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ABSTRACT

In this work, we present NENCI-2021, a benchmark database of ∼8000 Non-Equilibirum Non-Covalent Interaction energies for a large and
diverse selection of intermolecular complexes of biological and chemical relevance. To meet the growing demand for large and high-quality
quantum mechanical data in the chemical sciences, NENCI-2021 starts with the 101 molecular dimers in the widely used S66 and S101
databases and extends the scope of these works by (i) including 40 cation–π and anion–π complexes, a fundamentally important class of
non-covalent interactions that are found throughout nature and pose a substantial challenge to theory, and (ii) systematically sampling all 141
intermolecular potential energy surfaces (PESs) by simultaneously varying the intermolecular distance and intermolecular angle in each dimer.
Designed with an emphasis on close contacts, the complexes in NENCI-2021 were generated by sampling seven intermolecular distances along
each PES (ranging from 0.7× to 1.1× the equilibrium separation) and nine intermolecular angles per distance (five for each ion–π complex),
yielding an extensive database of 7763 benchmark intermolecular interaction energies (Eint) obtained at the coupled-cluster with singles,
doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory. The Eint values in NENCI-2021 span a total of 225.3
kcal/mol, ranging from −38.5 to +186.8 kcal/mol, with a mean (median) Eint value of −1.06 kcal/mol (−2.39 kcal/mol). In addition, a wide
range of intermolecular atom-pair distances are also present in NENCI-2021, where close intermolecular contacts involving atoms that are
located within the so-called van derWaals envelope are prevalent—these interactions, in particular, pose an enormous challenge for molecular
modeling and are observed in many important chemical and biological systems. A detailed symmetry-adapted perturbation theory (SAPT)-
based energy decomposition analysis also confirms the diverse and comprehensive nature of the intermolecular binding motifs present in
NENCI-2021, which now includes a significant number of primarily induction-bound dimers (e.g., cation–π complexes). NENCI-2021 thus
spans all regions of the SAPT ternary diagram, thereby warranting a new four-category classification scheme that includes complexes pri-
marily bound by electrostatics (3499), induction (700), dispersion (1372), or mixtures thereof (2192). A critical error analysis performed on
a representative set of intermolecular complexes in NENCI-2021 demonstrates that the Eint values provided herein have an average error of
±0.1 kcal/mol, even for complexes with strongly repulsive Eint values, and maximum errors of ±0.2–0.3 kcal/mol (i.e., ∼±1.0 kJ/mol) for the
most challenging cases. For these reasons, we expect that NENCI-2021 will play an important role in the testing, training, and development of
next-generation classical and polarizable force fields, density functional theory approximations, wavefunction theory methods, and machine
learning based intra- and inter-molecular potentials.
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I. INTRODUCTION

With tunable strengths situated between thermal fluctuations
and covalent bonds, non-covalent interactions (NCIs) are ubiqui-
tous in nature and play a critical role in determining the structure,
stability, and function in a number of systems throughout chem-
istry, biology, physics, and materials science.1–5 One particularly

illustrative example is the famous DNA double helix, whose struc-
ture is stabilized by a complex network of hydrogen bonds and π–π
stacking interactions between constituent nucleobases. In organic
synthesis and biochemistry, many catalysts and enzymes function by
leveraging NCIs to position/orient substrates for the ensuing reac-
tion and/or stabilize critical points along the reaction pathway, e.g.,
ion–π interactions can stabilize intermediates and transition states
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with excess charge.6–11 Over the past two decades, NCIs have gar-
nered critical recognition throughout the chemical sciences and have
now become an integral part of “chemical intuition” when rational-
izing complex chemical structures and/or processes and designing
molecular systems (e.g., catalysts) for optimal performance and/or
novel applications. In this regard, there are quite a number of NCI-
based applications actively under investigation, ranging from crys-
tal engineering (where hydrogen and halogen bonding are used to
direct molecular assembly)12,13 and artificial molecular machines
[where π–π stacking, hydrogen bonding, and dispersion/van der
Waals (vdW) forces are leveraged to control complex motion at
the nanoscale]14–17 to drug discovery (where candidate molecules
are selected and screened based on specific NCIs present in the
corresponding active site).18–21

Given their importance and prevalence, it is imperative that
there exists a suite of computational methods that can provide
an accurate, reliable, and computationally efficient description of
NCIs for systems ranging from small gas-phase molecular dimers
to the complex tertiary and quaternary structure of proteins in
solvent.22 To meet these goals, a number of computational tech-
niques have been developed over the past century, including (but not
limited to) model intermolecular potentials (e.g., Lennard-Jones),23

classical and polarizable force fields,24,25 density functional theory
(DFT) approximations with corrections for dispersion/vdW interac-
tions,26–28 efficient (i.e., linear scaling) algorithms for highly accurate
wavefunction theory (WFT) methods,29,30 and, more recently, the
large and rapidly growing suite of machine learning (ML) based
approaches.31–35 During this time, such computational methods
have enjoyed tremendous success and made critical contributions
to a number of different fields, e.g., identifying promising phar-
maceutical molecules,18–21 predicting (meta-)stable molecular crys-
tal polymorphs,36,37 and elucidating supercritical behavior in high-
pressure liquid hydrogen,38 to name a few. However, we would
argue that the next generation of theoretical approaches for describ-
ing NCIs would tremendously benefit by addressing the follow-
ing challenges in an accurate, reliable, and computationally effi-
cient manner: (i) the need to describe NCIs in large molecular
and condensed-phase systems (i.e., collective many-body effects,
solvation/solvent effects, and simultaneous treatment of short-,
intermediate-, and long-range NCIs on the same footing);39–44 (ii)
the need to describe the diverse types of NCIs on the same footing
(i.e., similar performance for hydrogen bonding, π–π stacking, dis-
persion, ion–π interactions, etc.);45–48 and (iii) the need to describe
NCIs in equilibrium and non-equilibrium systems on the same foot-
ing [i.e., similar performance across entire potential energy surfaces
(PESs)].49,50

An essential part of developing next-generation theoreti-
cal methods for describing NCIs involves testing and/or train-
ing new approximations against highly accurate benchmark data.
For the increasingly popular suite of ML-based models—which
require large amounts of high-quality data to learn the quantum
mechanics underlying NCIs—such reference data are of critical
importance. However, such benchmark non-covalent/non-bonded
interaction (or binding) energies (Eint) are seldom experimentally
available, especially for large/complex systems and non-equilibrium
configurations. Instead, one usually relies on quantum chemical
and/or quantum Monte Carlo methods (i.e., WFT methods) to
obtain highly accurate and systematically improvable Eint values for

benchmarking and training purposes.51 On the WFT side, coupled-
cluster theory, including single, double, and perturbative triple
excitations, in conjunction with an extrapolation to the com-
plete basis set limit [CCSD(T)/CBS] has long been considered
the de facto “gold standard” for generating accurate Eint data
for small- and medium-sized organic molecules, and has there-
fore been used to generate a number of seminal benchmark
databases for NCIs.52,53 One of the first of these databases, the
so-called S22 database,54,55 includes 22 CCSD(T)-quality Eint val-
ues for a set of small-/medium-sized biologically relevant inter-
molecular complexes (comprised of {C, H, O, N}) in their respec-
tive optimized (equilibrium) geometries, and was designed to cover
a number of different intermolecular binding motifs (i.e., sin-
gle and double hydrogen bonds, dipole–dipole interactions, π–π
stacking, dispersion, C–H ⋅ ⋅ ⋅π, etc.). Following the success and
widespread use of S22 in the testing and parameterization of many
theoretical methods for describing NCIs, the amount of benchmark-
quality Eint data was substantially increased with the introduc-
tion of the S66 database (which includes 66 equilibrium inter-
molecular complexes of similar size and composition to that found
in S22) and extensions thereof to include complexes with non-
equilibrium intermolecular distances (along a series of dissocia-
tion curves in S22x556 and S66x857,58) and non-equilibrium inter-
molecular angles (at the equilibrium distance in S66a8).59 Dur-
ing the same time, other benchmark NCI databases were con-
structed to reflect the diverse number of NCI types (or binding
motifs) found in halogen-containing systems (X40x10),60 nucle-
obase dimers (ACHC),61 charge transfer (CT) complexes,62 alkane
dimers (ADIM6),63 large molecular dimers (L7),42 host–guest
complexes (S12L),39 halogen-bonded systems (XB18),64 sulfur-
containing systems (SULFURx8),65 and many more.52,55,66–71 Along
similar lines, there are also NCI databases based on a symmetry-
adapted perturbation theory (SAPT) decomposition of Eint into
components (i.e., electrostatics, exchange, induction, and disper-
sion), which have been used to train force fields for molecular
dynamics simulations.72–74 Of particular interest here is the S101x7
database,49 which starts with the molecular dimers in S66 and
expands this set to include 35 additional biologically relevant com-
plexes containing halogens (i.e., F, Cl, and Br) and second-row ele-
ments (i.e., S and P), as well as additional intermolecular complexes
involving charged systems and/or water. Like the S66x8 database,
S101x7 also includes complexes with non-equilibrium intermolecu-
lar distances by computing SAPT-based Eint values for select points
along each intermolecular PES; in the S101x7 case, these seven
points ranged from 0.7× to 1.1×, the equilibrium intermolecular sep-
aration in an effort to better capture short-range charge penetration
effects.49 For additional information about benchmark databases
and the methodologies used to construct them, we also point the
reader to the review by Řezáč and Hobza.75

While existing databases are growing in size, most are still
relatively small (containing ≲ 500 interaction energies), making
them insufficient for the rapidly growing field of ML-based intra-
/inter-molecular potentials (in particular, for training truly deep
learning models). In this regard, composite databases (such as
GMTKN55,70 ACCDB,76 and NCIAtlas77–79) and the very recently
published datasets of Donchev et al.80 (DES15K/DES370K) can be
considerably larger and represent a key step toward meeting such
growing data demands. However, the use of different basis sets
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and/or quantum chemical methods during the generation and com-
pilation of some of these data may potentially be a source of both
random and systematic errors in some ML applications. Due to
the high computational cost of generating benchmark Eint val-
ues for large systems, most existing databases (with the excep-
tion of L742 and S12L39) have been limited to small-to-medium
organic/biological molecules (usually containing < 20 atoms); as
a consequence, many of these databases do not capture the col-
lective nature of NCIs (i.e., many-body effects, solvation/solvent
effects, and NCIs across multiple length scales) present in
large/complex molecules and condensed-phase systems. In addition,
most existing databases have focused on common intermolecular
binding motifs, such as hydrogen and halogen bonding, π–π stack-
ing, dipole–dipole interactions, dispersion, and C–H ⋅ ⋅ ⋅π inter-
actions, while other important binding motifs (such as cation–π
and anion–π interactions) have been largely underrepresented. As
such, these databases tend to include intermolecular complexes
that are primarily bound by electrostatics, dispersion, or a mix-
ture thereof, but have not included intermolecular complexes that
are primarily induction-bound. Furthermore, prior databases (e.g.,
S22x5, S66x8, S66a8, and S101x7) primarily focused on the equi-
librium geometry and a single displacement from the equilib-
rium geometry (i.e., scaling the intermolecular distance or rotat-
ing one monomer), but very few have explored wider swaths of
the intermolecular PES. In this regard, most databases have also
only slightly touched upon close intermolecular contacts (i.e., the
short-range and often repulsive sector of the intermolecular PES),
although there are some examples where such short-range con-
siderations have been incorporated (e.g., S101x7,49 R160x6,81 and
R739x579). As a result, the performance of many theoretical meth-
ods for accurately and reliably describing NCIs in large and com-
plex systems, for a diverse array of binding motifs, and across
significant portions of the intermolecular PES is simply not well
known.

