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ABSTRACT: In the previous paper of this series [Ko, H.-Y. et al.
J. Chem. Theory Comput. 2020, 16, 3757−3785], we presented a
theoretical and algorithmic framework based on a localized
representation of the occupied space that exploits the inherent
sparsity in the real-space evaluation of the exact exchange (EXX)
interaction in finite-gap systems. This was accompanied by a
detailed description of exx, a massively parallel hybrid message-
passing interface MPI/OpenMP implementation of this approach
in Quantum ESPRESSO (QE) that enables linear scaling hybrid
density functional theory (DFT)-based ab initio molecular
dynamics (AIMD) in the microcanonical/canonical (NVE/NVT)
ensembles of condensed-phase systems containing 500−1000
atoms (in fixed orthorhombic cells) with a wall time cost
comparable to semi-local DFT. In this work, we extend the current capabilities of exx to enable hybrid DFT-based AIMD
simulations of large-scale condensed-phase systems with general and fluctuating cells in the isobaric−isoenthalpic/isobaric−
isothermal (NpH/NpT) ensembles. The theoretical extensions to this approach include an analytical derivation of the EXX
contribution to the stress tensor for systems in general simulation cells with a computational complexity that scales linearly with
system size. The corresponding algorithmic extensions to exx include optimized routines that (i) handle both static and fluctuating
simulation cells with non-orthogonal lattice symmetries, (ii) solve Poisson’s equation in general/non-orthogonal cells via an
automated selection of the auxiliary grid directions in the Natan−Kronik representation of the discrete Laplacian operator, and (iii)
evaluate the EXX contribution to the stress tensor. Using this approach, we perform a case study on a variety of condensed-phase
systems (including liquid water, a benzene molecular crystal polymorph, and semi-conducting crystalline silicon) and demonstrate
that the EXX contributions to the energy and stress tensor simultaneously converge with an appropriate choice of exx parameters.
This is followed by a critical assessment of the computational performance of the extended exx module across several different
high-performance computing architectures via case studies on (i) the computational complexity due to lattice symmetry during NpT
simulations of three different ice polymorphs (i.e., ice Ih, II, and III) and (ii) the strong/weak parallel scaling during large-scale NpT
simulations of liquid water. We demonstrate that the robust and highly scalable implementation of this approach in the extended
exx module is capable of evaluating the EXX contribution to the stress tensor with negligible cost (<1%) as well as all other EXX-
related quantities needed during NpT simulations of liquid water (with a very tight 150 Ry planewave cutoff) in ≈5.2 s ((H2O)128)
and ≈6.8 s ((H2O)256) per AIMD step. As such, the extended exx module presented in this work brings us another step closer to
routinely performing hybrid DFT-based AIMD simulations of sufficient duration for large-scale condensed-phase systems across a
wide range of thermodynamic conditions.

1. INTRODUCTION

Molecular dynamics (MD) is a deterministic numerical
simulation method for efficiently sampling high-dimensional
potential energy surfaces (PES) in systems of importance
throughout biology, chemistry, physics, and materials sci-
ence.1,2 Following the fundamental postulates of statistical
mechanics, the trajectory of an MD simulation can be used to
determine the thermodynamic properties of a system, as well as
connect such macroscopic quantities to microscopic behavior.

As such, MD simulations are commonly used to furnish
detailed microscopic-level insights into a wide range of
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phenomena, including (but not limited to) the assembly and
structure of large-scale nanostructures and materials,3−7

chemical reactions and kinetics,8−12 as well as complex
biological processes.13−16 In practice, MD simulations of
finite-sized systems are performed in the statistical mechanical
ensemble corresponding to the thermodynamic conditions
used to prepare and characterize the system of interest. In the
microcanonical (NVE) ensemble, for example, the particle
number (N), volume (V), and total internal energy (E) of the
system are kept constant, which corresponds to an isolated
system under adiabatic conditions. In canonical (NVT) MD
simulations, the energy associated with endothermic and
exothermic processes is exchanged with a thermostat at a fixed
temperature (T), which allows one to account for thermal
effects at constant V (or constant system density, N/V). To
account for an externally applied pressure (p), a barostat can
be introduced to facilitate sampling in the isobaric−
isoenthalpic (NpH, when decoupled from a thermostat) and
isobaric−isothermal (NpT, when coupled to a thermostat)
ensembles, thereby enabling direct comparison to a larger
swath of experiments (as most are performed at constant p
instead of constant V). Another ensemble worth mentioning
includes the grand canonical (μVT) ensemble, which fixes the
chemical potential (μ) and enables MD simulations of open
systems in contact with thermal and particle reservoirs. Since
MD is an importance sampling technique, it can also be used
to efficiently generate high-quality data (e.g., positions, ionic
forces, cell forces) that can be used to learn complex high-
dimensional PES via machine learning-based approaches.17−20

Assuming that the system is ergodic, the accuracy of a given
MD simulation in predicting equilibrium properties is
primarily governed by the quality of the ionic forces and the
stress tensor (or cell forces) used when propagating the
corresponding equations of motion. As such, a physically
sound approach for obtaining these forces is given by first-
principles-based electronic structure theory, which is the
foundation for ab initio MD (AIMD) simulations.21,22 With
the AIMD technique, the nuclear PES is generated on-the-fly
from the electronic ground state and does not require any
empirical input, thereby allowing for a quantum mechanical
treatment of structural, electronic/dielectric, and dynamical
properties, as well as any potential chemical reactions that may
occur.21 Due to its favorable balance between accuracy and
computational cost, Kohn−Sham (KS) density functional
theory (DFT)23,24 is the predominant electronic structure
theory in AIMD, especially when performing large-scale
simulations of complex condensed-phase materials. Within
the KS-DFT framework, the total ground-state energy (E,
which is not to be confused with the total internal energy of
the system mentioned above) is comprised of the following
terms: the KS (or mean-field) electronic kinetic energy (Ekin),
the external potential energy (Eext, which includes contribu-
tions from nucleus−electron and nucleus−nucleus interac-
tions, as well as any other interactions with external fields), the
Hartree potential energy (EH, the classical description of the
electron−electron interactions), and the so-called exchange−
correlation (xc) energy (Exc, which accounts for all remaining
many-body electron exchange and correlation effects). While
DFT provides an exact solution for the ground-state density
(and properties) in principle, the exact functional form for Exc

remains unknown to date and must be approximated in
practice.25−33

When treating condensed-phase systems (such as solids and
liquids), the most commonly used approaches for computing
Exc are the generalized gradient approximation (GGA)
functionals such as those put forth by Perdew, Burke, and
Ernzerhof (PBE)34 as well as Becke, Lee, Yang, and Parr
(BLYP),35,36 which express Exc as a functional of the electron
density, ρ(r), and its gradient, ∇ρ(r). Although such
approaches are computationally efficient, the accuracy of a
GGA functional is primarily limited by (i) its inability to fully
describe non-local/long-range correlation effects such as
dispersion (or van der Waals (vdW)) interactions37−40 and
(ii) its propensity to suffer from self-interaction error (SIE), in
which each electron spuriously interacts with itself.41,42

Without a complete and physically sound description of
dispersion/vdW interactions, GGA−DFT faces difficulties
when determining the structure of liquid water,43 investigating
drug−DNA binding,44 predicting the structures and relative
stabilities of molecular crystal polymorphs,45 as well as
quantifying the cohesion in asteroids.46,47 In addition, the
presence of SIE at the GGA−DFT level leads to ρ(r) that are
typically more delocalized, which results in a number of
shortcomings including (but not limited to) excessive proton
delocalization in liquid water,48−50 inadequate descriptions of
transition states and charge-transfer complexes,51−53 as well as
overestimation of lattice parameters.54 To account for
dispersion/vdW forces in GGA−DFT, a number of different
approaches have been suggested in the literature,37−40 which
range from effective pairwise models55−59 to more sophisti-
cated many-body approaches44,60−63 and fully non-local xc
functionals.64−66 To mitigate the SIE, hybrid-GGA func-
tionals67 admix a fraction of exact exchange (EXX) into Exc as
follows

E a E a E E(1 )xc
hybrid

x xx x x
GGA

c
GGA= + − + (1)

where 0 < ax < 1 is a constant, Exx is the EXX energy, and Ex
GGA

and Ec
GGA are the GGA exchange and correlation contributions

to Exc, respectively. When compared to evaluating Exc at the
GGA level, the computational complexity introduced by the
EXX contribution in eq 1 is significantly higher. As such, the
efficient evaluation of Exx is the key limitation to performing
hybrid DFT-based AIMD simulations of large-scale con-
densed-phase systems and has triggered much attention in
the community.43,68−97 For a more detailed summary of these
approaches, we recommend the reader to the first paper in this
series,98 which will be referred to as PAPER-I throughout this
work.
As discussed in PAPER-I,98 a linear scaling yet numerically

accurate evaluation of Exx can be accomplished for large-scale
finite-gap condensed-phase systems by employing a localized
representation of the occupied orbitals43,80 (e.g., maximally
localized Wannier functions (MLWFs)).79,81 In that work, we
provided an in-depth discussion of the theoretical background,
accuracy, and performance of a massively parallel implementa-
tion (the exx module) of this MLWF-based EXX approach in
the pseudopotential- and planewave-based open-source
Quantum ESPRESSO (QE) package,99,100 and again refer
the reader back to this work for additional details. As briefly
summarized below, this algorithm achieves N( ) scaling by
using localized orbitals to exploit the natural sparsity in the
EXX interaction in real space i.e., this quantum mechanical
interaction is short-ranged and only occurs in regions of orbital
overlap. Letting {ϕ̃i(r)} be the set of MLWFs obtained via an
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orthogonal (unitary) transformation of the occupied KS
eigenstates, {ϕi(r)}, i.e., ϕ̃i(r) = ∑jUijϕj(r), we first note
that Exx is invariant to such transformations and can be written
as follows in the MLWF representation

r r
r r

r r
E d d

( ) ( )

ij

N
ij ij

xx

o

∫ ∫∑
ρ ρ

= − ′
̃ ̃ ′

| − ′| (2)

or equivalently

r r rE vd ( ) ( )
ij

N

ij ijxx

o

∫∑ ρ= − ̃ ̃
(3)

In these expressions (shown here without loss of generality for
a closed-shell system with No occupied orbitals), ρ̃ij(r) is the
so-called MLWF-product density

r r r( ) ( ) ( )
ij i j

ρ ϕ ϕ̃ ≡ ̃ ̃
(4)

and ṽij(r) is the corresponding MLWF-product potential

r r
r

r r
v ( ) d

( )
ij

ij∫
ρ

̃ ≡ ′
̃ ′

| − ′| (5)

i.e., the electrostatic potential felt by a test charge at r
originating from the charge distribution ρ̃ij(r′). Since the focus
of this work is large-scale condensed-phase systems with finite
gaps, the first Brillouin zone can be sampled at the Γ point
only; as such, we have the flexibility to work with real-valued
KS orbitals (and MLWFs), and so ρ̃ij(r) = ρ̃ji(r) and ṽij(r) =
ṽji(r). In this work, we again follow PAPER-I98 by dressing all
MLWF-specific quantities with tildes and leaving quantities
that are invariant to the MLWF representation unmodified
(e.g., Exx in eqs 2 and 3). Since the MLWFs in finite-gap
systems are exponentially localized in real space79,101−105 and
have a significantly smaller support than the entire simulation
cell, Ω, the use of MLWFs (or any other localized
representation which spans the occupied space) allows us to
exploit two levels of sparsity when computing Exx (as well as all
other EXX-related quantities, vide inf ra). Considering the
expression for Exx in the MLWF representation, one can
immediately see that a numerically accurate evaluation of eq 3
only requires contributions from overlapping pairs of MLWFs
(i.e., when ρ̃ij(r) ≠ 0). Hence, the first level of computational
savings in our approach originates from the fact that a given
MLWF is exponentially localized and will only appreciably
overlap with a finite number of neighboring MLWFs. As such,
the number of EXX pair interactions per orbital becomes
independent of system size (assuming a fixed system density),
and the quadratic sum over MLWFs in eq 3 can be replaced
with a linear sum over overlapping pairs of MLWFs without
loss of accuracy. To harness the second level of computational
savings, we define the MLWF-orbital domain corresponding to
ϕ̃i(r) as Ωi ≡ {r ∈ Ω | |ϕ̃i(r)| > ε}. Hence, Ωi encompasses the
support of ϕ̃i(r) and thereby delineates the region of space
where this MLWF is non-negligible. In the above expression,
we follow the approach outlined by Gygi and co-work-
ers,82,83,106 and neglect the regions of space where |ϕ̃i(r)| is less
than a small threshold ε. In analogy, we also define the MLWF-
product domain corresponding to a pair of overlapping
MLWFs, ϕ̃i(r) and ϕ̃j(r), as Ωij ≡ Ωi ∩ Ωj, which encompasses
the support of ρ̃ij(r) (see Figure 1 of PAPER-I98 for a
schematic illustration of these domains). Considering again the
energy expression in eq 3, one can also see that a numerically

accurate evaluation of the contribution to Exx from each
overlapping MLWF pair only requires spatial integration over
Ωij (given that ε is sufficiently small). As such, the costly
integration over Ω (i.e., the entire simulation cell) in eq 3 can
be replaced with spatial integrals over system-size-independent
Ωij domains. By accounting for both of these sparsity levels, eq
3 for Exx can now be rewritten as the following working
expression

r r rE vd ( ) ( )
ij

ij ijxx
ij

∫∑ ρ= − ̃ ̃
⟨ ⟩ Ω (6)

in which ⟨ij⟩ indicates that the summation over i and j only
includes overlapping MLWF pairs and each integral is
performed on the corresponding Ωij domain. With a judicious
choice of cutoff parameters (see PAPER-I98), the exx module
in QE is able to compute Exx in a numerically accurate fashion
at a computational cost that scales linearly with system size.
From eq 6, it is clear that an accurate and efficient real-space

evaluation of ṽij(r) is of central importance to developing a
numerically accurate and linear scaling algorithm for
computing Exx (as well as all other EXX-related quantities,
vide inf ra) in large-scale condensed-phase systems. In the exx
algorithm,98 this is accomplished by an efficient conjugate-
gradient (CG) solution to Poisson’s equation (PE) for ṽij(r) in
the near field

r r rv ( ) 4 ( )ij ij ij
2

πρ∇ ̃ = − ̃ ∈ Ω (7)

subject to boundary conditions provided by a sufficiently
converged multipole expansion (ME) of ṽij(r) in the far field

r rv
Q

l

Y

r
( ) 4

(2 1)

( , )
ij

lm

lm lm

l ij1∑π
θ φ

̃ =
+

∉ Ω
+

(8)

In this expression, r = (r, θ, φ) is given in spherical polar
coordinates, Ylm(θ, φ) are the spherical harmonics, and

r rQ Y rd ( , ) ( )
lm lm

l
ij

ij

∫ θ φ ρ= * ̃
Ω (9)

are the multipole moments of ρ̃ij(r). In addition to providing
the boundary conditions required during the CG solution of
the PE, the ME in eq 8 is also used when computing the EXX
contribution to the wavefunction forces, which formally
requires ṽij(r) on Ωi and Ωj (see Section 2.2.2).
In PAPER-I,98 we presented a linear scaling and numerically

accurate algorithm for computing the EXX contribution to the
energies and wavefunction forces in fixed orthorhombic cells,
thereby enabling large-scale hybrid DFT-based AIMD
simulations in the NVE and NVT ensembles for a wide array
of condensed-phase systems. With access to high-performance
computing (HPC) resources, the hybrid message-passing
interface (MPI) and open multi-processing (OpenMP)-based
implementation of exx in QE enables us to compute the EXX
contributions to the energy and wavefunction forces for
(H2O)256, a condensed-phase system containing >750 atoms,
in approximately 2.4 s on the IBM Blue Gene/Q architecture.
As such, the current exx module (and earlier pilot versions)
has already enabled computational investigations into a
number of important condensed-phase systems, including the
electronic structure of semi-conducting solids,107,108 the
structure and local order of ambient liquid water,43,109 the
structural and dynamical properties of aqueous ionic
solutions,110,111 the thermal properties of the pyridine-I
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molecular crystal,112 as well as the subtle isotope effects on the
structure of liquid water.20

In this work, we extend the capabilities of the exx module
by deriving and implementing (i) the EXX contribution to the
stress tensor (or cell forces), which is required for performing
constant-pressure simulations, and (ii) a stable and efficient
representation for the Laplacian during the solution of the PE
in general/non-orthogonal simulation cells. In doing so, we
enable accurate and efficient hybrid DFT-based AIMD
simulations of large-scale condensed-phase systems (with
arbitrary symmetries) in the NpH and NpT (as well as NVE
and NVT) ensembles using the exx module. Since most
experiments are performed at constant p and T (instead of
constant V and T), this development will enable more
sophisticated computational investigations into large-scale
condensed-phase systems across a wider range of thermody-
namic conditions. The rest of this study is organized as follows.
In Section 2, we derive the EXX contribution to the stress
tensor within the framework of our MLWF-based EXX
approach, which is required for propagating the Car−
Parrinello (CP) equations of motion under constant-pressure
conditions.21,22,113 In Sections 3 and 4, we provide a detailed
discussion of the algorithmic extensions implemented in the
exx module as well as its accuracy and performance when
simulating condensed-phase systems in the NpT ensemble.
The paper is then ended with some brief conclusions in
Section 5.

