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Abstract. For a prime p, we study subgroups of order p of the Brauer
group Br(S) of a general complex polarized K3 surface of degree 2d,
generalizing earlier work of van Geemen. These groups correspond to
sublattices of index p of the transcendental lattice Ts of S; we clas-
sify these lattices up to isomorphism using Nikulin’s discriminant form
technique. We then study geometric realizations of p-torsion Brauer el-
ements as Brauer-Severi varieties in a few cases via projective duality.
We use one of these constructions for an arithmetic application, giving
new kinds of counter-examples to weak approximation on K3 surfaces of
degree two, accounted for by transcendental Brauer-Manin obstructions.
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1. Introduction

Let S be a smooth projective geometrically integral variety over a number
field k; write A for the ring of adeles of k. Assume that S(A) # 0. It is well-
known that elements of the Brauer group Br(S) := H% (S, G,,) can obstruct
the existence of k-rational points of S [31]; in such cases we say there is a
Brauer-Manin obstruction to the Hasse principle. Brauer elements can also
explain why sometimes the image of the diagonal map S(k) — S(A) fails to
be dense; in such cases we say there is a Brauer-Manin obstruction to weak
approzimation (see Section 5.2 for more details).

In order to show that a particular Brauer element obstructs the Hasse
principle or weak approximation, one often needs a geometric realization of
the Brauer element, especially if the element remains non-trivial after ex-
tension of scalars to an algebraic closure (such elements are known as tran-
scendental elements). In [46] van Geemen studied transcendental 2-torsion
Brauer elements on generic complex K3 surfaces S of degree two. Using
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lattice-theoretic methods, he gave a classification into three cases, and de-
scribed geometric realizations of the Brauer elements. In the first case, S is
the double cover of P? branched over the sextic discriminant curve of the
quadric surface fibration on a cubic fourfold containing a plane; Hassett,
Varilly-Alvarado, and Varilly [12] showed that the Brauer element in this ex-
ample can obstruct weak approximation. The second case involves a double
cover of P? x P2 branched over a hypersurface of bidegree (2,2); Hassett and
Virilly-Alvarado [13] showed that the Brauer element in this example can
obstruct the Hasse principle. In the third case, S is the double cover of P?
branched over the sextic discriminant curve of the net of quadrics defining a
K3 surface of degree eight in P%; transcendental Brauer elements of this type
have not yet been used for arithmetic applications.

The goal of this paper is to extend this earlier work in several directions:

Classification of order p subgroups of general K3 surfaces. Let S be a gen-
eral complex polarized K3 surface of degree 2d, and write Ts = NS(S)* C
H2(S,Z) for its transcendental lattice. Let p be an odd prime. To classify
subgroups of order p in Br(S) we use the correspondence

{subgroups of order p in Br(S)} <— {sublattices of index p in Ts}

furnished by the exponential sequence and elementary lattice-theoretic prop-
erties of H?(S,Z) (see Section 2 of [46]). We apply Nikulin’s discriminant form
technique [38] to classify sublattices of index p in Tis up to isomorphism, and
we count the number of lattices in each isomorphism class. This is the content
of Sections 2.1-2.5. Our main result in this direction is Theorem 9, showing
there are three or four classes of p-torsion subgroups of Br(S), according to
whether p 1 d or not, respectively. We expect that each class of subgroups
is associated to a geometric construction for p-torsion Brauer elements, like
in the case of 2-torsion. Indeed, the lattice theory already suggests a strong
connection between certain p-torsion classes on K3 surfaces of degree two
and higher degree K3 surfaces or special cubic fourfolds. We explore these
connections in Sections 2.6 and 2.7 following Mukai [35] and building on
Hassett [10], respectively.

