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Abstract

Let M be an irreducible compact hyperkéhler manifold of complex dimension six.
Under an assumption on the Looijenga—Lunts—Verbitsky decomposition of the coho-
mology of M, we prove that the second Betti number of M is at most 23.
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1 Introduction

An irreducible hyperkihler manifold is a Riemannian manifold of real dimension 4n
whose holonomy is equal to Sp(n). The Riemannian metric will be Kéhlerian with
respect to an S2-family of complex structures, so henceforth we will always use the
complex dimension, 2n. Beauville [2] and Guan [7] independently proved that the
second Betti number of an irreducible compact hyperkidhler manifold of dimension
four is bounded above by 23. The Hilbert scheme of two points on a K3 surface has
second Betti number 23, so this bound is sharp.

Looijenga and Lunts [11] and Verbitsky [17] showed that the cohomology of a
hyperkdhler manifold admits an action of so(4, by — 2), where b; is the second Betti
number. In this article we prove that the second Betti number of an irreducible com-
pact hyperkéhler manifold of dimension six is also bounded above by 23, under the
assumption that only certain irreducible so(4, by — 2)-representations appear in the
Looijenga—Lunts—Verbitsky decomposition; see Theorem 3.4 for the precise state-
ment. Up to deformation, there are currently three known examples of such manifolds:
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the Hilbert scheme of three points on a K3 surface, the generalized Kummer variety
(see Beauville [1]), and an example of O’Grady [14]. These examples have second
Betti numbers 23, 7, and 8, respectively, so once again our bound is sharp. More-
over, these examples all satisfy the assumption on the Looijenga—Lunts—Verbitsky
decomposition of the cohomology.

Using the same ideas, we prove that the second Betti number of an irreducible
compact hyperkihler manifold of dimension eight is bounded above by 24, once again
under an assumption on the Looijenga—Lunts—Verbitsky decomposition and assuming
that all odd Betti numbers vanish; see Theorem 4.3 for the precise statement. In this
dimension, the only examples currently known are the Hilbert scheme of four points on
a K3 surface and the generalized Kummer variety, which have second Betti numbers
23 and 7, respectively. In particular, it is possible that no example exists in dimension
eight with second Betti number 24.

Why is it important to bound the second Betti number? The first Pontryagin class
p1(M) determines a homogeneous polynomial of degree 2n —2 on H>(M, 7Z), given by
o> M a?"~2p (M). Huybrechts [8] proved that if the second integral cohomology
H? and the homogeneous polynomial of degree 21 — 2 on H? determined by the first
Pontryagin class are fixed, then up to diffeomorphism there are only finitely many
irreducible compact hyperkéhler manifolds of dimension 2n realizing this structure.
(Instead, one can fix H? and a certain normalization q of the Beauville-Bogomolov
quadratic form on H? and arrive at the same conclusion; see [8].) A universal bound
on the second Betti number in dimension 2n would mean that there are finitely many
possibilities for H? as a Z-module; it would then remain to bound the other data on H2,
to conclude that there are finitely many diffeomorphism types of irreducible compact
hyperkéhler manifolds of that dimension.

2 Dimension four

Let us recall how to bound the second Betti number in dimension four. Salamon [15]
proved that the Betti numbers of a compact hyperkéhler manifold of dimension 2n
satisfy the relation

2n
2 (=13 = m by j = nba.

j=1

Theorem 2.1 (Beauville [2], Guan [7]) Let M be an irreducible compact hyperkdhler
manifold of complex dimension four. Then the second Betti number by of M is at
most 23.

Proof Irreducible hyperkihler manifolds are simply-connected, so b1 = 0. Therefore
Salamon’s relation for n = 2 gives

— 2b3 + 20by + 92 = 2b4.
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Verbitsky [16] proved that Sym*H?(M, R) injects into H**(M,R) for k < n. In
particular, we can write

H*(M,R) = Sym*H*(M,R)®H:. (M, R)

prim

and
b 1
b4=(2; )+bg,

where b} denotes the dimension of the primitive cohomology ngim (M, R). Substitut-
ing this into Salamon’s relation gives

— 2b3 4 20by 4 92 = by(by + 1) + 25,
and therefore
— (by +4)(by —23) = — b3 + 19b; + 92 = 2b), + 2bs.

