

so(b2 + 2,C)-module Dimension

U• H2,1(M) Half-spin representations

V1 ω1 H2,2(M) Cb2+2 b2 + 2

V2 ω2 H3,1(M) $2Cb2+2 (b2+2
2

)

V3 ω3 H3,1(M) $3Cb2+2 (b2+2
3

)

V4 ω4 H3,1(M) $4Cb2+2 (b2+2
4

)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Vk ωk H3,1(M) $kCb2+2 (b2+2
k

)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

W• H3,2(M) Half-spin representations

T 0 H3,3(M) C 1

$mCb2+2 is not irreducible; instead it decomposes into two irreducible representa-
tions of equal dimensions, $mCb2+2 = $m

+Cb2+2⊕$m
−Cb2+2, with highest weights

2ωm−1 and 2ωm , respectively. Note that tensor representations occur in even degrees
in cohomology, while half-spin representations occur in odd degrees. The highest
weights and dimensions of the latter are not needed for our arguments.

Example 3.3 We can calculate the dimensions of the weight spaces of these representa-
tions. The highest weight vector of V1 lies in H2,2(M). Acting on this with Lefschetz
operators L [ω] gives us classes in H4,2(M),H3,3(M),H2,4(M), and H4,4(M), and
indeed we find that V1 will sit inside the Hodge diamond in the following manner
(where we have indicated the dimension of V p,q

1 for each p, q):

0
0 0

0 0 0
0 0 0 0

0 0 1 0 0
0 0 0 0 0 0

0 0 1 b2 − 2 1 0 0
0 0 0 0 0 0
0 0 1 0 0
0 0 0 0
0 0 0
0 0

0

.
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The weight decomposition of the exterior power Vk = $kV1 for k " 2 is derived from
the weight decomposition of V1. Because the Hodge bi-degrees are derived from the
weights, we can thereby determine the dimensions of the V p.q

k s. For example,

dim V 2,2
2 = dim V 2,2

1 dim V 3,3
1 .

(Note that weight zero corresponds to Hodge bi-degree (3, 3); if we shift by (3, 3)
then the bi-degrees would become additive.) We find that V2 will sit inside the Hodge
diamond as

0
0 0

0 0 0
0 0 0 0

0 1 b2 − 2 1 0
0 0 0 0 0 0

0 0 b2 − 2
(b2−2

2

)
+ 2 b2 − 2 0 0

0 0 0 0 0 0
0 1 b2 − 2 1 0
0 0 0 0

0 0 0
0 0

0

,

V3 will sit inside the Hodge diamond as

0
0 0

0 0 0
0 0 0 0

0 b2 − 2
(b2−2

2

)
+ 1 b2 − 2 0

0 0 0 0 0 0
0 0

(b2−2
2

)
+ 1

(b2−2
3

)
+ 2(b2 − 2)

(b2−2
2

)
+ 1 0 0

0 0 0 0 0 0
0 b2 − 2

(b2−2
2

)
+ 1 b2 − 2 0

0 0 0 0
0 0 0

0 0
0

,
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Table 2 Dimensions of V• in degrees 4 and 6

Dimension Dimension of V• ∩ H4(M,C) Dimension of V• ∩ H6(M,C)

V1 b2 + 2
(b2
0
)
= 1

(b2
1
)
= b2

V2
(b2+2

2
) (b2

1
)
= b2

(b2
2
)
+

(b2
0
)
= b22−b2+2

2

V3
(b2+2

3
) (b2

2
)
= b2(b2−1)

2
(b2
3
)
+

(b2
1
)
= b2(b

2
2−3b2+8)

6

V4
(b2+2

4
) (b2

3
)
= b2(b2−1)(b2−2)

6
(b2
4
)
+

(b2
2
)
= b2(b2−1)(b22−5b2+18)

24
.
.
.

.

.

.
.
.
.

.

.

.

Vk
(b2+2

k
) ( b2

k−1
) (b2

k
)
+

( b2
k−2

)

and V4 will sit inside the Hodge diamond as

0
0 0

0 0 0
0 0 0 0

0
(b2−2

2

) (b2−2
3

)
+ b2 − 2

(b2−2
2

)
0

0 0 0 0 0 0
0 0

(b2−2
3

)
+ b2 − 2

(b2−2
4

)
+ 2

(b2−2
2

)
+ 1

(b2−2
3

)
+ b2 − 2 0 0

0 0 0 0 0 0
0

(b2−2
2

) (b2−2
3

)
+ b2 − 2

(b2−2
2

)
0

0 0 0 0
0 0 0

0 0
0

.

