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Lagrangian fibrations by Prym varieties

Justin Sawon

Abstract

We survey Lagrangian fibrations of holomorphic symplectic va-
rieties, both compact and non-compact, whose fibres are Jacobians
and Prym varieties.

1 Introduction

In [23] Hitchin showed that moduli spaces of Higgs bundles are inte-
grable systems. This means that there is a map given by a collection of
Poisson-commuting functions from each moduli space of Higgs bundles to
a space of half the dimension; here the Poisson structure is the inverse of
the natural holomorphic symplectic structure on the moduli space. The
general fibres of this map are abelian varieties: Jacobians of curves for
GL-Hitchin systems and Prym varieties for other gauge groups.

Moduli spaces of Higgs bundles are non-compact. Turning to compact
holomorphic symplectic manifolds, a remarkable result of Matsushita [34]
(see Theorem 4) states that the only fibrations that they can support

are ones whose fibres are Lagrangian with respect to the holomorphic
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symplectic form. Note that by the remark following Theorem 4, La-
grangian fibrations and integrable systems are really the same thing in
this context. Examples of Lagrangian fibrations on compact holomor-
phic symplectic manifolds, and orbifolds, include the integrable systems
of Beauville-Mukai [8, 40], Debarre [11], Markushevich-Tikhomirov [33],
Arbarello-Sacca-Ferretti [4], and Matteini [36], all described in this paper.

The GL-Hitchin system and the Beauville-Mukai system are both La-
grangian fibrations by Jacobians of curves, so they share similar proper-
ties. For instance, they are both isomorphic to their own dual fibrations,
at least up to a global twist, because Jacobians are autodual abelian va-
rieties. This duality can be enhanced to a (twisted) Fourier-Mukai trans-
form between the (twisted) derived category of each Lagrangian fibration
and the derived category of its dual fibration. Donagi, Ein, and Lazars-
feld [12] found a deeper relation between the GL-Hitchin system and the
Beauville-Mukai system; namely, the latter can be degenerated to a com-
pactification of the former.

The other Hitchin systems and the other compact Lagrangian fibrations
mentioned above are fibrations by Prym varieties. In this article, we
explore the relations between these different Lagrangian fibrations. In
most case, they are not isomorphic to their dual fibrations. Hausel and
Thaddeus [21] showed that the dual of the SL-Hitchin system is the PGL-
Hitchin system. Similarly, the dual of the Sp(2n,C)-Hitchin system is
the SO(2n + 1,C)-Hitchin system. In general, the dual fibration of a
Hitchin system is given by taking the Hitchin system whose gauge group
is Langlands dual to the original gauge group.

Turning to the compact Lagrangian fibrations by Prym varieties,
Menet [37] showed that the dual of a Markushevich-Tikhomirov system
is another Markushevich-Tikhomirov system. For the other compact ex-
amples, taking their dual fibrations seems to produce new examples of
Lagrangian fibrations, making this a potentially fertile direction to ex-
plore.

The degeneration of Donagi, Ein, and Lazarsfeld can be generalized
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to some Lagrangian fibrations by Prym varieties, giving a very concrete
connection between certain compact and non-compact examples. In other
cases, we can detect some analogies between compact and non-compact
examples without there being a clear connection. Still, there remain many
non-compact Lagrangian fibrations which do not have obvious compact
counterparts (and conversely).

Here is a summary of the paper. In Section 2 we describe the GL-Hitchin
system, a non-compact Lagrangian fibration by Jacobians of curves, and
how it is related to its dual fibration. In Section 3 we consider compact
Lagrangian fibrations, particularly the Beauville-Mukai system. Again we
describe how it is related to its dual fibration, we describe the Donagi-Ein-
Lazarsfeld degeneration to a compactification of the GL-Hitchin system,
and we summarize what is known about the classification of Lagrangian fi-
brations by Jacobians of curves. In Section 4 we describe the other Hitchin
systems, which are fibred by Prym varieties, and the duality relations be-
tween them. In Section 5 we turn to compact Lagrangian fibrations by
Prym varieties. We describe the Markushevich-Tikhomirov system, its
dual fibration, the Matteini system, and some other examples. In Sec-
tion 6 we mention a few original results of the author (some obtained
jointly with Chen Shen): we extend the Donagi-Ein-Lazarsfeld degener-
ation result to Lagrangian fibrations by Prym varieties, we speculate on
the dual fibration of the Matteini system, and we describe the dual fi-
bration of the Debarre system. Finally, in Section 7 we summarize all
of the known examples of Lagrangian fibrations by Jacobians and Prym
varieties in Table 1; this suggests where we should perhaps search for new
examples.

This work was presented at the satellite meeting of the ICM 2018 “Mod-
uli spaces in algebraic geometry and applications” held in Campinas, 26—
31 July, 2018. The author is grateful to the organizers for the invitation to
speak at this meeting, to the referee for several helpful suggestions, and to
the National Science Foundation for support from award DMS-1555206.
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2 The GL-Hitchin system

2.1 Moduli of Higgs bundles

Higgs bundles on Riemann surfaces and their moduli spaces were intro-

duced by Hitchin [22]. Fix a Riemann surface ¥ of genus g > 2.

Definition A GL(n,C)-Higgs bundle on ¥ is a pair (E,®) of a holomor-
phic bundle E on 3 of rank n and a Higgs field

® ¢ H'(®, K ® EndE),

where K denotes the canonical bundle of ¥. We say that (E, ®) is stable
if for all ®-invariant subbundles F C FE we have

degF < degk
rankF  rankFE’

and semi-stable if instead we have <.

Fix the rank n and degree d of E, and denote by Mgy, the moduli
space of stable Higgs bundles. For coprime n and d this is a smooth
quasi-projective variety of dimension 2n?(g — 1) + 2. (If n and d are not
coprime, we consider the moduli space of S-equivalence classes of semi-
stable Higgs bundles; this is a quasi-projective variety, which contains the

moduli space of stable Higgs bundles as an open subvariety.)

Theorem 1 (Hitchin [22]). For coprime n and d, Mgy, is a holomorphic
symplectic manifold, i.e., it admits a natural holomorphic symplectic form

o. In fact, MgL admits a hyperkdhler metric.

Remark Denote by Bungy, the moduli space of stable bundles on . of
rank n and degree d. If £ € Bungr,, then the inequality above is satisfied
for all subbundles F. Therefore we could choose any Higgs field ¢, and
the pair (E,®) would be a stable Higgs bundle. Consider the cotangent
space to Bungr, at E. By Serre duality

TiBung, = HY(2, EndE)* = H(2, K ® EndE),
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So in this case (E, @) is really a point of the cotangent bundle T*Bung,.
This shows that T*Bungy, C Mqar, and in fact it is a dense open sub-
set. The holomorphic symplectic form ¢ on Mgy, is an extension of the

canonical holomorphic symplectic form on T*Bungt,.

2.2 The Hitchin system

Hitchin [23] showed that Mg, admits the structure of an integrable
system by defining a map

h: Mg, — AqL ;:@Ho(z,m‘)
=1
(B,®) +— (tr®,tr(®?),...,tr(d®"))

To understand this map, choose a local frame for F and think of the Higgs
field ® as an n x n matrix of one-forms. The eigenvalues of this matrix will
be n one-forms, and tr®, tr(®2),...,tr(®") are precisely the power sum
symmetric polynomials in these one-forms. Although this description is
local on ¥, the unordered set of eigenvalue one-forms do not depend on
the choice of frame, and hence their symmetric polynomials are defined
globally on X.

Conversely, the symmetric polynomials tr®, tr(®?),..., tr(®") deter-
mine the n eigenvalue one-forms locally, giving us an n-valued section
of K — Y. In other words, they determine a curve C' in the total space

of K which maps n-to-1 to X under the projection.

C - Tot K

n:1 \( l/
by

Moreover, above each eigenvalue we can place its eigenspace, and this
produces a line bundle L over C, at least for general (E, ®). For special
(E,®) the curve C could be singular, and L could be a rank-one sheaf

that is not locally free.
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Definition C' is called a spectral curve and (C,L) is called the spectral
data of (E,®).

Proposition 2. A Higgs bundle (E,®) can be recovered from its spectral
data (C,L).