The left-hand side is negative if b, > 23, whereas the right-hand side is clearly non-
negative. Therefore the second Betti number b, can be at most 23. O

Example 2.2 Up to deformation, there are two known examples of irreducible compact
hyperkihler manifolds of dimension four: the Hilbert scheme HilbS of two points
on a K3 surface S (see Fujiki [3]) and the generalized Kummer variety K»(A) of an
abelian surface A (see Beauville [1]). Their Hodge diamonds are

1 1
0 0 0 0
1 21 1 1 5 1
0 o0 0 o0 0 4 4 0
1 21 232 21 1 and I 5 9% 5 1,
0 O 0 o0 0 4 4 0
1 21 1 1 5 1
0 0 0 0
1 1

with by =23, b3 =0, b} =0, and b, =7, b3 = 8, b, = 80, respectively. In fact, it
follows from the proof above that if b, = 23 then b3 and bg must both vanish.

3 Dimension six

In higher dimensions, the injection SymkHz(M ,R) — H2k (M, R) is insufficient

to produce a bound on the second Betti number. Instead we employ the following
refinement.
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Fig.1 The Hodge diamond in dimension six

Theorem 3.1 (Looijenga and Lunts [11], Verbitsky [17]) Let M be an irreducible
compact hyperkdhler manifold of dimension 2n with second Betti number by. Then
there is an action of s0(4, by —2) on the real cohomology @ilo H*¥(M, R), and hence

of s0(by + 2, C) on the complex cohomology @i’;o HY(M, C).

Remark 3.2 This action is generated by Lefschetz operators: for each Kéhler class [w]
the operators L, and A[,) generate an s(2, C)-action on the complex cohomology,
and the amalgamation of all these actions yields the so(b; + 2, C)-action.

We can decompose @210 HK(M, C) into irreducible representations for this
50(by + 2, C)-action. Their highest weights are related to Hodge bi-degrees; indeed,
the Hodge diamond is the projection onto a plane of the (higher-dimensional) weight
lattice of s0(by + 2, C). We can choose positive roots so that the dominant Weyl cham-
ber projects onto the shaded octant of the Hodge diamond shown in Fig. 1.

The irreducible representation with highest weight vector 1 € H°(M, C) is pre-
cisely the subring of the cohomology generated by H>(M, C). In dimension six, the
remainder of the cohomology comes from irreducible representations whose highest
weight vectors lie in the Hodge groups that are circled in Fig. 1. By considering all
irreducible representations of so(b, + 2, C) (see Fulton and Harris [4]), and observing
how their highest weights project to the Hodge diamond, we conclude that the only
irreducible representations that could appear are those described in Table 1. In the
second column of this table the highest weights are given in terms of the fundamental
weights. In the fourth column C?2*2 and C denote the standard and trivial represen-
tations of so(by + 2, C), respectively. Thus Vi is the representation given by the kth
exterior power AXCP2+2 of the standard representation of s0(b; + 2, C). Not shown
in the table is that when by + 2 = 2m + 1 is odd the largest exterior power A" C?2+2
has highest weight 2w,,. In addition, when by + 2 = 2m is even the exterior power
A™~1CP2+2 has highest weight w,,_1 + ®,, while the middle degree exterior power
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Table 1 Irreducible representations of so(by + 2, C) that could occur in the cohomology of M

Highest Highest s50(by + 2, C)-module Dimension
weight weight vector
in

Ue H21(M) Half-spin representations
Vi o] H22(M) Ccbat2 by 42
V2 ) H3' 1 (M) A2(Ch2+2 (b22+2)
V3 3 H3, 1 (M) A3Cb2+2 (b23+2)
Vi w4 H3,] (M) A4Cb2+2 (bZZ'Z)
Vk g H3' 1 (M) Ak Cb2+2 (b2k+2)
We H32(M) Half-spin representations
T 0 H3-3 (M) C 1

A™CP2+2 s not irreducible; instead it decomposes into two irreducible representa-
tions of equal dimensions, A" C?2+2 = A" CP2+2 @ A" CP2+2, with highest weights
2wy, —1 and 2wy, respectively. Note that tensor representations occur in even degrees
in cohomology, while half-spin representations occur in odd degrees. The highest
weights and dimensions of the latter are not needed for our arguments.