Table 2 gives the dimensions of the intersections of these representations with
H4(M,C) and H6(M,C).

With these preliminaries out of the way, we can prove our main result.

Theorem 3.4 Let M be an irreducible compact hyperkähler manifold of complex
dimension six. Of the possible irreducible representations of so(b2+2,C)with highest
weight vectors in H2,2(M) and H3,1(M) in the Looijenga–Lunts–Verbitsky decompo-
sition of the cohomology of M, assume that only V1, V2, and V3 can appear (i.e.,
assume that V4, V5, . . . do not appear). Then the second Betti number b2 of M is at
most 23.

Proof When n = 3 Salamon’s relation gives

18b4 − 48b3 + 90b2 + 210 = 3b6.

Decompose the complex cohomology of M into irreducible representations of
so(b2 + 2,C), as above. Suppose that V1 occurs with multiplicity c, V2 occurs with
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multiplicity d, V3 occurs with multiplicity e, and the trivial representation T = C
occurs with multiplicity f . The contributions of V1, V2, and V3 to H4(M,C) are of
dimensions 1, b2, and b2(b2 − 1)/2, respectively. Including Sym2H2(M,C) and mul-
tiplicities, we deduce that

b4 =
(
b2 + 1

2

)
+ c + db2 + e

(
b2(b2 − 1)

2

)
.

Similarly, the contributions of V1, V2, V3, and T = C to H6(M,C) are of
dimensions b2, (b22 − b2 + 2)/2, b2(b22 − 3b2 + 8)/6, and 1, respectively. Including
Sym3H2(M,C) and multiplicities, we deduce that

b6 =
(
b2 + 2

3

)
+ cb2 + d

(
b22 − b2 + 2

2

)
+ e

(
b2(b22 − 3b2 + 8)

6

)
+ f .

Substituting the formulae for b4 and b6 into Salamon’s relation (and multiplying by
2) gives

36
((

b2 + 1
2

)
+ c + db2 + e

(
b2(b2 − 1)

2

))
− 96b3 + 180b2 + 420

= 6b6

= 6
((

b2 + 2
3

)
+ cb2 + d

(
b22 − b2 + 2

2

)
+ e

(
b2(b22 − 3b2 + 8)

6

)
+ f

)
,

and after simplifying and rearranging we obtain

− (b2 + 6)
(
b2 − 21+

√
721

2

)(
b2 − 21 −

√
721

2

)

= − b32 + 15b22 + 196b2 + 420

= 6c(b2 − 6)+ 3d(b22 − 13b2 + 2)+ eb2(b22 − 21b2 + 26)+ 6 f + 96b3.

The left-hand side is negative if b2 " 24 > (21+
√
721)/2 ≈ 23.9257. On the

other hand, c, d, e, f , and b3 are all non-negative, so the right-hand side will be non-
negative for b2 " 24 (indeed, for b2 " 20). Therefore the second Betti number b2 can
be at most 23. '(

Remark 3.5 The contributions of V4 to H4(M,C) and H6(M,C) have dimensions

b2(b2 − 1)(b2 − 2)
6

and
b2(b2 − 1)(b22 − 5b2 + 18)

24
,
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respectively. For each occurrence of V4 in the decomposition of the cohomology of
M we would need to add an additional term

6
b2(b2 − 1)(b22 − 5b2 + 18)

24
− 36

b2(b2 − 1)(b2 − 2)
6

= b2(b2 − 1)(b22 − 29b2 + 66)
4

to the right-hand side of the last displayed equation of the proof. If b2 = 24, 25, or
26 then this term would be negative and the proof would break down. However, we
could still conclude that b2 " 27 is impossible.

More generally, the contributions of Vk to H4(M,C) and H6(M,C) have dimen-
sions

(
b2

k − 1

)
and

(
b2
k

)
+

(
b2

k − 2

)
,

respectively. For each occurrence of Vk in the decomposition of the cohomology of
M we would need to add an additional term

6
(
b2
k

)
+ 6

(
b2

k − 2

)
− 36

(
b2

k − 1

)

= 6b2(b2 − 1) · · · (b2 − k + 3)
k!