Essentially, F is the direct sum of the eigenspaces, which is given by
7« L where 7w : C'— 3. To recover ® from (C, L), start with the map L —
K ® L given by multiplying by the canonical section of 7*K — TotK,

and take its image under m,. The resulting map
E=mnlL—mn@m KL =KomnL=KQFE
is the Higgs field ®.

Theorem 3 (Hitchin [23]). The map h : M1, — Agr, makes Mgy, into

an algebraic completely integrable system.

Note that by Riemann-Roch, Aqr, is a vector space of dimension

n n
. 1
. _ 0 _ . _ 2 _ .
dimAgp, = Z;h (3, K") = g—f—z;(Ql—l)(g—l) =n“(g—1)+1 = §d1mMGL.
1= 1=
If we regard h as given by a collection of functions {h;} on Mgr, then

the theorem says that these functions Poisson commute,
[hiy hj] == o~ (dh;, dhj) = 0,

where the Poisson form o~! is the inverse of the symplectic form o on
M.

By general principles of Hamiltonian mechanics, the fibres of an inte-
grable system must be tori. Specifically, Liouville’s Theorem states that
the smooth fibres must be diffeomorphic to tori if they are compact (see
page 271-272 of Arnold’s book [6] for the real symplectic case; the same
arguments prove that the smooth fibres are biholomorphic to complex tori
in the holomorphic case). The Hitchin map h is actually proper, i.e., all

its fibres are compact. As we saw, a point in the base Agy, determines
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a spectral curve C. The fibre above this point is the Jacobian Jac?C' for
some d € Z. (Here d is not equal to the degree of the original Higgs

bundle, but it can be calculated from it.)

Remark There are also singular fibres, corresponding to singular spectral
curves. In the mildest cases, the spectral curve C will acquire a node, and
the corresponding fibre will be the compactified Jacobian Tac'c , which is
the moduli space of rank-one torsion-free sheaves on C'. In fact, provided
C' is reduced and irreducible, the corresponding fibre of the Hitchin map
will still be the compactified Jacobian TJac'C. But there are also ‘more

singular’ fibres, the most singular being the so-called nilpotent cone
h=1(0) := {(E,®) | ® is nilpotent}.

Here 0 € Agy, determines the non-reduced spectral curve n, i.e., the zero

section of Tot K with multiplicity n.

2.3 The dual fibration

Given a fibration by tori, we are often interested in constructing the
dual fibration and studying its relation to the original fibration. In mirror
symmetry, the Strominger-Yau-Zaslow conjecture [55] states that mirror
Calabi-Yau manifolds are dual fibrations in the large complex structure
limit. Here the fibrations are by special Lagrangian tori, though note that
on hyperkahler manifolds there is a deformation of complex structures
known as hyperkahler rotation that takes holomorphic Lagrangian tori to
special Lagrangian tori.

Mukai [39] proved that dual abelian varieties are derived equivalent,
and this can be extended to the relative setting where we have a family of
abelian varieties. Let us apply this to the GL-Hitchin system. Denote by
MEL the union of smooth fibres of the Hitchin system and consider first
the case when the fibres are Jacobians Jac’C' of degree d = 0. Because
Jac’C is autodual, the dual fibration /\//\lénﬁ is isomorphic to Mg} . In this

case we can construct a relative Fourier-Mukai transform between their
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derived categories
@ DP(MEE) > DY) = DY(MEL)
with kernel given by the relative Poincaré bundle.

Remark This will extend over some singular fibres, for example, for the
singular fibres given by compactified Jacobians of spectral curves that are

reduced and irreducible. We will say more about this in Section 3.3.

Remark For degree d # 0, we define the dual of Jac?C' to be the Picard
scheme Pic®(Jac?C). Tt is isomorphic to Jac’C. Thus the dual fibration of
the degree d GL-Hitchin system Mg} ; is isomorphic to the degree 0 GL-
Hitchin system Mgf,o- In this case there is an obstruction to extending
local relative Poincaré bundles to a global relative Poincaré bundle, or
equivalently, to combining local Fourier-Mukai transforms into a global
Fourier-Mukai transform. This obstruction takes the form of a gerbe g,
but the construction above can be modified by twisting by this gerbe and

considering derived categories of twisted sheaves, producing
b = b g b
®: D*(Mgr,a) — D"(MGL,a: 6) = D"(MGL 0, 6)-

These twisted Fourier-Mukai transforms were developed by Caldararu [10],

and applied to Lagrangian fibrations by the author in [47, 48].

3 Compact systems

3.1 Lagrangian fibrations

In this section we consider compact analogues of the integrable systems
of the previous section. In other words, we now assume that the total

spaces of the systems are compact.

Definition Let X be a compact Kdahler manifold of dimension 2n. We
call X a holomorphic symplectic manifold if it admits a holomorphic two-

form o that is non-degenerate in the sense that it induces an isomorphism
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T = T* (equivalently, the top exterior power o\ trivializes the canon-
ical bundle Kx = Q2"). Furthermore, we call X an irreducible holo-
morphic symplectic manifold if it is simply-connected and H°(X,Q?) is

one-dimensional, generated by o.

The following theorems give very strong restrictions on the structure of

fibrations on X.

Theorem 4 (Matsushita [34]). Let X be an irreducible holomorphic sym-
plectic manifold of dimension 2n and let m : X — B be a proper morphism

with connected fibres, with B normal and 0 < dimB < 2n. Then
1. dimB =n,

2. the smooth fibres (and every irreducible component of the singular

fibres) of m are Lagrangian with respect to o,

3. the general fibre is a complex torus.

Remark By definition, a fibre (or irreducible component of a singular
fibre) F' is Lagrangian if its tangent space T'F' is maximal isotropic in T'X
with respect to the symplectic structure o. Dually, 7*T™B is maximal
isotropic in T*X with respect to the Poisson structure o¢—!'; but this is
exactly the definition of an integrable system. Thus Lagrangian fibrations
and integrable systems are really the same thing.

We also see that the fibration is equi-dimensional, as every irreducible

component of a fibre must have dimension n.

Remark Note that X is compact and Kéhler but not necessarily pro-
jective; nevertheless, a Hodge theoretic argument shows that the fibres of
X — B are always projective. In particular, the general fibre is an abelian

variety.

Theorem 5 (Hwang [25]). With the same hypotheses as above, if B is

smooth then it is isomorphic to P".
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Example The Hilbert scheme S of points on a K3 surface S is a crepant
resolution of the symmetric product Sym”S. Beauville proved that S
is an irreducible holomorphic symplectic manifold. If S is an elliptic K3

surface, then the map S — P! induces
sty Sym™S —» Sym"P' = P,

and thus S is a Lagrangian fibration in this case. The (smooth) fibres

are products of elliptic curves.

3.2 The Beauville-Mukai integrable system

Beauville [8] and Mukai [40] discovered and studied another Lagrangian
fibration associated to K3 surfaces. Let S be a K3 surface that contains
a smooth genus g curve C'. Riemann-Roch shows that C' moves in a g-
dimensional linear system, |C| = PY9. Let C/PY be the universal family
of all curves linearly equivalent to C. We would like to take the relative
compactified Jacobian Ed(c /P9) of this family. If the Néron-Severi lat-
tice NS(S) of S is generated over Z by [C] then every curve in the linear
system is reduced and irreducible, and therefore its compactified Jacobian
is well-defined as the moduli space of rank-one torsion-free sheaves on the
curve (see D’Souza [15] or Altman and Kleiman [1]). Thus we get a fi-
bration Rd(c /P9) — P9 whose general fibre is a g-dimensional abelian
variety.

More generally, we can choose a polarization H on the K3 surface S
and take the moduli space M(0,[C],1 — g + d) of H-stable sheaves on S
with Mukai vector (0,[C],1 — g+ d); see Mukai [40]. The general element
of this moduli space is again a degree d line bundle on a smooth curve in

the linear system |C/|, thought of as a torsion sheaf on S.

Theorem 6 (Mukai [40]). The moduli space M(0,[C],1—g+d) admits a
holomorphic symplectic structure. Moreover, if (0,[C],1—g+d) € H*(S,Z)
is primitive and H is generic, then M(0,[C],1—g+d) is compact and an

wrreducible holomorphic symplectic manifold.
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Remark If NS(S) = Z[C] then (0,[C],1 — g + d) must be primitive, for
any choice of degree d, and in this case M (0, [C],1 — g+ d) coincides with
the relative compactified Jacobian Ed(c /P9) above. But even when [C]
is not primitive, the Mukai vector (0, [C],1 — g + d) will still be primitive

for some choices of d.