Accurate and reliable descriptions of non-equilibrium NCIs at
reduced intermolecular separations—where several strong and com-
peting short-range intermolecular forces are at play—are important
for a number of reasons and pose a substantial challenge to the-
ory. For instance, there are numerous examples throughout chem-
istry and chemical biology where close intermolecular contacts are
either present at equilibrium or force the system to adopt a dif-
ferent configuration.82,83 A striking example of this was recently
observed when studying the enantioselectivity of sBOX catalysts,
where a combination of attractive and repulsive NCIs is respon-
sible for the enantio-determining C–CN bond formation in chiral
nitriles.83 Intermolecular close contacts also play a crucial role in the
study of systems operating under high-pressure conditions, rang-
ing from the microscopic structure of supercritical water84 to the
high-pressure synthesis of compounds with atypical compositions
and novel properties,85 and the search for high-Tc superconducting
materials.86 Theoretically speaking, SAPT decomposition studies87

have shown that the intermolecular distance can have a profound
influence on the absolute and relative magnitudes of the underly-
ing Eint components (i.e., electrostatics, exchange, induction, and
dispersion), implying that the forces present in short-range non-
equilibrium intermolecular complexes of small/simpler molecules
can mimic those found in larger/more complicated systems at
equilibrium separations. Interestingly, this also suggests that

training and/or testing theoretical methods on non-equilibrium
configurations (particularly in the short-range) of small-to-medium
molecular dimers can be used as a surrogate for describing the NCIs
in a more diverse range of large (and possibly intractable) systems.
Since finite-temperature molecular dynamics and Monte Carlo sim-
ulations require a consistent treatment of the structures and energet-
ics across the entire PES, an accurate and reliable treatment of non-
equilibrium NCIs (including short-range as well as intermediate-
and long-range interactions) is of enormous importance for these
applications as well. However, the difficulties in obtaining such
an accurate and reliable theoretical description of non-equilibrium
NCIs across multiple length scales should also be emphasized. For
instance, the long-range sector of the intermolecular PES requires a
balanced description of both electrostatics and dispersion, and this
can be particularly challenging when dealing with NCIs that also
include charged species and/or molecules with substantial multi-
pole moments. For larger intermolecular separations, intermolec-
ular energies (and forces) tend to be small, which provides addi-
tional challenges when trying to describe points along the PES on the
same footing. At reduced intermolecular separations, the increased
amount of orbital (or density) overlap between monomers gives
rise to a complex interplay between strongly attractive and strongly
repulsive intermolecular forces (e.g., charge transfer and penetra-
tion, Pauli repulsion, and many-body exchange–correlation effects),
and an error when describing any one of these components can lead
to disastrous results.49,88,89 For such short-range non-equilibrium
NCIs, the performance of the current suite of theoretical methods
is still an open question, and a number of studies have reported
higher errors for repulsive intermolecular contacts.55,81,89,90 In this
regime, even the suitability of high-level WFT-based approaches
for generating benchmark Eint data is still largely unresolved as
such approaches suffer from issues related to the use of incomplete
basis sets (i.e., basis set incompleteness and superposition errors) in
conjunction with an approximate treatment of electron correlation
effects (including questions regarding the reliability of perturbative
expansions).

In this work, we directly address the aforementioned challenges
needed for training, testing, and developing next-generation theo-
retical approaches for describing NCIs by introducing NENCI-2021,
a benchmark database of ∼8000 Non-Equilibirum Non-Covalent
Interaction energies for a diverse selection of 141 molecular dimers
of biological and chemical relevance. Starting with the 101 dimers
in the S10149 (and hence S6657) databases, which contain a diverse
set of intermolecular binding motifs (i.e., single and double hydro-
gen bonds, halogen bonds, ion–dipole and dipole–dipole interac-
tions, π–π stacking, dispersion, and X–H ⋅ ⋅ ⋅π) and a large num-
ber of molecular dimers involving water (which represents a cru-
cial first step toward generating benchmark Eint values in aqueous
environments), NENCI-2021 extends the scope of these seminal
works in two directions. For one, NENCI-2021 includes 40 cation–π
and anion–π complexes, a fundamentally important and particu-
larly strong class of NCIs that are primarily induction-bound48 and
characterized by equilibrium Eint values which are typically larger
in magnitude than hydrogen bonds and salt bridges. As such, an
accurate and reliable description of ion–π interactions poses sub-
stantial difficulties for theory, and their inclusion in NENCI-2021
directly addresses the challenge of simultaneously describing diverse
NCI types on the same footing [i.e., point (ii) above]. Second,
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NENCI-2021 also includes an extensive and systematic sampling
of equilibrium and non-equilibrium configurations on each of the
141 intermolecular PESs by simultaneously varying the intermolec-
ular distance and intermolecular angle in each dimer. Designed with
an emphasis on close intermolecular contacts, the complexes in
NENCI-2021 were generated by sampling seven intermolecular dis-
tances (ranging from 0.7× to 1.1× the equilibrium separation) and
nine intermolecular angles per distance (five for each ion–π com-
plex), yielding an extensive database of 7763 benchmark Eint values
obtained at the CCSD(T)/CBS level of theory. In doing so, NENCI-
2021 directly addresses the challenges of describing the collective
nature of NCIs in large/complex systems [i.e., point (i)] and simul-
taneously describing NCIs in equilibrium and non-equilibrium sys-
tems on the same footing [i.e., point (iii)]. Of these 7763 inter-
molecular complexes, 6363 are derived from the molecular dimers
included in the S101 database49 (which includes a total of 2079 com-
plexes involving water, 63 of which are water dimers) and 1400 are
newly added ion–π complexes. All the intermolecular complexes in
NENCI-2021 contain at least one first-row element (C, N, and O),
1715 intermolecular complexes contain a halogen (F, Cl, and Br),
693 contain at least one second-row main-group element (S and P,
not including Cl), and 700 contain an alkali-metal ion (Li+ andNa+).
The Eint values in NENCI-2021 span a total of 225.3 kcal/mol, rang-
ing from −38.5 kcal/mol (corresponding to the strongly attractive
Li+ ⋅ ⋅ ⋅ benzene ion–π complex) to +186.8 kcal/mol (corresponding
to a strongly repulsive DMSO ⋅ ⋅ ⋅DMSO complex that has been
scaled to 0.7× the equilibrium intermolecular separation and rotated
to a non-equilibrium angle), with a mean (median) Eint value of
−1.06 kcal/mol (−2.39 kcal/mol). A detailed SAPT-based energy
decomposition analysis demonstrates the diverse and comprehen-
sive nature of NENCI-2021, which spans all regions of the cor-
responding ternary diagram and includes intermolecular binding
motifs primarily bound by electrostatics (3499), induction (700),
dispersion (1372), or mixtures thereof (2192). A critical error anal-
ysis performed on a representative set of intermolecular complexes
in NENCI-2021 demonstrates that the Eint values provided herein
at the CCSD(T)/CBS level have an average error of ±0.1 kcal/mol,
even for complexes with strongly repulsive Eint values, and maxi-
mum errors of ±0.2–0.3 kcal/mol (i.e., ∼±1.0 kJ/mol) for the most
challenging cases.

When compared to the current state of the art in benchmark
NCI databases, namely, NCIAtlas77–79 and DES15K80 (a subset of
the larger DES370K database with a PES resolution more com-
parable to NENCI-2021 and NCIAtlas), NENCI-2021 is roughly
the same size and computed at a comparable level of theory
[i.e., CCSD(T) extrapolated to the CBS limit]. However, NCI-
Atlas and DES15K primarily focus on one-dimensional (either
radial or angular) scans of the intermolecular PES, while NENCI-
2021 contains two-dimensional (simultaneous radial and angular)
scans of the PES that more thoroughly sample close intermolecu-
lar contacts. Although ion–π interactions are among the strongest
NCIs known, NCIAtlas excludes this class of interactions com-
pletely and DES15K only contains cation–π interactions, while
NENCI-2021 includes a quite substantial number (1400) of both
cation–π and anion–π complexes. Designed to meet the growing
demand for large and high-quality quantum mechanical data in the
chemical sciences, we expect that NENCI-2021 will complement
these state-of-the-art benchmark NCI databases and be another

important resource for testing, training, and developing next-
generation force fields, DFT approximations, WFT methods, and
ML-based intra-/inter-molecular potentials.

The remainder of this article is organized as follows. Section II
describes the construction of NENCI-2021, including the selection
ofmolecular dimers, generation of equilibrium and non-equilibrium
intermolecular complexes, a detailed description of the employed
computational protocol, and a guide to obtaining the database.
Section III discusses the properties of NENCI-2021, including a sta-
tistical analysis of the intermolecular interaction energies and clos-
est intermolecular contacts, an SAPT-based energy decomposition
analysis of the intermolecular binding motifs, and a critical assess-
ment of the error in the benchmark Eint values provided herein. This
article ends with some brief conclusions and future directions in
Sec. IV. In a follow-up to this work,91 many popular WFT and DFT
methods are explicitly tested on the NENCI-2021 database, where
it is shown that there is a nearly universal increase in error when
describing the repulsive wall of the intermolecular PES and that
ion–π complexes can be quite challenging to model in an accurate
and reliable fashion.