(
b22 − (8k − 3)b2 + (8k2 − 16k + 2)

)

to the right-hand side of the last displayed equation of the proof. Calculating the roots
of the quadratic factor, we see that if

b2 " 8k − 3+
√
32k2 + 16k + 1
2

then this additional term will be non-negative, and we again reach the desired con-
tradiction. Thus allowing V1, V2, . . . , Vk to appear in the Looijenga–Lunts–Verbitsky
decomposition of the cohomology of M , for some k " 4, we still obtain an upper
bound on b2, but unfortunately this bound grows roughly linearly with k.

Example 3.6 Up to deformation, there are three known examples of irreducible com-
pact hyperkählermanifolds of dimension six: theHilbert schemeHilb3S of three points
on a K3 surface S, the generalized Kummer variety K3(A) of an abelian surface A
(see Beauville [1]), and an example M6 of O’Grady [14]. The Hodge numbers of
Hilbert schemes of points on K3 surfaces and of generalized Kummer varieties were
calculated by Göttsche and Soergel [5]; for Hilb3S and K3(A) they are
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1
0 0

1 21 1
0 0 0 0

1 22 253 22 1
0 0 0 0 0 0

1 21 253 2004 253 21 1
0 0 0 0 0 0

1 22 253 22 1
0 0 0 0

1 21 1
0 0

1

and

1
0 0

1 5 1
0 4 4 0

1 6 37 6 1
0 4 24 24 4 0

1 5 37 372 37 5 1
0 4 24 24 4 0
1 6 37 6 1
0 4 4 0

1 5 1
0 0

1

,

with b2 = 23, b3 = 0, d = 1, c = e = f = 0, and b2 = 7, b3 = 8, c = 16,
d = 1, e = 0, f = 240, respectively. In particular, V4, V5, . . . do not appear in the
Looijenga–Lunts–Verbitsky decomposition of the cohomology of Hilb3S and K3(A).
Indeed, e = 0 for both, so V3 also does not appear.

The Hodge numbers of O’Grady’s example M6 were calculated by Mongardi,
Rapagnetta, and Saccà [12]; they are

1
0 0

1 6 1
0 0 0 0

1 12 173 12 1
0 0 0 0 0 0

1 6 173 1144 173 6 1
0 0 0 0 0 0
1 12 173 12 1
0 0 0 0

1 6 1
0 0

1

,

with b2 = 8, b3 = 0. A priori there are two different Looijenga–Lunts–Verbitsky
decompositions into irreducible so(10,C)-representations that could produce this
Hodge diamond: either c = 115, d = 6, e = 0, f = 290 or c = 135, d = 0,
e = 1, f = 240. (Note that in neither case do V4, V5, . . . appear.) In fact, Green,
Kim, Laza, and Robles [6] have determined that the latter is the correct decomposi-
tion, but this is not immediate from the representation theory and it requires geometric
arguments.

Remark 3.7 Thehypothesis ofTheorem3.4 thatV4, V5, . . . donot appear in the decom-
position of the cohomology of M was originally introduced somewhat artificially, to
make the proof work. Indeed the remark above shows that allowing V4, V5, . . . to
appear leads to progressively weaker bounds on b2. Nevertheless, the hypothesis is
satisfied for all known examples in dimension six, as observed above.

A more conceptual justification of the hypothesis is provided by Green, Kim, Laza,
and Robles [6], by relating it to a conjecture of Nagai [13] concerning monodromy
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Fig. 2 The Hodge diamond in dimension eight

operators for one-parameter degenerations of hyperkähler manifolds. Green, et al.
show that Nagai’s conjecture is equivalent to a certain restriction on the highest weight
vectors in the Looijenga–Lunts–Verbitsky decomposition of the cohomology in even
degrees, and they verify that this restriction (and hence Nagai’s conjecture) holds for
all known hyperkähler manifolds, in all dimensions. They then recognize that there is a
stronger restriction on the highest weight vectors that is more natural, which also holds
for all known hyperkähler manifolds. This (conjectural) stronger restriction reduces
to our hypothesis in dimension six. See [6] for details.

4 Higher dimensions

When n = 4 Salamon’s relation gives

2b7 + 16b6 − 46b5 + 88b4 − 142b3 + 208b2 + 376 = 4b8.