2. THEORY

In this section, we expand the theoretical framework
underlying our linear-scaling hybrid DFT approach98 to enable
constant-pressure simulations of condensed-phase systems
with general/non-orthogonal cells. We focus the discussion
around the CP equations of motion (in conjunction with the
Parrinello−Rahman barostat113) used to propagate the
electronic, ionic, and cell degrees of freedom during
constant-pressure simulations in the NpH ensemble; with the
introduction of an appropriately chosen thermostat (for the
ionic degrees of freedom), this approach can easily be extended
to sample the NpT ensemble. Although the scope of this
discussion is limited to the CPMD variant of AIMD, which
provides a computationally efficient scheme for propagating
localized orbitals,114−116 a novel and cost-effective extension to
enable Born−Oppenheimer MD using this approach will be
addressed in a forthcoming paper. When used in conjunction
with second-order damped dynamics117 (or other global
optimization techniques such as CG) on the ionic and cell
degrees of freedom, variable-cell optimizations (in the absence
of thermal and nuclear quantum fluctuations) are also possible
with the approach presented herein.
2.1. Index Conventions. Following PAPER-I, we will

utilize the following conventions for the indices encountered in
this work

• i, j, k: indices for the No occupied orbitals (or MLWFs)
• a, b, c: indices corresponding to the Cartesian directions

x, y, and z

• α, β, γ: indices corresponding to the cell (lattice) vectors
L1, L2, and L3

• I, J, K: indices for the NA ions
• p, q: indices for the points on the real-space grid (with p

not to be confused with the pressure)
• l, m: indices for spherical harmonics

2.2. EXX-Based CPMD in the NpH Ensemble.
2.2.1. Equations of Motion. In constant-pressure CPMD
simulations, fictitious dynamics are introduced on the No

occupied KS orbitals {ϕi(r)} and the simulation cell tensor h
via artificial/fictitious masses μ (not to be confused with the
chemical potential) andW, respectively. In this work, h is a 3 ×
3 matrix defined as h ≡ (L1 L2 L3) or haα ≡ (Lα)a, where L1, L2,
and L3 are the corresponding cell (lattice) vectors. The
simulation cell volume will be denoted by V = det(h).
Constant-pressure (NpH) CPMD simulations with the
Parrinello−Rahman barostat113 are governed by the following
equations of motion for the electronic, ionic, and cell degrees
of freedom22

r
r

r
E

( )
( )

( )
i

i j

ij j∑μϕ
δ

δϕ
ϕ̈ = −

*
+ Λ

ikjjjjjj y{zzzzzz (10)

S h SM E M( )RI I I I
1 1

I
̈ = − ∇ − ̇ ̇− −

(11)

h hW p V1( )( )T 1
Π̈ = − −

(12)

in which Newton’s dot notation was used to indicate time
derivatives, E is the total ground-state DFT energy (including
the nuclear−nuclear repulsion), −(δE/δϕi*(r)) is the force
acting on the i-th occupied KS wavefunction, Λij is a Lagrange
multiplier enforcing orthonormality in {ϕi(r)}, −∇RI

E is the

force acting on the I-th ion (located at RI with mass MI),

h hT= is the so-called metric tensor, Π is the total internal
stress tensor, p is the applied (external) pressure, and 1 is the
identity matrix. For the fluctuating simulation cells encoun-
tered in constant-pressure CPMD, it is more convenient to
work in crystal (fractional) coordinates SI for the ions, which
are independent of the dynamical variables associated with the
cell degrees of freedom and are related to the Cartesian
coordinates via RI = hSI or SI = h−1RI.
The components of the 3 × 3 total internal stress tensor, Π,

can be further decomposed into kinetic (kin) and potential
(pot) contributions as follows22

ab ab ab
kin potΠ = Π + Π (13)

In this expression, the kinetic contribution (Πab
kin) originates

from the ionic kinetic energy via

V
M h S S h

1
ab

I

I a I I b
kin ∑ ∑Π = ̇ ̇

α α β β

αβ (14)

while the potential contribution (Πab
pot) arises from the cell

derivatives, σaα, of the ionic potential energy (i.e., the DFT
energy)

V

E

h
h

V
h

1 1
ab

a
b

a
b

pot ∑ ∑ σΠ = −
∂

∂
≡ −

α α
α

α

α
α

ikjjjjj y{zzzzz (15)

2.2.2. EXX Contribution to the Wavefunction Forces. Since
the explicit functional dependence of Exx on the total one-
electron density, ρ(r) ≡ 2∑i|ϕi(r)|

2 = 2∑i|ϕ̃i(r)|
2, is unknown,

one would need to use special methods such as the optimized
effective potential (OEP) technique118 to derive the EXX
contribution to the wavefunction forces within a strict KS-DFT
scheme. In this work, we instead adopt a generalized KS-DFT
scheme by allowing for an orbital-dependent xc potential, as
this approach (which is currently standard practice in the field)
yields the same ground-state energies as the OEP formalism at
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a fraction of the computational cost. Given the working
expression for Exx in eq 6, the EXX contribution to the
wavefunction forces (which is needed to propagate the
electronic degrees of freedom in eq 10) can be derived in a
straightforward manner (see PAPER-I98 for more details). In
the MLWF representation, the wavefunction force acting on
the i-th MLWF, D̃xx

i (r) = −(δExx/δϕ̃i*(r)), takes on the
following form

r r r rD v D( ) ( ) ( ) ( )i

j

ij j
j

ij
xx xx∑ ∑ϕ̃ = ̃ ̃ ≡ ̃

(16)

in which the sum only includes the ϕ̃j(r) that overlap with
ϕ̃i(r). Here, we again follow PAPER-I by dressing all MLWF-
specific quantities with tildes and leaving quantities that are
invariant to the MLWF representation unmodified. Since ϕ̃j(r)
is exponentially localized, a numerically accurate evaluation of
D̃xx

ij (r) in eq 16 only requires the action of ṽij(r) on ϕ̃j(r) over
the system-size-independent Ωj domain, i.e., where ϕ̃j(r) is
non-negligible. Taken together with the fact that the number of
overlapping MLWF pairs is also system-size-independent (for a
given i), the entire set of {D̃xx

i (r)} can therefore be evaluated in
linear time. From eq 16, it is again clear that an accurate and
efficient real-space evaluation of ṽij(r)on compact and
system-size-independent domainsis the cornerstone of our
linear-scaling MLWF-based EXX approach.
2.2.3. EXX Contribution to the Stress Tensor. The

remaining quantity needed to propagate the equations of
motion during constant-pressure CPMD simulations at the
hybrid DFT level is the EXX contribution to the stress tensor
in eq 12. As can be seen in eqs 13−15, the EXX contribution is
only present in the potential part of Π and arises from σaα =
(∂E/∂haα), the derivative of the DFT energy with respect to
the cell tensor (i.e., the so-called cell derivatives). As such, the
EXX contribution to Πpot in eq 15 requires evaluation of
σxx
aα=(∂Exx/∂haα), which takes on the following form (cf. eq 2)

r r
r r

r rh
d d

( ) ( )
a

ij a

ij ij

xx ∫ ∫∑σ
ρ ρ

= −
∂

∂
′

̃ ̃ ′

| − ′|
α

α (17)

To compute these cell derivatives, it is again more convenient
to work in crystal coordinates, as was done above in the NpH
equations of motion for the ionic degrees of freedom (see eq
11). For the electrons, the transformation between crystal
coordinates s and Cartesian coordinates r is completely
analogous and is given by r = hs or s = h−1r. Since the
Jacobian for this transformation is given by det(dr/ds) =
det(h) = V, the relationship between an MLWF in Cartesian

and crystal coordinates is r s V( ) ( )/
i i

ϕ ϕ̃ = ̃ , from which it
follows that

r s
V

( )
1

( )
ij ij

ρ ρ̃ = ̃
(18)

Using this expression and the fact that dr = V ds, we can
transform eq 17 into crystal coordinates, namely,

s s
s s

h s sh
d d

( ) ( )

( )
a

ij a

ij ij

xx ∫ ∫∑σ
ρ ρ

= −
∂

∂
′

̃ ̃ ′

| − ′ |
α

α (19)

in which all factors of V (arising from the transformations of
the MLWF-product densities and differentials) have canceled.
Since crystal coordinates are independent of the dynamical
variables associated with the cell, the only remaining

dependence on h is in the denominator of the integrand in
eq 19. Letting Δs = s − s′, we can now perform the relevant
derivative as follows

h s s h h s

h sh h

s h s( ) ( )

a

T T

a

a
1 1/2

3

∂ | Δ |
∂

=
∂ Δ Δ
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∑ Δ Δ

| Δ |α α

β α β β
− −

(20)

Plugging this expression into eq 19 and transforming back to
Cartesian coordinates yields

r r r r
r

h
r r

( ) d d ( ) ( )a

ij b

b ij ij
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xx
1
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Δ Δ

|Δ |
α

α
−
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in which Δr = r − r′. Further reduction of this expression is
possible by splitting the integrand into two terms via Δrb = rb
− rb′, using the fact that Δr′ = r′ − r = −Δr, and then noticing
that these terms are equivalent after swapping the r and r′
dummy variables. After doing so, we can now write eq 21 in
the following intermediate form

r r r r
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h
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α
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This expression can be further simplified by separating the
integrand as follows

r r r r
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and then realizing that the term inside the square brackets (to
within a sign) is the derivative of ṽij(r) with respect to the a-th
Cartesian component, that is,

r
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r r
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where we have used eq 5. As such, we now arrive at the final
expression for the EXX cell derivatives needed during hybrid
DFT-based CPMD simulations in the NpH (or NpT)
ensemble

r r
r

h r
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ij b

b b ij

ij

a
xx

1 ∫∑ ∑σ ρ= − ̃
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−

ikjjjjj y{zzzzz (25)

In analogy to the working expression for Exx in eq 6, a linear-
scaling and numerically accurate evaluation of eq 25 is also
possible by (i) replacing the quadratic sum over MLWFs with
a linear sum over overlapping MLWF pairs (∑ij → ∑⟨ij⟩) and
(ii) performing the spatial integrals over system-size-
independent Ωij domains instead of Ω (i.e., the entire
simulation cell). Doing so leads us to the following working
expression for σxx

aα in our MLWF-based EXX approach (cf. eq
6)

r r
r

h r
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r
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( )
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ij b

b b ij

ij

a
xx

1

ij

∫∑ ∑σ ρ= − ̃
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∂
α

α
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−

Ω

ikjjjjj y{zzzzz (26)

From eq 26, it is clear that once ṽij(r) is evaluated (which is
also required for computing Exx and {D̃xx

i (r)}), its gradient
provides the remaining ingredients needed to compute the
EXX contribution to the stress tensor via eq 15, that is,
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V
h( )

1
ab

a
bxx

pot
xx∑ σΠ = −

α

α
α

(27)

2.2.3.1. Isotropic Constraints on Πxx
pot. In general, all

components of Π (i.e., the full stress tensor) are utilized when
propagating the equations of motion for the cell degrees of
freedom during constant-pressure CPMD simulations (see eq
12). In certain cases, however, constraints can be applied to Π,
which allow one to maintain desired lattice symmetries, avoid
shear stress in fluids, and/or suppress phase transitions during
constant-pressure CPMD simulations. For instance, it is
common practice to enforce isotropic constraints on Π during
NpH (or NpT) simulations of solids or liquids in simple cubic
cells. In order to do so, the off-diagonal components of Π are
set to zero and the diagonal components are replaced by the
internal pressure of the system, i.e.,

p (isotropic)ab ab
int

δΠ = (28)

in which pint is equivalent to the isotropic average of Π

p
1

3

1

3
Tr

a

aa
int ∑ Π≡ Π =

(29)

From the EXX point of view, this is tantamount to replacing
Πxx

pot in eq 27 with

p( ) (isotropic)ab abxx
pot

xx
int

δΠ = (30)

where

p
1

3
Tr

xx
int

xx
pot

Π=
(31)

is the EXX contribution to the internal pressure. By applying
an equal (isotropic) cell force along each lattice vector, the
simulation cell is not subjected to shear stress and maintains its
shape throughout the MD trajectory.
When performing such isotropic NpH (or NpT) simulations

of solids or liquids in simple cubic cells (with side length L and
haα = Lδaα), pxx

int does not even require evaluating all of the
diagonal components of Πxx

pot and can be simplified as follows
(cf. eqs 27 and 31)
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Since ∂haα/∂L = ∂(Lδaα)/∂L = δaα for a simple cubic cell, the
trace over cell derivatives in eq 32 is equivalent to the
derivative of Exx with respect to L, that is,
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which allows us to write pxx
int in the following alternative form

p
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Since r = Ls in a simple cubic cell, the evaluation of (∂Exx/∂L)
can be further simplified as follows (cf. eqs 17−19)

r r
r r

r r

s s
s s

s s

s s
s s

s s

r r
r r

r r

E

L L

L L

L L

L

E

L

d d
( ) ( )

d d
( ) ( )

1
d d

( ) ( )

1
d d

( ) ( )
(simple cubic)

ij

ij ij

ij

ij ij

ij

ij ij

ij

ij ij

xx

xx

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∑

∑

∑

∑

ρ ρ

ρ ρ

ρ ρ

ρ ρ

∂

∂
= −

∂
∂

′
̃ ̃ ′

| − ′|

= −
∂

∂
′

̃ ̃ ′

| − ′|

= ′
̃ ̃ ′

| − ′|

= ′
̃ ̃ ′

| − ′|
= −

ikjjj y{zzz

(35)

By combining eqs 34 and 35, we arrive at the following
expression for pxx

int in a simple cubic cell

p
L

V

E

L

E

V3 3
(simple cubic)

xx
int xx xx= −

∂

∂
=

ikjjj y{zzz (36)

As such, the EXX contribution to pint (as well as Π) is trivial
and only requires evaluation of Exx when performing isotropic
NpH (or NpT) simulations of solids or liquids in simple cubic
cells at the hybrid DFT level of theory.

3. IMPLEMENTATION AND ALGORITHMIC DETAILS

In PAPER-I,98 we presented a massively parallel implementa-
tion of our linear-scaling MLWF-based EXX algorithm (i.e.,
the exx module), which enabled hybrid DFT-based AIMD
simulations of large-scale condensed-phase systems with fixed
orthorhombic unit cells in the NVE and NVT ensembles. In
this section, we describe an algorithmic extension to the exx
module that enables such hybrid DFT simulations in the NpH
and NpT (as well as the NVE and NVT) ensembles for systems
with general/non-orthogonal cells. To do so, we first briefly
review the exx module (Section 3.1) and then describe our
extensions to exx, which includes algorithms that (i) handle
fluctuating simulation cells with non-orthorhombic lattice
symmetries (Sections 3.2 and 3.3) and (ii) compute the
previously derived (Section 2.2.3) analytical evaluation of the
EXX contribution to the stress tensor (Section 3.4).