Example 3.3 We can calculate the dimensions of the weight spaces of these representa-
tions. The highest weight vector of V| lies in H>?(M). Acting on this with Lefschetz
operators L, gives us classes in H4’2(M), H3’3(M), H2’4(M), and H4’4(M), and
indeed we find that V| will sit inside the Hodge diamond in the following manner
(where we have indicated the dimension of V"¢ for each p, ¢):

0
0 0
0o 0 0
0 0 0 0
oo 1 00
0 0 O 0 0 O
0 01 -2 1 00
0 0 O 0 0 O
oo 1 00
0 0 0 0
0O 0 0
0 0
0
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The weight decomposition of the exterior power V; = A¥ V| fork > 2 is derived from
the weight decomposition of Vj. Because the Hodge bi-degrees are derived from the
weights, we can thereby determine the dimensions of the Vkp ‘5. For example,

dim V22’2 = dim Vlz’2 dim V13’3.
(Note that weight zero corresponds to Hodge bi-degree (3, 3); if we shift by (3, 3)

then the bi-degrees would become additive.) We find that V, will sit inside the Hodge
diamond as

0
0 0
0 0 0
0 0 0 0
0 1 by —2 10
0 0 0 0 0 0
0 0 b—-2 ("% +2 bh-2 0 0,
0 0 0 0 0 0
0 1 by —2 10
0 0 0 0
0 0 0
0 0
0

V3 will sit inside the Hodge diamond as

0
0 0
0 0 0
0 0 0 0
0 b—2 (%) +1 by—2 0
00 0 0 00
00 ™H+1 BH+20-2 (*BH+1 0 0,
00 0 0 00
0 b2 () +1 by—2 0
0 0 0 0
0 0 0
0 0
0
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Table 2 Dimensions of V, in degrees 4 and 6

Dimension Dimension of Ve N H4(M ,0) Dimension of Vg N H6(M ,0)

Vi by +2 () = (%2) = by
2_
v () (2)=b (3)+ () = 23
Vs (b23+2) (t2) = b2(b2 1 (1?) L) by (b3—3b,+8)
2
vy (b22'2) (1732) by(by— l)(bz 2) (Zg) i (bzz) by (by 1)(32 5by+18)
e (0 () (2)+(2)
and V4 will sit inside the Hodge diamond as
0
0 0
0 0 0
0 0 0 0
br—2 b b2
0 (27 (7%37) +b2 =2 (*27) 0
0 0 0 0 0
00 () +2-2 (7)) +2()+1 () +b2-2 0 0
0 0 0 0 0
br—2 by—2
0 (") (%57) + b2 — (") 0
0 0 0
0 0 0
0 0
0

Table 2 gives the dimensions of the intersections of these representations with
H*(M, C) and H(M, C).

With these preliminaries out of the way, we can prove our main result.

Theorem 3.4 Let M be an irreducible compact hyperkdhler manifold of complex
dimension six. Of the possible irreducible representations of so(ba+2, C) with highest
weight vectors in H>2(M) and H>' (M) in the Looijenga—Lunts—Verbitsky decompo-
sition of the cohomology of M, assume that only Vy, Va, and V3 can appear (i.e.,
assume that Vy, Vs, ... do not appear). Then the second Betti number by of M is at
most 23.

Proof When n = 3 Salamon’s relation gives
18b4 — 48b3 + 90by 4210 = 3bs.

Decompose the complex cohomology of M into irreducible representations of
s0(by +2, C), as above. Suppose that V| occurs with multiplicity ¢, V> occurs with
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multiplicity d, V3 occurs with multiplicity e, and the trivial representation 7 = C
occurs with multiplicity f. The contributions of Vy, V5, and V3 to H*(M, C) are of
dimensions 1, by, and b2 (by — 1)/2, respectively. Including SymzH2 (M, C) and mul-
tiplicities, we deduce that

by + 1 by(by — 1
b4:<2; >+c+db2+e<%).

Similarly, the contributions of Vi, V>, V3, and T = C to H6(M ,C) are of
dimensions by, (b% —by+2)/2, b (b% — 3by + 8)/6, and 1, respectively. Including
Sym3H2(M , C) and multiplicities, we deduce that

by +2 b2 —by+2 by(b%2 —3by + 8
b6=<2;)+cbz+d<—2 22 >+e<—2(2 62 )>—|—f.

Substituting the formulae for b4 and bg into Salamon’s relation (and multiplying by
2) gives

by +1 by(by — 1
36(( 2; ) +e+dbs +e<%>> — 96b3 + 180by + 420

= 6bg
by +2 b2 —by+2 by(b% — 3by, + 8
:6((2;_ )+cb2+d<—2 22+ >+e<—2(2 . 2+ )>+f),

and after simplifying and rearranging we obtain

21 +«/721><b 21 —«/721)
-y y— — =
2 2

— (b2 +6) (bz -

= — b3+ 15b3 + 196b, + 420
= 6¢(by — 6) 4 3d(b3 — 13by +2) + eby (b3 — 21by +26) + 6.f + 96b;.