Thus in dimension eight, b7 appears with a coefficient of the ‘wrong’ sign, and we
cannot simply imitate the proof of Theorem 3.4. To proceed, we will assume that
b7 = 0. In fact, this is equivalent to assuming that all odd Betti numbers vanish, as the
presence of cohomology in any odd degree will force H7(M,C) to be non-vanishing
because of the so(b2 + 2,C)-action.

The Hodge diamond omitting the odd cohomology is shown in Fig. 2. After
removing the cohomology generated by H2(M,C), we are left with irreducible rep-
resentations whose highest weight vectors lie in the circled Hodge groups. The only
irreducible representations that could appear are those described in Table 3. Like in
dimension six, Vk denotes that kth exterior power $kCb2+2 of the standard repre-
sentation, while U1 is given by taking the 2nd symmetric power Sym2Cb2+2 of the
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standard representation and removing the trivial direct summand C, and Uk is given
by taking the tensor product Cb2+2⊗$kCb2+2 of the standard representation with its
kth exterior power and removing the direct summands $k+1Cb2+2 and $k−1Cb2+2

(this leaves an irreducible representation with highest weight ω1+ωk , except in a few
special cases described in the following remark).

Remark 4.1 In Theorem 4.3 we will only allow irreducible representations Uk and
Vk with k small relative to b2. Nevertheless, for completeness let us clarify that if
b2 + 2 = 2m + 1 is odd then Vm = $mCb2+2 has highest weight 2ωm and Um
has highest weight ω1 + 2ωm . If b2 + 2 = 2m is even then Vm−1 = $m−1Cb2+2

has highest weight ωm−1 + ωm , Um−1 has highest weight ω1 + ωm−1 + ωm ,
$mCb2+2 = $m

+Cb2+2⊕$m
−Cb2+2 decomposes into two irreducible representations

of equal dimensions with highest weights 2ωm−1 and 2ωm , and Cb2+2⊗$mCb2+2 −
$m+1Cb2+2 − $m−1Cb2+2 decomposes into two irreducible representations of equal
dimensions with highest weights ω1 + 2ωm−1 and ω1 + 2ωm .

Table 4 gives the dimensions of the intersections of these representations with
H4(M,C),H6(M,C), and H8(M,C). For instance, to compute these dimensions for
Uk we use the description

Uk = Cb2+2⊗$kCb2+2 − $k+1Cb2+2 − $k−1Cb2+2

with Cb2+2 = C⊕Cb2⊕C graded by −2, 0, and 2. After an overall shift of 8, this
induces the required grading on Uk .

Example 4.2 The representation U1 is generated by a highest weight vector in

U1 ∩ H4(M,C) = U1 ∩ H2,2(M) ∼= C,

whereas

U2 ∩ H4(M,C) ∼= Cb2

with

dim(U2 ∩ H3,1(M)) = 1 = dim(U2 ∩ H1,3(M)) and dim(U2 ∩ H2,2(M)) = b2 − 2.

Similarly

U3 ∩ H4(M,C) ∼= $2Cb2

with

dim(U3 ∩ H3,1(M)) = b2 − 2 = dim(U3 ∩ H1,3(M)) and

dim(U3 ∩ H2,2(M)) =
(
b2 − 2

2

)
+ 1.
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+
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In general

Uk ∩ H4(M,C) ∼= $k−1Cb2

with

dim(Uk ∩ H3,1(M)) =
(
b2 − 2
k − 2

)
= dim(Uk ∩ H1,3(M)) and

dim(Uk ∩ H2,2(M)) =
(
b2 − 2
k − 1

)
+

(
b2 − 2
k − 3

)
.

We can now prove our result in dimension eight.

Theorem 4.3 Let M be an irreducible compact hyperkähler manifold of complex
dimension eight whose odd Betti numbers all vanish. Consider the part of the coho-
mology of M not generated by H2(M,C). Of the possible irreducible representations
of so(b2 + 2,C) in its Looijenga–Lunts–Verbitsky decomposition, assume that only
U1,U2,U3, V1, V2, V3, V4, V5, and T can appear. Then the second Betti number b2
of M is at most 24.

Proof The proof follows the same ideas as that of Theorem 3.4. When n = 4 and all
odd Betti numbers vanish, Salamon’s relation gives

16b6 + 88b4 + 208b2 + 376 = 4b8.