3.1. Review of the exx Module. In this section, we
briefly review the implementation of our linear-scaling MLWF-
based EXX algorithm in exx, a standalone module which has
been integrated (via a portable input/output interface) with
the MLWF-enabled semi-local DFT routines in the CP module
of QE.100 To enable hybrid DFT simulations of large-scale
condensed-phase systems using this approach, the exx
module employs a dual-level MPI/OpenMP parallelization
scheme, which is able to exploit both internode and intranode
HPC resources. As depicted in the flowchart in Figure 1, the
main input required for the exx module includes the current
set of MLWFs at each CPMD step, {ϕ̃i(r)}, while the output
produced by exx includes the corresponding EXX contribu-
tions to the energy (Exx), wavefunction forces ({D̃xx

i (r)}), and
cell derivatives/stress tensor (σxx, see Section 3.4). Given the
capability to generate “on-the-fly” MLWFs during CPMD
simulations, it should be reasonably straightforward to
integrate the exx module into other (periodic) DFT
codebases. Since the only input requirement of exx is an
orthonormal set of sufficiently localized orbitals, the use of
alternative localization schemes (e.g., recursive subspace
bisection,82,83 selected columns of the density matrix,84−86
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and condensed-phase Pipek−Mezey119) are also possible with
slight modifications to the code.
3.1.1. Step I (Redistribution of MLWFs). As mentioned

above, the input to the exx module is {ϕ̃i(r)}, the current set
of MLWFs at a given CPMD step. In QE, the so-called GRID
scheme is employed when distributing the data corresponding
to real-space quantities such as {ϕ̃i(r)}; in this scheme, each of
the Nproc MPI processes holds the data corresponding to all No

MLWFs on a subset of the real-space grid (see Sections III.A,
III.B, and Figure 3 in PAPER-I98). To efficiently utilize
massively parallel HPC resources, Step I of the exx module

redistributes the {ϕ̃i(r)} data from the GRID scheme to an
alternative ORBITAL data distribution scheme, in which each
MPI process now holds the data corresponding to a subset of
MLWFs across the entire real-space grid (see Sections III.B,
III.C.1, and Figure 3 in PAPER-I98). In the exx module, the
assignment of MLWFs across the pool of available MPI
processes is governed by ζ ≡ Nproc/No, that is, the ratio of MPI
processes to MLWFs; when ζ = 1 (which is a common mode
for running exx), each MPI process Pi is assigned a single
MLWF ϕ̃i. When Nproc < No (i.e., ζ < 1, less computational
resources), multiple MLWFs are assigned to each Pi; although
the exx module allows for any (rational) value of ζ < 1, a
balanced distribution of MLWFs across MPI processes is only
(currently) possible when Nproc is an exact divisor of No. When
Nproc > No (i.e., ζ > 1, HPC resources), each MLWF is
assigned to multiple MPI processes; in this case, the current
exx module only allows for integer values for ζ > 1. Unless
otherwise specified, we will assume that ζ = 1 throughout the
rest of this work.

3.1.2. Step II (Construction of Pair List and Proto-
Subdomains). With the {ϕ̃i(r)} now distributed according
to the ORBITAL scheme, the exx module enters Step II and
generates a unique list of overlapping ⟨ij⟩MLWF pairs to avoid
redundant computation (see Section III.B.2, Algorithm 1, and
Figures 4 and 5 in PAPER-I98). Each overlapping ⟨ij⟩ pair is
determined based on the criteria that |C̃i − C̃j| ≤ Rpair; that is,
the distance between two MLWF centers (C̃i = ⟨ϕ̃i|r|ϕ̃i⟩ and C̃j

= ⟨ϕ̃j|r|ϕ̃j⟩) must be less than or equal to a user-defined radial
distance cutoff (Rpair). The exx module then constructs the
so-called unique MLWF pair list, , which determines how the
computational workload will be distributed across the pool of
available MPI processes, and therefore defines the computa-
tion and communication protocol in our algorithm. In
constructing , the exx module removes ⟨ij⟩ and ⟨ji⟩ pair
redundancy (which minimizes the overall computational
workload) and then attempts to balance the workload among
MPI processes while keeping the number of interprocess
communication events minimal. During Step II, the exx
module also generates two concentric spherical proto-
subdomains, Θ(C0,RPE) and Θ(C0,RME), which will be used
later when computing each ṽij(r) via the solution to Poisson's
equation in the near field (PE) and a multipolar expansion in
the far field (ME). Centered around C0 (the grid-resolved
center of Ω), the sizes of these spherical proto-subdomains are
determined by user-defined radii, i.e., RPE ∈ {RPE

s , RPE
ns } and

RME ∈ {RME
s , RME

ns } for ⟨ii⟩ (self-, s) and ⟨ij⟩ (non-self, ns)
pairs; judicious choices for these parameters determine the
accuracy and performance of the exx module (see Section
III.C.2 and Figure 5, as well as Section IV and Figures 6 and 7
in PAPER-I98). For each point in these proto-subdomains, we
store the local (relative) Cartesian coordinates (r ̅ = r − C0) as
well as the global grid point indices (g0) along the three lattice
directions (L1, L2, and L3). Based on these stored quantities,
the Θ(C0,RPE) and Θ(C0,RME) proto-subdomains will be used
(during future steps) to generate the pair-specific Θ(Cij,RPE)
and Θ(Cij,RME) subdomains via a rigid translation from C0 to
Cij, the grid-resolved midpoint of C̃i and C̃j (see Section III.C.2,
Algorithm 2, and Figure 5 in PAPER-I98).

3.1.3. Step III (Communication of MLWFs). For each
overlapping ⟨ij⟩ pair in (computed in Step II), the MPI
process Pj (which holds ϕ̃j(r) according to the ORBITAL
scheme) first off-loads ϕ̃j(r) onto the Θ(Cij,RME) subdomain
and then sends this orbital to Pi. With ϕ̃j(r)̅ on Θ(Cij,RME) and

Figure 1. Flowchart of the exx module (dashed green box) in QE

with extensions (dashed red boxes) for performing constant-volume
(NVE/NVT) and constant-pressure (NpH/NpT) MLWF-based
hybrid DFT simulations in general/non-orthogonal cells. As
summarized in the main text, the input required by exx includes
the set of MLWFs at the current CPMD step ({ϕ̃i(r)}), while the
output produced by the extended exx module includes the EXX
contributions to the energy (Exx), wavefunction forces ({D̃xx

i (r)}), and
cell derivatives (σxx). Purple (brown) circles denote that a given
quantity is represented according to the default GRID (customized98

ORBITAL) data distribution scheme in QE. Pale yellow circles
denote the data that are globally broadcast via MPI during the
execution of the exx module. For a detailed description of each step,
see Sections III.C.1−III.C.6 in PAPER-I98 as well as Sections 3.1−3.4
in the current study.
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ϕ̃i(r) stored locally according to the ORBITAL scheme, Pi
now computes ρ̃ij(r)̅ on the smaller Θ(Cij,RPE) subdomain (a
formal subset of Θ(Cij,RME)) by multiplying these two MLWFs
(see Section III.C.3 and Figures 4 and 5 in PAPER-I98).
3.1.4. Step IV (Solution of PE). In Step IV, each MPI

process Pi will first compute the far-field MLWF-product
potential (ṽij(r)̅) on Θ(Cij,RME)\Θ(Cij,RPE) via a ME (see eqs 8
and 9). Each Pi then computes the near-field ṽij(r)̅ by solving
the PE on Θ(Cij,RPE) (eq 7, with boundary conditions
provided by the far-field ṽij(r)̅) using a finite-difference
representation of the Laplacian operator120 in conjunction
with an iterative CG solver that has been efficiently parallelized
over Nthread OpenMP threads (see Section III.C.4 and Figure
10 in PAPER-I98).
3.1.5. Step V (Computation of Energy and Forces). With

ṽij(r)̅ on Θ(Cij,RME) for each ⟨ij⟩ pair (constructed using the
combined near- and far-field solutions computed in Step IV),
Pi then computes the ⟨ij⟩ contribution to the EXX energy (Exx)
and wavefunction forces (D̃xx

ij (r)̅ and D̃xx
ji (r)̅). Following eq 6,

Exx is evaluated on Θ(Cij,RPE) (a fixed-size spherical
representation for Ωij) and is accumulated via a straightforward
MPI_SUM over the partial ⟨ij⟩ contributions computed on
each MPI process. With ṽij(r)̅ in hand, Pi is also well-
positioned to compute both D̃xx

ij (r)̅ = ṽij(r)̅ϕ̃j(r)̅ and D̃xx
ji (r)̅ =

ṽij(r)̅ϕ̃i(r)̅, which are required for D̃xx
i (r) and D̃xx

j (r), the total
wavefunction forces acting on ϕ̃i(r) and ϕ̃j(r) (see eq 16).
Both of these contributions are evaluated on Θ(Cij,RME), a
fixed-size spherical domain that should be chosen to be large
enough (via the user-defined RME parameter) to cover the
relevant sectors of both D̃xx

ij (r) and D̃xx
ji (r). Since the far-field

ṽij(r) is dipolar at lowest order (due to the vanishing monopole
associated with ρ̃ij(r)), this quantity decays as 1/r

2 for i ≠ j; as
such, a judicious choice for RME ensures rapid convergence in
the ⟨ij⟩ (and ⟨ji⟩) contributions to the wavefunction forces
(see Section II.C and Figure 7 in PAPER-I98). After computing
both D̃xx

ij (r)̅ and D̃xx
ji (r)̅, D̃xx

ij (r)̅ is locally accumulated on Pi to
form D̃xx

i (r), while D̃xx
ji (r)̅ is shipped back (via MPI) to Pj,

where it is accumulated to form D̃xx
j (r) (see Section III.C.5 and

Figure 4 in PAPER-I98).
3.1.6. Step VI (Redistribution of Wavefunction Forces). At

this stage, all EXX-related quantities have been evaluated; Exx

has been accumulated and broadcast to all MPI processes,
while {D̃xx

i (r)} is now stored in the ORBITAL data
distribution scheme. For compliance with the CP module in
QE, {D̃xx

i (r)} is redistributed from the ORBITAL to the GRID
scheme in this last step (see Sections III.A, III.B, and III.C.6
and Figure 3 in PAPER-I98).
In order to extend our MLWF-based approach to enable

constant-volume (NVE/NVT) and constant-pressure (NpH/
NpT) hybrid DFT simulations of condensed-phase systems
described by general/non-orthogonal cells, we have made a
series of modifications to the exx module. Each of these
modifications are described in detail below and are delineated
by the red dashed boxes in the exx flowchart provided in
Figure 1. In Section 3.2, we describe our modifications to Step
II and Step III, which deal with proto-subdomain construction
for (potentially fluctuating) simulation cells with general lattice
symmetries. Our extensions to Step IV, which enable an
efficient CG solution of the PE on non-orthogonal real-space
domains, are detailed in Section 3.3. In Section 3.4, we present
the needed extensions to Step V during constant-pressure
CPMD simulations, i.e., analytical evaluation of the EXX

contribution to the stress tensor via the cell derivatives (σxx), as
derived in Section 2.2.3.

3.2. Extension of the exx Module: Subdomains in
Constant-Pressure CPMD. In this section, we describe our
modifications to Step II and Step III of the exx module
regarding the construction and selection of proto-subdomains
during constant-volume and constant-pressure CPMD simu-
lations of condensed-phases systems with general/non-
orthogonal cells.

3.2.1. Proto-subdomain Construction for General/Non-
orthogonal Simulation Cells. Treatment of general/non-
orthogonal cells is a fairly straightforward extension to the
orthorhombic case discussed previously (see Section III.C.2
and Algorithm 2 of PAPER-I98) and requires the following two
distinctions. For one, the lattice vectors (L1, L2, L3) no longer
coincide with the Cartesian directions (which are labeled using
Roman indices a, b, c) and therefore require a distinct index
convention (i.e., Greek indices α, β, γ) as defined in Section
2.1. In addition, the transformation between Cartesian and
crystal coordinates requires the full cell tensor, i.e., r = hs (as
opposed to the simpler ra = |La|sa in the orthorhombic case).
For a general/non-orthogonal cell with Ngrid, α equispaced grid
points along each of the Lα lattice vectors (with grid spacing
δξα = |Lα|/Ngrid,α), the global grid index along Lα is given by gα
= Ngrid,αsα.
Given user-defined values for RPE and RME (for both self (s)

and non-self (ns) cases as discussed in Section IV of PAPER-
I98), the exx module now employs a general/non-orthogonal
variant of Algorithm 2 in PAPER-I98 during the construction of
the Θ(C0,RPE) and Θ(C0,RME) proto-subdomains, each of
which contains NPE ∈ {NPE

s , NPE
ns } and NME ∈ {NME

s , NME
ns } grid

points, respectively. When compared to the original algorithm
for orthorhombic simulation cells, the only difference lies in
the use of the full cell tensor (instead of the lattice dimensions)
during the computation of the gPE

0 and gME
0 global grid indices.

In practice, this leads to a revised assignment of gPE
0 [q′] and

gME
0 [q″] with NINT[Ngrid,α(h

−1r)α] (for α = 1, 2, 3) instead of
the original form, i.e., NINT[Ngrid,ara/|La|] (for a = 1, 2, 3). As
such, the resultant proto-subdomains reflect the symmetry of
the underlying (general/non-orthogonal) simulation cell.
Following the same conventions defined in PAPER-I,98 the

Θ(C0,RPE) and Θ(C0,RME) proto-subdomains are again stored
by the modified exx module as a set of local (relative)
Cartesian coordinates in a 3 × NME double-precision array

r
r

r
q

q q N

q N q N N

1, ...,

1, ...,

PE PE

ME PE PE ME
̅[ ] =

̅ [ ] =

̅ [ − ] = +

lmoonoo |}oo~oo (37)

and a set of global grid indices in a 3 × NME integer array

q
q q N

q N q N N
g

g

g

1, ...,

1, ...,

0 PE
0

PE

ME
0

PE PE ME

[ ] =
[ ] =

[ − ] = +

lmoooonoooo
|}oooo~oooo (38)

With such compact representations of the Θ(C0,RPE) and
Θ(C0,RME) proto-subdomains, the exx module is now
positioned to construct the Θ(Cij,RPE) subdomain (for
computing the ⟨ij⟩ contributions to Exx and σxx) as well as
the Θ(Cij,RME) subdomain (for computing D̃xx

ij (r)̅ and D̃xx
ji (r)̅).