II. CONSTRUCTION OF THE NENCI-2021 DATABASE

A. Selection of molecular dimers

NENCI-2021 is a large database of ∼8000 benchmark inter-
molecular interaction energies (Eint; see Sec. II C) that includes a
diverse selection of molecular dimers and binding motifs of biolog-
ical and chemical relevance, with an emphasis on non-equilibrium
(attractive and repulsive) configurations and close intermolecular
contacts. As depicted in the left panel of Fig. 1, the construc-
tion of NENCI-2021 starts with the 101 molecular dimers in the
S10149 database (a superset containing the earlier constructed S6657

database), which were carefully chosen to contain small molecules
with the NCIs found in biological and chemical systems. As such,
NENCI-2021 inherits the extensive sampling of molecule types in
S66 and S101, which are comprised of the {H, C, N, O, F, P, S, Cl,
Br} atom types, ranging in size from small (e.g., H2O, ethene, and
ethyne) to medium (e.g., uracil, indole, and pentane), and include
second- and third-row elements [e.g., dimethyl sulfoxide (DMSO),
MeCl, and BenBr] and positively (e.g., MeNH+3 , imidazole+, and
guanidine+) and negatively (e.g., AcO−, H2PO

−

4 , and HPO2−
4 )

charged species. In addition, NENCI-2021 also inherits a wide vari-
ety of intermolecular binding motifs, including dimers with single
and double hydrogen bonds, halogen bonds,92 and X–H⋅ ⋅ ⋅π inter-
actions, as well as intermolecular complexes primarily bound by dis-
persion, electrostatics (e.g., ion–dipole and dipole–dipole), and mix-
tures thereof. Another salient benefit of using S66 and S101 as the
foundation for NENCI-2021 is the large number of dimers involv-
ing water, which provides a crucial first step toward the generation
of benchmark intermolecular interaction energies in an aqueous
environment.

NENCI-2021 extends these databases in the following two
ways: (i) it includes 40 new cation–π and anion–π complexes for
a total of 141 molecular dimers and (ii) it systematically samples
both equilibrium and non-equilibrium intermolecular distances and
intermolecular angles for each dimer (with a particular emphasis
on close intermolecular contacts) for a total of 7763 benchmark
interaction energies. In particular, NENCI-2021 includes ion–π
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FIG. 1. (left) Graphical depiction of the 141 molecular dimers in the NENCI-2021 database. NENCI-2021 contains all molecular dimers in the original S66 database57 (purple
lines), the additional dimers present in the S101 (superset) database49 (green lines, S66 ⊂ S101), and a new set of 40 cation–π and anion–π complexes (red lines, S66
⊂ S101 ⊂ NENCI-2021). In this graph, each monomer is represented by a vertex, the size of which is proportional to the number of molecular dimers involving that monomer;
graph edges connecting two vertices indicate a molecular dimer formed from the connected monomers. The bold edges between vertices denote two different molecular
dimer orientations involving the connected monomers (e.g., for water–phenol, water is the hydrogen-bond donor in one dimer and the hydrogen-bond acceptor in the other).
Chords passing through the center of a vertex indicate a molecular dimer formed from a single monomer (e.g., there is one water dimer, two uracil dimers, and three
pyridine dimers in NENCI-2021). (right) Overall description of the NENCI-2021 database. For each of the 141 dimers described above, NENCI-2021 generates a series
of equilibrium and non-equilibrium configurations by simultaneously sampling seven intermolecular distances and nine intermolecular angles (five for the ion–π complexes
due to symmetry considerations). As such, NENCI-2021 includes 7763 benchmark CCSD(T)/CBS intermolecular interaction energies, which correspond to a wide range of
equilibrium and non-equilibrium (both repulsive and attractive) geometries and emphasize close intermolecular contacts. See Secs. II A–II C for the details regarding the
construction of NENCI-2021.

complexes comprised of the simplest biologically relevant monova-
lent cations (Li+ and Na+) and anions (F− and Cl−) interacting with
a representative set of π-systems, which includes the five DNA/RNA
nucleobases (adenine, cytosine, guanine, thymine, and uracil),
benzene, pyridine, and trifluorotriazine. The inclusion of ion–π
complexes in NENCI-2021 was primarily driven by the fact that
ion–π interactions are among the strongest NCIs known (with inter-
molecular interaction energies often rivaling that of hydrogen bonds
and salt bridges) and have been observed throughout chemistry
and biology.93–97 This extension was also motivated by some of our
recent work,48 which used SAPT88 to demonstrate that cation–π
complexes are primarily bound by induction, while anion–π com-
plexes are bound by a complex interplay between induction, disper-
sion, and electrostatics; as such, their inclusion substantially expands
the scope/range of intermolecular binding motifs in NENCI-2021
(see Sec. III B). As shown in Paper II91 of this series, this com-
plex interplay between intermolecular forces (in addition to the
presence of charged atomic species) in ion–π complexes poses a
unique challenge when trying to obtain accurate and reliable inter-
molecular interaction energies using both WFT and DFT meth-
ods. In addition, the inclusion of promiscuous ion–π binders (i.e.,
π-systems such as the DNA/RNA nucleobases, which can form
favorable ion–π complexes with both cations and anions48) and π-
systems that can only form energetically favorable ion–π complexes
with cations (e.g., benzene) or anions (e.g., trifluorotriazine) is also
well-aligned with one of the fundamental goals of NENCI-2021, i.e.,
to provide a more comprehensive sampling of both attractive and
repulsive non-equilibrium configurations containing a diverse array
of NCI types.

Motivated by the S22x5,56 S66x8,57,58 and S101x749 databases,
in which intermolecular interaction energy curves were constructed
for each molecular dimer, and the S66a859 database, in which
intermolecular angles were sampled, NENCI-2021 systematically
samples both equilibrium and non-equilibrium intermolecular dis-
tances and intermolecular angles for each of the 141 molecu-
lar dimers described above. As depicted in the right panel of
Fig. 1, NENCI-2021 samples seven intermolecular distances (i.e.,
0.7×, 0.8×, 0.9×, 0.95×, 1.0×, 1.05×, 1.1× the equilibrium intermolec-
ular separation) and nine intermolecular angles (only five inter-
molecular angles for the ion–π complexes, vide infra); for more
details, see Sec. II B. NENCI-2021 therefore contains benchmark
intermolecular interaction energies (see Secs. II C and III C) for 7 × 9
≙ 63 geometries (configurations) for each of the 101 molecular
dimers in the S101 database and 7 × 5 ≙ 35 geometries for each
of the 40 ion–π complexes, yielding a total of 63 × 101 + 35 ×
40 ≙ 7763 equilibrium and non-equilibrium intermolecular com-
plexes. By including such a systematic sampling of equilibrium
and non-equilibrium structures, NENCI-2021 is a relatively large
database that contains a wide range of attractive and repulsive
intermolecular interaction energies (see Sec. III A); as such, we
believe that NENCI-2021 will be well-suited for in-depth studies
of the NCIs found throughout biology and chemistry, as well as
training and testing next-generation density functional approxi-
mations, dispersion corrections, polarizable force fields, and ML-
based potentials. By including an extensive set of angularly sam-
pled geometries at 0.7× and 0.8× the equilibrium intermolecu-
lar separation, NENCI-2021 also includes a wide range of close
intermolecular contacts, which are found throughout chemistry

J. Chem. Phys. 155, 184303 (2021); doi: 10.1063/5.0068862 155, 184303-5

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

and chemical biology as well as high-pressure systems; here,
we stress again that benchmark intermolecular interaction ener-
gies in this regime not only serve as surrogates for larger/more
complex systems at equilibrium, but are also important to ensure
similar performance across the entire intermolecular PES when
training, testing, and developing novel theoretical methods.

B. Generation of equilibrium and non-equilibrium
intermolecular complexes

Unless otherwise specified, all monomer geometries were taken
from the S6657 and S10149 databases. For the eight π-systems used
to construct the 40 ion–π complexes in NENCI-2021, the monomer
geometries for benzene, pyridine, and uracil were taken from the
S6657 database, while the monomer geometries for trifluorotri-
azine and the DNA nucleobases were taken from our recent work
on promiscuous ion–π binding.48 During the construction of the
equilibrium and non-equilibrium molecular dimer geometries, we
employed the frozen monomer convention in which all monomers
were kept fixed at their optimized geometries.

The 66 molecular dimer geometries in the S6657 database were
also taken as is andwithout any changes; for the remaining 75molec-
ular dimers, equilibrium geometries were optimized (see Sec. II C)
along a pre-defined characteristic intermolecular interaction vec-
tor. This characteristic intermolecular interaction vector was based
on the interaction type (e.g., hydrogen-bonded, halogen-bonded,
dispersion-bound, and ion–π) assigned to the molecular dimer via
chemical intuition. Dimers that appear in the S66 database were
assigned the same interaction type as in the original work,57,59 and
the remaining dimers were assigned an interaction type that was
as consistent as possible with the S66 convention. Given one of
the following interaction types, the characteristic intermolecular
interaction vector was defined as follows:

● For hydrogen (halogen)-bonded systems, the interaction
vector points between the hydrogen (halogen) bond donor
and the hydrogen (halogen) bond acceptor. For double-
hydrogen-bonded systems, the interaction vector is defined
as the mean of the two hydrogen-bond vectors (with both
taken to originate from the same monomer).

● For dispersion-bound systems, the interaction vector points
from the center of mass of monomer A to the center of mass
of monomer B.

● For ion–π complexes, the interaction vector points from the
ion to the nuclear center of charge of the π-system (com-
puted using only the atoms in each ring, i.e., the five carbons
and nitrogen in pyridine). Here, we note in passing that this
on-axis placement of the ion does not necessarily correspond
to the lowest-energy geometry of each ion–π complex.98,99

● Finally, there remain a few special cases (i.e., the T-shaped
benzene dimer), which do not fit well into any of these
categories. Such systems are treated analogously with the
dispersion-bound complexes, but only a subset of atoms
is used in calculating an effective “molecular center” to
ensure that the interaction vector accurately characterizes
the interaction. For reference, the atoms used to calculate
the interaction vector for each such complex are provided in
Table S1.

All remaining equilibrium molecular dimer geometries were
obtained by minimizing the intermolecular interaction energy by
rigidly translating monomer A along the characteristic intermolecu-
lar interaction vector (see Sec. II C) and then used as starting points
to generate all non-equilibrium structures.