The left-hand side is negative if by > 24 > (21 4+ +/721)/2 ~ 23.9257. On the
other hand, ¢, d, e, f, and b3 are all non-negative, so the right-hand side will be non-
negative for by > 24 (indeed, for by > 20). Therefore the second Betti number b, can
be at most 23. m]

Remark 3.5 The contributions of V4 to H*(M, C) and H®(M, C) have dimensions

by(by — 1) (b2 — 2) and by(by — 1)(b5 — 5by + 18)
6 24

’
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respectively. For each occurrence of V4 in the decomposition of the cohomology of
M we would need to add an additional term

6 by(by — 1)(b3 — 5by + 18) 36 ba(by — 1)(by — 2)
24 6
_ ba(by — 1)(b3 — 29D, + 66)
- 4

to the right-hand side of the last displayed equation of the proof. If b, = 24, 25, or
26 then this term would be negative and the proof would break down. However, we
could still conclude that b, > 27 is impossible.

More generally, the contributions of Vj to H*(M, C) and H®(M, C) have dimen-

sions
by by by
(k—l) and (k)+(k—2>’

respectively. For each occurrence of Vi in the decomposition of the cohomology of
M we would need to add an additional term

by by by
6<k)+6<k—2>_36<k—1>
_6by(by—1)---(by—k+3)
o k!

(b3 — (8k — 3)by + (8k* — 16k +2))

to the right-hand side of the last displayed equation of the proof. Calculating the roots
of the quadratic factor, we see that if

— V32KZ F 16k + 1
by > 8k —3 4+ +/32k* + 16k + 1
2
then this additional term will be non-negative, and we again reach the desired con-
tradiction. Thus allowing Vi, Va, ..., Vj to appear in the Looijenga—Lunts—Verbitsky
decomposition of the cohomology of M, for some k > 4, we still obtain an upper
bound on b;, but unfortunately this bound grows roughly linearly with k.

Example 3.6 Up to deformation, there are three known examples of irreducible com-
pact hyperkihler manifolds of dimension six: the Hilbert scheme Hilb> S of three points
on a K3 surface S, the generalized Kummer variety K3(A) of an abelian surface A
(see Beauville [1]), and an example Mg of O’Grady [14]. The Hodge numbers of
Hilbert schemes of points on K3 surfaces and of generalized Kummer varieties were
calculated by Gottsche and Soergel [5]; for Hilb?S and K3(A) they are
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0 0 0 0
1 21 1 1 5 1
0 0 0 0 0 4 4 0
1 22 253 22 1 1 6 37 6 1
0 0 0 0 0 0 0 4 24 24 4 0
1 21 253 2004 253 21 1 and 1 5 37 372 37 5 1,
0 0 0 0 0 0 0 4 24 24 4 0
1 22 253 22 1 1 6 37 6 1
0 0 0 0 0 4 4 0
1 21 1 1 5 1
0 0 0 0

with b, = 23,03 =0,d =1, c =e = f =0,and b =7, b3 = 8, ¢c = 16,
d =1,e =0, f = 240, respectively. In particular, Vu, Vs, ... do not appear in the
Looijenga—Lunts—Verbitsky decomposition of the cohomology of Hilb>S and K3(A).
Indeed, e = 0 for both, so V3 also does not appear.

The Hodge numbers of O’Grady’s example Mg were calculated by Mongardi,
Rapagnetta, and Sacca [12]; they are

1 6 173 1144 173 6 1,

with b, = 8, b3 = 0. A priori there are two different Looijenga—Lunts—Verbitsky
decompositions into irreducible so(10, C)-representations that could produce this
Hodge diamond: either ¢ = 115, d = 6,¢ = 0, f = 290 or ¢ = 135,d = 0,
e = 1, f = 240. (Note that in neither case do V4, Vs, ... appear.) In fact, Green,
Kim, Laza, and Robles [6] have determined that the latter is the correct decomposi-
tion, but this is not immediate from the representation theory and it requires geometric
arguments.