As discussed in Section III.C.3 of PAPER-I,98 these
subdomains can be conveniently obtained via a rigid
translation of the Θ(C0,RPE) and Θ(C0,RME) proto-subdomains
from C0 to Cij (which is a crucial operation when
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communicating the MLWFs among MPI processes in Step III
of the exx module). For general/non-orthogonal cells, the
component of the required grid translation vector (τij) along a
lattice vector Lα is evaluated via an intermediate mapping to
crystal coordinates (s = h−1(Cij − C0)) and given by

h C C

L h C C

NNINT ( )

NINT
( )

ij
ij

ij

grid,
1

0

1
0

τ

δξ

= [ [ − ] ]

=
| |[ − ]

α α α

α α

α

−

−Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ (39)

where we have used the fact that δξα = |Lα|/Ngrid,α. Application
of τij to a given proto-subdomain leaves the radius (RPE or
RME) and local Cartesian coordinates (r)̅ unchanged and
simply offsets the global grid indices as follows

g q g q NMOD ,ij ij0
grid,τ[ ] = [ [ ] + ]

α α α α (40)

thereby resulting in a subdomain (Θ(Cij,RPE) or Θ(Cij,RME))
that is centered at Cij and has the symmetry of the underlying
simulation cell.
3.2.2. Proto-subdomain Selection during Constant-

Pressure CPMD Simulations. During an MLWF-based
CPMD simulation of an insulating system, the band gap is
not expected to have substantial variations; as such, individual
MLWF spreads will fluctuate, but the size/extent of the
support associated with these exponentially decaying functions
will remain essentially constant throughout the trajectory.
Here, we note that this assumption may break down (to
varying extents) for small-gap and/or substantially inhomoge-
neous systems106 (e.g., solvated semiconducting nanoparticles,
water−semiconductor interfaces, surface adsorption of gas-
phase molecules) as well as systems undergoing bond breaking
and formation; in such cases, the use of MLWF-specific
subdomains will be necessary to ensure a sufficiently converged
evaluation of all EXX-related quantities and will therefore be
addressed in future versions of exx. For fixed-cell simulations
(e.g., NVE/NVT), the size of the Θ(Cij,RPE) and Θ(Cij,RME)
subdomains (i.e., the translated Θ(C0,RPE) and Θ(C0,RME)
proto-subdomains) is kept fixed throughout CPMD simu-
lations by the exx module; for most systems (not including
the pathological examples listed above), this choice results in a
high-fidelity evaluation of Exx and {D̃xx

i (r)} (as well as σxx, vide
inf ra). As such, all proto-subdomain-related quantities in exx,
which include the radii (RPE ∈ {RPE

s , RPE
ns } and RME ∈ {RME

s ,
RME
ns }), the number of local grid points (NPE ∈ {NPE

s , NPE
ns } and

NME ∈ {NME
s , NME

ns }), the local (relative) Cartesian coordinates
({r}̅), and the global grid indices ({g0}), are pre-computed
prior to the first MD step and fixed throughout the simulation.
When a fluctuating cell is employed (e.g., during NpH/NpT

simulations), the size and shape of Ω can vary significantly,
while {Ωi} (again for non-pathological systems) is expected to
retain a similar size/extent (but potentially a different shape)
throughout the MD trajectory. As such, we are now faced with
the question of how to define the Θ(Cij,RPE) and Θ(Cij,RME)
subdomains during constant-pressure simulations with exx. In
this work, we consider two common subdomain choices for
CPMD simulations with fluctuating cells. As a first option, the
subdomains could be chosen such that the radii (i.e., RPE and
RME) are fixed throughout the simulation; this leads to fixed
quasi-spherical subdomain shapes with varying numbers of
points (i.e., NPE and NME) as the cell fluctuates. Algorithmically
speaking, the use of fixed RPE and RME has the disadvantages of
(i) requiring the computation of {r}̅ and {g0} during each

CPMD step, (ii) introducing an imbalance in the computa-
tional workload and associated memory requirements between
CPMD steps, and (iii) complicating the extrapolation schemes
used for the ṽij(r)̅ initial guess during the iterative solution of
the PE.
To combat these algorithmic issues, we have opted to

employ an alternative option in exxchoosing subdomains
with a fixed number of grid points throughout constant-
pressure CPMD simulations, with NPE and NME values
determined by the initially chosen proto-subdomains. More
specifically, we retain the following (initial) proto-subdomain-
related quantities throughout a given NpH/NpT simulation:
the number of grid points (NPE and NME), the global grid
indices ({g0}), and the relative scaled (not Cartesian)
coordinates ({s}̅ = {h0

−1r}̅, where h0 is the initial cell tensor).
In other words, the subdomains employed in our approach do
not have fixed radii and are therefore no longer (necessarily)
quasi-spherical in shape; instead, these subdomains deform
with the underlying fluctuating cell. In doing so, this scheme
directly addresses all of the algorithmic disadvantages that
accompany the use of subdomains with fixed radii. For one,
there is no need for the additional computational overhead
associated with computing {r}̅ and {g0} by screening Ω at each
CPMD step; in this case, {r}̅ is straightforwardly obtained via
{r}̅ = {hs}̅ (where h is the current cell tensor) and {g0} is
simply stored in memory. In addition, the complications
associated with workload/memory imbalances as well as
extrapolation schemes (for the PE guess) are largely eliminated
with the use of a fixed number of grid points in each
subdomain.
In the presence of severely anisotropic cell fluctuations (e.g.,

as one might encounter during a phase transition with large
uniaxial strain), this approach should be further modified to
ensure that the substantially deformed subdomains still provide
adequate support for evaluating Exx, {D̃xx

i (r)}, and σxx. This can
be accomplished with the re-assembly (from scratch) of
appropriately sized quasi-spherical proto-subdomains based on
a pre-defined strain criteria or a given stride (e.g., every 1000
CPMD steps) throughout the simulation. Doing so would
ensure a sufficiently converged evaluation of all EXX-related
quantities and still retain all of the algorithmic advantages
mentioned above.
It is also worth noting that both of these subdomain choices

(i.e., fixed radii or fixed number of points) are subject to Pulay-
like errors22 during constant-pressure CPMD simulations.
Such errors originate from the use of discrete Laplacian
representationswhose accuracy is governed by the grid point
spacing ({δξα}) in Ωduring the solution of the PE. In the
exx module, the accumulation of such errors is largely
mitigated by the default use of a sufficiently accurate finite-
difference representation of the Laplacian operator (i.e., with

an associated error of ( )6δξα , vide inf ra), which can be
reduced even further (at a linear computational cost) by simply
employing a higher-order stencil (see Section 3.3).

3.3. Extension of the exx Module: Solving PE in an
Arbitrary Simulation Cell. In this section, we describe the
extensions introduced in exx to enable the solution of the PE
for each overlapping ⟨ij⟩MLWF pair (i.e., ∇2ṽij(r)̅ = −4πρ̃ij(r)̅,
see eq 7) in condensed-phase systems described by general/
non-orthogonal simulation cells. Throughout this discussion,
we will therefore consider the most general case in which the
lattice vectors ({L1, L2, L3}) are non-orthogonal and therefore
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not necessarily aligned with the standard unit Cartesian
directions ({ex̂, eŷ, eẑ}), as one would encounter with
orthorhombic (e.g., simple cubic) cells.
While a ME about Cij (which is used to obtain the boundary

conditions for the PE as well as the far-field solution for ṽij(r)̅)
can be straightforwardly computed using eqs 8 and 9, the near-
field solution for ṽij(r)̅ requires a discrete representation for the
Laplacian operator when computing numerical second
derivatives during the solution of the PE. Since the subdomains
employed in the exx module are coincident with the
underlying real-space grid, it is most computationally efficient
to employ a discrete representation for the Laplacian that is
aligned with L1, L2, and L3. To proceed, we employ the unit
lattice vectors as the basis for this tilted (non-Cartesian) space,
that is, L̂α ≡ Lα/|Lα| for α ∈ {1, 2, 3}, such that a given

position vector v 3∈ can be written using either Cartesian (r
= {rx, ry, rz}) or tilted/non-Cartesian (ξ = {ξ1, ξ2, ξ3})
coordinates. Direct solution of the PE on these subdomains
(i.e., without the need for interpolation of ρ̃ij(r)̅ and ṽij(r)̅ to
and from an auxiliary Cartesian grid) will therefore require a
coordinate transformation that connects the Laplacian
operator in these two representations via the corresponding
Jacobian matrix (J = ∂ξ/∂r).
Since the tilted/non-Cartesian coordinates (which use the

unit lattice vectors as a basis) are related to crystal coordinates
(which use the lattice vectors as a basis) for any arbitrary
position vector v, namely

v L L L Ls s∑ ∑ ∑ ξ= = | | ̂ = ̂
α

α α

α

α α α

α

α α
(41)

one sees that ξα = |Lα|sα = |Lα|∑a(h
−1)αara. Using this

relationship, one can derive an explicit expression for J as
follows

J L L
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With the Jacobian in eq 42, the Cartesian gradient operator, ∇r

≡ (∂/∂rx, ∂/∂ry, ∂/∂rz), can be written in terms of the
directional derivatives along the (unit) lattice vectors, ∇ξ ≡
(∂/∂ ξ1, ∂/∂ ξ2, ∂/∂ ξ3), via ∇r = J∇ξ. These expressions can in
turn be used to derive the desired form for the Laplacian
operator, i.e.,

J

J F

( ) ( ) ( )

( ) ( ) ( )

r r r r r
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a a

a
a

a
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É
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in which Fαβ ≡ ∑aJaαJaβ is an element of the symmetric F = JTJ
matrix.
Using the Clairaut−Schwarz theorem, the Laplacian in eq 43

can be further split into a sum over pure (∂2/∂ξα
2) and mixed

(∂2/∂ξα∂ξβ) second partial derivatives as follows

F F2r
2

2

2

2

∑ ∑
ξ ξ ξ

∇ =
∂

∂
+

∂
∂ ∂

α α β α α β
αα

>
αβ

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑ (44)

The pure derivatives in eq 44 can be straightforwardly
represented by standard central-difference formulae along
each of the lattice vectors; at a given grid point, ξ0, these pure
derivatives are evaluated using the following working
expression (shown here for a generic function, f(ξ), along Lα)

Lf
w

f q( ) ( )

q n

n

q

2

2
0

2

0

∑ξ

ξ

δξ

δξ

ξ∂

∂
=

+ ̂

ξ ξα

α α

α= =− (45)

In this expression, the sum is over the n neighboring grid
points (along Lα) located on each side of ξ0, and wq = w−q is
the central-difference coefficient120 for the q-th neighboring
grid point. As such, the finite-difference representation of a
pure second derivative results in a (2n + 1)-point stencil along
the given grid direction with an associated discretization error

of ( )n2δξα . The default option in exx is n = 3 with a

discretization error of ( )6δξα , as this choice furnishes well-
converged values for all EXX-related quantities.43,80,98 In this
case, the corresponding central-difference coefficients120 are
given by w0 = −49/18, w1 = +3/2 = w−1, w2 = −3/20 = w−2,
and w3 = +1/90 = w−3.
While the pure derivatives in eq 44 can be accurately and

efficiently evaluated using standard central-difference techni-
ques, there is considerable flexibility when evaluating the mixed
derivatives in this expression. Here, we remind the reader that
direct calculation of each mixed derivative ∂2/∂ξα∂ξβ in eq 44
would require consecutive finite-difference evaluations of the
∂/∂ξα and ∂/∂ξβ first derivatives. However, the number of
stencil points in such an approach would scale quadratically
with n121,122 and would therefore result in a substantially more
expensive EXX algorithm for non-orthogonal simulation cells.

3.3.1. Natan−Kronik (NK) Representation of ∇2: Elimi-
nation of Mixed Derivatives via Auxiliary Grid Directions. To
alleviate this quadratic complexity, we follow the approach
proposed by Natan, Kronik, and coworkers,122 which has roots
in earlier work by Brandt and Diskin121 (in the two-
dimensional (2D) theory of sonic flow), and will be referred
to as NK throughout the rest of the study. Before describing
the NK approach for treating three-dimensional (3D) general/
non-orthogonal cells (as well as our algorithmic implementa-
tion for dealing with fluctuating cells during constant-pressure
simulations in exx), we first review the core idea behind the
NK approach, that is, the use of grid-resolved auxiliary
direction(s) to eliminate the computationally expensive mixed
derivative(s) in eq 44.
To do so, we will first consider the simplest non-orthogonal

case, a 2D simulation cell with lattice vectors Lα⊥̷Lβ. In this
case, Fαβ is the only non-zero off-diagonal term in F (see eq
43), and hence ∂2/∂ξα∂ξβ is the only mixed partial derivative in
eq 44. In what follows, we will assume that δξα ≈ δξβ (i.e., the
grid spacings in the Lα and Lβ directions are approximately
equivalent), which is typically enforced by the planewave
(kinetic energy) cutoff and the fast Fourier transform (FFT)
algorithm. Under this assumption, the NK approach (for a 2D
non-orthogonal cell) involves choosing a single-unit auxiliary
direction (L̂′) that meets the following criteria: (i) L̂′ is non-
axial, i.e., distinct from L̂α and L̂β, (ii) L̂′ lies in the plane
defined by L̂α and L̂β (or equivalently Lα and Lβ), (iii) L̂′ is
coincident with the underlying real-space grid (i.e., L̂′ is grid-
resolved), and (iv) L̂′ corresponds to the nearest-neighbor grid
direction (i.e., L̂′ has the smallest possible grid spacing, δξ′).
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To ensure that all the four of these criteria are satisfied, L̂′ can
be written in the following compact form

L
L L

L L

L L

d

κ

κ

κ
̂′ =

̂ + ̂

| ̂ + ̂ |
≡

̂ + ̂
α β

α β

α β

(46)

in which κ is defined as

L Lsgn sgn cosκ
δξ

δξ

δξ

δξ
≡ − [ ̂ · ̂ ] = − [ Φ]

β

α
α β

β

α

ikjjjjj y{zzzzz ikjjjjj y{zzzzz (47)

When the angle Φ between L̂α and L̂β is obtuse (acute), this
convention for κ makes L̂′ the grid-resolved bisector of Φ (the
supplementary angle to Φ), as depicted in Figure 2. This

choice for L̂′ also has the smallest possible δξ′, which allows us

to retain the highest degree of accuracy (at a given

discretization order) in the finite-difference representation of

∇r
2 (see eq 45).

With these expressions in hand, the first and second partial

derivatives with respect to ξ′ (the coordinate associated with

L̂′) take on the following form
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Equation 49 can then be rearranged to express the mixed
partial derivative
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as a linear combination of pure derivatives along the L̂α and L̂β

unit lattice vectors, as well as the L̂′ unit auxiliary vector.122

After plugging eq 50 into 44, one arrives at the NK Laplacian
with a total of Npure = 3 pure derivatives, i.e.,

F
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each of which can now be accurately and efficiently evaluated
using standard central-difference techniques (see eq 45), and

the computationally expensive ( n( )2 ) direct evaluation of the
mixed derivative is completely avoided.
For the general 3D case, up to three lattice vectors can be

mutually non-orthogonal. For each pair of non-orthogonal
lattice vectors, the corresponding off-diagonal element in F will
be non-zero, thereby necessitating the corresponding mixed
derivative in eq 44. In this work, we follow the original NK
prescription122,123 in which the pure derivatives in eq 44 are
always evaluated along the unit lattice directions, {L̂1, L̂2, L̂3}.
Evaluation of the mixed derivative(s) in eq 44 will then require
one (Naux = 1) to three (Naux = 3) additional grid-resolved unit
auxiliary directions, {L̂′p}, each of which can be written as a
linear combination of the unit lattice vectors

L La p N1, 2, ...,p p aux∑̂ ′ = ̂ =
α

α α
(52)

In this expression, the expansion coefficients, {apα}, are then
chosen to satisfy all of the requirements of the 3D NK
approach (see Section 3.3.2).
Following the procedure described above, we take the first

and second partial derivatives of eq 52 with respect to ξp′ (the
coordinate associated with L̂p′), which yields
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Unlike eq 49, the pure derivative along a given auxiliary
direction in eq 54 generally contains contributions from more
than one mixed derivative (since apαapβ is generally non-
vanishing). To address this issue, the NK approach seeks to
find a linear combination, ∑pbp(∂

2/∂ξp′
2), that has the same

mixed derivative contribution as that in eq 44, i.e.,

b a a F
p

p p p

,

2

,
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=
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α β α

α β
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αβ
(55)

This expression can be written in matrix form

Figure 2. Graphical depiction of the grid-resolved directions used in
the NK representation of the 2D Laplacian (∇r

2) in (a) an orthogonal
(Lα⊥Lβ) and (b) a non-orthogonal (Lα⊥̷Lβ) cell. Each of these
discretized Laplacians is centered at a given grid point (ξ0, highlighted
in yellow) and represented by a finite-difference stencil which covers
the neighboring ±n grid points (shown here for n = 3) in each
required derivative direction (see eq 45). In the 2D orthogonal case,
the NK Laplacian takes on the standard form for ∇r

2 and includes pure
derivatives ∂2/∂ξα

2 and ∂
2/∂ξβ

2 along lattice vectors Lα and Lβ (with
corresponding grid spacings δξα and δξβ). In the 2D non-orthogonal
case, the NK Laplacian (in addition to ∂

2/∂ξα
2 and ∂

2/∂ξβ
2) replaces

the mixed derivative ∂2/∂ξα∂ξβ with a pure derivative ∂2/∂ξ′2 along a
grid-resolved auxiliary direction L̂′ (with grid spacing δξ′). To
maximize the accuracy of this finite-difference Laplacian, the nearest-
neighbor grid-resolved direction (i.e., with the smallest possible δξ′) is
chosen as L̂′: when the angle Φ between Lα and Lβ is obtuse (acute),
L̂′ is chosen to be the grid-resolved bisector of Φ (the supplementary
angle to Φ, as shown above).
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whose solution (b) can be used to eliminate the mixed
derivatives in eq 44 and derive the following working
expression for the 3D NK Laplacian
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following the analogous procedure used above to derive eqs 50
and 51 for the 2D non-orthogonal case. In this expression, each
pure derivative can again be accurately and efficiently evaluated
using standard central-difference techniques (see eq 45),

thereby avoiding the computationally expensive ( n( )2 ) direct
evaluation of the mixed derivatives. Using the approach
outlined here,123 the number of auxiliary directions (Naux) is
typically equal to the number (Noff) of non-zero off-diagonal
elements in F, thereby leading to a total of Npure = Noff + 3 pure
derivatives in eq 57 (and a corresponding central-difference
stencil which contains Nstcl = 2nNpure + 1 points via eq 45). In
the orthorhombic case, Noff = 0 and the NK Laplacian in eq 57
reduces to the standard Laplacian with Npure = 3 pure
derivatives along the lattice directions.
3.3.2. Algorithmic Implementation of the NK Scheme for