To systematically sample both intermolecular distances and
intermolecular angles for the 141 molecular dimers in NENCI-2021,
we started with the procedure devised by Řezáč, Riley, and Hobza
when constructing the S66x857 and S66a859 databases, and extended
this protocol to accommodate a broader range of intermolecular
interaction types and orientations. As such, the 528 molecular dimer
geometries in the S66a859 database were also taken as is and without
any changes. The procedure for generating the remaining 7094 non-
equilibrium intermolecular complexes in NENCI-2021 is outlined
below, with steps 1–5 graphically illustrated for the water dimer in
Fig. 2.

STEP 1. Starting with an optimized equilibrium intermolecular
complex, arbitrarily label each monomer as either A or B (except for
the ion–π complexes, in which the ion should be labeled monomer
A). Draw the characteristic intermolecular interaction vector from B
toA (black dashed line) according to the interaction type assigned to
the molecular dimer (vide supra). Define the z axis (solid red arrow)
along the interaction vector.

STEP 2. Without loss of generality, assume that A will be
rotated around B (the alternative will be dealt with in step 8 below).
To determine the axes of rotation, first find the principal axis (Cn)
corresponding to monomer A [i.e., the molecular axis with the high-
est degree (n) of rotational symmetry]; for the water monomer
depicted in Fig. 2, the principal axis is the black solid line labeled
C2. If no principal axis with n ≥ 2 exists, we follow the convention
used during the construction of the S66a859 database, i.e., an approx-
imate principal axis is defined by removing all hydrogen atoms from
the molecule and reducing the identity of each heavy atom and
functional group to identical spheres.

STEP 3. Define the y axis (yellow solid arrow) to be perpendic-
ular to the z axis and the principal axis of A.

STEP 4.Define the x axis (blue solid arrow) to be perpendicular
to the z and y axes, thereby completely specifying the local reference
frame used in this work.

STEP 5. To generate preliminary geometries for the first four
non-equilibrium intermolecular angles, rotate A about the x and y
axes passing through the tail of the interaction vector (i.e., located
on monomer B) by θ ≙ ±30○.

STEP 6. For each non-equilibrium intermolecular angle, min-
imize the intermolecular interaction energy by rigidly translating
A along the characteristic intermolecular interaction vector (see
Sec. II C). For the ion–π complexes that are repulsive along the entire
dissociation curve (e.g., Na+ ⋅ ⋅ ⋅ trifluorotriazine), the minimum of
the SAPT exchange + induction + dispersion (EID) energy48 was
used in lieu of the intermolecular interaction energy (see Sec. II C).
Define the intermolecular distance (i.e., the length of the character-
istic intermolecular interaction vector) in each optimized geome-
try as the equilibrium (1.0×) intermolecular distance for the given
non-equilibrium intermolecular angle.

STEP 7. For each non-equilibrium intermolecular angle, scale
the corresponding (optimized) interaction vector by factors of
0.7×, 0.8×, 0.9×, 0.95×, 1.05×, and 1.1×, and rigidly translate A con-
sistent with each scaled vector. This will provide molecular dimer

J. Chem. Phys. 155, 184303 (2021); doi: 10.1063/5.0068862 155, 184303-6

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

FIG. 2. Graphical depiction of steps 1–5 in the protocol used for generating four (of eight) non-equilibrium intermolecular angles for the water dimer. As described in the text,
a local reference frame (x axis: blue solid arrow, y axis: yellow solid arrow, and z axis: red solid arrow) is defined with respect to the characteristic intermolecular interaction
vector (black dashed line) between monomers A (red) and B (gray) as well as the principal axis on monomer A (black solid line). Preliminary geometries for the first four
non-equilibrium intermolecular angles are then obtained by rotating A around the x and y axes on B by θ = ±30○. For clarity, the inset of step 5 also provides a view down
the z axis of the corresponding non-equilibrium geometries. To obtain preliminary geometries for the remaining four non-equilibrium intermolecular angles, this procedure is
repeated after swapping the monomer labels. See Sec. II B for more details.

geometries along four separate intermolecular dissociation curves
corresponding to each of the four non-equilibrium intermolecular
angles.

STEP 8. Switch the A and B labels, and repeat steps 1–7. This
will provide molecular dimer geometries along the intermolecular
dissociation curves corresponding to each of the remaining four
non-equilibrium intermolecular angles (for a total of eight non-
equilibrium intermolecular angles). Note that the ion–π complexes
in NENCI-2021 have only four unique non-equilibrium intermolec-
ular angles due to the spherical symmetry of the ion; as such, step 8
is unnecessary and can be skipped for these molecular dimers.

STEP 9. For the equilibrium intermolecular angle, also scale
the corresponding (optimized) interaction vector by factors of
0.7×, 0.8×, 0.9×, 0.95×, 1.05×, and 1.1×, and rigidly translate A con-
sistent with each scaled vector. This will provide molecular dimer
geometries along the intermolecular dissociation curve correspond-
ing to the equilibrium intermolecular angle.

Here, we note in passing that the procedure outlined above for
generating non-equilibrium intermolecular complexes is just one of
a number of different methods for doing so. For instance, sampling
dimer geometries from ab initio molecular dynamics (AIMD) sim-
ulations (or meta-dynamics100 to enhance sampling away from the
equilibrium/global minimum structure) is arguably one of the most
straightforward alternatives. However, the procedure employed in
this work was primarily chosen because it provides a systematic
and well-defined way to sample the intermolecular PES (along
the characteristic intermolecular interaction vector) for a large
number of molecular dimers. In a follow-up manuscript, in this
series (i.e., Paper II91), we will critically assess the performance
of a large number of popular DFT and WFT methods on this

database—here, the systematic structure of NENCI-2021 facilitates
an analysis along the scaled intermolecular distance (i.e., the rele-
vant correlation length for intermolecular interactions), which is not
as straightforward with other sampling procedures.

C. Computational details

Intermolecular interaction energies (Eint) for each of the 7763
intermolecular complexes in NENCI-2021 were computed via

Eint ≙ EAB − EA − EB, (1)

in which EAB is the total energy of the dimer and EA (EB) is the total
energy of monomer A (B). As mentioned above, all monomers were
kept fixed at their optimized geometries, and the counterpoise cor-
rection of Boys and Bernardi101 was applied to minimize basis set
superposition error (BSSE).

Unless otherwise specified, Dunning’s correlation consistent
basis sets (with and without diffuse functions), namely, cc-pVXZ
and aug-cc-pVXZ (with X ≙ D, T, Q),102–105 along with the frozen
core (FC) approximation were used for all atoms except Li and Na.
To provide a more accurate description of the core/valence electrons
in the cation–π complexes, the cc-pwCVXZ106 and aug-cc-pwCVXZ
basis sets106 were used for Li and Na in conjunction with the fol-
lowing modified FC approximation: Li+ ≙ 1s2 (no core) and Na+

≙ [He]2s22p6 ([He] core). All calculations employed the resolution-
of-the-identity (RI) or density-fitting (DF) approximation dur-
ing self-consistent field (SCF) calculations at the mean-field
Hartree–Fock (HF) level and during post-HF calculations to account
for electron correlation effects; the RI/DF approximation has
been shown to introduce negligible errors when computing
intermolecular interaction energies.107,108 Whenever available, the
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corresponding JKFIT and RI auxiliary basis sets were used in
conjunction with each primary (atomic orbital) basis set, i.e.,
cc-pVXZ-JKFIT/cc-pVXZ-RI109,110 were used with cc-pVXZ, and
aug-cc-pVXZ-JKFIT/aug-cc-pVXZ-RI109,110 were used with aug-cc-
pVXZ. For the cation–π complexes, the def2-aQZVPP-JKFIT/def2-
aQZVPP-RI auxiliary basis sets111–113 (which are some of the largest
available auxiliary basis sets) were taken from the MOLPRO114,115

basis set library and used in conjunction with cc-pwCVXZ and
aug-cc-pwCVXZ for Li and Na. Throughout this work, we used
the abbreviation aXZ to denote the following basis set usage: aug-
cc-pVXZ (with aug-cc-pVXZ-JKFIT/aug-cc-pVXZ-RI) for {H, C,
N, O, F, S, P, Cl, Br} and aug-cc-pwCVXZ (with def2-aQZVPP-
JKFIT/def2-aQZVPP-RI) for {Li, Na}; we also use the abbreviation
haXZ (i.e., heavy-aug-cc-pVXZ, also known as jul-cc-pVXZ116) to
mean cc-pVXZ (with cc-pVXZ-JKFIT/cc-pVXZ-RI) for {H}, aug-cc-
pVXZ (with aug-cc-pVXZ-JKFIT/aug-cc-pVXZ-RI) for {C, N, O, F,
S, P, Cl, Br}, and aug-cc-pwCVXZ (with def2-aQZVPP-JKFIT/def2-
aQZVPP-RI) for {Li, Na}.

For each molecular dimer and non-equilibrium intermolecu-
lar angle, the corresponding optimal intermolecular distance (1.0×)
was obtained via a constrained minimization of Eint at the BSSE-
corrected MP2/cc-pVTZ level [see Eq. (1)] following the proce-
dure used to construct the S66 database;57 for the molecular dimers
not included in the original S66 database, the same procedure
was also used to obtain the optimal intermolecular distance for
the equilibrium intermolecular angle. In practice, this was accom-
plished by computing Eint for a series of dimer geometries in which
monomer A (and/or B) was rigidly translated along the characteris-
tic intermolecular interaction vector (see Sec. II B) and then locat-
ing the minimum value along the corresponding cubic spline inter-
polant. As such, each intermolecular complex in NENCI-2021 with a
1.0× intermolecular distance corresponds to the lowest-energy
geometry (at the given intermolecular angle) at the BSSE-corrected
MP2/cc-pVTZ level. For most non-covalent systems, optimization
of the equilibrium molecular geometry at this level of theory yields
structures that are close to the true minimum on the PES.57 For
the few molecular dimers that do not have a minimum using this
method (e.g., ion–π complexes such as Li+/Na+ ⋅ ⋅ ⋅ trifluorotri-
azine and F−/Cl− ⋅ ⋅ ⋅ benzene), the sum of the exchange, induction,
and dispersion components of the SAPT2+/aDZ decomposition
(εEID ≙ εExch + εInd + εDisp, vide infra)—which have clear and dis-
tinct minima even for unbound ion–π complexes48—wasminimized
instead.