When X? := M (0, [C], 1—g+d) is an irreducible holomorphic symplectic
manifold, the map taking a sheaf £ to its support Supp€ € |C| induces a
morphism

X4=M(0,[C],1 —g+d) — |C| =PI,

By Matsushita’s theorem this is a Lagrangian fibration; it is known as the
Beauville-Mukai integrable system [8, 40]. In fact, one can see the holo-
morphic symplectic and Lagrangian structures quite explicitly as follows.
Let ¢t be a general point in P9, let Cy C S be the corresponding curve in
the linear system |C|, and let X; be the corresponding fibre of X% — P9,

We have a short exact sequence
0— TX; — TX%x, — Nx,cxe — 0.

Now X is the Jacobian Jac?C} of C;, so TX; = HY(Cy, Qlct)* On the other
hand, Ny, xa is isomorphic to the pull-back of TyP9 = H%(Cy, Ne,cs).
The latter is isomorphic to H(C, Qa), as the short exact sequence

0— TCt — TS‘Ct — thcs —0

and the triviality of detT’S = K§ imply that Ne,cs = TCf = Q.
The holomorphic symplectic form on T7X¢ comes from the natural pairing
between the dual vector spaces T'Xy and Ny, xa. It is then clear that
T X, is a Lagrangian subspace.

We can think of the Beauville-Mukai system as a compact analogue of
the GL-Hitchin system; we will make the relation between these systems

more explicit shortly.

Remark If (0,[C],1 — g + d) is not primitive, then we can compact-
ify M(0,[C],1 — g + d) by adding (S-equivalence classes of) semi-stable
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sheaves. This produces an irreducible holomorphic symplectic variety
M?#5(0,[C],1 — g + d) with singularities along the strictly semi-stable lo-
cus. In general, moduli spaces of semi-stable sheaves on K3 surfaces only
admit symplectic desingularizations in a few special cases. Specifically,
O’Grady [43] constructed a desingularization that works when the Mukai
vector is 2-divisible and the moduli space is 10-dimensional, whereas
Kaledin, Lehn, and Sorger [28] proved that these are the only cases admit-
ting symplectic desingularizations. In particular, if [C] is 2-divisible and
C has genus 5, then M*%(0,[C],1 — g+ d) admits a symplectic desingular-
ization. The Lagrangian fibration on this space was used by O’Grady [43],
Mozgovyy [38], and Rapagnetta [45, 46] to better understand its topol-
ogy. Laza, Sacca, and Voisin [30] described another Lagrangian fibration
on O’Grady’s space whose fibres are intermediate Jacobians of cubic three-
folds.

3.3 The dual fibration

As with the GL-Hitchin system, we can try to define the dual fibration
of the Beauville-Mukai system. The general fibres are Jacobians and hence

autodual, or in the case of arbitrary degree d, their dual is
Pic?(JaclC) = Jac’C.

To what extent can we generalize this isomorphism to singular curves C'?
Remarkably, Esteves, Gagné, and Kleiman [16, 17] proved that if C is
reduced and irreducible with at worst nodes and/or cusps as singularities,
then
Pic’ (Jac'C) = Jac C.

In particular, this applies to all the curves in the genus g = 2 Beauville-
Mukai system when [C] is primitive, and thus the dual fibration X¢ of
X4 is isomorphic to X°. This enabled the author to construct a derived
equivalence between the derived category of X? and the twisted derived
category of XY. Later, Arinkin extended the above autoduality to com-

pactified Jacobians of arbitrary reduced and irreducible curves C' with at
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worst surficial singularities, i.e., in this case too EdC is irreducible and
its dual is

=0, ~—d,  ~, 70

Pic (Jac C) = Jac C.
Moreover, Arinkin extended the derived equivalence to all genus g.

Theorem 7 (Sawon [48], Arinkin [5]). When [C] is primitive the dual

fibration of X¢ is X° and there is a twisted Fourier-Mukai transform
¢ : DY(x?) = DM(X?, B) = DY(X", B)
where 8 € H2(X?, O0*) is a gerbe on XV.

3.4 The relation between the Beauville-Mukai and GL-Hitchin

systems

The Beauville-Mukai and GL-Hitchin systems are both relative com-
pactified Jacobians of complete linear systems of curve in symplectic sur-
faces: in the former case, the curves lie in a K3 surface, and in the latter
case, they lie in the total space TotKy of the cotangent bundle of X.
By deforming one surface to the other, Donagi, Ein, and Lazarsfeld [12]
showed that the integrable systems are also related by a deformation.
More precisely, one must compactify Tot Ky and the GL-Hitchin system
to make this work. Let us sketch this construction.

Suppose that the curve ¥ is contained in the K3 surface S and O(X) is

very ample, giving an embedding
S — P(H(S,%)*) = PV,

Take the cone over S in PV*! and intersect it with the pencil of hyper-
planes in PY*! containing ¥. This gives a pencil of surfaces S — P

Moreover

e the intersection with the hyperplane through the apex of the cone
gives Sgp = Tot Ky, the one-point compactification of Tot Ky, (this is

the cone over the canonical embedding of ¥ in PV~1),
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e the intersection with any other hyperplane is a surface S; isomorphic
to S.

Note that every surface S; in this pencil contains a curve isomorphic to .
Curves in the linear system |nX| in one of the K3 surfaces S;, t # 0, will
deform to spectral curves in Sy (or to the additional curves that appear
when we compactify TotKy). We can now consider the moduli space of
stable sheaves on S that contains degree d line bundles on curves in [nX|
(in either Sy or any other surface S; in the pencil). This moduli space is

fibred over P!,

Theorem 8 (Donagi-Ein-Lazarsfeld [12]). The fibres of the above fibration
over P! are Beauville-Mukai systems on Sy for t # 0 and the compactifi-
cation of the GL-Hitchin system on 3 induced by the one-point compacti-
fication TotKy, C TotKy, for t = 0. In short, the Beauville-Mukai system
degenerates to a compactification of the GL-Hitchin system.

Remark The cone TotKy, over the canonical embedding of ¥ is highly
singular at its apex. In the above situation, where we assume that ¥ lies
in a K3 surface, TotKy can be smoothed to this K3 surface S. We call
such curves ¥ K38 curves, and it is an interesting problem to determine
when a curve Y is a K3 curve and to reconstruct the K3 surface from
the curve; see Arbarello, Bruno, and Sernesi [2, 3]. Note that the moduli
of genus ¢ curves has dimension 3g — 3, whereas K3 curves belong to a
family of dimension at most 19 + g (as algebraic K3 surfaces belong to
19-dimensional families, and dim|¥| = g¢). Thus by a parameter count,
the general curve of genus > 12 is not a K3 curve.

If ¥ is not a K3 curve, then there are obstructions to completely smooth-
ing TotKs,. However, in certain cases one can partially smooth TotKsy, to
a surface with a less severe singularity. The resulting integrable systems

have not yet been studied.
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3.5 Classification of Lagrangian fibrations by Jacobians

It appears that the Beauville-Mukai integrable system is the only (com-
pact) Lagrangian fibration by Jacobians. We make this statement precise

in the following conjecture.

Conjecture 9. Let C — P" be a family of reduced and irreducible curves
of arithmetic genus n. Suppose that the relative compactified Jacobian
X = Ed(C/IF’”) is an irreducible holomorphic symplectic manifold, and
therefore a Lagrangian fibration due to the support map to P™. Then
X — P" is a Beauville-Mukai system, i.e., the family of curves C — P™ is

a complete linear system of curves on a K8 surfaces.
The conjecture is true in the following cases.
Theorem 10 (Markushevich [31]). The conjecture is true for genusn = 2.

Theorem 11 (Sawon [53]). The conjecture is true for genus n = 3. If
we assume that all the curves in the family C — P™ are non-hyperelliptic

then the conjecture is also true for genus n =4 and 5.

Remark In the genus 3 case, one can show that either all of the curves
in the family C — P? are non-hyperelliptic or all are hyperelliptic. In the
latter case, one cannot avoid encountering reducible curves in the family,
so the hypothesis of the conjecture must be modified slightly to allow for
this.

