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Let π : X → Pn be a (holomorphic) Lagrangian fibration that is very general in the
moduli space of Lagrangian fibrations. We conjecture that the singular fibers in codi-
mension one must be semistable degenerations of abelian varieties. We prove a partial
result towards this conjecture, and describe an example that provides further evidence.
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1. Introduction

An irreducible holomorphic symplectic manifold X that admits a fibration π : X →
Pn by complex tori that are Lagrangian with respect to the holomorphic symplectic
structure is known as a (holomorphic) Lagrangian fibration. In [30], the author
proved that there are finitely many deformation classes of Lagrangian fibrations
π : X → Pn satisfying certain natural conditions. One of these conditions was that
the singular fibers in codimension one should be semistable degenerations of abelian
varieties. We will describe explicitly what this means shortly. At this stage, let us
just point out that semistable degenerations are “nice” in the following sense: if
Ān denotes a toroidal compactification of the moduli space An of abelian varieties,
then the boundary of Ān parametrizes semistable degenerations.

The singular fibers of Lagrangian fibrations in codimension one were studied by
Matsushita [14, 16] and Hwang and Oguiso [10, 11]. Their classifications include
many fibers that are not semistable, because they consider all Lagrangian fibra-
tions, not just very general ones. Matsushita [15, 18] proved that inside the moduli
space M of deformations of X as a complex manifold, there is a hypersurface H
parametrizing Lagrangian fibrations; by very general we mean that X corresponds
to a very general point of H, i.e. contained in the complement of countably many
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Zariski closed subsets. Any Lagrangian fibration can be deformed slightly so that
it becomes very general.

Hwang and Oguiso’s results imply that if a singular fiber Xt in codimension
one is semistable then it must be a rank-one semistable degeneration. Explicitly,
this means that the normalization of Xt must be a P1-bundle, or disjoint union of
P1-bundles, over an (n − 1)-dimensional abelian variety A. Write this as

X̃t =
k∐

i=1

Yi.

Moreover, each Yi must be a P1-bundle over A given by projectivizing a topologically
trivial rank-two bundle,

Yi
∼= P(OA ⊕ L) → A,

where L ∈ Pic0A. This implies that Yi has distinguished zero and infinity sections,
(Yi)0 and (Yi)∞. The fiber Xt itself is obtained by gluing zero sections to infinity
sections, so that

(Yi)∞ ∼= A, is identified with (Yi+1)0 ∼= A

(with Yk+1 denoting Y1). In general these identifications A ∼= (Yi)∞ → (Yi+1)0 ∼= A
do not take 0 to 0, so Xt itself is not a fibration over A. Figures 1 and 2 show
examples with k = 1 and k = 3, respectively.

We expect the following behavior.

Conjecture 1. Let π : X → Pn be a very general Lagrangian fibration, and let t
be a general point of the hypersurface ∆ ⊂ Pn parametrizing singular fibers. Then
Xt is a semistable degeneration of abelian varieties.

For K3 surfaces, the conjecture states that a very general elliptic K3 surface
has only singular fibers of type Ik in Kodaira’s classification. This is certainly true;
indeed, a very general elliptic K3 surface will have only I1 singular fibers (rational
nodal curves), as can be shown by explicitly finding such a surface and showing

Fig. 1. Rank-one semistable degeneration.
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Fig. 2. Reducible semistable degeneration.

that it deforms in a 19-dimensional family. The challenge is to find a proof of this
fact that can be extended to higher-dimensional Lagrangian fibrations. Although
we do not achieve this, we do find a simple proof of a weaker property of elliptic
K3 surfaces that generalizes to give the following theorem.

Theorem 2. Let π : X → Pn be a very general Lagrangian fibration, and let t be
a general point of the hypersurface ∆ ⊂ Pn parametrizing singular fibers. Then Xt

is either

(1) an étale quotient of an n-dimensional abelian variety (such a fiber is singular
because it will have multiplicity greater than one),

(2) a semistable degeneration of abelian varieties, or
(3) a fibration over an (n − 1)-dimensional abelian variety A by singular elliptic

curves of Kodaira type II (a cuspidal rational curve), III (two rational curves
meeting at a tacnode), or IV (three rational curves meeting at a point), up to
an étale cover.

Of course, we believe that only the second case is possible. Theorem 2 has been
obtained independently by Lehn [12, Theorem 5.7] as a corollary of his generaliza-
tion of Voisin’s results on deformations of Lagrangian submanifolds to deformations
of Lagrangian normal crossing subvarieties. Our proof is more direct: a standard
argument shows that a very general Lagrangian fibration must have Picard num-
ber ρ(X) = 1, and this places restrictions on the structure of the discriminant
hypersurface π−1(∆) from which the theorem follows.

Note that it is not true that the singular fibers in codimension two (or higher)
must be semistable. For example, let π : X → Pn be a Beauville–Mukai system [4,
19], i.e. the compactified relative Jacobian of a complete linear system of curves on a
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K3 surface. There will be cuspidal curves in codimension two in this linear system,
and their compactified Jacobians will not be semistable; see Sawon [28] for details.
Moreover, we can make this Lagrangian fibration very general by deforming it in a
20-dimensional family, inside the 21-dimensional moduli space of deformations of X ,
while preserving the existence of these non-semistable singular fibers in codimension
two.