Benchmark Eint values in NENCI-2021 were obtained using
Eq. (1) with all dimer (EAB) andmonomer (EA and EB) contributions
computed using the “gold standard” CCSD(T) method extrapolated
to the complete basis set (CBS) limit,52,55 i.e.,

E
CCSD(T)/CBS

≡ E
MP2/CBS

+ δE
CCSD(T)/haTZ. (2)

In this expression, the CBS-extrapolated MP2 total energy,

E
MP2/CBS

≡ E
MP2/a(TQ)Z

≙ E
HF/aQZ

+ E
MP2/a(TQ)Z
corr , (3)

was obtained using the two-point extrapolation procedure of Halkier
et al.117 on the MP2 correlation energy, namely,

E
MP2/a(XY)Z
corr ≙

X3E
MP2/aXZ
corr − Y3E

MP2/aYZ
corr

X3 − Y3
(4)

with X ≙ 3 (aTZ) and Y ≙ 4 (aQZ). The so-called “delta” CCSD(T)
correction,

δE
CCSD(T)/haTZ

≙ E
CCSD(T)/haTZ

− E
MP2/haTZ, (5)

was computed using the haTZ basis set. The accuracy of this scheme
for computing Eint—in particular for intermolecular complexes with
particularly close contacts (i.e., 0.7× the equilibrium intermolecular
separation)—is critically assessed in Sec. III C.

The energy decomposition analysis scheme (and classification
of intermolecular binding motifs) provided in Sec. III B was based
on calculations at the SAPT2+/aDZ level of theory,88,118–121 the so-
called “silver standard” of SAPT.122

All calculations in this work were performed using the Psi4

(v1.2) software program.123 During all HF calculations, the SCF
convergence parameters were set to 1.0 × 10−8 in the total energy
(e_convergence ≙ 1E-8) and 1.0 × 10−8 in the root-mean-square
DIIS error (d_convergence ≙ 1E-8). For all CCSD(T) calcula-
tions, the CCSD convergence parameters were set to 1.0 × 10−6

in the total energy (e_convergence ≙ 1E-6) and 1.0 × 10−5 in
the residual of the t-amplitudes (r_convergence ≙ 1E-5). All
CCSD(T)/haTZ calculations (which constitute the vast majority of
the computational effort needed to generate the benchmark Eint val-
ues in NENCI-2021) were completed in ≈ 1.5M core-hours using
computational resources provided by Cori Haswell (Intel Xeon Pro-
cessor E5-2698 v3 @ 2.30 GHz) and our research group cluster (Intel
Xeon Platinum 8160 Processor @ 2.10 GHz).

D. Obtaining the NENCI-2021 database

A single zip file containing the Cartesian coordinates of the
7763 intermolecular complexes in NENCI-2021 (in xyz format) and
a csv file containing all the CCSD(T)/CBS and SAPT energetic com-
ponents (in kcal/mol) are provided as supplementary material. The
properties of each monomer (i.e., charge, multiplicity, and the num-
ber of atoms), the corresponding benchmark Eint value, and the
CCSD(T)/CBS and SAPT energetic components (in kcal/mol) can
also be found in the comment line of each xyz file (see the included
README file for additional details).

III. PROPERTIES OF THE NENCI-2021 DATABASE

A. Statistical analysis of intermolecular interaction
energies and closest intermolecular contacts

A well-balanced database of intermolecular interactions should
have a wide range of Eint values,57 and this is indeed the case
for NENCI-2021, as evidenced by the normalized Eint distribu-
tions provided in Fig. 3. With Eint values ranging from −38.5
to +186.8 kcal/mol, the benchmark intermolecular interaction
energies in NENCI-2021 span 225.3 kcal/mol. In general, the
most attractive (most negative) Eint values in NENCI-2021 cor-
respond to charged intermolecular complexes that tend to be at
or close to their equilibrium geometries. For instance, the single
most attractive intermolecular complex in NENCI-2021 (with Eint

≙ −38.5 kcal/mol) corresponds to the Li+ ⋅ ⋅ ⋅ benzene ion–π system
at its equilibrium geometry (i.e., with Li+ located above the center
of the benzene ring; see Sec. II B). In fact, the top ten most attrac-
tive intermolecular interactions in NENCI-2021 correspond to the
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FIG. 3. Normalized probability density functions (PDFs) of the benchmark Eint val-
ues in the NENCI-2021 database as a function of the intermolecular distance
(with the 0.95× and 1.05× scaled intermolecular distances omitted for clarity).
The Eint values in NENCI-2021 range from −38.5 kcal/mol (most attractive) to
+186.8 kcal/mol (most repulsive), with a mean (median) interaction energy of
−1.06 kcal/mol (−2.39 kcal/mol). Insets display the peaks of the 0.9×, 1.0×, and
1.1× PDFs and the (positive Eint) tails of the 0.7× and 0.8× PDFs.

various Li+ ⋅ ⋅ ⋅π complexes at slightly different (but close to equi-
librium) intermolecular distances and angles; these are followed
by the ionic H2O ⋅ ⋅ ⋅HPO2−

4 hydrogen-bonded complexes (with a
minimum Eint ≙ −34.6 kcal/mol) and the Na+ ⋅ ⋅ ⋅π complexes (with
a minimum Eint ≙ −28.2 kcal/mol). In general, the most repulsive
(most positive) Eint values in NENCI-2021 correspond to inter-
molecular complexes in which the monomers are separated by the
shortest distance (0.7×) and rotated away from their equilibrium
intermolecular angle, as both of these geometric perturbations lead
to a rapid increase in the exponentially repulsive steric contribu-
tion to the interaction energy. For instance, the single most repul-
sive intermolecular complex in NENCI-2021 (with Eint ≙ +186.8
kcal/mol) corresponds to the dimethyl sulfoxide (DMSO) dimer sep-
arated by 0.7× the equilibrium intermolecular distance and rotated
to a non-equilibrium angle; in fact, this dimer has the closest inter-
molecular contact in the entire database (with dH⋅ ⋅ ⋅H ≙ 0.81 Å,
vide infra). Other substantially repulsive intermolecular complexes
in NENCI-2021 include the Na+ ⋅ ⋅ ⋅ trifluorotriazine ion–π sys-
tem (with a maximum Eint ≙ +118.8 kcal/mol) and another DMSO
dimer (with Eint ≙ +112.4 kcal/mol), both of which were charac-
terized by a 0.7× intermolecular separation and a non-equilibrium
intermolecular angle.

The mean and median Eint values in NENCI-2021 are
−1.1 kcal/mol and −2.4 kcal/mol, respectively, which correspond
to typical interaction energies found in weakly bound molec-
ular dimers. These statistical measures are primarily governed
by the (relatively) large number of intermolecular complexes in
NENCI-2021 that contain monomers in non-equilibrium (angu-
lar) orientations. Such geometric perturbations tend to nullify
the energetic stabilization provided by directional intermolec-
ular binding motifs (e.g., single and double hydrogen bonds,
and dipole–dipole interactions) and often result in complexes
with weakly attractive Eint values. Broken down by the scaled
intermolecular distance, the mean (median) Eint values are as fol-
lows: +21.8 (+11.7) kcal/mol for 0.7×, +0.5 (+0.2) kcal/mol for

0.8×, −5.2 (−2.9) kcal/mol for 0.9×, −6.0 (−3.5) kcal/mol for
0.95×, −6.1 (−3.5) kcal/mol for 1.0×, −5.9 (−3.4) kcal/mol
for 1.05×, and −5.5 (−3.1) kcal/mol for 1.10×. In total, NENCI-2021
contains 6020 attractive (Eint < 0) and 1743 repulsive (Eint > 0) inter-
molecular complexes, and the crossover from attractive to repulsive
Eint values typically occurs around 0.8× the equilibrium intermolec-
ular distance. As one might expect, the proportion of attractive
intermolecular interactions in NENCI-2021 quickly diminishes as
the distance between monomers decreases; broken down again by
the scaled intermolecular distance, we find that the percentage of
attractive (repulsive) Eint values are as follows: 3.4% (96.6%) for
0.7×, 47.8% (52.2%) for 0.8×, 97.6% (2.4%) for 0.9×, 98.3% (1.7%)
for 0.95×, 98.3% (1.7%) for 1.0×, 98.2% (1.8%) for 1.05×, and 98.0%
(2.0%) for 1.1×. Quite interestingly, there are still a number (N ≙ 38)
of attractive intermolecular complexes at the 0.70× scaled inter-
molecular distance, which generally correspond to strongly favor-
able dimers such as the Li+ ⋅ ⋅ ⋅π complexes discussed above. In the
same breath, there are also quite a few (N ≙ 19) repulsive complexes
at the equilibrium (1.0×) distance—some of which even occur at
the corresponding equilibrium angle, e.g., the cation–π and anion–π
complexes involving trifluorotriazine and benzene, respectively.

A well-balanced database of intermolecular interactions should
also sample a wide range of intermolecular atom-pair distances (i.e.,
interatomic distances between the atoms on molecule A and the
atoms on molecule B). Again, this is indeed the case for NENCI-
2021, and is demonstrated by the series of normalized probabil-
ity density functions (PDFs) in Fig. 4, which quantify a repre-
sentative set of atom-pair distances (i.e., O ⋅ ⋅ ⋅H, N ⋅ ⋅ ⋅H, H ⋅ ⋅ ⋅H,
and C ⋅ ⋅ ⋅H) as a function of intermolecular separation. In Fig. 4,
we chose to focus on the O ⋅ ⋅ ⋅H, N ⋅ ⋅ ⋅H, H ⋅ ⋅ ⋅H, and C ⋅ ⋅ ⋅H
intermolecular atom-pair distances as the first two are represen-
tative of hydrogen-bonded systems and the last two are the rel-
evant interatomic distances for non-bonded complexes in gen-
eral. Since NENCI-2021 was designed with a particular empha-
sis on close intermolecular contacts, we focus our discussion on
the short-distance sectors in these PDFs. As discussed above in
the Introduction, such close intermolecular contacts are impor-
tant in a number of applications18–21,49 and pose significant dif-
ficulty for both WFT and DFT methods (see Paper II91 in this
series), as both strongly attractive and strongly repulsive intermolec-
ular forces must be accurately described to obtain a quantitatively
correct Eint value. As the intermolecular distance is reduced from
1.1× to 0.7×, the complexes in NENCI-2021 sample increasingly
closer interatomic distances and begin to more appreciably populate
the region inside the corresponding vdW envelope. In other words,
a number of intermolecular atom-pair distances (RAB) are less than
the sum of the corresponding vdW radii, i.e., RAB < R

vdW
AB ≡ R

vdW
A

+ RvdW
B . Plotted as vertical black dotted lines in Fig. 4, these

RvdW
AB values were computed using the vdW radii provided by

Bondi124 for {C, N, O} and the revised value obtained by Row-
land and Taylor125 for {H}, and take on the following values:
2.61 Å (O ⋅ ⋅ ⋅H), 2.64 Å (N ⋅ ⋅ ⋅H), 2.18 Å (H ⋅ ⋅ ⋅H), and 2.79 Å
(C ⋅ ⋅ ⋅H). As one would expect, these values are always smaller
than the mean closest contact distances for the 141 equilibrium
intermolecular complexes in NENCI-2021, i.e., 2.68 Å (O ⋅ ⋅ ⋅H),
3.09 Å (N ⋅ ⋅ ⋅H), 3.01 Å (H ⋅ ⋅ ⋅H), and 3.17 Å (C ⋅ ⋅ ⋅H); for
comparative purposes, these values are plotted as vertical blue
solid lines in Fig. 4. Broken down by scaled intermolecular
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FIG. 4. Normalized probability density functions (PDFs) of the O ⋅ ⋅ ⋅H, N ⋅ ⋅ ⋅H,
H ⋅ ⋅ ⋅H, and C ⋅ ⋅ ⋅H intermolecular atom-pair distances in the NENCI-2021
database as a function of the scaled intermolecular distance (with the 0.95× and
1.05× scaled intermolecular distances omitted for clarity). For reference, vertical
blue solid lines indicate the mean closest intermolecular contact distances in the
141 equilibrium complexes in NENCI-2021, while the vertical black dotted lines
indicate the sum of the atomic vdW radii124,125 corresponding to each atom pair.
See the main text for more details.