Theorem 12 (Sawon [52]). Denote by A C P™ the discriminant locus
parametrizing singular curves in the family C — P™. Then A is a hyper-
surface in P", and if we assume that the degree of A is at least 4n + 2

then the conjecture is true for all genus n.

The proof uses coisotropic reduction (see [50]) to extract a K3 sur-
face from the geometry of the Lagrangian fibration X — P™. This idea
was first used by Hurtubise [24] in the local setting, i.e., for a family of

curves/Jacobians over a disc.
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4 Other Hitchin systems

So far we have only considered the Hitchin system on the moduli space of
GL(n, C)-Higgs bundles, but one can replace the gauge group GL(n, C) by
any reductive group G (here we only consider complex groups). For other
gauge groups the Higgs pair (F, ®) must satisfy additional constraints, or
admit additional structure. Hitchin [23] showed that the resulting inte-
grable systems have fibres that are various kinds of Prym varieties. In
this section we survey these Hitchin systems for the classical groups. See

also Schaposnik’s lecture notes [54] for a more detailed account.

4.1 SL-Hitchin systems

For SL(n,C)-Higgs bundles (E,®) the determinant bundle detE :=
A" E must be trivial and the Higgs field ® must be a section of K @ EndgF,
where EndygE denotes the trace-free endomorphisms of E. As before there

is a moduli space Mgy, of stable SL-Higgs bundles and a Hitchin map

h:Ms, — AgL ::éHO(E,Ki)
=2
(E,®) — (tr(®?),...,tr(d"))

Note that the i = 1 term on the right hand side is omitted because tr® = 0.
As before there is a spectral curve C' in Tot K determined by tr® = 0
and tr(®2),...,tr(®"), and an n-to-1 cover 7 : C' — X. This map induces

a norm map on (equivalence classes of) divisors

Nm : Jac?C —  Jacty
ijpj — ijﬂ(pj).

Definition When d = 0 the Prym wvariety Prym(C/X) of C — ¥ is
the connected component of 0 in Nm~1(0) C Jac®C. When d # 0 we can
define the Prym variety by firing a degree d divisor D in Jac?S and taking
a connected component of Nm~(D) C Jac?C.
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Remark All connected components of the fibres of the norm map, for
both d = 0 and d # 0, are abstractly isomorphic as complex manifolds to
Prym(C/¥), though the isomorphism is not canonical. For d = 0 we define
Prym(C/%) to be the connected component of 0 so that it has a zero and

therefore is a complex torus, rather than a principal homogeneous space.

Remark Classically, Prym varieties were defined for unramified double
covers C' — X. In this article we use the term Prym variety far more
generally, allowing both n-to-1 covers for n > 2 and branched covers.
In these more general cases, the Prym variety Prym(C/X) is usually not

principally polarized.

Recall that E can be recovered from the spectral data (C,L) as m,L.

One can show that
A", L 2= Nm(L) @ K~(n=1/2]

and therefore F has trivial determinant bundle if and only if the degree
d line bundle L on C lies in Nm ™1 (K™"~1/2) ¢ Jac?C. In other words,
the fibres of the SL-Hitchin systems are Prym varieties Prym(C/X).

4.2 PGL-Hitchin systems

Next consider the gauge group PGL(n,C). The projective linear group
PGL(n,C) is equal to the quotient SL(n,C)/Z,, where Z, acts by nth
roots of unity times the identity matrix. This implies that the moduli
space Mpqr, of stable PGL-Higgs bundles is the quotient of Mgy, by the
group Jac’¥[n] of n-torsion points in Jac’%, where the line bundle F €
Jac’%[n] acts by (E, ®) — (EQF, ®); see Hausel and Thaddeus [21]. Note
that the Higgs field ® does not change under this action, but we can view

it as an endomorphism of £ ® F because
H(Z, K @ Endg(F ® F)) 2 H(2, K ® EndyE).

In particular, one sees from this description that Mpgy, has orbifold sin-

gularities.
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As before, we have a Hitchin map
h: MpaL — Apcr = @ H(S, K7).
i=2

To describe the fibres, note that the map m : C' — % induces the pull-
back map 7* : Jac’® — Jac’C (here we just consider the degree d = 0
case). One can show that the fibre of h over the point corresponding
to the spectral curve C' is the quotient of Jac’C by the action of Jac’Y
induced by 7*. Equivalently, the fibre can be described as the quotient
of the Prym variety Prym(C/X) by the finite group Jac’Y[n] (see Hausel
and Thaddeus [21]).

Since the SL-Hitchin and PGL-Hitchin systems have the same base
Agr, = Apqal, it is instructive to compare their fibres. In fact, we see from

the natural defining short exact sequences

SL: 0 — Prym(C/S) — Jac’C ™% Jac®S — 0
PGL: 0— Jac’s — Jac’C — Pry@/E) — 0,

where we used the autoduality of both Jac’C' and Jac’¥, that the fi-
bre of the PGL-Hitchin system is actually the dual of the Prym variety
Prym(C/¥). This shows that Mgy, /Agr, and Mpgr/Apcr are dual fibra-
tions, at least for smooth fibres.

Based on these observations, and insight from the SYZ conjecture,
Hausel and Thaddeus established mirror symmetry for Mg, and Mpqy,.
Whereas we just considered the degree d = 0 case above, they considered

non-zero degrees, which leads to gerbes on both sides.

Theorem 13 (Hausel-Thaddeus [21]). The moduli spaces Mgy, and MpgL,
are mirror manifolds. In particular, the stringy Hodge numbers of Mpar,

equal the Hodge numbers of Mgt,.

Remark We need stringy Hodge numbers of Mpgy, because it is an orb-
ifold. On the other hand, Mgy, is smooth. In [21], Hausel and Thaddeus
verified the equality of Hodge numbers for n = 2 and 3 only, but the
equality was later verified for all n by Groechenig, Wyss, and Ziegler [20].
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4.3 Sp-Hitchin systems

For Sp(2n, C)-Higgs bundles (E, ®) the vector bundle E comes equipped
with a non-degenerate skew two-form and the Higgs field ® is skew with
respect to this form. This means that the eigenvalues of ® occur in +
pairs and the traces of odd powers of ® must all vanish. The Hitchin map

from the moduli space Mgy, of stable Sp-Higgs bundles looks like

hiMSp — ASp ::éH()(E:K%)
=1
(E,®) — (tr(®?), tr(®%), ..., tr(d?))

Because the eigenvalues of ® occur in + pairs, each spectral curve C' C
Tot K is invariant under multiplication by —1 in the fibres of K — 3. Note
that this action, n — —n where 7 is the fibre coordinate, is an involution
on Tot K with fixed locus the zero section. The quotient is the total space
TotK? of K? — . Then C is the branched double cover of a curve D in
Tot K2,

C c TotK
21 4 2.1 4
D C TotK?2.

Proposition 14. The fibres of the Hitchin map h : Ms, — Agp, are the
Prym varieties Prym(C'/D) for the double covers C — D described above.

Remark The polarization type of the abelian variety Prym(C/D) is
(1,...,1,2,...,2) where the number of 2s is precisely the genus of the

curve D.

4.4 SO-Hitchin systems

The behavior for the special orthogonal groups is different in the odd
and even cases. Here we just consider the gauge group SO(2n+1,C). For
SO(2n + 1,C)-Higgs bundles (E, ®) the vector bundle E' comes equipped

with a non-degenerate symmetric two-form and the Higgs field ® is skew
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with respect to this form. The eigenvalues of ® consist of 0 together with n
=+ pairs. Once again, the traces of odd powers of ® must all vanish and the
Hitchin map from the moduli space Mgo2n+1,c) Of stable SO(2n + 1, C)-
Higgs bundles looks like

h: Mgo@nsi,c) — Aso@n+1,0) EBHO ¥, K2
(E,®) — (tr(<1>2),tr(<1>4),..., tr(9"))

Because 0 is an eigenvalue of ®, the zero section of K — ¥ occurs as a
component of each spectral curve in TotK. Discard this component and
call the union of the other components C. Then C' C TotK is invariant

under multiplication by —1 in the fibres of K — ¥, and as before we get

a diagram
C c TotK
21 4 2:1 4
D Cc TotK?2.

with C' a branched double cover of a curve D in TotK?2.