In Sec. 2, we recall some facts about singular fibers of elliptic K3 surfaces. In
Sec. 3, we extend these results to higher-dimensional Lagrangian fibrations, thereby
proving our main result, Theorem 2. Section 4 contains a number of illustrative
examples. Using one of these examples, we show that Conjecture 1 is true when X
is of K3[n]-type (Proposition 9).

2. K3 Surfaces

We begin by recalling Kodaira’s classification of singular fibers of elliptic surfaces.

Theorem 3 (see Barth et al. [2]). A non-multiple singular fiber of a minimal
elliptic surface must be one of the following types:

• Ik, k ≥ 1, a cycle of k rational curves with intersection matrix given by the Cartan
matrix of the affine Dynkin diagram of type Ãk−1 (with I1 a nodal rational curve),

• II, a cuspidal rational curve,
• III, two rational curves meeting at a tacnode,
• IV, three rational curves meeting at a single point,
• I∗k , k ≥ 0, k + 5 rational curves with intersection matrix given by D̃k+4,
• II∗, nine rational curves with intersection matrix given by Ẽ8,
• III∗, eight rational curves with intersection matrix given by Ẽ7,
• IV ∗, seven rational curves with intersection matrix given by Ẽ6.

A multiple singular fiber must be of type mI0, a smooth elliptic curve with multi-
plicity m ≥ 2, or of type mIk with k ≥ 1, i.e. type Ik with multiplicity m ≥ 2.

Let S → P1 be an elliptic K3 surface, with fiber class F ∈ H1,1(S)∩H2(S, Z). If
we deform S so that F remains algebraic, i.e. of type (1, 1), then the resulting K3
surface will still be elliptic. This means that elliptic K3 surfaces are codimension one
inside the 20-dimensional moduli space of all K3 surfaces. Moreover, a very general
elliptic K3 surface will have Picard number ρ = 1; note that it is non-projective
and does not admit a section (or even a multi-valued rational section).

Lemma 4. Let S → P1 be a very general elliptic K3 surface. Then every singular
fiber of S is reduced and irreducible. Thus by Kodaira’s classification, every singular
fiber is either of type I1 (nodal rational curve) or type II (cuspidal rational curve).

Proof. The Néron–Severi group of a non-projective elliptic surface is spanned
by the fiber class F and the irreducible components of the singular fibers. Sup-
pose there are k singular fibers S1, . . . , Sk with m1, . . . , mk irreducible components,
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respectively. Obviously some linear combination of the components of Si is linearly
equivalent to F , so each Si really contributes mi −1 additional independent classes
to the Néron–Severi group. Thus the rank of the Néron–Severi group is

ρ(S) = 1 +
k∑

i=1

(mi − 1).

Recall that the Shioda–Tate formula [31] for an elliptic surface with a section is

ρ(S) = 2 + rankMW (π) +
k∑

i=1

(mi − 1),

where MW(π) is the Mordell–Weil group of sections of π : S → P1. Our for-
mula above is essentially a degenerate version of the Shioda–Tate formula for non-
projective surfaces. Since a very general elliptic K3 surface has ρ(S) = 1, we imme-
diately see that mi = 1 for all i, i.e. every singular fiber of S is irreducible.

Multiple fibers contribute nontrivially to Kodaira’s formula for the canonical
bundle of an elliptic surface, but K3 surfaces have trivial canonical bundles, and
thus they cannot have any multiple fibers. Thus, every singular fiber of S is reduced.

Question. Although it does not follow from the above arguments, very general
elliptic K3 surfaces actually have only nodal rational curves as singular fibers.
This can be proved by explicitly constructing such a K3 surface and then showing
that there are 19-parameters describing its deformations. Is there a deformation
argument that eliminates cuspidal rational curves? Given an elliptic fibration over
a disc with a cuspidal rational curve over 0, we can deform it to a fibration with
two nodal rational curves. However, we need a global argument to show that such
a deformation fits in to an elliptic K3 surface.

3. Higher Dimensions

We want to extend the ideas of the previous section to higher-dimensional
Lagrangian fibrations, i.e. fibrations π : X → Pn where X is an irreducible holo-
morphic symplectic manifold and the general fiber is an n-dimensional abelian vari-
ety (see Sawon [23] and the papers cited therein). We start by describing Hwang
and Oguiso’s [10, 11] Kodaira-type classification of general singular fibers. By [10,
Proposition 3.1(2)] the discriminant locus ∆ ⊂ Pn parametrizing singular fibers
is a hypersurface. Roughly speaking, the main observation of Hwang and Oguiso
is that for a general singular fiber Xt, above a general point t ∈ ∆, there is a
residual (n−1)-dimensional abelian variety present and the fiber is degenerating in
the one remaining dimension. To state this precisely, let V be a component of the
reduction (Xt)red of Xt, and let V̂ be its normalization. Then the Albanese map
V̂ → Alb(V̂ ) is a fiber bundle with fiber either P1 or an elliptic curve. The image
of such a fiber in (Xt)red is called a characteristic leaf ; if two (or more) leaves meet
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they form a characteristic curve, and once we add in multiplicities coming from the
multiplicities of the components of Xt we obtain a characteristic 1-cycle.

Hwang and Oguiso gave a classification of these characteristic 1-cycles.

Theorem 5 ([10, 11]). Let Xt be a general singular fiber with multiplicity m.
Then all characteristic 1-cycles

∑
i miCi in Xt are isomorphic, and the 1-cycle∑

i
mi
m Ci is either

(1) a smooth elliptic curve,
(2) one of the singular elliptic fibers of Kodaira’s classification, as in Theorem 3,

or
(3) of type A∞, i.e. a 1-cycle

∑
i∈Z Ci consisting of a chain of infinitely many

rational curves Ci, with Ci meeting Cj if and only if j = i ± 1.