distance, the percentage of O ⋅ ⋅ ⋅H (N ⋅ ⋅ ⋅H) intermolecular
atom-pair distances with RAB < R

vdW
AB is 17.0% (10.8%) for

0.7×, 13.5% (7.4%) for 0.8×, 10.7% (4.4%) for 0.9×, 9.1% (3.4%)
for 0.95×, 7.8% (2.8%) for 1.0×, 6.9% (2.4%) for 1.05×, and
6.1% (1.9%) for 1.1×. Applying the same analysis to the H ⋅ ⋅ ⋅H
(C ⋅ ⋅ ⋅H) atom-pair distances yields the following: 4.5% (13.2%) for
0.7×, 2.4% (8.6%) for 0.8×, 1.2% (4.4%) for 0.9×, 0.7% (2.5%)
for 0.95×, 0.2% (1.2%) for 1.0×, 0.1% (0.5%) for 1.05×, and 0.1%
(0.2%) for 1.1×. The closest contacts in NENCI-2021 occur in com-
plexes in which the intermolecular distance has been scaled to
0.7× and the monomers have been rotated such that the atoms

(on each monomer) are forced into close proximity. For refer-
ence, the shortest intermolecular atom-pair distances in NENCI-
2021 are significantly shorter than RvdW

AB , and were found to be
0.82 Å for O ⋅ ⋅ ⋅H (DMSO dimer, Eint ≙ +186.8 kcal/mol, 31%
of RvdW

OH ), 1.30 Å for N ⋅ ⋅ ⋅H (uracil⋅ ⋅ ⋅neopentane, Eint ≙ +80.5
kcal/mol, 49%), 0.81 Å for H ⋅ ⋅ ⋅H (peptide⋅ ⋅ ⋅pentane, Eint ≙ +72.3
kcal/mol, 37%), and 1.22 Å for C ⋅ ⋅ ⋅H (benzene⋅ ⋅ ⋅AcOH, Eint

≙ +76.4 kcal/mol, 44%). While it is not surprising to find the most
repulsive intermolecular complex in NENCI-2021 (i.e., the DMSO
dimer) listed among the closest contacts, the other examples are far
from the most positive end of the Eint spectrum and reflect the wide
range of attractive and repulsive intermolecular forces sampled in
this database.

B. Energy decomposition analysis
of the intermolecular binding motifs

A well-balanced database of intermolecular interac-
tions should also sample a wide variety of different binding
motifs. Here, we would again argue that this is the case for
NENCI-2021, and demonstrate this point by the extensively
populated ternary diagrams depicted in Fig. 5. Introduced
by Singh et al.126 in the late 2000s, these ternary diagrams
were constructed using a SAPT decomposition of Eint into
the following four components for each intermolecular com-
plex in NENCI-2021: εElst (electrostatics, Elst), εExch (exchange,
Exch), εInd (induction, Ind), and εDisp (dispersion, Disp), i.e.,
Eint ≈ εSAPT ≙ εElst + εExch + εInd + εDisp. In particular, we performed
this decomposition at the SAPT2+/aDZ level of theory,88,118–121 the
so-called “silver standard” of SAPT,122 which has been shown to
have an overall mean absolute error (MAE) of 0.30 kcal/mol across
the S22,54 HBC6,127 NBC10,128–131 and HSG67 databases.55 Unlike
the “bronze standard” sSAPT0/jun-cc-pVDZ,122 which can under-
estimate the dispersion component in anion–π complexes by
more than 100%,132 the more sophisticated SAPT2+/aDZ method
employed herein is expected to more accurately describe εDisp in
the 700 anion–π complexes present in NENCI-2021. As such, this
SAPT level should be well-suited to provide a physically sound and
semi-quantitative characterization of the binding motifs included in
NENCI-2021.

In previously constructed databases of non-covalent interac-
tions (e.g., S6657 and S10149), each intermolecular complex was typ-
ically classified into one of three categories based on whether Eint

≈ εSAPT was dominated by the εElst component (Elst-bound), the
εDisp component (Disp-bound), or a mixture thereof (Mix-bound).
Since the εInd component tended to be small in these complexes, the
analogous and fourth Ind-bound category was deemed to be largely
unnecessary.With the addition of 1400 ion–π complexes (in particu-
lar, the 700 cation–π systems), the scope of the SAPT decomposition
analysis is substantially wider in NENCI-2021 and now encompasses
the Ind-bound regime.48 As such, we propose a natural extension
of the traditional three-category classification scheme made popu-
lar by Řezáč et al.57 and Burns et al.53,133 to include the Ind-bound
category. To do so, we construct a three-dimensional feature space
defined by the εDisp/εElst, εInd/εDisp, and εElst/εInd ratios as follows:

STEP 1. To start, a single dimension of the feature space is cho-
sen as the basis for constructing an initial sub-classification scheme.
Although this choice is arbitrary, we will start with the εDisp/εElst
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FIG. 5. (left) Geometric depiction of the extended four-category classification scheme (based on a SAPT decomposition of Eint) used to classify each intermolecular complex
in NENCI-2021 as follows: Elst-bound (E, green), Ind-bound (I, red), Disp-bound (D, blue), or Mix-bound. As described in the main text, this classification scheme can be rep-
resented by a fused ternary diagram (TEID), which has been colored according to the following rule: each intermolecular complex that has been assigned the same category in
any two of the three sub-classification schemes (TED, T ID, and TEI) retains that color in TEID; otherwise, the complex is classified as Mix-bound (white). (middle/right) Ternary
diagrams depicting the breakdown of the SAPT2+/aDZ intermolecular interaction energies of each complex in NENCI-2021 according to the contributions from electrostatics
(εElst), induction (εInd), and dispersion (εDisp). Since εElst can be positive [Elst(+)] or negative [Elst(−)], these plots are comprised of two ternary diagrams [one for Elst(+)
and one for Elst(−)] that have been fused together. In these ternary diagrams, the shaded polygons are used to reflect the four-category classification scheme described
above, i.e., Elst-bound (green), Ind-bound (red), and Disp-bound (blue); complexes that are not located in any one of these regions are Mix-bound. In the middle panel, each
point has been colored using an RGB scheme with values given by {∣εInd∣/(∣εElst∣ + ∣εInd∣ + ∣εDisp∣), ∣εElst∣/(∣εElst∣ + ∣εInd∣ + ∣εDisp∣), ∣εDisp∣/(∣εElst∣ + ∣εInd∣ + ∣εDisp∣)}.
In the right panel, each point is colored according to the scaled intermolecular distance.

ratio, as this selection is tantamount to constructing the aforemen-
tioned three-category classification scheme (i.e., Elst-bound, Disp-
bound, or Mix-bound). For illustrative purposes, a ternary diagram
(TED) depicting this initial sub-classification scheme is plotted in the
left panel of Fig. 5.

STEP 2. Intermolecular complexes with ∣εDisp/εElst∣ > η are sub-
classified as Disp-bound (blue shaded regions in TED), while inter-
molecular complexes with ∣εElst/εDisp∣ > η are sub-classified as Elst-
bound (green shaded regions in TED). If one stopped at this point,
set η ≙ 2, and classified all other cases as Mix-bound, this initial sub-
classification scheme (based on the single εDisp/εElst feature) would
be equivalent to the three-category classification scheme described
above. Since the value of η is somewhat arbitrary, we have chosen to
employ a slightly smaller value (η ≙ 3/2) in the classification scheme
introduced in this work; with this choice for η, fewer intermolecular
complexes will be classified as Mix-bound (vide infra).

STEP 3. To go beyond this three-category classification
scheme, step 2 is repeated for the two remaining dimensions of the
feature space. Selection of the εInd/εDisp feature generates the TID

ternary diagram in Fig. 5 and the analogous sub-classification of
intermolecular complexes as follows: Disp-bound (if εDisp/εInd > η;
blue shaded regions in TID) or Ind-bound (if εInd/εDisp > η; red
shaded regions). Similarly, the εElst/εInd feature yields the final
required sub-classification scheme: Elst-bound (if ∣εElst/εInd∣ > η;
green shaded regions in TEI) or Ind-bound (if ∣εInd/εElst∣ > η;
red shaded regions). Here, we note in passing that the absolute
value (magnitude) must be used for all sub-classifications based
on εElst as the sign of the Elst component can be positive or
negative.

STEP 4. To arrive at our extended (i.e., four-category) clas-
sification scheme, each intermolecular complex that has been

sub-classified (in step 2 and step 3) with the same label twice retains
that label; otherwise, the intermolecular complex is classified asMix-
bound. This final classification scheme is graphically depicted in the
colored TEID ternary diagram in Fig. 5, which is assembled as an
“outer sum” over the colored ternary diagrams corresponding to the
sub-classification schemes, i.e., TEID ≙ TED ⊕ TID ⊕ TEI, in which
the colors of TEID are determined according to the rules described
above.