Remark 3.7 The hypothesis of Theorem 3.4 that V4, Vs, ... donotappear in the decom-
position of the cohomology of M was originally introduced somewhat artificially, to
make the proof work. Indeed the remark above shows that allowing Vi, Vs, ... to
appear leads to progressively weaker bounds on b,. Nevertheless, the hypothesis is
satisfied for all known examples in dimension six, as observed above.

A more conceptual justification of the hypothesis is provided by Green, Kim, Laza,
and Robles [6], by relating it to a conjecture of Nagai [13] concerning monodromy
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Fig.2 The Hodge diamond in dimension eight

operators for one-parameter degenerations of hyperkidhler manifolds. Green, et al.
show that Nagai’s conjecture is equivalent to a certain restriction on the highest weight
vectors in the Looijenga—Lunts—Verbitsky decomposition of the cohomology in even
degrees, and they verify that this restriction (and hence Nagai’s conjecture) holds for
all known hyperkihler manifolds, in all dimensions. They then recognize that there is a
stronger restriction on the highest weight vectors that is more natural, which also holds
for all known hyperkihler manifolds. This (conjectural) stronger restriction reduces
to our hypothesis in dimension six. See [6] for details.

4 Higher dimensions
When n = 4 Salamon’s relation gives
2b7 + 16bg — 46bs + 88bs — 142b3 + 208b, + 376 = 4bg.

Thus in dimension eight, b7 appears with a coefficient of the ‘wrong’ sign, and we
cannot simply imitate the proof of Theorem 3.4. To proceed, we will assume that
b7 = 0. In fact, this is equivalent to assuming that all odd Betti numbers vanish, as the
presence of cohomology in any odd degree will force H’ (M, C) to be non-vanishing
because of the so(by + 2, C)-action.

The Hodge diamond omitting the odd cohomology is shown in Fig. 2. After
removing the cohomology generated by H>(M, C), we are left with irreducible rep-
resentations whose highest weight vectors lie in the circled Hodge groups. The only
irreducible representations that could appear are those described in Table 3. Like in
dimension six, Vj denotes that kth exterior power A¥C?2*2 of the standard repre-
sentation, while U is given by taking the 2nd symmetric power Sym?C?2+2 of the
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standard representation and removing the trivial direct summand C, and Uy is given
by taking the tensor product C?2+2 @ AX¥CP212 of the standard representation with its
kth exterior power and removing the direct summands AKt1CP2+2 and A*—1CP2+2
(this leaves an irreducible representation with highest weight w1 + wy, except in a few
special cases described in the following remark).

Remark 4.1 In Theorem 4.3 we will only allow irreducible representations Uy and
Vi with k small relative to b,. Nevertheless, for completeness let us clarify that if
by +2 = 2m + 1 is odd then V,, = A™CP12 has highest weight 2w,, and U,
has highest weight w; + 2w,,. If by + 2 = 2m is even then V,,_| = AM—lch+2
has highest weight w,—1 + @, U,—1 has highest weight w; + w,—1 + @,
A"CPH? = A" Ch2+2 g A" CP2+2 decomposes into two irreducible representations
of equal dimensions with highest weights 2w,,_ and 2w,,, and C?2t2 @ A™CP2+2 —
AL 22 _ Am=1CP2+2 decomposes into two irreducible representations of equal
dimensions with highest weights w1 + 2w;,—1 and w1 + 2wy,.

Table 4 gives the dimensions of the intersections of these representations with
H4(M ,0), H6(M ,C), and H8(M , C). For instance, to compute these dimensions for
Ui we use the description

Uy = (Cb2+2®Ak(Cb2+2 _ Ak+l(cb2+2 _ Ak—l(cbz-i-Z

with C2+2 = CpCl2@C graded by —2, 0, and 2. After an overall shift of 8, this
induces the required grading on Uy.

Example 4.2 The representation U] is generated by a highest weight vector in
Uy NH*(M,C) = U NH>*(M) = C,
whereas
U "H*(M, C) = ¢
with
dim(U, NH>'(M)) = 1 = dim(U> N H"“3(M)) and dim(U> N H>*(M)) = by — 2.
Similarly
Us NHY(M, C) = A%C»
with
dim(Us NH>'(M)) = by — 2 = dim(U3 NH"3(M)) and

dim (U3 N H>2(M)) = <b22_ 2) +1.
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In general
Uy NH*(M, C) = AP
with
dim (U N H>' (M) = (122__22) = dim(Uy NH"3(M)) and
dim(Ug NH22(M)) = (lf__lz) + (lf__;)

We can now prove our result in dimension eight.