A singular fiber that is a product of an (n−1)-dimensional abelian variety and a
singular elliptic curve from Kodaira’s classification will have characteristic 1-cycle of
the same type as the singular elliptic curve. For example, the product of an (n−1)-
dimensional abelian variety and an elliptic curve of type I2 will have characteristic
1-cycle of type I2; such a singular fiber will have two irreducible components. But
singular fibers need not be products, and so it is possible for an irreducible singular
fiber to have a reducible characteristic 1-cycle, as illustrated in Fig. 3.

Remark. Unlike elliptic K3 surfaces, the singular fibers of Lagrangian fibrations
can have multiplicities. Hwang and Oguiso [11] showed that various values up to
and including six are possible, depending on the type of the (characteristic 1-cycle
of the) singular fiber. In particular, it is possible for the (reduced) characteristic
1-cycle of a singular fiber to be a smooth elliptic curve if the fiber has multiplicity
m > 1. Some examples will be given in Sec. 4.

Remark . Of course, a singular fiber cannot have infinitely many components.
Thus a characteristic 1-cycle of type A∞ must “wrap around” the singular fiber.
An example of a reduced and irreducible singular fibre with characteristic 1-cycle
of type A∞ will be given in Sec. 4.2.

Fig. 3. Irreducible singular fiber with characteristic 1-cycle of type I2.
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Let π : X → Pn be a Lagrangian fibration with n ≥ 2. Let F ∈ Hn,n(X) ∩
H2n(X, Z) be the fiber class and let L ∈ H1,1(X) ∩ H2(X, Z) be the pullback of
a hyperplane in Pn. Inside the moduli space M of deformations of X as a com-
plex manifold, there is a hypersurface HF parametrizing deformations such that F
remains algebraic (see Voisin [33]) and there is also a hypersurface HL parametriz-
ing deformations such that L remains algebraic. In fact, these hypersurfaces are
identical and Matsushita [15, 18] proved that they parametrize deformations of X
that remain Lagrangian fibrations. In a family of deformations of X , the Picard
number is upper semicontinuous; Oguiso [20] proved that the Picard number jumps
up on a dense countable subset. More importantly for us, a family parametrized
by M′ ⊂ M of codimension k cannot contain only deformations of X with Picard
numbers > k. In particular, a family parametrized by a hypersurface in M must
contain deformations with Picard numbers 1 (or 0). It follows that a very general
Lagrangian fibration will have Picard number ρ(X) = 1, the Néron–Severi group
will be generated by the non-ample divisor L, and X will be non-projective. In
addition, it will not admit a (multi-valued rational) section; otherwise it would be
projective by a criterion of Campana (see [21, Proposition 3.2]).

Our main result, Theorem 2, follows directly from the following proposition: the
three cases for the characteristic 1-cycle correspond directly to the three cases for
the structure of the singular fiber in Theorem 2.

Proposition 6. Let π : X → Pn be a very general Lagrangian fibration, and let t be
a general point of the discriminant locus ∆ ⊂ Pn. Then the (reduced) characteristic
1-cycle of the singular fiber Xt is either

(1) a smooth elliptic curve,
(2) a singular elliptic curve of Kodaira type Ik with k ≥ 1, or of type A∞, or
(3) a singular elliptic curve of Kodaira type II, III, or IV .

Remark. In the first case, Xt must have multiplicity m = 2, 3, 4, or 6 (not 1 or it
would be a smooth fiber). In the second case, we must have m = 1 for type Ik with
k odd, and m = 1 or 2 for type Ik with k even and type A∞. In the third case, we
must have m = 1 or 5 for type II, m = 1 or 3 for type III, and m = 1 or 2 for
type IV (see Hwang and Oguiso [11]).

Before presenting the proof of Proposition 6, we state a generalization of the
Shioda–Tate formula to higher-dimensional fibrations by abelian varieties.

Theorem 7 ([21, Theorem 1.1]). Let ϕ : X → Y be a proper surjective mor-
phism with rational section O, whose generic fiber A := Xη is an abelian vari-
ety defined over the field K = C(Y ) with origin O. Assume further that X and
Y have only Q-factorial rational singularities, ϕ is equi-dimensional in codimen-
sion one, and h1(X,OX) = h1(Y,OY ). Write ∆ = ∪k

i=1∆i for the decomposition
into irreducible components of the discriminant divisor ∆ ⊂ Y, and assume that
ϕ−1(∆i) ⊂ X consists of mi irreducible components. Then the Mordell–Weil group
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MW (ϕ), i.e. the group A(K) of K-rational points of A (equivalently, the group of
rational sections of ϕ), is a finitely generated abelian group of rank

rankMW (ϕ) = ρ(X) − ρ(Y ) − rankNS(AK) −
k∑

i=1

(mi − 1).