Based on this extended four-category classification scheme,
the 141 equilibrium intermolecular complexes in NENCI-2021 are
comprised of 54 (38.3%) Elst-bound, 23 (16.3%) Ind-bound, 31
(22.0%) Disp-bound, and 33 (23.4%) Mix-bound dimers. When
including all non-equilibrium intermolecular distances and angles,
the entire NENCI-2021 database contains 3499 (45.1%) Elst-bound,
700 (9.0%) Ind-bound, 1372 (17.7%) Disp-bound, and 2192 (28.2%)
Mix-bound intermolecular complexes. Here, we note in passing
that this observed decrease in the percentage of Ind-bound com-
plexes is partially due to the inclusion of five (instead of nine)
intermolecular angles for each ion–π complex due to symmetry
considerations (see Sec. II B). As such, the intermolecular com-
plexes in NENCI-2021 largely span the entire ternary diagram in
Fig. 5 and therefore contain a diverse array of binding motifs;
as result, we hope that NENCI-2021 will be used to critically
examine (and potentially improve) the performance of theoretical
models when faced with the challenge of simultaneously describ-
ing diverse NCI types on the same footing [i.e., point (ii) in the
Introduction].

Here, we note that the apparent bias toward Elst-bound com-
plexes in NENCI-2021 is an unavoidable consequence of sampling
short-range intermolecular separations; at such distances, there
is often a substantial amount of orbital/density overlap between
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monomers, and charge penetration effects5,48,61,87,99,134 (in εElst) tend
to be the dominant contribution (over εInd and εDisp) to εSAPT. For
instance, a significant majority (73.9%) of the intermolecular com-
plexes at 0.7× are classified as Elst-bound, while approximately half
that (38.3%) of the 141 equilibrium dimers share this label. This
increase in the relative number of Elst-bound complexes at shorter
intermolecular separations is clearly reflected in the ternary diagram
in the right panel of Fig. 5 and the percentage of Elst-bound com-
plexes when broken down by the scaled intermolecular distance,
i.e., 73.9% (0.7×), 48.9% (0.8×), 40.5% (0.9×), 38.1% (0.95×), 37.3%
(1.0×), 38.0% (1.05×), and 38.9% (1.1×). In general, many complexes
that are Disp-bound at larger intermolecular distances become Elst-
bound or Mix-bound at reduced separations where short-range
effects (e.g., charge penetration) become more significant. On the
other hand, the Ind-bound complexes (which are primarily com-
prised of cation–π interactions) tend to remain Ind-bound even at
reduced intermolecular separations since charge penetration effects
are substantially reduced when one of the monomers is a monova-
lent cation (e.g., Li+ or Na+).48 For reference, the respective percent-
ages of Ind-bound, Disp-bound, or Mix-bound complexes as a func-
tion of the scaled intermolecular distance are as follows: 6.0%, 0.0%,
and 20.2% for 0.7×; 7.6%, 0.0%, and 43.6% for 0.8×; 8.6%, 15.2%, and
35.7% for 0.9×; 10.0%, 22.8%, and 29.0% for 0.95×; 10.3%, 27.8%,
and 24.6% for 1.0×; 10.3%, 28.7%, and 23.1% for 1.05×; and 10.5%,
29.2%, and 21.5% for 1.1×.

Before moving on to consider the error/uncertainty in the
Eint values in NENCI-2021, we note in passing that the pos-
itive electrostatics [Elst(+)] region of the ternary diagram in
Fig. 5 does not appear to be well sampled. However, NENCI-
2021 does contain a non-negligible (413) number of intermolec-
ular complexes with εElst > 0. As mentioned above, such com-
plexes are primarily found among the cation–π complexes, where
the degree of orbital overlap in the dimer (and hence the ener-
getic stabilization due to charge penetration effects) is largely
suppressed;48 hence, intermolecular complexes with repulsive εElst
values are quite rare and may be adequately accounted for in
NENCI-2021.

C. Error analysis and critical assessment
of the benchmark intermolecular interaction energies

In addition to being extensive in size and scope, we would also
argue that a well-balanced database of intermolecular interactions
should contain a reliable estimate of the error/uncertainty present
in the computed Eint values. For ab initio WFT methods, the two
primary sources of error when computing Eint are as follows: (i)
incompleteness in the one-particle basis set [i.e., basis set incom-
pleteness error (BSIE)] and (ii) the approximate treatment of the
electron correlation energy (Ecorr). Since the mean-field HF contri-
bution to Eint converges quickly with respect to the underlying basis

set,135 we expect that the BSIE at the EHF/aQZ
int level will be negligible

when compared to the BSIE in the post-HF correlation energy con-
tributions in Eq. (2). As depicted in Eq. (3), the BSIE in theMP2 cor-
relation energy is largelymitigated using the two-point extrapolation
scheme117 for approximating theMP2/CBS limit provided in Eq. (4).
Although the δECCSD(T) correction tends to converge quickly with
respect to the basis set (in part, due to the relatively small size of
the correction75),128,136–138 the BSIE in this term is generally the

largest remaining source of error for extrapolation schemes such as
that outlined in Eqs. (2)–(5).55,139 To mitigate this error (and still
remain computationally feasible when generating such a large num-
ber of intermolecular interaction energies), this contribution was
computed using an augmented Dunning-style triple-ζ (haTZ) basis
set102–105 in NENCI-2021 [cf. Eq. (5)].

As such, we will primarily focus on the remaining BSIE in the
δECCSD(T)/haTZ contribution to Eint when critically assessing the accu-
racy of the intermolecular interaction energies in NENCI-2021. To
do so, we will compare our Eint values against two different refer-
ences. As a first reference value, we computed the δECCSD(T) cor-
rection in Eq. (5) using a larger (and substantially more expensive)
augmented quadruple-ζ (aQZ) basis set, i.e.,

E
REF1
≙ E

MP2/CBS
+ δE

CCSD(T)/aQZ

≙ E
HF/aQZ

+ E
MP2/a(TQ)Z
corr + δE

CCSD(T)/aQZ, (6)

in which EMP2/CBS was computed using Eqs. (3) and (4). As a second
and alternative reference, we simply replaced the δECCSD(T)/haTZ cor-
rection with a direct two-point extrapolation117 of ECCSD(T) using the
aTZ and aQZ basis sets, i.e.,

E
REF2
≙ E

CCSD(T)/a(TQ)Z

≙ E
HF/aQZ

+ E
CCSD(T)/a(TQ)Z
corr . (7)

By including CCSD(T) calculations in the much larger aQZ basis
set, both of these reference values directly probe the BSIE in the
CCSD(T) contribution and are expected to be more reliable than the
Eint values in the NENCI-2021 database.

The error of the CCSD(T)/CBS scheme outlined in Eqs. (2)–(5)
with respect to both EREF1 and EREF2 is shown in Fig. 6 for a
select subset of intermolecular complexes in NENCI-2021. Plotted
as a function of the scaled intermolecular distance (at the equilib-
rium angle, unless otherwise noted), this subset of intermolecular
complexes was chosen to cover the wide array of binding motifs
in NENCI-2021 and includes examples of Elst-, Ind-, Disp-, and
Mix-bound systems, i.e., single (H2O ⋅ ⋅ ⋅H2O, MeNH2 ⋅ ⋅ ⋅MeNH2)
and double (AcOH ⋅ ⋅ ⋅AcOH) hydrogen bonds, dipole–dipole
(MeF ⋅ ⋅ ⋅MeF), π–π stacking (BZ⋅ ⋅ ⋅BZ PD), CH-π (BZ ⋅ ⋅ ⋅ BZ TS),
and cation–π (Na+ ⋅ ⋅ ⋅BZ) and anion–π (F− ⋅ ⋅ ⋅BZ) interactions. As
seen in Fig. 6, the Eint values in NENCI-2021 are generally within
±0.1 kcal/mol of both EREF1 and EREF2, and the errors with respect
to these references tend to increase in magnitude at reduced inter-
molecular distances. The worst-case scenarios among this subset
include the acetic acid dimer (AcOH ⋅ ⋅ ⋅ AcOH, double hydrogen-
bonded) and the C2h parallel-displaced (PD) benzene dimer (BZ
⋅ ⋅ ⋅ BZ PD, π–π stacking), with errors in both steadily increas-
ing in magnitude as the intermolecular separation is decreased; at
0.7×, we report errors of +0.19 kcal/mol (AcOH ⋅ ⋅ ⋅ AcOH) and
−0.15 kcal/mol (BZ ⋅ ⋅ ⋅ BZ PD) with respect to EREF1 (+0.30 and
−0.27 kcal/mol when compared to EREF2, vide infra). In these cases,
the increased error is most likely due to the relatively larger amount
of orbital overlap between these monomers at reduced intermolec-
ular separations, where the interplay between short-range inter-
molecular interactions (i.e., charge penetration, Pauli repulsion,
many-body exchange–correlation effects, etc.) becomes increasingly
more challenging to describe in an accurate and reliable fashion.
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FIG. 6. Errors (in kcal/mol) in the NENCI-2021 Eint values [computed using the ECCSD(T)/CBS extrapolation scheme in Eqs. (2)–(5)] with respect to EREF1 [Eq. (6); left] and
EREF2 [Eq. (7); right] for a representative set of intermolecular complexes. Plotted as a function of the scaled intermolecular distance (with the 0.95× and 1.05× distances
omitted for clarity), all intermolecular complexes (with the exception of DMSO⋅ ⋅ ⋅DMSO, black stars) were kept at their equilibrium angle. Errors with respect to EREF1 and
EREF2 were computed as ECCSD(T)/CBS

− EREF1 and ECCSD(T)/CBS
− EREF2, respectively. Based on this error profile (see the main text), the errors in the NENCI-2021 Eint

values are ±0.1 kcal/mol on average but can be as large as ±0.2–0.3 kcal/mol (i.e., ±1 kJ/mol, green dashed lines) for some complexes at reduced (i.e., 0.7× and 0.8×)
intermolecular separations.

This trend is also reflected in the error profiles corresponding to
the two different BZ ⋅ ⋅ ⋅ BZ dimers in Fig. 6, where one can see
that the error in the PD dimer (more orbital overlap) is notice-
ably larger in magnitude than the error in the C2v T-shaped (TS)
dimer (less orbital overlap) at all intermolecular separations. In the
same breath, we also note that the error with respect to EREF1 (or
EREF2) is non-trivial in general, and does not necessarily follow a
direct/straightforward correlation with closest intermolecular con-
tacts and/or the sign/magnitude of Eint. For example, the errors for
AcOH ⋅ ⋅ ⋅ AcOH (Eint ≙ +12.1 kcal/mol) and BZ ⋅ ⋅ ⋅ BZ PD (Eint

≙ +51.2 kcal/mol) at 0.7× are both larger than that found in
the intermolecular complex with the largest (most repulsive)
Eint value and closest O ⋅ ⋅ ⋅H distance in NENCI-2021—a non-
equilibrium configuration of DMSO ⋅ ⋅ ⋅ DMSO with Eint ≙ +186.8
kcal/mol (whose errors with respect to EREF1 and EREF2 are depicted
by stars in Fig. 6).