Fluctuating Simulation Cells. During constant-pressure
(NpH/NpT) AIMD simulations, the size and shape of the
cell will constantly change due to instantaneous fluctuations
and/or ongoing phase transitions throughout the trajectory.
During such fluctuations, the number of auxiliary directions
required to evaluate eq 57 could range from zero (e.g.,
orthorhombic) to three (e.g., triclinic). As such, we have
implemented an automated algorithm in exx (executed at the
beginning of each MD step) that chooses a set of auxiliary
directions which meets all of the requirements of the NK
approach (see Algorithm 1) and holds for the 2D and 3D non-
orthogonal cases described above (i.e., eqs 51 and 57). In
particular, this algorithm identifies a set of grid-resolved unit
auxiliary directions, {L̂p′}, that satisfy the following criteria: (i)
each L̂p′ is non-axial, i.e., distinct from the L̂1, L̂2, and L̂3 unit
lattice directions; (ii) each L̂p′ has the minimum possible grid
spacing δξp′; and (iii) the M matrix constructed using {L̂p′} is
non-singular (see eq 56).
Input into Algorithm 1 is υ̂, a list containing Nq ≫ 3

candidate non-axial auxiliary directions, a Lq q
′̂ = ∑ ̃ ̂

α α α, each of

which has been sorted (in ascending order) by grid spacing
(δξ ̃q′); by providing this list as input, criterion (i) is
automatically satisfied. To generate υ̂, we start from a
reference grid point (ξ0) and sweep through surrounding
shells of grid points (= {ξ|NINT[maxα|ξα − (ξ0)α)/δξα|]

= } for  1, 2, ...= ) to locate lq{ ′̂}.124 Defining δξ> as the

l a r g e s t s p a c i ng s e en in the fi r s t s h e l l ( i . e . ,

max 01
ξ ξδξ ≡ | − |ξ> ∈ ), the search stops at the -th shell if

0ξ ξ δξ ξ| − | > ∀ ∈> ; doing so efficiently ensures that we
do not miss any of the first Nq candidate auxiliary directions. In
practice, exx uses a default value of Nq = 15, which is larger
than the 10 non-axial grid points in 1

124 and should suffice for
almost all cases; if necessary, Nq can be increased for

simulation cells with very small (≈0°) or very large (≈180°)
angles between lattice directions.

In a loop over q̂
′ in υ̂, Algorithm 1 now seeks to find the set

of auxiliary directions, {L̂p′}, which satisfy the remaining criteria

(ii) and (iii). Since 1̂
′ (the first element in υ̂) has the smallest

grid spacing, this candidate auxiliary direction is automatically
assigned to be L̂1′; algorithmically speaking, this corresponds to
setting a1α = a1̃α for α = 1, 2, 3 and populating M:,1 (i.e., the
first column of M). After successfully identifying L̂1′, the loop
then continues to the next element of υ̂ in the search for L̂2′. In

a loop over q (which runs from 2, 3, ...), q̂
′ becomes the

proposed candidate for L̂2′; that is, a2α is temporarily assigned
to aq̃α and M:,2 is populated accordingly. If M:,2 is non-parallel
to M:,1 (determined via the Cauchy−Schwarz inequality), then

q̂
′ is assigned to be L̂2′; if not, the loop continues to the next

element in υ̂. After successfully identifying L̂2′, the loop then
continues to the next elemet of υ̂ in the search for L̂3′; that is,
a3α is temporarily assigned to aq̃α and M:,3 is again populated

accordingly. If M is non-singular (i.e., det M ≠ 0), then q̂
′ is

assigned to be L̂3′ and Algorithm 1 terminates; if not, the loop
continues to the next element in υ̂.
Upon successful execution, the output of Algorithm 1 is

{L̂p′}, the final set of auxiliary directions (which satisfies all of
the criteria given above), andM, which can be trivially inverted
to obtain b via eq 56. With {L̂p′} and b in hand, the NK
Laplacian in eq 57 can now be evaluated, allowing for a
computationally efficient treatment of non-orthogonal cells
during constant-pressure simulations in exx (see Section 4.2
for a detailed computational timings profile of CPMD
simulations of ice Ih, II, and III at the hybrid DFT level
using this approach).

3.4. Extension of the exx Module: Computation of
the EXX Contribution to the Stress Tensor. Using
Algorithm 1 in conjunction with the NK representation for
the Laplacian (see Section 3.3), the exx module is now
equipped to solve the PE for systems with fluctuating and non-
orthogonal simulation cells. For each overlapping ⟨ij⟩ pair, the
exx module leverages this new capability to compute the
corresponding MLWF-product potential (ṽij(r)̅) during Step
IV (see Figure 1). This quantity is the cornerstone of our
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MLWF-based EXX approach and is required for evaluating all
of the EXX-related contributions (Exx, {D̃xx

i (r)}, σxx) to the
CPMD equations of motion in eqs 10−12. Since the
evaluation of Exx and {D̃xx

i (r)} have been discussed extensively
in PAPER-I,98 we focus the following discussion on the
extensions to exx needed for computing σxx via eq 26 during
Step V (see Figure 1). In this working expression, one can
immediately see that a numerically accurate evaluation of the
⟨ij⟩ contribution to σxx only requires integration over Ωij (in
analogy to the evaluation of Exx via eq 6). In fact, once the
gradient of ṽij(r)̅ is evaluated (vide inf ra), the computation of
σxx follows a similar procedure to that used for Exx (see Section
III.C.5 of PAPER-I98): (i) for each overlapping ⟨ij⟩ pair,
integration over the Θ(Cij,RPE) subdomain on a given MPI
process is efficiently parallelized over Nthread OpenMP threads
and (ii) partial summations over the ⟨ij⟩ pairs assigned to each
MPI process are then accumulated via MPI_REDUCE (using
the MPI_SUM operation) to form σxx with minimal associated
communication (i.e., 3 × 3 double-precision numbers per MPI
process).
Since the integral needed to evaluate each ⟨ij⟩ contribution

to σxx is restricted to the Θ(Cij,RPE) subdomain, each
component of the Cartesian gradient of ṽij(r) in eq 26 (i.e.,
∂ṽij(r)/∂ra) only needs to be evaluated on Θ(Cij,RPE) as well.
With the Jacobian derived in eq 42, the Cartesian gradient
operator, ∇r, can be written in terms of the (pure) directional
derivatives along the unit lattice vectors, ∇ξ, via ∇r = J∇ξ; as
such, there is no need to introduce auxiliary lattice directions
as done above when using the NK representation of ∇r

2. In
analogy to eq 45, the derivatives in eq 26 can be accurately and
efficiently evaluated using standard central-difference formulae
along each of the lattice vectors (shown here for a generic
function, f(ξ), along Lα)

Lf
w

f q( ) ( )

q n

n

q
0

0

∑ξ ξ

ξ

δξ

δξ

∂

∂
=

+ ̂

ξ ξα

α α

α= =− (58)

In this expression, the sum is over the n neighboring grid
points located on each side of ξ0 (along Lα), and the
corresponding anti-symmetric (2n + 1)-point stencil uses the
following central-difference coefficients (with wq = −w−q):

120

w0 = 0, w1 = +3/4, w2 = −3/20, and w3 = +1/60. The default
option in exx is n = 3 with a discretization error of

( ) ( )n2 6
δξ ξ=α α , as this choice furnishes well-converged

values for Exx and {D̃xx
i (r)}43,80,98 as well as σxx.

Here, we stress to the reader that eq 26 provides an
analytical expression for σxx = ∂Exx/∂h (i.e., the cell derivatives
of Exx), and the finite-difference evaluation of ∂ṽij(r)/∂ra (via
eq 58) is needed since ṽij(r) is not analytical and only known
on the real-space grid. As such, the approach for computing σxx
in exx is simultaneously more accurate and more computa-
tionally efficient than numerical differentiation of Exx with
respect to h (which would require perturbing each element of
h by ±δ and then re-computing Exx for each of these cell
displacements). Unlike the numerical differentiation of Exx with
respect to h, which requires 2 − 12× the cost of evaluating Exx

(depending on the number of non-zero elements in h), the
computational complexity of evaluating eq 26 in exx is
comparable to a single application of the Laplacian during the
CG solution of the PE. As such, computation of the EXX
contribution to the stress tensor (via σxx) only requires a small
fraction of the cost associated with computing Exx; for all of the

simulations performed in this work, the cost associated with σxx
was <1% of the wall time spent in the exx module.

4. ACCURACY AND PERFORMANCE

In this section, we critically assess the accuracy and
computational performance of exx, which uses a dual-level
MPI/OpenMP parallelization scheme to exploit both inter-
node and intranode HPC resources during hybrid DFT
simulations of large-scale condensed-phase systems. We will
focus on the extensions to exx introduced in this work (see
Section 3) that enable constant-pressure (NpH/NpT)
simulations at the hybrid DFT level for general/non-
orthogonal cells using the CP module of QE.100 We begin by
exploring the accuracy of the extended exx module when
computing Exx and σxx for a variety of condensed-phase
systems, including ambient liquid water, a benzene molecular
crystal polymorph, and semi-conducting crystalline silicon, in
Section 4.1. We then study the effects of lattice symmetry on
computational complexity in the exx module via a detailed
case study of three different ice polymorphs (Ih, II, and III) in
Section 4.2. In particular, we perform and analyze a series of
short NpT CPMD simulations on these ice phases (in
conjunction with specific angular constraints on each cell
tensor) to investigate how the number of non-orthogonal cell
directions affects the performance of exx. In Section 4.3, we
investigate the computational performance and parallel scaling
of exx during constant-pressure simulations of large-scale
condensed-phase systems via a strong and weak scaling analysis
of liquid water (i.e., ranging from (H2O)64 to (H2O)256) in the
NpT ensemble (in analogy to that performed in PAPER-I98 in
the NVT ensemble). In all cases, the performance of exx will
be examined across a wide array of HPC architectures,
including Mira IBM Blue Gene/Q, Cori Haswell, and Cori
KNL.

4.1. Accuracy of the EXX Contributions to the Energy
and Cell Forces. In PAPER-I,98 we used a snapshot of
ambient liquid water (i.e., (H2O)64 at the equilibrium density,
85 Ry planewave cutoff) to determine the default exx
parameters used in QE. Here, we remind the reader that there
are five key parameters used when performing a hybrid DFT
calculation with exx (see Section 3.1): (i) Rpair, a radial cutoff
used to determine whether or not two MLWFs, ϕ̃i and ϕ̃j, are
an overlapping ⟨ij⟩ pair based on their center-to-center
distance (i.e., |C̃i − C̃j| ≤ Rpair); (ii)−(iii) RPE

s and RPE
ns , the

radii of the fixed-size spherical domains over which PE (eq 7)
is solved for the near-field potential (ṽ(r)) for self (s, ⟨ii⟩) and
non-self (ns, ⟨ij⟩) overlapping pairs; and (iv)−(v) RME

s and
RME
ns , the outer radii of the concentric spherical shells (with

inner radii RPE
s and RPE

ns ) over which the ME (eqs 8 and 9) is
performed for the far-field potential (ṽ(r)) for the self and non-
self-overlapping pairs. In doing so, we demonstrated that these
parameters govern both the accuracy and performance of exx,
and judicious choices for each ensured rapid convergence of
Exx and {D̃xx

i (r)} for (H2O)64 (see Figures 6 and 7 as well as
Sections IV.A.1 and IV.A.2 in PAPER-I98).
To test the new capabilities of the extended exx module

(i.e., Exx and σxx for general/non-orthogonal cells) as well as
the transferability of the default exx parameters, we now
investigate the convergence of Exx and σxx on three different
condensed-phase systems: ambient liquid water, a benzene
molecular crystal polymorph, and semi-conducting crystalline
silicon. For consistency with PAPER-I,98 we included a
snapshot of ambient liquid water at the equilibrium density;
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however, we have doubled the system size to (H2O)128 (L =
15.645 Å) to investigate any finite-size effects on the exx
parameters from using (H2O)64 in PAPER-I98 and increased
the planewave cutoff from 85 to 150 Ry (a typical setting
employed during constant-pressure NpH/NpT simulations of
aqueous systems). To go beyond liquid water, we also carried
out a case study on the monoclinic benzene-II molecular
crystal polymorph125a non-orthogonal and anisotropic
system with a similar band gap. To do so, we considered a
(C6H6)16 system (with a = 10.834 Å, b = 10.752 Å, c = 15.064
Å, α = γ = 90°, and β = 110°) constructed from a 2 × 2 × 2
supercell of the experimentally assigned unit cell (which
contains two benzene molecules).125 During all calculations on
(C6H6)16, we used a 110 Ry planewave cutoff. As an even more
stringent test on the exx module, we also considered semi-
conducting crystalline silicona system with a significantly
smaller band gap and therefore substantially more diffuse (less-
localized) MLWFs. In this case, we constructed a cubic Si216
snapshot (with L = 16.29 Å) as a 3 × 3 × 3 supercell of the
classic eight-atom diamond structure in a cubic unit cell.
During all calculations on Si216, we used a 35 Ry planewave
cutoff. A graphical depiction of each of these three systems can
be found in the inset of Figure 3.
Using the procedure outlined in Section IV.A of PAPER-I98

to determine the default exx parameter values, we first
performed a series of reference single-point energy calculations
on each of these systems at the PBE0128,129 level. This was
accomplished by self-consistently solving for the electronic
ground state with all EXX parameters in the exx module set
to their largest possible values: Rpair, RME

s , and RME
ns are set to

the radius of the largest sphere that can be contained within
each simulation cell; RPE

s = RPE
ns = RME

s − nmaxα{δξα} (with n =
3), which provides us with a thin shell (halo region) on the
real-space grid needed for the PE boundary conditions. The Exx

and σxx values obtained from these calculations are then used
as reference values (i.e., Exx

ref and σxx
ref) to gauge the accuracy of

the exx module when computing these quantities using
different parameter values. In analogy to the previously used
error metric for D̃xx

i (r) (see eq 36, Figure 7, and Section IV.A.2
in PAPER-I98), we define the relative errors in Exx and σxx as
follows

E
E E

E
( )xx

xx xx
ref

1

xx
ref

1

=
−

(59)

( )xx
xx xx

ref
1

xx
ref

1

σ
σ σ

σ
=

−

(60)

in which ∥·∥1 denotes the one-norm of the inserted quantity.
Based on these relative error definitions, we first investigated
the accuracy of the default EXX parameters (which were
determined using (H2O)64 at the equilibrium density, 85 Ry
planewave cutoff) when computing Exx and σxx for the three
systems described above (see Table 1). When assessing the
accuracy of the default exx parameters for these systems, we
again follow PAPER-I98 by computing Exx and σxx using the
converged MLWFs obtained during the corresponding
reference calculations; a more detailed (and fully self-
consistent) investigation of these parameters in anisotropic/
heterogeneous systems will be addressed in a forthcoming
paper in this series.