Proposition 15. The fibres of the Hitchin map h : Mgso@ns1,c) —
Aso@n+1,c) are finite covers of the Prym varieties Prym(C/D) for the
double covers C'— D. In fact, they are the dual abelian varieties Prym(C'/D).

Remark Earlier we saw that the SL-Hitchin and PGL-Hitchin systems
are mirror manifolds, i.e., dual fibrations. Now we see that Mg,/Ag, and
Mso(2n+1,0)/Aso(2n+1,c) are also dual fibrations. In general, if we let e
denote the Langlands dual group of G, then Ag = Arg and the dual
fibration of Mg /Ag is Mug/ALg.

5 Compact fibrations by Pryms

The Sp-Hitchin and SO-Hitchin systems both have spectral curves that
are double covers of other curves. These curves are contained in TotK,

respectively, Tot K?. To construct compact analogues of these integrable
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systems we should replace the branched double cover Tot K — TotK? by
a double cover S — T of compact surfaces. In this section we describe

various examples that have been studied.

5.1 The Markushevich-Tikhomirov system

The first example of this kind was constructed by Markushevich and
Tikhomirov [33]. They started with a K3 surface S that is a branched
double cover of a degree two del Pezzo surface T'. In this case T contains an
elliptic curve D which is covered by a genus three curve C' in S. Moreover,
D moves in a two-dimensional linear system |D| = P? and we get a P2-
family of genus three curves C (an incomplete system of curves linearly

equivalent to C') in S covering elliptic curves D in T,

¢ c S
21 4 214
D c T.

We can take the Prym varieties of these covers, at least for the smooth
curves in this family, and obtain a family of abelian surfaces Prym(C/D)

over an open subset of P?.

Theorem 16 (Markushevich-Tikhomirov [33]). The relative Prym vari-
ety described above admits a natural compactification Prym(C/D). It is
a holomorphic symplectic orbifold of dimension four, and a Lagrangian

fibration over P2.

Let us briefly sketch the main ideas behind Markushevich and Tikhomirov’s
theorem. We defined the Prym variety of 7 : C' — D as a connected com-
ponent of a fibre of the norm map Nm : Jac?C' — Jac?D. An equivalent
definition is as follows. Let 7 : C — C be the covering involution and
7* 1 Jac?C' — Jac?C the induced involution on the Jacobian. The fixed
locus of 7* is precisely the abelian subvariety of divisor classes pulled

back from D. Because 7* is an involution, the fixed locus of —7* is a
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complementary abelian subvariety, and we can define
Prym(C/D) := Fix®(—7%),

where the superscript 0 denotes taking a connected component (the con-
nected component containing 0 in the degree d = 0 case).

Now 7 also induces a map 7* : |C| — |C| whose fixed locus is precisely
the linear subsystem of curves on S pulled back from curves D C T.
Markushevich and Tikhomirov’s approach is to start with the relative
compactified Jacobian ﬁd(C’ ) of the family C’ of all curves in S linearly
equivalent to C. This is a Beauville-Mukai integrable system; recall that
we define it as a Mukai moduli space of stable sheaves on S. Then we
would like to define Prym(C/D) as Fix’(—7*) because this picks out 7*|D|
inside |C| and it picks out the Prym varieties of these curves inside their
Jacobians. There is no problem with 7*: the anti-symplectic involution 7
on S induces an anti-symplectic involution on any Mukai moduli space of

stable sheaves on S, and in particular
S P T/
7% Jac (C') — Jac (C).

What about —1? For a smooth curve C it is well defined on Jac’C' (and
even on Jac?C' if we choose an isomorphism with J ac’C), where it is given
by dualizing a line bundle on C, L — L~'. To extend this to all fibres,

we can exploit the isomorphism
L™ = Home(L, Oc) = Exti (L, 05(—C))

for a line bundle L on a smooth curve C' C S. The last expression is
well-defined even for sheaves L in Jac (C") supported on singular curves,

and so we’d like to define —1 to be the involution
—0, —0,
t:Jac (C') — Jac (C)
L — Exts(L,05(-0)).

The final difficulty is that ¢ preserves H-stability only if the polarization

H of S is given by C (or a multiple thereof). So we are forced to choose
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H = C. This produces an anti-symplectic involution ¢ that commutes
with 7*. Unfortunately the Mukai moduli space EO(C’ ) is singular for
this choice of (non-generic) polarization H = C.

In any case, we can still proceed. The composition ¢co7* is a symplectic
involution, and thus its fixed locus is a symplectic subvariety. Markushe-

vich and Tikhomirov define
Prym(C/D) := Fix’(1 o 7*) C Jac (),

and this is the required holomorphic symplectic orbifold, a Lagrangian
fibration over |D| = P2

Remark Markushevich and Tikhomirov actually define three non-isomorphic
holomorphic symplectic orbifolds: the first is as above, a second arises from
degree d = 2, and a third is a birational modification of the first given by
the Mukai flop of an embedded P?. They all have 28 isolated singularities,
analytically equivalent to C*/4 1. It is well-known that such singularities

do not admit symplectic resolutions.

Remark The fibres of Prym(C/D) — P? are abelian surfaces with po-
larization type (1,2). By comparison, the fibres of the Beauville-Mukai
system in dimension four are principally polarized, i.e., of type (1,1), and
the fibres of the Debarre system [11] (described in Section 6.3) in dimen-

sion four are of polarization type (1, 3).

5.2 Dual Prym varieties

As with fibrations by Jacobians, we wish to describe dual fibrations
of fibrations by Prym varieties. But first, in this section, we describe a
beautiful geometric construction by Pantazis [44] of dual Prym varieties.

This construction applies to branched double covers C' — D where the
curve D is also hyperelliptic. Thus we actually have a tower of branched

double covers
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Pantazis constructs another tower of branched double covers
c' 25 pr 2 p!

as follows. Let p € P! be a general point and suppose that d; and ds in
D sit above p, ¢11 and c12 in C sit above dq, and co; and cog in C' sit
above dy. Above p we define the cover €’ of P! as the pairs of lifts of
{di,ds}. There are four pairs of lifts {c11,co1}, {c11,c20}, {c12,c21}, and
{c12,c20} of {dy,da}, and therefore C' — P! is a 4-to-1 (branched) cover.

In addition, there is an involution on C’ defined by

{c11,ca1} > {c12, c22} and {c11, ca2} < {c12, 21}

Quotienting C’ by this involution gives the curve D’. Then we have the
following geometric description of the dual abelian variety of a Prym va-

riety.

Theorem 17 (Pantazis’s bigonal construction [44]). The abelian varieties
Prym(C/D) and Prym(C’'/D’) are dual.

Remark Let D — P! be branched over the points pi,...,p2s in P! and
let C' — D be branched over the points rq,...,ro; in D whose images in
P! are qi, ..., g. In Figure 1 the p; are (blue) stars and the r; and ¢; are
(red) dots. Then for the second tower of double covers C' — D’ — P! the

roles of p; and ¢; are reversed.
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| |
| |

Figure 1: Branch points of towers of double covers

5.3 Dual fibration of the Markushevich-Tikhomirov sys-

tem

Pantazis’s bigonal construction can be applied in the relative setting
to construct dual fibrations by Prym varieties. To apply this to the
Markushevich-Tikhomirov system we first observe that a degree two del
Pezzo surface T is a double cover f : T — P? branched over a plane
quartic A. Suppose that we have a second plane quartic A’ that meets
A tangentially at exactly eight points. Because of these tangencies, the
inverse image f~!(A’) in T splits into two irreducible components; choose
one. Then the double cover of T" branched over this component is a K3

surface S and we have a tower of branched double covers
S — T — P2,

(Choosing the other irreducible component of f~1(A’) gives a K3 surface
isomorphic to S.) Moreover, every K3 double cover S of the del Pezzo
surface T arises in this way, i.e., from a plane quartic A’ tangent to A at
eight points.

As with Pantazis’s construction, we can interchange the roles of the

two branch loci, A and A’, to produce a second tower of branched double
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covers
S — T — P2

Now the inverse image of a line in P? will be an elliptic curve D in T and

a genus three curve C' in S, and similarly an elliptic curve D’ in T" and

a genus three curve C’ in S’ (as illustrated in Figure 1). By Pantazis’s

Theorem the Prym varieties Prym(C'/D) and Prym(C’/D’) are dual, and

relativizing this by varying the line in P? produces the following result.