The part of the complex cohomology of M generated by H2(M,C) contributes
(b2+1

2

)
,(b2+2

3

)
, and

(b2+3
4

)
to b4, b6, and b8, respectively. Writing the remainders of these Betti

numbers as b′
4, b

′
6, and b′

8, Salamon’s relation becomes

− 4
(
b2 + 3

4

)
+ 16

(
b2 + 2

3

)
+ 88

(
b2 + 1

2

)
+ 208b2 + 376

= 4b′
8 − 16b′

6 − 88b′
4

= 4(b′
8 − 4b′

6 − 22b′
4).

After simplifying and factoring, the left-hand side becomes

− 1
6
(b2 + 3)(b2 + 8)

(
b2 − 21+

√
817

2

)(
b2 − 21 −

√
817

2

)
,

which is negative if b2 " 25 > (21+
√
817)/2 ≈ 24.7916. It remains to show that

the right-hand is non-negative for b2 " 25.
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First consider the contribution of Vk to the right-hand side. Each occurrence of Vk
in the Looijenga–Lunts–Verbitsky decomposition contributes

(
b2
k

)
+

(
b2

k − 2

)
− 4

(
b2

k − 1

)

= b2(b2 − 1) · · · (b2 − k + 3)
k!

(
b22 − (6k − 3)b2 + (6k2 − 12k + 2)

)

to b′
8 − 4b′

6 − 22b′
4. This contribution will be non-negative if

b2 " 6k − 3+
√
12k2 + 12k + 1
2

.

In particular, if k = 5 we require b2 " 23, whereas if k = 6 we would require
b2 " 28 > (33+

√
505)/2 ≈ 27.7361.

Next consider the contribution ofUk to the right-hand side. Each occurrence ofUk
in the Looijenga–Lunts–Verbitsky decomposition contributes

b2

(
b2
k

)
+ b2

(
b2

k − 2

)
−

(
b2

k + 1

)
−

(
b2

k − 3

)
− 4b2

(
b2

k − 1

)
− 22

(
b2

k − 1

)

= b2(b2 − 1) · · · (b2 − k + 4)(b2 − k + 2)(b2 + 4)
(k + 1)(k − 1)!

·
(
b22 − (6k + 3)b2 + (6k2 − 12k − 16)

)

to b′
8 − 4b′

6 − 22b′
4. This contribution will be non-negative if

b2 " 6k + 3+
√
12k2 + 84k + 73
2

.

In particular, if k = 3 we require b2 " 21 > (21+
√
433)/2 ≈ 20.9043, whereas if

k = 4 we would require b2 " 26 > (27+
√
601)/2 ≈ 25.7577.

Finally, the contribution of the trivial representation T to b′
8 − 4b′

6 − 22b′
4 is just

1, so always positive.
In conclusion, if we allow the irreducible representations U1,U2,U3, V1, V2, V3,

V4, V5, and T to appear in the Looijenga–Lunts–Verbitsky decomposition of the com-
plex cohomology of M , then for b2 " 25 the right-hand side 4(b′

8 − 4b′
6 − 22b′

4) of
Salamon’s relation will be non-negative, whereas the left-hand side will be negative.
This contradiction proves that the second Betti number b2 can be at most 24. '(
Remark 4.4 As the proof shows, if we allow U4 to appear then we can conclude that
b2 can be at most 25, and if we allow V6 to appear then we can conclude that b2 can
be at most 27. AllowingUk and Vk to appear for larger k, we still obtain upper bounds
on b2, but these bounds grow roughly linearly with k.

Remark 4.5 Following the same steps in higher dimensions, the pattern appears to
be that in dimension 2n, the polynomial in b2 on the left-hand side has largest root
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(21+ √
433+ 96n)/2. Given an irreducible compact hyperkähler manifold whose

odd Betti numbers all vanish, we expect one can show that its second Betti number
must satisfy b2 ! (21+ √

433+ 96n)/2, under some restrictions on the irreducible
representations appearing in the Looijenga–Lunts–Verbitsky decomposition of its
cohomology. The author has not rigorously verified this, though this direction has
been pursued by Kurnosov [10], and indeed, Kim and Laza [9] later identified suffi-
cient restrictions to guarantee that a bound of this form holds. Their restrictions are
again related to Nagai’s conjecture; see [9] and Green, et al. [6] for details.
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