As depicted in Table 1, the default exx parameters
reproduce Exx with very high fidelity for (H2O)128in this
case, the accuracy of exx is equivalent to that found in
PAPER-I98 for (H2O)64, that is, E( ) 0.02xx ≈ %. As expected,
the default parameters determined in PAPER-I98 seem to be
well-converged for ambient liquid water with respect to both
system size and basis set size. When applied to the (C6H6)16
molecular crystal, we find that the default exx parameters are
also quite transferable, yielding E( ) 0.10xx ≈ %. In this case,
we attribute the slight decrease in accuracy to the increased
variability in the MLWF spreads in the benzene molecular
crystal, which contains C−H σ-bonds (which have a similar
spread to the MLWFs in liquid water) as well as a set of more
diffuse C−C τ-bonds; as such, converging Exx in this system
will require (on average) a slightly larger support for ρ̃ij(r)
during the solution of PE (vide inf ra). In Si216, the MLWFs are
significantly more delocalized than those in both liquid water
and the benzene molecular crystal due to the smaller band gap
in this semi-conductor.101 As such, the default exx parameters
now yield a more sizable error of E( ) 1.72xx ≈ %, as tight
convergence of Exx in this more challenging system will require
an increase in RPE

s and RPE
ns (to provide a larger support for the

more diffuse ρ̃ij(r)) as well as Rpair (to account for the
increased number of overlapping MLWF pairs). Here, we also
note that ( )xxσ is slightly (but consistently) larger than

E( )xx in all the three of these cases; this systematic trend will
be discussed below.
Since the accuracy required during an Exx (or σxx) calculation

will depend on the system and/or application, we now perform
a systematic study of how these quantities converge in
(H2O)128, (C6H6)16, and Si216 as a function of the exx
parameters. Following the procedure outlined in PAPER-I,98

we again start with the converged MLWFs obtained during the
reference calculations described above (in which all exx
parameters were set to their largest possible values). We then
track how Exx and σxx converge with respect to (i) changes in
Rpair while keeping all other exx variables at their reference
values (Figure 3, top panel) and (ii) simultaneous changes in
RPE
s and RPE

ns while again keeping all other exx variables at
their reference values (Figure 3, bottom panel). As mentioned
above, a more detailed (and fully self-consistent) investigation
of these parameters (for a number of different anisotropic/
heterogeneous systems) will be addressed in a forthcoming
paper in this series. As depicted in Figure 3, the convergence
behavior of E( )xx in (H2O)128 is essentially identical to that in
(H2O)64 (cf. Figure 6 in PAPER-I98). For (C6H6)16, we find
that Exx rapidly converges with both Rpair and {RPE

s , RPE
ns }; in this

Table 1. Relative One-Norm Errors in Exx and σxx Using the
Default Exx Parameters in QE (i.e., Rpair = 8.0 Bohr, RPE

s =
6.0 Bohr, RPE

ns = 5.0 Bohr, RME
s = 10.0 Bohr, and RME

ns = 7.0
Bohr) for Three Different Condensed-Phase Systemsa

(H2O)64
(cubic)

(H2O)128
(cubic)

(C6H6)16
(monoclinic)

Si216
(cubic)

E( )xx
(in %)

0.02b 0.02 0.13 1.72

( )xxσ
(in %)

0.03 0.19 2.29

aAll errors were computed using eqs 59 and 60 with respect to the
reference values for these quantities obtained with all exx parameters
set to their largest possible values. See text for more details. bSystem
used to determine default exx parameters in PAPER-I.98
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case, increasing the radii used during the solution of PE (to
account for the more diffuse τ bonds on each benzene ring) is
more important than increasing Rpair when tight convergence
(i.e., E( ) 0.10%xx < ) is desired. For Si216, the convergence of
Exx with respect to both Rpair and {RPE

s , RPE
ns } is slower due to

the substantially more delocalized MLWFs in this semi-
conducting system. In this case, E( )xx originates from the
need for increased real-space domains during the solution of
PE (primary contribution) as well as the inclusion of more
distant overlapping MLWF pairs (secondary but still sizable
contribution). Here, we find that systematically (and
simultaneously) increasing both RPE

s and RPE
ns leads to a smooth

and exponential decay in E( )xx , reflecting the exponential
decay rate of the MLWFs in this finite-gap system.101 As Rpair

was increased, the observed decreases in E( )xx are tiered (as
opposed to the smoother decay seen in (H2O)128), reflecting
the crystalline structure in this atomic solid. Even in this more

challenging system, the MLWFs are still exponentially localized
and therefore have a finite support in real space; as such, the
exx module can still furnish Exx to a pre-defined accuracy
levelalbeit with additional computational costby simply
increasing the exx parameters beyond their default values. For
example, “chemical accuracy” (i.e., 1 kcal/mol) in the PBE0
binding energy of Si216 can be achieved by increasing {RPE

s ,
RPE
ns } from {6.0, 5.0} Bohr (default values) to {8.0, 7.0} Bohr

while leaving Rpair at 8.0 Bohr (default value). When compared
against the default setting in exx, the use of these more
accurate parameters leads to an ≈50% increase in computa-
tional cost; however, this is still a significant speed-up and
≈60× less than the cost of the reference calculation.
Since the calculation of Exx and σxx uses the same

overlapping MLWF pairs (cf. eqs 6 and 26), the accuracy of
these quantities will primarily be governed by {RPE

s , RPE
ns }, i.e.,

the coverage of ρ̃ij(r) during the solution of PE. As expected,
we found that E( )xx and ( )xxσ exhibited a similar
convergence rate with respect to these exx parameters for
all three systems considered herein, although ( )xxσ was
consistently slightly larger than E( )xx in all cases (see Table 1
and Figure 3, top panel). While a small portion of this
difference is attributed to inherent limitations when comparing
relative errors in scalar and matrix quantities (cf. eqs 59 and
60), the difference between ( )xxσ and E( )xx is more
pronounced for smaller {RPE

s , RPE
ns } values. Hence, we attribute

this difference to the larger intrinsic error when computing the
integrand of σxx in eq 26, which involves a displacement-
weighted derivative of the MLWF-product potential, that is i.e.,

( )rr v r( )/b ij a∂ ̃ ∂ , as opposed to the integrand of Exx in eq 6,

which only involves ṽij(r) itself.
Here, we note in passing that the need to scan for the set of

optimal parameters in exx will be largely eliminated in a
forthcoming paper in this series, where the entire exx module
will be restructured based on variable-size supports for each
MLWF. By intrinsically accounting for the size/shape/extent
of each MLWF and treating each overlapping MLWF pair
according to a user-defined level of accuracy, this restructured
exx module will be able to treat challenging systems such as
crystalline Si as well as complex multi-component/multi-phase
systems without the need to sacrifice accuracy for computa-
tional performance (or vice versa).

4.2. Computational Complexity due to Lattice
Symmetry. For a more consistent comparison with the
analysis of exx in PAPER-I,98 we now refocus our discussion
on aqueous systems (i.e., ice and liquid water) while assessing
the computational performance of the extended exx module
when treating general/non-orthogonal systems and using larger
basis sets (e.g., as needed during constant-pressure simulations
with fluctuating cells). To explore the effects of lattice
symmetry on computational complexity, we first carried out
a detailed case study on the Ih, II, and III polymorphs of ice.
More specifically, we performed and analyzed short (i.e., 50
steps) NpT CPMD simulations on these ice phases (in
conjunction with specific angular constraints on each lattice)
to investigate how the number of non-orthogonal cell
directions affects the performance of exx. As a first case, we
considered the orthorhombic/tetragonal/cubic lattice systems,
in which evaluation of the NK Laplacian in eq 57 is the
simplest and requires Naux = 0 auxiliary grid directions (i.e.,
Npure = 3 pure derivatives along the lattice directions). In this

Figure 3. Convergence of Exx (open circles, ○) and σxx (crosses, ×) in
(H2O)128 (black), (C6H6)16 (blue), and Si216 (red) as a function of
Rpair (top panel) and {RPE

s , RPE
ns } (bottom panel). As described in the

main text, all other exx parameters were set to the maximum allowed
values during each convergence study.
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case, we chose ice III as the example system (which is
tetragonal in the absence of thermal fluctuations) and applied a
series of angular constraints (L1⊥L2, L1⊥L3, and L2⊥L3) to
maintain orthogonality among all lattice vectors during the
short NpT simulation. As a second case, we considered the
monoclinic/hexagonal/rhombohedral lattice systems, in which
evaluation of the NK Laplacian requires Naux = 1 auxiliary grid
direction (for a total of Npure = 4 pure derivatives). In this case,
ice Ih was chosen as the example system (which is hexagonal in
the absence of thermal fluctuations), and L1⊥L2 and L2⊥L3

angular constraints were applied during the NpT simulation to
maintain Npure = 4. As a third case, we considered the triclinic
lattice system, in which evaluation of the NK Laplacian is the
most complex and requires Naux = 3 auxiliary grid directions
(for a total of Npure = 6 pure derivatives). Here, we employed
ice II as the example system; although this polymorph is
rhombohedral in the absence of thermal fluctuations, we
started the NpT simulation with ice II in a triclinic cell. We
then allowed the NpT simulation to proceed without any
angular constraints to mimic the cell fluctuations of a triclinic
system with Npure = 6 pure derivatives (rather than Npure = 4
for a perfect rhombohedral lattice). By including these three
cases (with Npure = 3, 4, 6), this study essentially covers all
seven 3D lattice systems123,126 and will now be used to
evaluate the performance of exx.
Computational timings for each of these ice phases were

generated using an in-house development version of QE (that
is based on v5.0.2)127 at the PBE0128,129 hybrid DFT level.
Each ice polymorph was modeled using a simulation cell
containing (H2O)96 (each with No = 4 × Nwater = 384 MLWFs)
with initial snapshots taken from NpT simulations of ice Ih, II,
and III at the corresponding experimental triple point (i.e., p =
2.1 kBar and T = 238 K). In ice Ih and III, proton disorder was
introduced using an algorithm that enforces the Bernal−
Fowler ice rules130 as well as the additional constraint of
vanishing polarization.131,132 For the proton-ordered ice II
phase, the supercell was made by directly replicating the unit
cell containing (H2O)12 provided in ref 133. With the angular
constraints described directly above, we performed a series of
short CPMD simulations in the NpT ensemble (at the same p
and T) for a duration of 50 steps. The pressure was controlled
using a Parrinello−Rahman barostat,113 and the temperature
was maintained by attaching massive Nose−́Hoover chain
thermostats134,135 (each with a chain length of 4) to the ionic
degrees of freedom. All NpT simulations were performed at the
Γ-point only and employed a planewave kinetic energy cutoff
of 150 Ry; the corresponding CPMD equations of motion (eqs
10−12) were integrated using the standard Verlet algorithm
and a time step of 2.0 au (≈0.05 fs). Planewave kinetic
energies were modified following Bernasconi et al.136 to
maintain a constant planewave kinetic energy cutoff of 130 Ry
throughout each NpT simulation.137 To ensure an adiabatic
separation between the electronic and nuclear degrees of
freedom, the fictitious electronic mass was set to μ = 100 au; in
addition, the nuclear mass of deuterium was used for each
hydrogen atom. To improve the stability of the fictitious
electron dynamics, mass preconditioning117 was applied to all
Fourier components of the electronic (pseudo-) wavefunctions
with a kinetic energy >25 Ry. Hamann−Schlüter−Chiang−
Vanderbilt-type norm-conserving pseudopotentials138,139 pro-
vided by the Qbox package140 were used to treat the
interactions between the valence electrons and the ions. All
exx-related parameters were set to the default values

determined in PAPER-I,98 that is, Rpair = 8.0 Bohr, RPE
s = 6.0

Bohr, RPE
ns = 5.0 Bohr, RME

s = 10.0 Bohr, and RME
ns = 7.0 Bohr.

All timings were obtained using 1536 nodes (i.e., ζ ≡ Nproc/
No = 4) on the following HPC architectures: Mira IBM Blue
Gene/Q, Cori Haswell, and Cori KNL (see Table 2). In all
cases, the reported timings were obtained using one process
per node for the internode MPI parallelization (first
parallelization level) and all available physical cores per node
(i.e., 16 for Mira IBM Blue Gene/Q, 32 for Cori Haswell, and
68 for Cori KNL) for the intranode OpenMP parallelization
(second parallelization level). Task-group parallelization (with
Ntg = 4) was also employed to improve the computational
efficiency associated with the 3D FFT operations in the non-
exx portions of QE. Hyperthreading was fully activated on
each physical core except for Cori KNL, where hyperthreading
was deactivated due to performance degradation in both the
exx and non-exx modules in QE.
For each ice phase (and on each HPC architecture), we

found that the wall time associated with computing the EXX
contribution to the stress tensor (⟨texx

stress⟩) was <0.5% of the
average wall time spent in the exx module (⟨texx⟩). This is
not surprising as the evaluation of eq 26 is comparable to a
single CG step during the solution of the PE. As such, we will
focus our discussion below on the more significant computa-
tional cost associated with solving the PE (⟨texx

PE ⟩). Since the
real-space grids employed during these NpT simulations were
based on a planewave cutoff of 150 Ry (which is needed for
fluctuating cell simulations), both ⟨texx

PE ⟩ and ⟨texx⟩ will be
larger than that found during fixed-cell NVT simulations in
exx with a more conventional cutoff of ≈85 Ry. In all cases,
⟨texx

PE ⟩ comprises ≈30% of ⟨texx⟩, and this finding is quite
consistent with the detailed performance analysis of exx in
PAPER-I,98 in which ⟨texx⟩ was (approximately) split evenly
between computation, communication, and processor idling
during large-scale NVT simulations of liquid water ((H2O)64−
(H2O)256) with ζ = 4. On each HPC architecture, we find that
⟨texx

PE ⟩ and ⟨texx⟩ follow the same trend, in which ice Ih has the
least computational cost, followed by ice III and then ice II.
As discussed in Section 3.3, the first factor that will affect the

performance of exx during NpT simulations is the number of
grid points in the finite-difference (stencil) representation of
∇2 (Nstcl = 2nNpure + 1), which directly depends on the total
number of pure derivatives (Npure = Naux + 3) in the NK
Laplacian (see eq 57). For typical condensed-phase systems
such as liquid water, n = 3 (with a discretization error of

( )6δξ ) is sufficiently converged when computing all EXX-
related quantities;43,80,98 with this choice for n, Nstcl = 19, 25,
37 for the (angularly constrained) NpT simulations of ice III,
Ih, and II reported in Table 2. The second factor that will affect
the performance is the number of grid points in the Poisson
subdomain for each overlapping MLWF pair. Since there are
significantly more non-self than self-pairs, the computational
cost associated with solving the PE is dominated by the non-
self-pairs;98 as such, we only report the number of grid points
in each Θ(Cij,RPE

ns ) subdomain. While the number of points
(NPE

ns ) in the PE subdomain is similar for ice III (∼280,000)
and ice Ih (∼292,000), the noticeably larger NPE

ns in ice II
(∼415,000) originates from the underlying real-space grid
assignment by the FFT algorithm in QE. Although the grid
spacings along the lattice vectors are comparable among these
three ice phases (due to the identical planewave cutoff), the
lattice vectors in ice II (unlike III and Ih) do not correspond to
the grid directions with minimal spacings; as such, the
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presence of the non-axial grid direction with minimal spacing
(i.e., the grid-resolved trigonal axis, which is one of the
auxiliary grid directions in the NK Laplacian identified using
Algorithm 1) leads to a denser grid and hence the larger
apparent NPE

ns in ice II. Since Nstcl × NPE
ns is the total number of

floating-point operations required for computing the action of
the Laplacian over the Θ(Cij,RPE

ns ) subdomain (i.e., the left-
hand side of eq 7), this quantity can be taken as a proxy for the
computational cost per CG iteration when solving the PE.
However, this quantity is not necessarily a robust sole
predictor of the computational timings in exx; in fact, this
measure would predict that NpT simulations of ice III would
be similar (or slightly more efficient) to ice Ih and substantially
more efficient than ice II, which is in contrast to the timings
reported in Table 2.
To account for this discrepancy, two additional factors need

to be taken into consideration, that is, the average number of
CG iterations required to solve each PE (⟨NCG⟩) and the
average number of overlapping MLWF pairs assigned to each
MPI process (⟨Npair⟩). Since ⟨NCG⟩ is largely governed by the
condition number ( ), which is the ratio between the largest
and smallest eigenvalues of the sparse NK Laplacian (−∇2), we
also provide values in Table 2 corresponding to the first
snapshot in each NpT simulation. Here, we find that the NK
Laplacian is more well-conditioned for ice Ih ( 2400∼ ) than
ice III (∼3100) and ice II (∼3200); as a result, the CG
solution of the PE in ice Ih needed the least number of
iterations (⟨NCG⟩ = 89), while ice III and ice II had larger but
similar ⟨NCG⟩ values of 121 and 126, respectively. Quite
interestingly, the NK Laplacian in the non-orthogonal ice Ih
and ice II cases seems to be relatively well conditioned when
compared to the orthogonal ice III case, despite the fact that
Nstcl and NPE

ns are significantly larger for both ice Ih and ice II.
This finding highlights the strength of the NK approach (as
well as our automated fluctuating-cell extension in Algorithm
1) when treating systems with non-orthogonal simulation cells,
as the selection of auxiliary directions is a non-trivial procedure
that can lead to severe numerical instabilities if done
incorrectly. Taking ice II as an example, choosing the grid-
resolved obtuse-angle bisector for each pair of lattice vectors as
the three auxiliary directions (i.e., a naiv̈e 3D generalization of
the non-orthogonal 2D NK procedure outlined in eqs 46 and
47 and depicted in Figure 2) leads to a Laplacian that is no
longer negative semi-definite; as a result, the CG solution to
the PE requires an excessively large number of iterations if and
when it converges.
Since ⟨Npair⟩ is roughly proportional to the total number of

overlapping MLWF pairs in the system (which is determined
by the |C̃i − C̃j| < Rpair criterion), ⟨Npair⟩ for the lower-density
ice Ih phase (⟨Npair⟩ = 4.3) is significantly less than that found
in the higher-density ice III (7.0) and ice II (6.5) phases. With
this information in hand, it is now clear why exx-based NpT
simulations of ice Ih have the lowest ⟨texx