From this analysis, we believe that the errors in the NENCI-
2021 Eint values are mostly within ±0.1 kcal/mol, but can be as large
as 0.2–0.3 kcal/mol (i.e., ≈ 1 kJ/mol) for certain systems at reduced
intermolecular separations. Here, we note in passing that the
δECCSD(T)/haTZ correction used in NENCI-2021 provides a significant
improvement over δECCSD(T)/aDZ and yields nearly identical Eint val-
ues when compared to the more expensive δECCSD(T)/aTZ approach;
this is shown in Fig. S1 and again emphasizes the need for triple-
ζ basis sets when employing the δECCSD(T) correction scheme.55

When considering the largest errors in Fig. 6, i.e., AcOH ⋅ ⋅ ⋅AcOH
and BZ⋅ ⋅ ⋅BZ PD, one can see that the errors with respect to EREF1

and EREF2 differ by ≈ 0.1 kcal/mol; as such, the estimated aver-
age error in NENCI-2021 (±0.1 kcal/mol) is comparable to the
difference between using EREF1 or EREF2 as the reference for Eint.

Generally speaking, it is not clear which of these two quantities
supplies the more accurate reference for Eint; however, it has been
pointed out by Marshall et al.55 that the δECCSD(T) correction does
not converge monotonically toward the CBS limit, which implies
that EREF1 might in fact be a slightly better reference value than
EREF2.

As mentioned above, the other primary source of error when
computing Eint using approximate ab initio WFT methods is the
necessarily incomplete treatment of the electron correlation energy;
while post-CCSD(T) corrections tend to be small for equilibrium
intermolecular interaction energies (i.e., < 0.1 kcal/mol),52 whether
or not such corrections become more substantial at reduced inter-
molecular separations still remains unanswered. With increasingly
unfavorable scaling with both system and basis set size, such post-
CCSD(T) calculations [i.e., CCSDT, CCSDT(Q), CCSDTQ, etc.] are
computationally prohibitive and could have only been performed on
the following: (i) the smaller/smallest systems in NENCI-2021, but
with sufficiently large basis sets (of at least triple-ζ or quadruple-ζ
quality) or (ii) the larger/largest systems in NENCI-2021, but with
reduced and insufficiently large basis sets (i.e., double-ζ at best).
Since neither of these approaches would have provided an accu-
rate and reliable estimate of the post-CCSD(T) contributions to
Eint for the wide range of intermolecular complexes in NENCI-
2021,140 we chose to focus our efforts above on critically assessing
the CCSD(T)/CBS scheme outlined in Eqs. (2)–(5) based on a quan-
titative estimate of the remaining BSIE at the CCSD(T) level. Since
an accurate and reliable prediction of Eint for intermolecular com-
plexes in the repulsive wall (i.e., inside the vdW envelope) poses
a substantive challenge to state-of-the-art DFT and WFT meth-
ods (see Paper II91 in this series), further benchmarking of the
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standard CCSD(T)/CBS approach [possibly via stochastic CC141–143

or full configuration interaction (FCI)144–146 methods] in this regime
is an open challenge for the community and will be of critical impor-
tance for the development of next-generation DFT functionals and
ML-based intra-/inter-molecular interaction potentials.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we present NENCI-2021: a large and comprehen-
sive database of ∼8000 benchmark Non-Equilibirum Non-Covalent
Interaction energies for a diverse selection of intermolecular com-
plexes of biological and chemical relevance with a particular empha-
sis on close intermolecular contacts. Designed to address the grow-
ing need for extensive high-quality quantum mechanical data in
the chemical sciences, NENCI-2021 starts with the 101 molec-
ular dimers in the widely used S66, S66x8, S66a8, and S101x7
databases49,57,59 and extends the scope of these popular works in two
directions. For one, NENCI-2021 includes 40 cation–π and anion–π
complexes, a fundamentally important class of NCIs that are found
throughout nature and among the strongest NCIs known. Second,
NENCI-2021 systematically samples both equilibrium and non-
equilibrium configurations on all 141 intermolecular PESs by simul-
taneously varying the intermolecular distance (from 0.7× to 1.1× the
equilibrium separation) and intermolecular angle (including either
five or nine angles for each distance depending on symmetry con-
siderations). As such, a wide range of intermolecular atom-pair dis-
tances are present in NENCI-2021, including a large number of
close intermolecular contacts with atom pairs located inside their
respective vdW envelope; these intermolecular complexes probe a
number of different short-ranged NCIs (e.g., charge transfer and
penetration, Pauli repulsion, and many-body exchange–correlation
effects), which are observed in many important chemical and
biological systems, and pose an enormous challenge for molec-
ular modeling. Computed at the CCSD(T)/CBS level of the-
ory, the 7763 benchmark Eint values in NENCI-2021 range from
−38.5 kcal/mol (most attractive) to +186.8 kcal/mol (most repul-
sive), with a total span of 225.3 kcal/mol and a mean (median)
Eint value of −1.06 kcal/mol (−2.39 kcal/mol). Of these 7763
interaction energies, ≈5% have Eint values greater than 20
kcal/mol, and would therefore be considered statistically negligi-
ble in most physical applications (i.e., Eint ≫ kBT). While such
systems have been included in NENCI-2021 for completeness,
we recommend that potential users of NENCI-2021 exert caution
when employing these data points when testing/training approx-
imate methods, as their inclusion could skew the error metric
and/or overall statistics. A detailed SAPT-based analysis was used
to confirm the diverse and comprehensive nature of the inter-
molecular binding motifs present in NENCI-2021, which includes
a significant number of primarily induction-bound dimers and
now spans all regions of the SAPT ternary diagram; this war-
ranted a new four-category classification scheme that includes com-
plexes primarily bound by electrostatics (3499), induction (700),
dispersion (1372), or mixtures thereof (2192). Finally, a critical
error analysis was performed on a representative set of inter-
molecular complexes, from which we estimate that the Eint val-
ues in NENCI-2021 have a mean error of ±0.1 kcal/mol and a
maximum error of ±0.2–0.3 kcal/mol for the most challenging
cases.

For all these reasons, we believe that the NENCI-2021 database
is timely and well-suited for testing, training, and developing next-
generation force fields, DFT and WFT methods, and ML-based
potentials. In this regard, NENCI-2021 can be used for a variety
of purposes. For one, NENCI-2021 could be employed as a single
database and used in its entirety. Alternatively, NENCI-2021 can
be split into multiple different training and testing data sets—each
containing a diverse sample of intermolecular binding motifs—and
used for cross-validation studies and statistical error assessment.
When used for such purposes, we note in passing that strong cor-
relations will likely exist between different points on a given inter-
molecular PES; as such, we caution against separating such points
between training and testing datasets to avoid issues associated
with overfitting. For ML applications, we expect NENCI-2021 to
be useful for training and testing smaller physically motivated ML
models,147,148 models based on ridge regression (i.e., KRR), and
multi-fidelity methods (which require a relatively large number of
lower-quality data and a smaller number of higher-quality bench-
mark data for training). While NENCI-2021 on its own may be too
small for training truly deep learning models (which require orders
of magnitude more data, e.g., as one would find in the ANI-1149

andQM7-X databases150 of non-equilibrium conformations of small
organic molecules), we also view this work as well as the compos-
ite databases (e.g., GMTKN55,70 ACCDB,76 and NCIAtlas77–79) and
the very recently published datasets of Donchev et al.80 as important
steps in this direction.

We end this article with a brief discussion of several future
research directions that could build off this work and poten-
tially have an immediate impact in the field. For one, Paper
II91 in this series (in preparation) will critically assess the accu-
racy and reliability of a large number of popular DFT and WFT
methods when describing the diverse array of non-equilibrium
non-covalent interactions in NENCI-2021, thereby identifying the
strengths and weaknesses of established first-principles methods. A
simple and straightforward extension of NENCI-2021 would tar-
get dimers with increased intermolecular distances (e.g., beyond
1.1× the equilibrium separation), as benchmark Eint values for such
complexes could play an important role in testing and training
ML methods for predicting molecular multipoles148 and polariz-
abilities,151,152 as well as addressing important unresolved ques-
tions regarding the treatment of long-range electrostatics in ML-
based potentials.153 Another extension of NENCI-2021 could focus
on simultaneously sampling non-equilibrium values for both the
intra- and inter-molecular degrees of freedom in each of these
molecular dimers using AIMD (or meta-dynamics to enhance
sampling away from the global minimum).100 Other important
research thrusts would focus on expanding NENCI-2021 to fur-
ther address the three challenges introduced above: (i) the need
to describe NCIs in large molecular and condensed-phase sys-
tems can be addressed with extensions that focus on large/complex
systems, higher-order molecular clusters (i.e., trimers, tetramers,
etc.) to benchmark many-body effects/interactions,71 and microsol-
vated complexes that explicitly include a variable number of solvent
molecules; (ii) the need to describe the diverse types of NCIs on
the same footing can be addressed by including NCI binding motifs
that are either not found or underrepresented in NENCI-2021 (e.g.,
triple hydrogen bonds, quadrupole–quadrupole interactions, and
ionic bonds); (iii) the need to describe NCIs in equilibrium and
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non-equilibrium systems on the same footing can be addressed
by including complexes at more extreme (reduced and increased)
intermolecular separations and angles and complexes between
monomers in non-equilibrium configurations.

SUPPLEMENTARY MATERIAL

See the supplementary material for a single .zip file contain-
ing the Cartesian coordinates of the 7763 intermolecular complexes
in NENCI-2021 (in .xyz format), a .csv file containing all of the
CCSD(T)/CBS and SAPT energetic components (in kcal/mol), sup-
plementary information for defining intermolecular interaction vec-
tors, and an error analysis of alternative CCSD(T)/CBS extrapola-
tion schemes.
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52J. Řezáč and P. Hobza, “Describing noncovalent interactions beyond the com-
mon approximations: How accurate is the ‘gold standard,’ CCSD(T) at the
complete basis set limit?,” J. Chem. Theory Comput. 9, 2151–2155 (2013).

53L. A. Burns, M. S. Marshall, and C. D. Sherrill, “Appointing silver and bronze
standards for noncovalent interactions: A comparison of spin-component-scaled
(SCS), explicitly correlated (F12), and specialized wavefunction approaches,”
J. Chem. Phys. 141, 234111 (2014).
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