Theorem 18 (Menet [37]). The relative compactified Prym varieties
Prym(C/D) and Prym(C’'/D’) are dual fibrations over P2. Here P? de-

notes the dual plane which parametrizes lines in P2.

In other words, the dual fibration of a Markushevich-Tikhomirov system

is another Markushevich-Tikhomirov system.

Question In general the K3 surfaces S and S’ are not isomorphic, so the
dual Markushevich-Tikhomirov systems are not isomorphic. Menet [37]
also observes that S and S’ are not derived equivalent. Are they twisted
derived equivalent, i.e., are there gerbes 3 and 8’ on S and S’ such that
DY(S, B) is equivalent to D?(S’,8')? It is tempting to suspect that the
duality between the Markushevich-Tikhomirov systems could be induced

by some equivalence like this.

5.4 The Matteini system and other Prym fibrations

We describe briefly another Lagrangian fibration by Prym varieties due
to Matteini [36]. It is constructed in a similar way to the Markushevich-
Tikhomirov system, except that now we start with a K3 double cover

S — T of a cubic del Pezzo surface T' (degree 3). In this case we get from

c c S
2:1 \l/ 2:1 \l/
D c T

a P3-family of genus four curves C in S covering elliptic curves D in 7.

Taking Prym varieties of these covers gives a family of abelian threefolds
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Prym(C/D) over (an open subset of) P3 which can be compactified in the

same way as the Markushevich-Tikhomirov system.

Theorem 19 (Matteini [36]). The relative Prym variety above admits
a natural compactification Prym(C/D) that is a holomorphic symplectic

orbifold of dimension siz, and a Lagrangian fibration over P3.

Remark Matteini describes explicitly the singularities of Prym(C/D),

and notes that they cannot be resolved symplectically.

Remark The fibres of Prym(C/D) — P3 are abelian threefolds with
polarization type (1,1,2).

In his thesis [35] Matteini also explored K3 double covers of other del
Pezzo surfaces, which yield similar examples to the one above. The com-
mon ingredient in these constructions is a K3 surface S with an anti-
symplectic involution 7. Nikulin [41, 42] gave a compete classification,
proving that there are 75 cases. Then S is a double cover of T' := S/,
which is necessarily a rational or Enriques surfaces. Some of the examples

that have been studied in detail include:
e the Markushevich-Tikhomirov system [33],
e the Matteini system [36],

e other systems arising from K3 double covers of del Pezzo and Hirze-

bruch surfaces [35],

o the Arbarello-Sacca-Ferretti system [4] arising from K3 double covers

of Enriques surfaces.

In addition to these, one can replace K3 surfaces by abelian surfaces. The
Debarre system [11] (to be described in Section 6.3) is an analogue of the
Beauville-Mukai system, constructed from a linear system of curves in an
abelian surface A. An anti-symplectic involution 7 on A will produce a
quotient T := A/7 that is a bielliptic surface, and to the above list we can
add
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e systems arising from abelian double covers of bielliptic surfaces, also
studied by Matteini [35].

6 Further directions

6.1 Degenerations of Prym fibrations to Hitchin systems

Farlier we described the Donagi-Ein-Lazarsfeld degeneration of the
Beauville-Mukai system to (a compactification of) the GL-Hitchin sys-
tem. In joint work with Chen Shen, the author has extended this result
to some examples whose fibres are Prym varieties.

Recall that the Donagi-Fin-Lazarsfeld degeneration was induced by a
degeneration S ~ Tot Ky, of a K3 surface to the one-point compactification
of TotKy. The Sp(2n,C)- and SO(2n + 1, C)-Hitchin systems have fibres
that are Prym varieties, and finite covers of Prym varieties, respectively.
These Prym varieties come from the branched double cover TotK 21,
Tot K 2. This suggests taking a K3 surface S that is also a branched double

cover, of some surface T, and degenerating the double cover as shown.
S ~ TotKy
21 2:1 4
T ~ TotK2

We can do this in such a way that we get pencils of surfaces S — P! and
T — P! such that

e Sy = TotKy and Ty = TotK2,
e S, Sand Ty =T for all t # 0.

Then we can construct a relative Prym variety in the usual way, whose
fibres are Prym varieties of C 2L D where D is a curve in T¢ and C its
double cover in Sy, for ¢t € P'. In other words, we obtain a P!-family of

Prym fibrations, parametrized by ¢ € P
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Theorem 20 (Sawon-Shen). The above family gives a degeneration of a
Lagrangian fibration by Prym varieties on a compact orbifold (for t # 0)
to a compactification of the Sp(2n, C)-Hitchin system (fort =10).

Full details will appear elsewhere. Here we just make a few observations.

Remark Under the degeneration of surfaces, the branch locus of the
double cover S — T will degenerate to the branch locus of the double
cover TotKy — TotK%. The latter is the zero section of K% — 3, and
hence isomorphic to X itself. We can choose T to be a del Pezzo surface of
any degree and ¥ C T to be a smooth curve in the linear system | — 2K7p|;
then S will be a K3 surface and the degeneration of S (respectively, T') to
the cone over the canonical (respectively, bicanonical) embedding of ¥ will
give the desired degeneration. (The double cover Tot Ky, — TotK % is also
branched over the point at infinity; but this is an additional connected
component of the branch locus, and not part of the limit of the branch
locus of S — T'.)

Remark The above theorem gives degenerations of some of the Prym
fibrations coming from K3 double covers of del Pezzo surfaces to com-
pactifications of Sp(2n, C)-Hitchin systems. However, the Markushevich-
Tikhomirov and Matteini systems do not fit into this framework. The
reason for this is that in the Sp(2n, C)-Hitchin system the spectral curves
lie in the linear system |[nX|, where we think of ¥ as the zero section of
Ky, — 3, which is also the branch locus of Tot Ky, — TotK% (or more pre-
cisely, the inverse image of the branch locus). On the other hand, for both
the Markushevich-Tikhomirov and Matteini systems the spectral curves
C do not lie in the linear system |nR|, where R is the branch locus of
S — T (or more precisely, the inverse image of the branch locus). Since
both the spectral curves and the branch loci must be preserved under the
degeneration of surfaces, we would get a contradiction.

For example, in the case of the Markushevich-Tikhomirov system the

branch locus R comes from half of the pull-back of a plane quartic under
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S — T — P2, whereas C' comes from the pull-back of a line. So we would

need n = 1/2, which is impossible.

Question Do the Markushevich-Tikhomirov and Matteini systems de-

generate to compactifications of some other Hitchin system?

Recall that the SO(2n + 1, C)-Hitchin system is dual to the Sp(2n, C)-

Hitchin system, and it has fibres that are finite covers of Prym varieties.

Question Are there Lagrangian fibrations by finite covers of Prym vari-
eties on compact orbifolds (or even manifolds) that degenerate to a com-
pactification of the SO(2n + 1, C)-Hitchin system?

6.2 Dual fibrations

As we saw earlier, Menet proved that the dual fibration of a Markushevich-

Tikhomirov system is another Markushevich-Tikhomirov system.
Question What is the dual fibration of the Matteini system?

Recall that the fibres of the Matteini system are Prym varieties Prym(C'/D)
where C' has genus four and D has genus one. These abelian threefolds
have polarization of type (1,1,2), and therefore their dual abelian three-
folds have polarization of type (1,2,2). We have not yet encountered a
Lagrangian fibration with fibres of this polarization type.

In fact, one can say more. Every elliptic curve is a branched double
cover of P!, so we have a tower of branched double covers C — D — P! to
which we can apply Pantazis’s bigonal construction. The result is another
tower of branched double covers C' — D’ — P!, where C’ has genus five
and D’ has genus two, such that the Prym variety Prym(C’/D’) is dual
to Prym(C/D).
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— N
C L — C’
| |
D- -D'
| |

Figure 2: Towers of double covers yielding dual Prym varieties

The next step is to try to combine all of these genus five curves C’ and
genus two curves D’ into linear systems on a K3 surface S’ and on a del
Pezzo surface T”, respectively, so that we can build a Lagrangian fibration
by Prym varieties. (Note that from the P3-families of curves C and D
we get, by Pantazis’s construction, P3-families of curves C’ and D’; but a
priori, there is no guarantee that C’/P3 and D’/P? are linear systems of
curves on surfaces.)