PE ⟩ among the ice
phases. Although ice Ih has intermediate values for Nstcl and
NPE

ns (and hence an intermediary computational cost per CG
iteration), this ice phase has the lowest ⟨Npair⟩ (due to its
relatively lower density) and the lowest ⟨NCG⟩ (due to its
relatively lower value); as such, each CPMD step will
require CG solutions to the least number of PEs and the
solution to each PE requires the least number of CG iterations.
To explain why ⟨texx

PE ⟩ for ice II is larger than ice III (in which
both ⟨NCG⟩ and Npair are similar), we again reiterate that ice II
has the largest Nstcl and NPE

ns values and therefore requires the

Table 2. Computational Timing Profiles for NpT CPMD
Simulations of Ice Ih, II, and III (Each Modeled by
(H2O)96) at the Hybrid PBE0 Level on Mira IBM Blue
Gene/Q, Cori Haswell, and Cori KNL Using the Extended
exx Module in QE

a

orthorhombic monoclinic

lattice system(s) tetragonal hexagonal triclinic

cubic rhombohedral

Example ice III ice Ih ice II

Angular Constraints

L L

L L

L L

1 2

1 3

2 3

⊥

⊥

⊥

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

L L

L L

1 2

2 3

⊥

⊥

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ [None]

Naux 0 1 3

Npure 3 4 6

Nstcl 19 25 37

NPE
ns b ∼280,000 ∼292,000 ∼415,000

⟨NCG⟩
b 121 89 126

b ∼3,100 ∼2,400 ∼3,200

⟨Npair⟩ 7.0 4.3 6.5

Mira IBM Blue Gene/Q (s/step)

⟨texx
stress⟩ 0.02 0.01 0.02

⟨texx
PE ⟩ 2.00 1.30 3.40

⟨texx⟩ 5.92 3.83 10.25

⟨texx
PE ⟩/⟨texx⟩ 0.34 0.34 0.33

Cori Haswell (s/step)

⟨texx
stress⟩ 0.01 0.01 0.02

⟨texx
PE ⟩ 1.09 0.58 1.48

⟨texx⟩ 3.24 2.17 4.96

⟨texx
PE ⟩/⟨texx⟩ 0.34 0.27 0.30

Cori KNLc (s/step)

⟨texx
stress⟩ 0.02 0.01 0.03

⟨texx
PE ⟩ 1.59 1.01 2.96

⟨texx⟩ 4.85 3.89 7.88

⟨texx
PE ⟩/⟨texx⟩ 0.33 0.26 0.38

aThese NpT simulations cover all the seven 3D lattice systems,123,126

which have been grouped into three different categories according to
the number of auxiliary grid directions (Naux) used in the NK
Laplacian in eq 57; the listed angular constraints were applied
throughout each simulation to maintain the targeted Naux value. All
timings (in s/step) were averaged over 50 CPMD steps and
correspond to the mean wall times associated with computing the
EXX contribution to the stress tensor (⟨texx

stress⟩), solving the PE for all
overlapping MLWF pairs (⟨texx

PE ⟩), and running through the entire
exx module (⟨texx⟩); also shown are the ⟨texx

PE ⟩/⟨texx⟩ ratios. Other
relevant properties include the total number of pure derivatives (Npure

= Naux + 3), the number of stencil points in the finite-difference
representation of the NK Laplacian (Nstcl = 2nNpure + 1, shown here
for n = 3), the number of grid points in each Θ(Cij,RPE

ns ) (Poisson)
subdomain (NPE

ns , shown here for non-self ⟨ij⟩ pairs only), the average
number of CG iterations (⟨NCG⟩) required to solve each PE, the
condition number ( ) of the sparse PE operator (i.e., −∇2), and the
average number of overlapping ⟨ij⟩ pairs assigned to each MPI

process (⟨Npair⟩). All timings were obtained with ζ = 4, Ntg = 4, 1536
nodes (using one MPI process and all the available physical cores per
node). bThe architecture dependence of the FFT algorithm leads to
slight variations in NPE

ns , ⟨NCG⟩, and ; Cori values are provided.
cUsing OMP_PROC_BIND = true and OMP_PLACES = cores.
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largest number of floating-point operations per CG step.
Although a more detailed analysis of the communication and
processor idling would be required to fully explain the total
exx timings during these NpT simulations, we can still justify
the ⟨texx⟩ ordering among these ice phases by noting that (i)
the ⟨texx

PE ⟩/⟨texx⟩ ratio is ≈30% for all three ice phases and (ii)
the communication overhead is roughly proportional to NME

ns

(which is proportional to NPE
ns ). Since ice II has the largest

values for ⟨texx
PE ⟩ and NPE

ns , both computation and communi-
cation costs will be largest for this ice phase; with computation
and communication comprising a majority of ⟨texx⟩, the
increased wall times observed across all the three HPC
architectures are not only reasonable but expected for NpT
simulations of this higher-density (and non-orthogonal) ice
polymorph.
From this discussion, it is clear that Naux (or Npure = Naux +

3) governs Nstcl and hence modulates (in conjunction with
NPE

ns ) the number of floating-point operations during each step
in the iterative CG solution to the PE. In the ice II case
presented above, we intentionally performed the NpT
simulation without angular constraints to showcase a triclinic
lattice with Naux = 3 (or Npure = 6), thereby allowing for non-
constrained microscopic cell fluctuations in ice II. In doing so,
the computational cost of this simulation was ≈50% higher
than the one in which ice II would be constrained to maintain
rhombohedral symmetry with Naux = 1 (or Npure = 4), i.e., the
naturally occurring and macroscopically observed lattice
symmetry for this ice phase. In addition to the application of
angular constraints to change Nstcl (via Nstcl = 2nNpure + 1 =
2n(Naux + 3) + 1), alternative cell choices may also be used to
control the size/extent (and hence computational complexity)
of the NK Laplacian. For instance, a hexagonal (or
rhombohedral) lattice with Npure = 4 can be transformed
into an orthorhombic lattice with Npure = 3; for the well-known
hexagonal case (with L1⊥̷L2), one can construct an
orthorhombic (super-)cell with lattice vectors {L1′, L2′, L3′}
such that L1′ = L1, L2′ = 2L2 + L1, and L3′ = L3. However, this
reduction in Npure (and hence Nstcl) is accompanied by the
increased complexity of dealing with a simulation cell
containing twice as many atoms; while such an increase in
system size may be cumbersome for AIMD simulations, the
additional degrees of freedom can also prove useful when
describing the proton disorder in a system like ice Ih.
4.3. Parallel Scaling and Performance. Having dis-

cussed the computational complexity associated with different
lattice symmetries, we now move on to assess the performance
and parallel scaling of the extended exx module when applied
to large-scale NpT simulations of liquid water. In close analogy
to the critical assessment of exx during NVT simulations of
liquid water in Section IV.B of PAPER-I,98 this section will
focus on the internode (MPI) parallelization level via a strong
scaling analysis (in which the number of processing elements is
varied for a fixed problem size) and a weak scaling analysis (in
which the problem size is varied for a fixed ratio of problem
size to the number of processing elements). We will also briefly
discuss the intranode (OpenMP) parallelization level (which is
particularly relevant for NpT simulations using relatively large
planewave basis sets) as well as the general performance of
exx across several different HPC architectures (e.g., Mira
IBM Blue Gene/Q, Cori Haswell, and Cori KNL).
Unless otherwise specified, the computational timings for

each of the following liquid water simulations were obtained
using the same planewave/pseudopotential/CPMD settings

and exx parameters as those employed above for the ice Ih, II,
and III phases in Section 4.2. In contrast with the ice
simulations (in which the system size was fixed at (H2O)96, T
= 238 K, p = 2.1 kBar, and ζ = 4), we follow the same profiling
procedure given in Section IV.B of PAPER-I98 by performing a
series of 12 different EXX-based CPMD simulations of liquid
water at T = 300 K and p = 1.0 bar, in which (i) the system size
was varied to include Nwater = 64, 128, 256 water molecules
(each of which has No = 4 × Nwater MLWFs) and (ii) the
number of processing elements (Nproc MPI processes) was
varied by changing ζ = Nproc/No. Initial snapshots for each
liquid water system were prepared following the equilibration
procedure detailed in PAPER-I;98 in the NpT simulations
performed in this work, all instantaneous cell fluctuations were
constrained to maintain simple cubic symmetry (i.e., L1⊥L2,
L1⊥L3, L2⊥L3, and |L1| = |L2| = |L3|) with Naux = 0 and Npure =
3. Strong and weak scaling tests were performed on Mira IBM
Blue Gene/Q (using ζ ∈ {1/2, 1, 2, 4} and Nwater ∈ {64, 128,
256}) with an additional assessment of the extended exx
module on Cori Haswell and Cori KNL (using ζ = 1 and Nwater

= 128). In each case, we again use one process per node for the
internode MPI parallelization and all the available physical
cores per node for the intranode OpenMP parallelization (with
the hyperthreading settings described in Section 4.2);
following the discussion in Section IV.B of PAPER-I,98 the
highest possible task group parallelization level was employed
(via Ntg ∈ {1, 2, 4, 8}) for the 3D FFT operations in the non-
exx portions of QE.
When compared to the previous strong scaling tests of exx

on liquid water in the NVT ensemble (with a fixed simulation
cell and real-space grid compatible with an 85 Ry planewave
cutoff, see Figure 8 in PAPER-I98), we again observe similar
MPI performance for the extended exx module in the NpT
ensemble (with a fluctuating simulation cell and real-space grid
compatible with the significantly larger 150 Ry planewave
cutoff, see Figure 4). For a given (and fixed) system size, we
follow PAPER-I98 and define the strong scaling efficiency of
exx with respect to a reference ζ value (i.e., ζref = 1/2, a
commonly used setting for AIMD simulations of liquid water)
as

t

t

t

t
( )MPI

strong ref exx

exx

1

2 exx 1/2

exx

ref
η ζ

ζ

ζ ζ
≡

·⟨ ⟩

·⟨ ⟩
=

·⟨ ⟩

·⟨ ⟩
ζ

ζ

ζ

ζ

=

(61)

in which ⟨texx⟩ζ is the wall time spent in exx when using a
specific ζ value. For ζ > 1/2, we find that ηMPI

strong (when
averaged over (H2O)64, (H2O)128, and (H2O)256) decreases to
≈93% (ζ = 1), ≈67% (ζ = 2), and ≈52% (ζ = 4). Quite
interestingly, the strong scaling performance of exx in the
more demanding NpT ensemble is nearly identical to that
observed for the same systems in the NVT ensemble (see
Figure 8 and the surrounding discussion in PAPER-I98), where
we reported ηMPI

strong values of ≈93% (ζ = 1), ≈66% (ζ = 2), and
≈50% (ζ = 4). In general, the exx module is more efficient for
smaller ζ values (i.e., ζ ≤ 1) since the use of massively parallel
HPC resources (ζ ≫ 1) is intrinsically more susceptible to
processor idling (due to the larger computational workload
imbalance associated with more MPI processes) and also
requires additional/duplicate MLWF communication across
the larger pool of MPI processes. See below for a more
detailed breakdown of ⟨texx⟩ into computation, communica-
tion, and processor idling, as well as a discussion on how these
components influence the strong scaling efficiency of exx.
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When compared to the previous weak scaling tests of exx
(on liquid water in the NVT ensemble, see Figure 9 in PAPER-
I98), however, we observe a substantial improvement in the
MPI performance of the extended exx module during large-
scale NpT simulations (see Figure 5). For a given (and fixed) ζ

value, we again follow PAPER-I98 and define the weak scaling
efficiency of exx with respect to a reference system size (i.e.,
Nwater

ref = 64, a commonly used system size for AIMD
simulations of liquid water) as

N
t

t

t

t
( )

N

N

N

N
MPI
weak

water
exx

exx

exx 64

exx

water
ref

water

water

water

η ≡
⟨ ⟩

⟨ ⟩
=

⟨ ⟩

⟨ ⟩
=

(62)

in which t Nexx water
⟨ ⟩ is the wall time spent in exx for a specific

Nwater. For Nwater > 64, we find that ηMPI
weak (when averaged over ζ

∈ {1/2, 1, 2, 4}) first slightly increases to ≈103% (Nwater =
128) and then decreases to ≈89% (Nwater = 256). These weak
scaling efficiencies are marked improvements over the NVT
values of ≈89% (Nwater = 128) and ≈81% (Nwater = 256)
reported in Figure 9 (and the surrounding discussion) in
PAPER-I98 and demonstrate that the extended exx module is
exhibiting close to linear (or N( )) scaling behavior in the
(H2O)64−(H2O)256 system size regime in the more demanding
NpT ensemble. Here, we note in passing that the observed
ηMPI
weak value exceeding 100% for (H2O)128 is merely an artifact
of choosing (H2O)64 as the reference system size as well as
averaging over all the four ζ values; as such, we interpret this
result as a simple indication that exx is scaling nearly ideally
when the system is doubled from (H2O)64 to (H2O)128. When
using a relatively low amount of computational resources (e.g.,
ζ = 1/2, 1), we find that the weak scaling behavior of exx is
quite close to linear scaling in the (H2O)64−(H2O)256 system
size regime (Figure 5). However, the scalability starts to
degrade for (H2O)256 at the ζ ≥ 2 level, which we largely
attribute to (i) increased communication due to the underlying
ALL-TO-ALL MPI operations in the data redistribution
steps (Steps I and VI in Figure 1) and (ii) increased processor
idling due to the inherent difficulty with balancing the
workload across a larger number of MPI processes (see
below and Section IV.B in PAPER-I98). Furthermore, we also
note that the weak scaling efficiency of exx (in both the NVT
and NpT ensembles) is significantly better than its strong
scaling efficiency; however, this result is not surprising as it is
(in general) more efficient to distribute the additional
workload associated with an increased system size over a
larger number of processing units rather than use the increased
processing resources to reduce the overall time to solution for
a fixed system size.
Here, we remind the reader that the exx module only

represents one portion of an overall hybrid DFT calculation:
input into exx is the current set of MLWFs at a given CPMD
step; output from exx is Exx, {D̃xx

i (r)}, and σxx. As such, several
other modules in QE (some of which are not necessarily linear
scaling) are required to perform the remaining non-exx tasks
(i.e., all other GGA−DFT operations as well as MLWF
localization) and will ultimately dominate the overall scalability
of a hybrid DFT calculation. For instance, the cost associated
with MLWF localization, which contains some cubic scaling
matrix operations, can become more substantial for larger
system sizes (e.g., ≈10−20% of the total wall time for
(H2O)256); see Table 1 in PAPER-I98 and the surrounding text
for a more detailed discussion. As such, incorporating the exx
module into an overall linear scaling GGA codein
conjunction with a more efficient on-the-fly orbital localization
procedurecould be a viable strategy for achieving a fully
(overall) linear scaling hybrid DFT approach.
For the largest systems considered in this work (i.e.,

(H2O)128 and (H2O)256), the extended exx module can

Figure 4. Strong scaling analysis of the extended exx module in QE

during NpT CPMD simulations of liquid water at the hybrid PBE0
level on Mira IBM Blue Gene/Q. For a fixed system size [Nwater = 64
(red line), 128 (green line), 256 (blue line)], the mean wall times
(averaged over 50 CPMD steps) spent in the exx module (⟨texx⟩ in
s/step) are plotted against the number of MPI processes (Nproc,
varied via ζ ≡ Nproc/No ∈ {1, 2, 1, 2, 4}). For comparison, ideal strong
scaling wall times (dashed lines) were computed with respect to the
ζref = 1/2 case (see eq 61). The inset pie charts also depict the
fraction/percent of ⟨texx⟩ dedicated to computation ( fexx

comp, colored),
communication ( fexx

comm, black), and processor idling ( fexx
idle , white).