Proof of Proposition 6. We apply Oguiso’s theorem to a Lagrangian fibration
π : X → Pn. In this case, X and Y = Pn are both smooth, Lagrangian fibrations
are equi-dimensional, and h1(X,OX) = h1(Pn,OPn) = 0. The theorem assumes
the existence of a (rational) section. In [26], the author proved that there is a
hypersurface in HF = HL parametrizing Lagrangian fibrations that admit sections;
in other words, Lagrangian fibrations that admit sections are codimension two in
M. A very general Lagrangian fibration that admits a section will therefore have
Picard number ρ(X) = 2. In addition, the existence of a section implies that X is
projective and hence the Néron–Severi group NS(AK) must have rank at least one.
The Shioda–Tate formula,

rankMW (π) = 2 − 1 − rankNS(AK) −
k∑

i=1

(mi − 1),

then forces rankMW (π) = 0, rankNS(AK) = 1, and mi = 1 for all i. If we
consider instead a Lagrangian fibration π : X → Pn that does not admit any
(multi-valued rational) section, then there is an obvious analogue of the formula in
which rankMW (π) and rankNS(AK) both vanish and

ρ(X) = ρ(Pn) +
k∑

i=1

(mi − 1).

For a very general Lagrangian fibration ρ(X) = 1 and again we find that mi = 1 for
all i. Summarizing, we have proved that if the discriminant divisor ∆ ⊂ Pn of a very
general Lagrangian fibration π : X → Pn decomposes into irreducible components
as ∆ =

⋃k
i=1 ∆i, then π−1(∆i) is irreducible for all i.

Next, let t be a general point of ∆i ⊂ ∆. The statement above does not imply
that the fiber Xt is irreducible. It is possible that the fibre Xt has several irre-
ducible components Y1, . . . , Yl that are all contained in the single irreducible divisor
π−1(∆i), because of “monodromy” permuting the components as we move around a
loop in ∆i starting and ending at t, avoiding the codimension one subset ∆i0 ⊂ ∆i

parametrizing non-general singular fibers. However, we see that this monodromy
representation

π1(∆i\∆i0, t) → Syml,

must act transitively on the set of components of Xt. This implies that the com-
ponents Yj must all have the same multiplicity. Referring to Theorem 5, we can
conclude that the (reduced) characteristic 1-cycle of Xt must belong to one of the
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three cases of the proposition. The other possibilities in Hwang and Oguiso’s clas-
sification are singular elliptic curves of Kodaira type I∗m with m ≥ 0, II∗, III∗,
and IV ∗, but these all have components with different multiplicities, which is not
allowed.

4. Examples

In this section, we describe the singular fibers in codimension one for several exam-
ples of Lagrangian fibrations.

4.1. Multiple fibers with smooth reduction

In [11, Example 6.2], Hwang and Oguiso described several examples where the sin-
gular fiber has smooth reduction, which is equivalent to the (reduced) characteristic
1-cycle being a smooth elliptic curve. Their examples are local Lagrangian fibra-
tions, but the same constructions easily extend to give global compact Lagrangian
fibrations. For instance, let us extend Example 6.2(v) which has singular fibers of
multiplicity 2 and characteristic 1-cycle an arbitrary smooth elliptic curve E1 with
equation y2 = x3 + ax + b. Let E2, E3, and E4 be arbitrary smooth elliptic curves
with coordinates t, z, and s, respectively, and let p2 be a 2-torsion point on E3.
Then define X to be the quotient of E1 × E2 × E3 × E4 by the fixed-point-free
involution

g∗ : ((x, y), t, z, s) +→ ((x,−y),−t, z + p2, s).

The symplectic form σ := dx∧dt
y + dz ∧ ds on E1 ×E2 ×E3 ×E4 is preserved by g∗

and therefore descends to X . The projection

X → (E2/ ± 1) × E4
∼= P1 × E4,

[((x, y), t, z, s)] +→ (±t, s),

makes X into a Lagrangian fibration. The singular fibers sit above q2×E4, where q2

is a 2-torsion point in E2 (fixed by ±1), and they look like the hyperelliptic surface

E1 × E3/((x, y), z) ∼ ((x,−y), z + p2),

with multiplicity 2.
This example is an isotrivial Lagrangian fibration: all the smooth fibers are

isomorphic to E1 × E3. We can construct a non-isotrivial example by replacing
E1 × E2 by a certain elliptic K3 surface S. Specifically, choose for S an elliptic
K3 surface admitting a symplectic involution τ which acts as ±1 on each fiber and
as ±1 on the base P1 = C ∪ {∞}. The only fibers of S → P1 that are fixed by τ
are those above 0 and ∞; we assume these are smooth. We can now modify the
example above by defining X to be the quotient of S×E3×E4 by the fixed-point-free
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involution

g∗ : (q, z, s) +→ (τ(q), z + p2, s).

The symplectic form σ := σS + dz ∧ ds descends to X and the projection to P1/ ±
1×E4 makes X into a Lagrangian fibration. The singular fibers sit above {0}×E4

and {∞}× E4 and look like the hyperelliptic surfaces

S0 × E3/(w0, z) ∼ (−w0, z + p2) and S∞ × E3/(w∞, z) ∼ (−w∞, z + p2),

with multiplicity 2, where S0 and S∞ are the elliptic fibers of S → P1 above 0 and
∞, respectively, with coordinates w0 and w∞.

Note that a theorem of Hwang [9] asserts that the base of a Lagrangian fibration
of an irreducible holomorphic symplectic manifold must be isomorphic to projective
space, if it is smooth. However, in the examples above X is not an irreducible
holomorphic symplectic manifold; indeed, it admits an étale cover that is a product,
E1 ×E2 ×E3 ×E4 and S ×E3 ×E4, respectively. Consequently, bases that are not
isomorphic to P2 can arise.