Theorem 4.3 Let M be an irreducible compact hyperkéihler manifold of complex
dimension eight whose odd Betti numbers all vanish. Consider the part of the coho-
mology of M not generated by H*(M, C). Of the possible irreducible representations
of so(by +2, C) in its Looijenga—Lunts—Verbitsky decomposition, assume that only
Ui, U, Uz, Vi, Vo, V3, V4, Vs, and T can appear. Then the second Betti number by
of M is at most 24.

Proof The proof follows the same ideas as that of Theorem 3.4. When n = 4 and all
odd Betti numbers vanish, Salamon’s relation gives

16bg + 88bs + 208b; + 376 = 4byg.
The part of the complex cohomology of M generated by H>(M, C) contributes (bz;r 1),

(b23+ 2), and (bZIS) to b4, be, and bg, respectively. Writing the remainders of these Betti
numbers as bﬁl, b’6, and bé, Salamon’s relation becomes

by +3 by +2 by + 1
—4< 2: )+16<23+ )—1—88(2; >+208b2+376

= 4b§ — 16b; — 88D},
= 4(bg — 4bg — 22b}).

After simplifying and factoring, the left-hand side becomes

21+2\/W>(b 21—\/m>’

1
—g(b2+3)(b2+8)<b2— 2 — 5

which is negative if b, > 25 > (21 + +/817)/2 ~ 24.7916. It remains to show that
the right-hand is non-negative for b, > 25.
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First consider the contribution of Vj to the right-hand side. Each occurrence of Vj
in the Looijenga—Lunts—Verbitsky decomposition contributes

by by by
(k)+<k—9'*(k—J
B by(by —1)---(by —k +3)
a k!

b2 — (6k — 3) by + (6k> — 12k + 2)
2

to by — 4by — 22b),. This contribution will be non-negative if

< 6k — 3+ 12k2 + 12k + 1
= 2 .

by

In particular, if k = 5 we require b, > 23, whereas if k = 6 we would require
by > 28 > (33 4+ /505)/2 ~ 27.7361.

Next consider the contribution of Uy to the right-hand side. Each occurrence of Uy
in the Looijenga—Lunts—Verbitsky decomposition contributes

b2 bz b2 bz bz bz
n (7)) - () - () - () -2 ()
_ byby —1)--- (b —k+4)(by —k +2)(by +4)

(k+ 1)k — 1!
- (b3 — (6k +3) by + (6k> — 12k — 16))

to bg — 4by — 22b}. This contribution will be non-negative if

- 6k + 3 + V12k2 + 84k + 73

b
2 2

In particular, if k = 3 we require b, > 21 > (21 + @) /2 & 20.9043, whereas if
k = 4 we would require by > 26 > (27 + +/601)/2 ~ 25.7577.

Finally, the contribution of the trivial representation 7' to bg — 4by — 22b) is just
1, so always positive.

In conclusion, if we allow the irreducible representations Uy, U, Uz, Vi, Vo, V3,
V4, Vs, and T to appear in the Looijenga—Lunts—Verbitsky decomposition of the com-
plex cohomology of M, then for by > 25 the right-hand side 4(bg — 4by — 22b;) of
Salamon’s relation will be non-negative, whereas the left-hand side will be negative.
This contradiction proves that the second Betti number b, can be at most 24. O

Remark 4.4 As the proof shows, if we allow U to appear then we can conclude that
by can be at most 25, and if we allow Vj to appear then we can conclude that b, can
be at most 27. Allowing Uy and V} to appear for larger k, we still obtain upper bounds
on by, but these bounds grow roughly linearly with k.

Remark 4.5 Following the same steps in higher dimensions, the pattern appears to
be that in dimension 27, the polynomial in b, on the left-hand side has largest root
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(21 + /433 4 96n)/2. Given an irreducible compact hyperkihler manifold whose
odd Betti numbers all vanish, we expect one can show that its second Betti number
must satisfy by, < (21 4+ /433 + 96n)/2, under some restrictions on the irreducible
representations appearing in the Looijenga—Lunts—Verbitsky decomposition of its
cohomology. The author has not rigorously verified this, though this direction has
been pursued by Kurnosov [10], and indeed, Kim and Laza [9] later identified suffi-
cient restrictions to guarantee that a bound of this form holds. Their restrictions are
again related to Nagai’s conjecture; see [9] and Green, et al. [6] for details.
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