Figure 5. Weak scaling analysis of the extended exx module in QE

during NpT CPMD simulations of liquid water at the hybrid PBE0
level on Mira IBM Blue Gene/Q. For a fixed ratio of system size to
the number of processing elements [ζ = 1/2 (red line), 1 (green line),
2 (blue line), and 4 (magenta line)], the mean wall times (averaged
over 50 CPMD steps) spent in the exx module (⟨texx⟩ in s/step) are
plotted against the system size (Nwater, varied to include (H2O)64,
(H2O)128, and (H2O)256). For comparison, the ideal weak scaling wall
times (dashed lines) correspond to linear (or N( )) scaling and were
computed with respect to the Nwater = 64 case (see eq 62). The inset
pie charts again depict the fraction/percent of ⟨texx⟩ dedicated to
computation ( fexx

comp, colored), communication ( fexx
comm, black), and

processor idling ( fexx
idle , white).
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evaluate all EXX-related quantities required to propagate the
constant-pressure CPMD equations of motion in eqs 10−12 in
≈5.2 s/step for (H2O)128 and ≈6.8 s/step for (H2O)256 using
massively parallel HPC resources (i.e., ζ = 4) on the Mira IBM
Blue Gene/Q platform. When compared to NVT simulations
of liquid water using exx and the same computational
resources (cf. ≈ 2.0 s/step for (H2O)128 and 2.4 s/step for
(H2O)256, see Table 1 of PAPER-I98), the increased wall times
observed here mainly originate from the larger planewave
cutoff (cf. 150 Ry for NpT vs 85 Ry for NVT) and hence the
larger number of points in the real-space grid (vide inf ra). In
practice, 50 ps NpT simulations of large systems such as
(H2O)128 and (H2O)256 would therefore require ≈1.0−1.3
months using similar HPC resources and a more conventional
CPMD time step of 0.10 fs. As such, the extended exx

module enables very challenging large-scale NpT simulations
for extended length scales at the hybrid DFT level of theory.
Similar to PAPER-I,98 we further investigate the exx wall

times by breaking ⟨texx⟩ into the following contributions:
computation events (⟨texx

comp⟩), communication overhead
(⟨texx

comp⟩), and processor idling due to workload imbalance
(⟨texx

idle ⟩). For convenience, the fraction/percent of ⟨texx⟩
dedicated to each of these components (i.e., ⟨fexx

comp⟩, ⟨fexx
comm⟩,

and ⟨fexx
idle ⟩) are depicted as pie charts in Figures 4 and 5. For

the 12 NpT simulations performed in this work, we find that all
three of these components are larger in magnitude than in the
NVT case and still represent sizable contributions to ⟨texx⟩. As
mentioned above, the increased wall times reported herein are
a direct consequence of the larger planewave cutoffs employed
during constant-pressure NpT simulations; by increasing the
cutoff from 85 Ry (NVT) to 150 Ry (NpT), the density of real-
space grid points in Ω (as well as Θ(Cij,RPE) and Θ(Cij,RME))
increases by a factor of 2.5−2.7×. For computational cost, the
larger NPE increases the number of steps (as well as the
computational complexity per step) during the iterative CG
solution to the PE (see Section 4.2), while the larger NME

increases the cost of the ME. For the communication
overhead, the larger grid density requires sending/receiving
larger chunks of data during the forward/backward redis-
tribution (e.g., Steps I and VI in Figure 1, to maintain
compatibility with QE) as well as the internal communication
needed to compute each ⟨ij⟩ contribution to the energy,
wavefunction forces, and stress tensor (e.g., Steps III−V). With

an increased computational cost per overlapping MLWF pair,
the larger NPE and NME also lead to more extended processor
idling times due to the intrinsic imperfect distribution of ⟨ij⟩
pairs across MPI processes (see Sections III.C.2 and IV.B.1 in
PAPER-I98). Cell fluctuations during NpT simulations further
impact the processor idling in exx by introducing larger
variability in the time to solution for each PE (due primarily to
variable-quality guesses based on previous CPMD steps) as
well as additional imbalance in the computational workload
(due to the more diverse local environments sampled by each
MLWF).
For small ζ values (ζ ≤ 1), we find that exx is technically

computation bound, with ⟨fexx
comp⟩ ≈ 56%, ⟨fexx

comm⟩ ≈ 13%, and
⟨fexx
idle ⟩ ≈ 31% (when averaged over ζ = 1/2 and ζ = 1 for

(H2O)64, (H2O)128, and (H2O)256), although the wall time
associated with communication overhead and processor idling
(≈44%) still remains substantial. With HPC resources (ζ ≫
1), the balance among computation and processor idling is
now switched, with ⟨fexx

comp⟩ ≈ 36%, ⟨fexx
comm⟩ ≈ 18%, and ⟨fexx

idle ⟩ ≈
46% (when averaged over ζ = 2 and ζ = 4 for (H2O)64,
(H2O)128, and (H2O)256), but the combined computation and
communication cost (≈54%) is technically dominant. In this
limit, we have previously observed a roughly equal distribution
of fexx

comm ≈ fexx
comp ≈ fexx

idle ≈ 33% during large-scale NVT
simulations of liquid water (i.e., (H2O)256 with ζ = 4, see Table
1 and Figures 8 and 9 in Section IV.B.1 of PAPER-I98); in the
more challenging NpT case investigated here, the role of
processor idling has become even more prominent in
determining the overall time to solution, while the (albeit
reduced) relative contributions from computation and
communication are still considerable. As such, we are in the
process of developing a comprehensive three-pronged
theoretical and algorithmic approach (i.e., the β version of
exx) that specifically addresses each of these sizable
contributions to ⟨texx⟩ and will enable hybrid DFT-based
NpT simulations of even larger systems and longer durations.
We complete this section with a brief discussion on

intranode OpenMP parallelization efficiency as well as the
overall performance of exx when performing large-scale NpT
simulations on different HPC architectures. Regarding the
OpenMP strong scaling efficiency, we point the reader to
Figure 10 (as well as the surrounding text in Section IV.B.2) in
PAPER-I,98 where we specifically investigated the performance

Table 3. Computational Timing Profiles for NpT CPMD Simulations of Liquid Water at the Hybrid PBE0 Level on Mira IBM
Blue Gene/Q, Cori Haswell, and Cori KNL Using the Extended Exx Module in QE

a

QE module timings breakdown of ⟨texx⟩

architecture ⟨tGGA⟩ ⟨tMLWF⟩ ⟨texx⟩ ⟨ttotal⟩ ⟨texx⟩ / ⟨tGGA⟩ ⟨texx
comp⟩ ( fexx

comp) ⟨texx
comm⟩ ( fexx

comp) ⟨texx
idle ⟩ ( fexx

comp)

Mira IBM Blue Gene/Q 2.79 0.59 11.49 14.87 4.1 6.58 (57.3) 1.47 (12.8) 3.43 (29.9)

Cori Haswell 1.16 1.26 5.37 7.79 4.6 2.96 (55.1) 0.77 (14.3) 1.65 (30.6)

Cori KNL (no hyperthreadingb) 12.25 3.71 9.16 25.12 0.7 4.85 (52.9) 2.18 (23.8) 2.13 (23.3)

Cori KNL (no hyperthreadingc) 5.10 1.98 8.20 15.28 1.6 4.61 (56.2) 1.60 (19.5) 1.99 (24.3)
aAll timings (in s/step) were averaged over 50 CPMD steps and correspond to the mean wall times associated with completing all GGA (non-
exx) contributions to the simulation (⟨tGGA⟩), optimizing the Marzari−Vanderbilt functional (⟨tMLWF⟩, needed to re-localize the MLWFs between
each CPMD step), running through the entire exx module (⟨texx⟩, i.e., Steps I−VI in Figure 1), as well as performing a given CPMD step
(⟨ttotal⟩).

141 Also included are the ⟨texx⟩/⟨tGGA⟩ ratios, as well as a breakdown of ⟨texx⟩ into the following components: computation (⟨texx
comp⟩),

communication (⟨texx
comm⟩), and processor idling (⟨texx

idle ⟩); for convenience, the fraction/percent of ⟨texx⟩ dedicated to each of these components
(i.e., fexx

comp, fexx
comm, and fexx

idle ) are reported as percentages of ⟨texx⟩. All timings were obtained during NpT simulations of (H2O)128 with ζ = 1, Ntg = 2,
and 512 nodes on each architecture (using one MPI process and all the available physical cores per node). Hyperthreading was fully activated on
each physical core, except for Cori KNL, where hyperthreading was disabled to prevent performance degradation (cf. Table 2 in PAPER-I98). See
text for more details. bUsing default OpenMP settings (i.e., the same settings used in PAPER-I98). cUsing OMP_PROC_BIND = true and
OMP_PLACES = cores.
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of exx during Step IV (the computational bottleneck of exx)
using two different planewave cutoffs: 85 and 150 Ry (to
mimic the typical settings employed during NVT and NpT
simulations).142 When performing these simulations, we found
that exx maintains high strong scaling efficiencies with ηopenMP

strong

values (see eq 40 in PAPER-I98) of ≈84% (85 Ry) and ≈92%
(150 Ry) as the number of OpenMP threads was increased
from 1 (single-thread limit) to 16 (complete activation of all
physical cores) per Mira IBM Blue Gene/Q node (with a
further 30−40% boost when all the 64 hyperthreads were
activated). Since the computational workload assigned to each
thread increases with the planewave cutoff, the OpenMP

efficiency of exx generally increases during large cutoff (NVT
or NpT) simulations; as such, we expect that exx will also
benefit from the use of advanced vectorization techniques as
well as offloading to graphics processing units.
As a final assessment of the extended exx module, we

repeated the ζ = 1 NpT CPMD simulations of (H2O)128 on the
Cori Haswell and Cori KNL supercomputer architectures
located at the National Energy Research Scientific Computing
Center (NERSC). In analogy to the NVT timing profiles
provided in Table 2 of PAPER-I,98 Table 3 shows that there
exists some variability in the individual QE module timings
across all the three architectures, with ⟨tGGA⟩ ranging from
≈1.2 s/step (Haswell) to ≈12.3 s/step (KNL) and ⟨texx⟩
ranging from ≈5.4 s/step (Haswell) to ≈11.5 s/step (IBM
Blue Gene/Q). With ⟨texx⟩/⟨tGGA⟩ = 0.7−4.6, we again
observe that the extended exx module requires a wall time
cost that is comparable to semi-local DFT and therefore
enables large-scale constant-pressure AIMD simulations at the
hybrid DFT level. Here, we note in passing that the
performance of exx (as well as the non-exx portions of
QE) on Cori KNL is quite sensitive to the OpenMP settings as
well as the use of hyperthreading. For instance, refining the
default OpenMP settings on Cori KNL (by specifying
OMP_PROC_BIND = true and OMP_PLACES =

cores) leads to an ≈60% reduction in ⟨tGGA⟩ from 12.3 s/
step to 5.1 s/step, accompanied by a more modest (but still
noticeable) ≈10% reduction in ⟨texx⟩ from 9.2 to 8.2 s/step. In
fact, a 150 Ry NpT simulation of (H2O)128 on Cori KNL using
these refined settings (⟨tGGA⟩ = 5.1 s/step) can actually be
performed faster than an 85 Ry NVT simulation of the same
system using the default OpenMP settings (⟨tGGA⟩ = 5.4 s/
step, see Table 2 of PAPER-I98). Within the exx module, we
find that the breakdown of ⟨texx⟩ into computation,
communication, and processor idling is very similar across
these three HPC architectures and quite consistent with that
reported in Table 2 of PAPER-I98 for the analogous NVT case.
In this system size and ζ regime, exx is technically
computation bound ( fexx

comp = 55.4 ± 1.9%), with communica-
tion ( fexx

comp = 17.6 ± 5.0%) and processor idling ( fexx
idle = 27.0 ±

3.8%) accounting for the rest of the time spent in the exx

module. With sizable contributions from all three components,
this observation once again reiterates the need for a
comprehensive three-pronged strategy in the next-generation
exx codebase. Hence, the combination of the current (and
next-generation) exx codebasealong with an overall linear
scaling GGA implementation and a more efficient on-the-fly
orbital localization schemecould be a viable route toward a
fully linear scaling hybrid DFT approach.

5. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we present several theoretical and algorithmic
developments to our linear scaling and real-space MLWF-
based EXX approach98 that enable constant-pressure CPMD
simulations (in the NpH and/or NpT ensembles) of large-scale
finite-gap condensed-phase systems in general/non-orthogonal
cells at the hybrid DFT level. For the theoretical extension to
this approach, we derived an analytical expression for the EXX
contribution to the stress tensor for systems with general and
fluctuating simulation cells with a computational complexity
that scales linearly with system size. When used in conjunction
with the previously developed theoretical approaches for
obtaining the EXX contribution to the energy and wave-
function forces,98 this work provides the remaining ingredient
needed for propagating the CPMD equations of motion under
constant-pressure conditions and hence an overall order-N
method for performing large-scale hybrid DFT-based CPMD
simulations in the NVE/NVT as well as NpH/NpT ensembles.
For the algorithmic extension to this approach, we have
incorporated a number of new routines into the exx module
in Quantum ESPRESSO (QE) that have been optimized to
(i) provide generalized subdomains that handle both static and
fluctuating simulation cells with non-orthogonal lattice
symmetries, (ii) solve PE in general/non-orthogonal cells via
an automated selection of the auxiliary grid directions in the
Natan−Kronik (NK) representation of the discrete Laplacian
operator, and (iii) evaluate the EXX contribution to the stress
tensor using the analytical expression derived in this work.
This was followed by a case study demonstrating that one

can use exxwith an appropriate choice of parametersto
tightly and simultaneously converge the EXX contributions to
the energy and stress tensor for a wide variety of condensed-
phase systems (including liquid (H2O)128, the monoclinic
benzene-II polymorph, and the semi-conducting Si216 crystal).
We also provided a critical assessment of the computational
performance of the extended massively parallel hybrid MPI/
OpenMP-based exx module across several different HPC
architectures (e.g., Mira IBM Blue Gene/Q, Cori Haswell, and
Cori KNL) via detailed case studies on (i) the computational
complexity due to lattice symmetry during short NpT
simulations of the ice Ih, II, and III polymorphs at their
corresponding triple point and (ii) the strong and weak scaling
of exx during large-scale NpT simulations of ambient liquid
water ranging from (H2O)64 to (H2O)256. In doing so, we
found that evaluation of the EXX contribution to the stress
tensor required negligible (<1%) computational overhead for
all systems tested, thereby providing a simultaneously more
accurate and more computationally efficient approach than
direct numerical differentiation of Exx with respect to h. We
also demonstrate that the extended exx module remains quite
robust and highly scalable when performing challenging NpT
simulations of liquid water (with a very tight 150 Ry planewave
cutoff); here, we found that the MPI strong scaling behavior
remains essentially the same as that observed during 85 Ry
NVT simulations in PAPER-I,98 while the MPI weak scaling
efficiency of exx becomes noticeably improved. With these
theoretical and algorithmic advances, the extended exx

module brings us another step closer to routinely performing
high-fidelity hybrid DFT-based AIMD simulations of sufficient
duration for complex and large-scale condensed-phase systems
across a wide range of thermodynamic conditions.
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Moving forward, our group is in the process of further
improving the strong and weak scaling efficiencies of exx by
implementing a comprehensive three-pronged strategy that
simultaneously attacks the remaining contributions from
computation, communication, and processor idling to the
wall time cost. Our group is also actively working on a variable
subdomain generalization of the exx module for an accurate
and computationally efficient treatment of EXX in heteroge-
neous systems with multiple phases and/or components, which
is needed for the study of physical processes and chemical
reactions in diverse environments and complex interfaces.
Other future research directions include optimizing exx for
performing high-throughput calculations needed for machine-
learning intra-/inter-molecular potentials of condensed-phase
systems, as well as extending exx to sample other statistical
ensembles (i.e., μVT) needed for simulating even larger swaths
of experimental conditions at the hybrid DFT level.
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