4.2. Beauville–Mukai systems

Recall the construction of the Beauville–Mukai integrable system [4, 19]. Let S
be a K3 surface containing a smooth genus n curve C. Then C moves in an n-
dimensional linear system, |C| ∼= Pn; denote by C → Pn the corresponding family
of curves. If S is very general in the sense that its Néron–Severi group NS(S) is
generated over Z by [C] then every curve in the family C is reduced and irreducible.
This means that we can apply the Altman and Kleiman construction [1] of the
compactified relative Jacobian to obtain X := Jacd(C/Pn). We can also regard X
as a Mukai moduli space of stable sheaves on S with Mukai vector

v = (0, [C], d + 1 − n).

Here, we think of an element of X as a torsion sheaf ι∗L, where ι : C ↪→ S is
the embedding of a curve into the K3 surface and L is a degree d line bundle
(or more generally, a rank one torsion-free sheaf) on C; then ι∗L is stable in the
sense of Simpson [32]. This latter point of view shows that X admits a holomorphic
symplectic structure, and X → Pn is therefore a Lagrangian fibration. Moreover, the
definition of X as a Mukai moduli space makes sense even when NS(S) .∼= Z.[C], and
provided the Mukai vector v is primitive and a general polarization of S is chosen,
we will once again obtain a (smooth, compact) Lagrangian fibration X → Pn.

For a very general (polarized) K3 surface, a general codimension one singular
curve in the family C will have a single node. This can be proved by studying the
Beauville–Mukai system and using properties of Lagrangian fibrations (see Sawon
[28, Lemma 2.4]); a special case of Chen [5, Lemma 3.1]. Let C be such a curve,
with normalization C̃ of genus n − 1, and C obtained by identifying two points p
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and q ∈ C̃. The normalization of the compactified Jacobian Jacd
C of C is a P1-

bundle over the Jacobian JacdC̃ of C̃, and the compactified Jacobian Jacd
C itself

is obtained by identifying the 0- and ∞-sections of this P1-bundle via a translation

0-section ∼= JacdC̃
⊗O(p−q)−→ JacdC̃ ∼= ∞-section.

Since the characteristic leaves are the images of the P1-fibers, the type of the char-
acteristic 1-cycle therefore depends on whether or not O(p − q) is a torsion line
bundle in Jac0C̃.

Lemma 8. The characteristic 1-cycle of a general singular fiber of a Beauville–
Mukai system constructed from a very general K3 surface is of type A∞.

Remark. A local example of a Lagrangian fibration with general fibers of type
A∞ was described by Matsushita (see [10, Proposition 4.13]).

Proof. Consider first the genus n = 2 case, studied in detail in Sawon [25]. The
discriminant locus ∆ ⊂ P2 is an irreducible curve of degree 30 with 72 cusps and
324 nodes. We can write it as a disjoint union

∆ = (∆\∆0) ∪ ∆0 = (∆\∆0) ∪ ∆c ∪ ∆nn,

where ∆\∆0 parametrizes curves with one node, ∆c parametrizes curves with one
cusp, and ∆nn parametrizes curves with two nodes. Note that ∆c is the set of cusps
of ∆ and ∆nn is the set of nodes of ∆. Consider the normalization C̃ → (∆\∆0) of
the family of nodal curves C → (∆\∆0). Because the cuspidal curves over ∆c also
have normalizations of genus one, this family extends to a family C̃ → (∆\∆0)∪∆c

of smooth genus one curves. The family of line bundles O(p − q) on the curves C̃
then defines a section Z of the relative Jacobian

Jac0(C̃/(∆\∆0)),

over ∆\∆0. As we approach a cuspidal curve, p → q, so this section extends to a
section, which we still denote by Z, of the relative Jacobian

Jac0(C̃/(∆\∆0) ∪ ∆c).

Moreover, the section Z intersects the zero section Z1, i.e. takes the value O, pre-
cisely above ∆c, because O(p − q) = O(p − p) = O only for a cuspidal curve. In
particular, the section Z is not equal to the zero section Z1.

Fix k ≥ 2 and consider the multi-section Zk of Jac0(C̃/(∆\∆0)∪∆c) parametriz-
ing line bundles on the curves C̃ of order precisely k. The section Z cannot be
contained in Zk, because Z intersects the zero section Z1 whereas Zk and Z1 are
disjoint. Therefore Z and Zk intersect transversally at finitely many points, possibly
zero. This means that O(p − q) is k-torsion for only finitely many curves C̃ in the
family C̃ → (∆\∆0)∪∆c. Taking the union over all k, we see that O(p−q) is torsion
for at most countably many curves C̃. It follows that for a curve C corresponding
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to a general point in ∆\∆0, with a single node and normalization C̃, O(p− q) will
not be torsion in Jac0C̃, and therefore the compactified Jacobian Jacd

C will be of
type A∞, i.e. the characteristic 1-cycle will consist of an infinite chain of rational
curves.

The same argument works for higher genus curves. For a very general K3 surface
S, Galati and Knutsen proved that in the n-dimensional linear system |C| ∼= Pn

there will exist a curve with a cusp and n−2 nodes [7, Theorem 1.1]. Moreover, they
showed that the n−2 nodes may be smoothed independently, producing an (n−2)-
dimensional family of curves with single cusps. In other words, ∆\∆0 parametrizes
curves with one node, and there again exists a non-empty codimension one subset
∆c ⊂ ∆ (i.e. codimension two in |C|) parametrizing cuspidal curves. The proof for
n > 2 then proceeds as above.