In joint work with Chen Shen, the author has approached this from
a different direction. We start with a K3 surface S’ that is a branched
double cover of a degree one del Pezzo surface T'. Then T’ contains a
genus two curve D’ covered by a genus five curve C’ in S’. Indeed, D’ can
be taken to be a general element of the linear system | — 2K |, which is
three-dimensional. Thus we have a P3-family of genus five curves C’ in S’

covering genus two curves D’ in T".

Proposition 21. The relative compactified Prym variety Prym(C'/D’)
can be constructed as before, i.e., as the fized locus of a symplectic involu-
tion on the relative compactified Jacobian Jac (CT), where C' is the family

of all curves in S’ linearly equivalent to C'. It is a holomorphic symplectic
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orbifold of dimension siz, and a Lagrangian fibration over P3.

Full details will appear elsewhere. Note that the previous discussion
suggests that this is the dual fibration of a Matteini system. However,
given a K3 double cover S’ of a degree one del Pezzo surface T, it is not
immediately clear how to construct a ‘dual’ K3 double cover S of a degree
three del Pezzo surface T', or conversely. In fact, the following parameter

counts reveals that the situation cannot be this simple:

e there is a four-dimensional family of degree three del Pezzo surfaces
T, and the branch locus A of the cover S — T belongs to a nine-
dimensional linear system | — 2K7p|; this yields a 13-dimensional
family of K3 double covers of degree three del Pezzo surfaces, S — T,

and thus a 13-dimensional family of Matteini systems,

e there is an eight-dimensional family of degree one del Pezzo sur-
faces T', and the branch locus A’ of the cover S” — T’ belongs
to a three-dimensional linear system | — 2K7v|; this yields an 11-
dimensional family of K3 double covers of degree one del Pezzo sur-
faces, S’ — T’, and thus an 11-dimensional family of Lagrangian

fibrations Prym(C’/D’) as in the proposition above.

Conjecture 22. The dual fibration of the Lagrangian fibration Prym(C’/D")
1s a special Matteini system, or possibly a degeneration of Matteini sys-

tems.
This still leaves open the following question.

Question What is the dual fibration of a general Matteini system? Does
it admit a description as a relative Prym variety of a linear system of

curves on some surface?

More generally, one can ask what are the dual fibrations of any of the
Prym fibrations mentioned at the end of Section 5.4. In most cases the an-
swer is not known. However, when the Arbarello-Sacca-Ferretti system [4]

comes from a hyperelliptic linear system on the Enriques surfaces, i.e., one
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whose general member is a hyperelliptic curve, then things are better un-
derstood. Namely, the Arbarello-Sacca-Ferretti system is birational to a
Beauville-Mukai system on a related K3 surface S (see Section 6 of [4]),
and therefore it will be birational to its dual fibration. It is possible that
this self-duality can also be described via Pantazis’s bigonal construction,
since we are dealing with covers C' — D where D is hyperelliptic. In the
non-hyperelliptic case, the dual fibration of the Arbarello-Sacca-Ferretti

system is unknown, at least to the author.

6.3 The Debarre system and its dual fibration

We have described compact analogues of Sp(2n,C)-Hitchin systems.
These examples have fibres that are Prym varieties of covers C' — D,
i.e., kernels of surjective maps Jac’C' — Jac’D, where both C' and D
vary in a family. By contrast, the SL-Hitchin system has fibres that are
kernels of surjective maps Jac’C — Jac’¥, where the spectral curves
C vary in a family but the curve ¥, and its Jacobian Jac’%, is fixed.
In this section we describe a compact Lagrangian fibration that exhibits
analogous behaviour; its fibres are not strictly Prym varieties, but they are
kernels of surjective maps Jac?C' — A where A is a fixed abelian variety.
The construction of this fibration is due to Debarre [11].

Just as the dual fibration of the SL-Hitchin system is the PGL-Hitchin
system, the dual fibration of the Debarre system can be described in a
similar way. We give this description and then end with a conjectural
relationship, inspired by mirror symmetry, between the (stringy) Hodge
numbers of the Debarre system and its dual fibration.

To construct the Debarre system we begin with an abelian surface A
that contains a smooth curve C' of genus g + 2. Moreover, let us assume
that the Néron-Severi lattice NS(A) of A is generated over Z by the class
[C]. Then C is ample and it is a polarization of type (1,g+1) on A, as [C]
is primitive. Riemann-Roch shows that C moves in a g-dimensional linear
system, |C| = P9. Let C/PY be the family of curves linearly equivalent

to C. The assumption on NS(A) ensures that every curve in the linear
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system is reduced and irreducible, and therefore the relative compactified
Jacobian
Y = Jac (C/P9) —> P9

is well-defined (see Altman and Kleiman [1]). We could instead define YV’
as a Mukai moduli space [40] of H-stable sheaves on the abelian surface A
with Mukai vector (0, [C],1 — g+ d), where H = C. This yields the same
space, but it reveals the holomorphic symplectic structure. However, Y
is not an #rreducible holomorphic symplectic manifold: it is reducible in
the sense that, after taking a finite étale cover, it splits into a product of
lower dimensional manifolds. Another way of looking at this is that the

Albanese map
Alb:Y — Alb(Y)= A

is a locally trivial fibration. Up to a finite étale cover, Y is the product of
A and a fibre of Alb. It is the latter that we are really interested in.

Theorem 23 (Debarre [11]). The fibre of the Albanese map,
X :=Alb"}0) C Y,

18 an wrreducible holomorphic symplectic manifold. Moreover, the restric-
tion of the projection Y — P9 to X — P9 makes X into a Lagrangian
fibration.

Remark Debarre showed that X is deformation equivalent to the gen-
eralized Kummer variety K, (A) of dimension 2g, defined by Beauville [7]

as the fibre of the natural map
Hilb9"t A — Sym9 ™14 — A.

In fact, if d = 0 our Lagrangian fibration is also birational to the gener-
alized Kummer variety K, (ﬁ) constructed from the dual abelian surface

X, as can be seen by applying the methods of Yoshioka [57].

Remark Let Y; = Jac?C be a fibre of Y — P9 (for some curve C' in the

linear system on A). The restriction of the Albanese map is a surjective
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morphism Y; — A. Assuming d = 0, or picking a basepoint in Y; that
maps to 0 € A, we see that the fibre X; of X — P9 fits into an exact
sequence

0— X; — Y, = Jac®C — A — 0.

Since Jac?C' is principally polarized, X; must have polarization of type

(1,...,1,g+ 1), complementary to the polarization type (1,9 + 1) of A.

Next we consider the dual fibration. Dualizing the above exact sequence
gives .
0—A—Y =Jac%C — X; — 0.

Now the Jacobian is autodual; more canonically, )A/t = Jac?C = Jac’C.
Let us restrict to the case d = 0 so that }A’t = Y;. As we have seen,
this autoduality holds also for compactified Jacobians of singular curves,
provided the curve are reduced, irreducible, and with surficial singularities
(all of which apply here). The conclusion is that X, is the quotient of Y;
by the action of A induced by the inclusion A }A/} =Y;. This action has
a very natural description: M € A = Pic’4 is a line bundle on A, and it
acts on L € Y; = Jac’C by

L»—)M‘C(X)L.

This action clearly extends to singular curves C' too, where L may be a
rank-one torsion-free sheaf, not necessarily locally free.

In summary, we have a natural action of Aon Y, and the dual fibration
X is the quotient Y/ A A priori this would be an algebraic stack, but we

can show that it is a smooth Deligne-Mumford stack.

Theorem 24 (Sawon). The dual fibration X := Y/A is a holomorphic
symplectic orbifold.

For the proof, one shows that the action of A on Y has finite stabilizers.

The details will appear elsewhere.



Lagrangian fibrations by Prym varieties 217

Remark The fibres of the dual fibration X — P9 have polarization of type
(1, g+1,...,g+ 1), which is dual to the polarization type (1,...,1,g+1)
of the fibres of the Debarre system X — PY9. So for g > 3 we obtain a new
example of a Lagrangian fibration on a holomorphic symplectic orbifold.