Remark . The union
⋃

k≥1 Zk of all the multi-sections Zk is dense in Jac0(C̃/
(∆\∆0)∪∆c). It follows that the section Z in the above proof will intersect infinitely
many of the Zk. At these points of intersection O(p − q) will be k-torsion and
therefore the compactified Jacobian Jacd

C will be of type Ik, i.e. the characteristic
1-cycle will consist of k rational curves forming a cycle. Thus the Beauville–Mukai
system contains singular fibers corresponding to characteristic 1-cycles of type Ik for
infinitely many k ≥ 2, along with type A∞ for the general singular fiber. However,
for a given k ≥ 2 we cannot guarantee that type Ik will occur; part of the problem
is that (∆\∆0)∪∆c is only quasi-projective, so an anticipated intersection of Z and
Zk might only occur over the boundary. In addition, there will be no singular fibers
corresponding to characteristic 1-cycles of type I1, as these would require p = q,
which as we saw only occurs for cuspidal curves over ∆c.

Using this example, we can show that Conjecture 1 is true when X is of K3[n]-
type.

Proposition 9. Let π : X → Pn be a very general Lagrangian fibration such that
X is deformation equivalent to S[n] for a K3 surface S. Then the general singular
fiber Xt is a semistable degeneration of abelian varieties.

Proof. According to Markman [13, Theorem 1.5], the Lagrangian fibration π :
X → Pn must be bimeromorphic to a Tate–Shafarevich twist of a Beauville–Mukai
system. In fact, we can strengthen this: because π : X → Pn is a very general
Lagrangian fibration, we can assume it has Picard number one. This means that it
won’t have any non-isomorphic birational models, and we conclude that it is isomor-
phic to a Tate–Shafarevich twist of a Beauville–Mukai system. We can also assume
that the Beauville–Mukai system is constructed from a very general K3 surface. A
Tate-Shafarevich twist is a kind of compactified torsor: it is locally isomorphic as a
fibration, and a torsor over the smooth fibers. In particular, π : X → Pn will have
the same general singular fibers as the Beauville–Mukai system, which as we have
seen above are semistable degenerations of abelian varieties.
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Remark. One expects similar results for the other known irreducible holomorphic
symplectic manifolds, the generalized Kummer varieties and O’Grady’s examples.
However, as far as the author knows, the analogue of Markman’s theorem has
not been established in these other cases. For the deformation type of generalized
Kummer varieties, one expects a very general Lagrangian fibration to be a Tate–
Shafarevich twist of a Debarre integrable system [6] or some variation of it (see
Wieneck [34]). The general singular fibers of these fibrations are semistable, but
determining their precise structure is something that the author will return to in
future work.

4.3. Hilbert schemes of elliptic K3 surfaces

Next we consider an elliptic K3 surface S → P1. Assume S → P1 admits a section,
but is otherwise very general in the sense that it contains exactly 24 nodal rational
curves as singular fibers, above the points p1, . . . , p24 ∈ P1. The Hilbert scheme
HilbnS of n points on S is an irreducible holomorphic symplectic manifold (see
Beauville [3]), and the elliptic fibration on S induces a Lagrangian fibration

HilbnS → SymnS → SymnP1 = Pn,

where the first map is the Hilbert–Chow morphism.
The fiber over a general point of SymnP1, given by an n-tuple {x1, . . . , xn} of

distinct points on P1, is isomorphic to the product Sx1 × · · · × Sxn of the corre-
sponding elliptic fibers of S → P1. The singular fibers occur over the hyperplanes

∆i := {{x1, . . . , xn} ∈ SymnP1 |xj = pi for some j},

for i = 1, . . . , 24, and over the “big diagonal”

∆0 := {{x1, . . . , xn} ∈ SymnP1 |xj = xk for some j and k}.

Consider the former; moreover, without loss of generality, let {x1, . . . , xn} be a
general point of ∆1 with x1 = p1, xj .= pi for all j ≥ 2 and i, and xj .= xk for all j
and k. Then the singular fiber over {x1, . . . , xn} will be isomorphic to

Sx1 × Sx2 × · · ·× Sxn
∼= Sp1 × Sx2 × · · ·× Sxn ,

where Sp1 is a nodal rational curve and Sx2 , . . . , Sxn are smooth elliptic curves.
This is semistable and the characteristic 1-cycle is clearly of type I1.

Next consider a general point {x1, . . . , xn} of ∆0; without loss of generality,
assume x1 = x2, xj .= xk otherwise, and xj .= pi for all j and i. For simplicity, we
first consider the n = 2 case. Write E for the elliptic curve Sx1 . The Hilbert scheme
Hilb2S is obtained from Sym2S by blowing up the diagonal; thus each point of the
diagonal in Sym2S is replaced by a P1. The singular fiber over {x1 = x2} ∈ ∆0 is
therefore isomorphic to the union of Sym2E and a P1-bundle over D, where D ∼= E
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is the diagonal in Sym2E. Now Sym2E is also a P1-bundle over E, because we have
the Abel–Jacobi map

Sym2E −→ Pic2E ∼= E,

taking a degree two divisor to its corresponding line bundle. The diagonal D is a 4-
valued section of this P1-bundle; for instance, it intersects the fiber above O(2y0) ∈
Pic2E in the four points 2y1 ∈ D ⊂ Sym2E where y1−y0 is 2-torsion in E. Instead,
one could observe that the composition of the maps

E ∼= D ↪→ Sym2E → Pic2E,

takes y to O(2y), i.e. is multiplication by 2. Putting everything together, we see
that the singular fiber over {x1 = x2} will have characteristic 1-cycle of type I∗0 ,
i.e. a central P1 with four other P1s attached in a D̃4 configuration.

For n > 2 we simply take the product of the above with the smooth (n − 2)-
dimensional abelian variety Sx3 × · · · × Sxn , so the characteristic 1-cycle is still of
type I∗0 . In particular, the singular fibers over ∆0 are never semistable. However,
we will see in Sec. 4.4 that they become semistable after a small deformation of the
Lagrangian fibration.

Thinking of Pn as parametrizing degree n polynomials, ∆0 is precisely the hyper-
surface parametrizing polynomials with a repeated root. A resultant argument then
shows that ∆0 has degree 2(n−1), but it seems that one should attach a multiplic-
ity to ∆0 because it parametrizes non-semistable singular fibers. We will say more
about this in Sec. 4.4.

4.4. Deforming to a very general Lagrangian fibration

We will now show that the Hilbert scheme of an elliptic K3 surface can be deformed,
as a Lagrangian fibration, to a Beauville–Mukai integrable system. Under this defor-
mation, the non-semistable singular fibers of the Hilbert scheme become semistable
fibers of the Beauville–Mukai system.

Let S be an elliptic K3 surface admitting a section D, and assume that the
Néron–Severi group is generated by D and the fiber F . In what follows we will
often abbreviate H0(S,O(D)) as H0(S, D), etc.

Lemma 10. For n ≥ 2 the fixed part of nF + D is D and the movable part is nF .
Thus

|nF + D| ∼= |nF | ∼= Pn.

We can identify this with SymnP1 because each of the n fibers moves in a pencil.

Proof. The fact that D is the fixed part of nF + D is proved in Sec. 2.7.4 of
Saint-Donat [22]. The lemma then follows from:

H0(S, nF + D) ∼= H0(S, nF ) = H0(S, π∗O(n)) ∼= H0(P1,O(n)) ∼= Cn+1,

where π : S → P1 is the elliptic fibration.
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By the local Torelli theorem for K3 surfaces there exists a hypersurface in the
moduli space of all deformations of S such that the class nF + D stays algebraic.
Moreover, choosing a general one-parameter deformation in this hypersurface gives
a family of K3 surfaces S → ∆ over a disc ∆ ⊂ C with S0 = S and such that
St has Picard number one and Néron–Severi group generated by nF + D for very
general t ∈ ∆. In particular, nF + D will be ample on St and the general element
of |nF + D| will be a smooth curve of genus n. (Explicitly, this family could be
given by deforming S in the direction corresponding to (2 − n)F + D under the
isomorphism

H1(S, T ) ∼= H1(S, Ω1) ∼= H1,1(S),

induced by the isomorphism T ∼= Ω1 coming from interior product with the holo-
morphic symplectic form σ.)

Next, we define a relative moduli space M/∆ of sheaves on S/∆ by defining
Mt to be the Mukai moduli space of stable sheaves on St with Mukai vector

v = (0, [nF + D], 1 − n).

A general element of Mt will look like ι∗L, where ι : C ↪→ St is the inclusion of a
curve C in the linear system |nF + D| and L is a degree zero line bundle on C. (In
general, for a degree d line bundle L on a curve C of genus g, the Mukai vector of
ι∗L is (0, [C], d + 1 − g).)

Proposition 11. The relative moduli space M/∆ is a family of Lagrangian fibra-
tions over Pn

∆. Specifically

(1) for very general t, Mt is a Beauville–Mukai integrable system,
(2) for t = 0, M0 is birational to HilbnS0 with Lagrangian fibration induced by the

original elliptic fibration on S0 = S.

Moreover, the birational map in part 2 commutes with the Lagrangian fibrations,

M0 !!" HilbnS0

↘ ↙
Pn.

Proof. For very general t, Mt is a Beauville–Mukai system by definition; so there
is nothing to prove in part 1. When t = 0, the linear system |nF + D| has D
as a base locus. Thus every curve C in the linear system |nF + D| looks like
F1+· · ·+Fn+D, where Fi are fibers of the elliptic fibration S → P1. Assume that the
Fi are smooth and distinct. A degree zero line bundle L on F1+ · · ·+Fn+D is given
by line bundles L1, . . . , Ln+1 on F1, . . . , Fn, and D, respectively, plus isomorphisms
(Li)pi

∼= (Ln+1)pi at pi = Fi ∩D, for 1 ≤ i ≤ n. Stability of ι∗L implies that the Li

all have degree zero (see Sec. 4.2 of Sawon [29] for an explicit calculation in a similar
example). The only degree zero line bundle on D ∼= P1 is the trivial line bundle,
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whereas degree zero line bundles on Fi are parametrized by Pic0Fi
∼= Fi. Therefore

the fiber of M0 → |nF + D| over the point F1 + · · · + Fn + D is isomorphic to

Pic0F1 × · · ·× Pic0Fn
∼= F1 × · · ·× Fn.

Similarly, the elliptic fibration S0 → P1 induces a Lagrangian fibration

HilbnS0 → SymnP1 ∼= Pn,

whose fiber over a general point F1 + · · · + Fn ∈ |nF | = SymnP1 ∼= Pn is also
isomorphic to F1 × · · · × Fn. Since these Lagrangian fibrations both admit global
sections, they must be birational.