When g = 2 both the Debarre system X — P2 and its dual X — P2 have
fibres of polarization type (1,3). If an abelian variety is not principally
polarized then it will only be isogenous to its dual, not isomorphic, so
X — P? is certainly not self-dual. Moreover, it appears that X is a
genuine orbifold, i.e., not smooth, so it is not isomorphic to a Debarre

system for any choice of abelian surface A.

Finally we come to the mirror symmetry relation between the Debarre
system and its dual fibration. Recall that the fibres of the SL- and PGL-
Hitchin systems are dual Prym varieties that appear in dual short exact

sequences:

Msr: 0 — Prym(C/%) — Jac’C — Jac’E — 0

Mpar: 0 — Jac’S — Jac®C —s Prym(C/Z) — 0

Here we just consider the degree d = 0 case, and the Jacobians are auto-
dual. Hausel and Thaddeus [21] showed that the stringy Hodge numbers
of Mpgr, are equal to the Hodge numbers of Mgr,.

For the fibres of the Debarre system and its dual fibration we have

(again for degree d = 0):
X: 0—X,—Jac%C—A—0
X: 0—A—Ja’C— X, —0
The analogy with the SL- and PGL-Hitchin systems suggests the following.

Conjecture 25. The stringy Hodge numbers of)? equal the Hodge num-
bers of X.

As we mentioned earlier, the Debarre system X is deformation equiv-

alent to the generalized Kummer variety K,(A), whose Hodge numbers
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have been calculated by Gottsche and Soergel [19]. To prove the conjec-
ture one therefore needs to calculate the stringy Hodge numbers of the
dual fibration X. We can do this in the (rather trivial) g = 1 case, as

follows.

Example When g = 1, X is a (smooth) K3 surface, and an elliptic
fibration over P!. The general fibre of X — P! is the kernel of a surjective
map Jac’C' — A where C is a smooth genus three curve; this of course
gives a smooth elliptic curve. The singular fibres of X — P! correspond to
nodal curves C. A calculation shows that there are precisely twelve nodal
curves in the pencil C — P! of genus three curves on A, and therefore
X — P! has twelve singular fibres. These fibres sit inside the compactified
Jacobians Jac C and look like the red curve in the right hand picture of

Figure 3; in other words, they are singular elliptic curves of Kodaira type

Figure 3: Compactified Jacobian leading to a singular elliptic curve of

type I

The dual fibration X — P! must necessarily have twelve singular fibres
too. One can show that these look like singular elliptic curves of Kodaira
type I1, i.e., nodal rational curves, but the surface X is now a singular K3
surface with twelve Ay singularities at the nodes of these singular fibres.
Blowing up these singularities gives an elliptic K3 surface X with twelve I
fibres. (Indeed X 2 X, but we do not need this fact.) In this situation, the
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stringy Hodge numbers of X will equal the Hodge numbers of its crepant
resolution X , which are the same as the Hodge numbers of X because X

and X are both smooth K3 surfaces. This proves the conjecture for g = 1.

7 Summary of Lagrangian fibrations

In Table 1 we summarize the different Lagrangian fibrations that we

have described in this article.

‘ Fibres ‘ Non-compact ‘ Compact ‘
Jacobians GL(n, C)-Hitchin system, §2.2 Beauville-Mukai system, §3.2
Prym varieties SL(n, C)-Hitchin system, §4.1 Debarre system, §6.3
PGL(n, C)-Hitchin system, §4.2 dual Debarre system, §6.3
Sp(2n, C)-Hitchin system, §4.3 6.1
SO(2n + 1, C)-Hitchin system, §4.4 ?
SO(2n, C)-Hitchin system, §4.4 ?
? Markushevich-Tikhomirov system, §5.1
? Matteini system, §5.4
? dual Matteini system, §6.2
? Arbarello-Sacca-Ferretti system, §5.4
? other Matteini systems, §5.4

Table 1: Lagrangian fibrations by Jacobians and Prym varieties

In the first row, the Beauville-Mukai system degenerates to a compact-
ification of the GL(n,C)-Hitchin system. In the second and third rows
we don’t have a precise relation between the compact and non-compact
examples, though we have observed some analogies between the structures
of the Debarre system and the SL(n,C)-Hitchin system, and similarly for
their dual fibrations. The compact counterparts of the SO(2n,C)- and
SO(2n + 1,C)-Hitchin systems are not clear at this time, and nor are
the non-compact counterparts of the Markushevich-Tikhomirov system,
the (various) Matteini systems, and the Arbarello-Sacca-Ferretti system.
Some of the gaps in the table in the non-compact column might be filled

by various generalizations of Hitchin systems, e.g., those involving mero-
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morphic Higgs bundles, irregular connections, parabolic and parahoric
bundles, etc.

In this article we have focused on Lagrangian fibrations by Jacobians
and Prym varieties, but these are not the only known examples of La-

grangian fibrations.

e A very simple example comes from taking the Hilbert scheme of an
elliptic K3 surface: this yields a Lagrangian fibration whose fibres

are products of elliptic curves.

e A Lagrangian fibration is isotrivial if all of its smooth fibres are
isomorphic to a fixed abelian variety. Non-compact examples come
from moduli spaces of Higgs bundles on elliptic curves, and were
studied by Thaddeus [56]. Compact examples also exist in all di-

mensions, and were studied by the author in [51].

e There are also examples of Lagrangian fibrations whose fibres are
intermediate Jacobians. Non-compact examples whose fibres are
intermediate Jacobians of Calabi-Yau threefolds were constructed
by Donagi and Markman [13, 14]. Compact examples arise by
considering intermediate Jacobians of Fano threefolds, for exam-
ple, families of Fano threefolds containing a fixed K3 surface (see
Beauville [9], Iliev and Manivel [27], Hwang and Nagai [26]) or fam-
ilies of Fano threefolds contained in a fixed fourfold (see Markushe-
vich and Tikhomirov [32], Kuznetsov and Markushevich [29], Laza,
Sacca, and Voisin [30]). Interestingly, in the last of these articles
the authors use an identification of the intermediate Jacobians with

certain Prym varieties.

Returning to Lagrangian fibrations by Jacobians and Prym varieties,

Table 2 summarizes the known compact examples in four dimensions.

Remark The polarization types of the fibres are (1,d) where d = 1,2, 3.
Could there be examples with larger values of d? Possibly, though in [49]
the author proved that d < 1036 under the natural hypothesis that the
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Fibration ‘ Polarization type ‘ Singularities ‘
Beauville-Mukai system (1,1) smooth
Markushevich-Tikhomirov system (1,2) C*/Zsy
Arbarello-Sacca-Ferretti system (1,1) C*/Zs
Debarre system (1,3) smooth
dual Debarre system (1,3) C*/Zs

Table 2: Compact Lagrangian fibrations in dimension four

general singular fibres are semistable degenerations of abelian surfaces.
Although this gives an upper bound, there is no reason to expect this

bound to be sharp.

Remark There appears to be some correlation between the kinds of
isolated singularities (of the form C*/Z,) that arise, and the polarization
type (1,d) of the fibres. A possible explanation for this is that the total
space comes from a global quotient of the form Y/Z,, and this produces
both the isolated singularities and fibres that are quotients of principally

polarized abelian surfaces.

Remark As suggested by the referee, it would be interesting to compare
these examples with the holomorphic symplectic orbifolds in dimension
four described by Fujiki [18]. The dual Debarre system can possibly be
described as a global quotient of a Kummer four-fold by a finite group ac-
tion, which would bring it into Fujiki’s framework. For a more conclusive
answer, it would be helpful to know something about the topology of these
examples. The number of singularities can be computed by counting the
number of reducible curves in the relevant linear systems. Computing the
Betti numbers is usually more difficult. Arbarello-Sacca-Ferretti [4] com-
pute the degree of the discriminant locus A C P? parametrizing singular
fibres in their system X — P?, finding deg/A = 24 for the non-hyperelliptic
case (cf. 30 and 18 for the Beauville-Mukai and Debarre systems, respec-

tively). For Lagrangian fibrations on smooth holomorphic symplectic man-
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ifolds, this can be related to topological invariants of the total space X

(see [49]), but it is not clear whether the same relation holds for orbifolds.
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