Finally, it is a general fact that a birational map φ : X !!" X ′ between
Lagrangian fibrations that takes a general fiber isomorphically to a fiber must
commute with the fibrations. To prove this, recall that a birational map between
irreducible holomorphic symplectic manifolds induces a correspondence between
divisors; it is enough to show that this correspondence preserves the divisors induc-
ing the Lagrangian fibrations on X and X ′. Consider the pullback H of a general
hyperplane under π : X → Pn. It contains a dense open subset U ⊂ H that is a
union of fibers that don’t meet the indeterminacy locus of φ. The corresponding
divisor H ′ on X ′ is the closure of φ(U). But the image φ(U) will be a union of
fibers of π′ : X ′ → Pn, and H ′ will therefore be the pullback of a hypersurface.
Finally, dim|H ′| = dim|H | = n + 1 implies that H ′ is the pullback of a hyper-
plane, completing the proof. (This last part can also be proved without assuming
that the bases of the Lagrangian fibrations are isomorphic to Pn: see Matsushita
[17, Corollary 2].)

Remark. The identification of smooth fibers of M0 with those of HilbnS0 easily
extends to some singular fibers. For example, suppose that F1 is a nodal rational
curve. Then we should allow L1 to be a rank one torsion-free sheaf on F1. In other
words, we should replace Pic0F1 by the compactified Jacobian Pic0

F1. However,
Pic0

F1 is isomorphic to F1, as required. The case when some fibers coincide, for
example F1 = F2, appears to be more complicated, even for F1 smooth.

It is not clear if M0 !!" HilbnS0 extends to an isomorphism; more likely it
involves some modification of special fibers. Example 1 of Matsushita [17], which
arises from performing Mukai flops on Lagrangian Pns contained in fibers, demon-
strates how this could happen.

Remark. For each smooth fiber, we identified Pic0F with F . This identification is
fixed by taking OF to the basepoint in F given by the intersection F ∩D with the
section D. Alternatively, we could work with the moduli space M(0, [C], 1) whose
general element looks like ι∗L for a degree n line bundle L. Then stability will force
L to come from degree one line bundles on F1, . . . , Fn and a degree zero line bundle
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on D. The fiber over F1 + · · · + Fn + D would then be

Pic1F1 × · · ·× Pic1Fn
∼= F1 × · · ·× Fn

and this isomorphism is canonical: we don’t even need a basepoint in each fiber.

Corollary 12. The Hilbert scheme HilbnS0 can be deformed to a Beauville–Mukai
integrable system, as a Lagrangian fibration over Pn.

Proof. This is achieved by a birational modification of the relative moduli space
M/∆. We showed that the fibre M0 above t = 0 is birational to HilbnS0. Birational
holomorphic symplectic manifolds correspond to non-separated points in the moduli
space (see Huybrechts [8, Theorem 4.6]), so we can replace M0 by HilbnS0 in
the family. Moreover, the divisors inducing the Lagrangian fibrations on Mt for
t .= 0 specialize to the divisor inducing the Lagrangian fibration on M0. As we saw
in the proof of Proposition 11, under the birational map this corresponds to the
divisor inducing the Lagrangian fibration on HilbnS0. Therefore after the birational
modification of M/∆, we still have a family of Lagrangian fibrations over Pn

∆.

Assume that S is very general, so that it contains exactly 24 nodal rational
curves as singular fibers. For n = 2, the Lagrangian fibration on Hilb2S0 has a
discriminant locus consisting of 24 lines and a conic, with the lines tangent to the
conic; the singular fibers above the lines are semistable, whereas those above the
conic are not. A Beauville–Mukai integrable system will have a discriminant locus of
degree 30 (see Sawon [24]), and general singular fibers will be semistable. Thus the
corollary demonstrates how non-semistable fibers can deform to semistable fibers
under a small deformation of the Lagrangian fibration. In addition, it suggests
that the conic should be counted with multiplicity three, so that the degree of the
discriminant locus is preserved under deformations.

For general n, a Beauville–Mukai integrable system over Pn will have a discrim-
inant locus of degree 6(n + 3) (see Sawon [24]), and general singular fibers will be
semistable. The discriminant locus of the Lagrangian fibration on HilbnS0 consists
of 24 hyperplanes and a degree 2n − 2 hypersurface R. The latter is the image of
the “big” diagonal under the projection

P1 × · · ·× P1 → SymnP1 ∼= Pn

and its degree can be calculated by identifying Pn with the space of homogeneous
polynomials f of degree n; R is then given by the discriminant of f , i.e. the resultant
of f and f ′, which has degree 2n − 2. The singular fibers above the hyperplanes
are semistable, whereas those over R are not. Indeed, the behavior is similar to the
n = 2 case: over a general point of R, the singular fiber will look like the product of
n − 2 elliptic curves and a singular fiber over the conic in the n = 2 case. Thus we
once again see how non-semistable fibers can deform to semistable fibers under a
small deformation of the Lagrangian fibration. Moreover, we expect that R should
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again be counted with multiplicity three, so that the total degree of the discriminant
locus,

24 + 3(2n − 2) = 6(n + 3),

is preserved under the deformation.

Remark. One expects that a similar example can be constructed from generalized
Kummer varieties. Namely, if A is a two-dimensional complex torus admitting an
elliptic fibration then its generalized Kummer variety Kn(A) admits a Lagrangian
fibration (see Sawon [27, Sec. 3.2]). This Lagrangian fibration should be birational
to another constructed from a moduli space of rank zero sheaves on A, and then a
deformation of A should induce a deformation of Kn(A) to a Debarre system [6].
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