Geometric realization of Mukai dualities. Having classified p-torsion elements
of the Brauer group, we next look for geometric realizations as Brauer-Severi
varieties. In the third case of van Geemen’s analysis of 2-torsion Brauer ele-
ments on degree two K3 surfaces, the Brauer element on S comes from the
Fano variety of maximal isotropic subspaces inside the quadrics defining the
associated degree eight K3 surface X. We describe how S can also be inter-
preted as a Mukai moduli space of stable sheaves on X (Lemma 12) and how
the Brauer element is the obstruction to the fineness of this moduli space
(Lemma 15). This example then admits a vast generalization: given a K3
surface X of degree 2dp?, there exists a ‘Mukai dual’ K3 surface S given by
a moduli space of stable sheaves on X, and a p-torsion Brauer element on
S obstructing the existence of a universal sheaf. In some low degree cases,
including the case d = 1 and p = 2 above, this Mukai duality can be realized
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as projective duality, and the Brauer element can be realized geometrically as
a Brauer-Severi variety. In Section 3.3 we describe the case d =1 and p = 3,
showing that the 3-torsion Brauer element on S comes from the Fano variety
of cubic surface scrolls inside a certain net of Fano fourfolds containing X. In
Section 3.4 we describe the case d = 2 and p = 2 as an instance of projective
duality, though we leave as an open question the geometric realization of the
resulting 2-torsion Brauer element. The Mukai dualities we discuss have been
studied before [35, 22, 23, 20, 21], although we hope that our exposition will
be useful to arithmetic geometers.

Explicit obstructions to weak approximation. Returning to the third case in
van Geemen’s classification of 2-torsion Brauer elements on K3 surfaces of
degree two, we construct an explicit K3 surface S of degree two, together
with a transcendental 2-torsion element o € Br(S) that obstructs weak ap-
proximation; see Theorem 27. We are able to compute an obstruction by
interpreting o as the even Clifford algebra of the discriminant cover S — P2
of a given net of quadrics in P?, following Auel, Bernardara and Bolognesi [2].
We use elementary properties of Clifford algebras to represent « as a product
of two quaternion algebras over the function field k(S). Along the way we
prove a curious result (Corollary 25), which explains why it may be difficult
to use elements of the form « to obstruct the Hasse principle (see Section 5.5
as well).

It would be interesting to use the construction of Section 3.3 to build a
K3 surface S (of degree 2) with an obstruction to the Hasse principle arising
from a 3-torsion in Br(S). At present, no examples like this are known to
exists, and recent work of Ieronymou and Skorobogatov naturally raises this
problem; see the discussion after Corollary 1.3 of [17].
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2. Lattice gymnastics

Let S be a complex, projective K3 surface with Néron-Severi group NS(.9) iso-
morphic to Zh. The intersection form makes the singular cohomology group
H2%(S,Z) into a lattice. Write Ts = NS(S)* for the transcendental lattice
of S, and let p be a prime number. By §2.1 of [46], a nontrivial element
a € Br(S)[p] gives rise to a surjective homomorphism «: Ts — Z/pZ. The
kernel of this homomorphism is a sublattice of Ts of index p. Conversely,
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a sublattice I' C T of index p determines a subgroup (o) C Br(S) of or-
der p. Accordingly, we write I,y = I' for such a sublattice. In §9 of [46],
van Geemen classifies the isomorphism types of sublattices of index 2 in T.
He shows that there are three isomorphism types, and for each type he of-
fers an auxiliary variety, together with a geometric construction that takes
the auxiliary variety and recovers the original K3 surface S together with a
Brauer-Severi bundle over S corresponding to the unique nontrivial element
of (a) C Br(5)[2].

One might hope that for odd p, each isomorphism type of I'(,y has an
associated geometric construction that could be used for arithmetic applica-
tions. Thus, it is of interest to classify sublattices I'(,y C Ts of odd prime
index p up to isomorphism. Our strategy is to generalize the proofs of Propo-
sitions 3.3 and 9.2 in [46].

2.1. Set-up

Let (T, (-,-)) be a lattice, i.e., a free Z-module of finite rank, together with
a nondegenerate integral symmetric bilinear form (-,-). We write O(T") for
the group of orthogonal transformations of I'. Denote by I'* the dual lattice
Hom(T',Z); the bilinear form on I' can be extended Q-bilinearly to I'*. We
embed I' C T'* via the map

Y=oy T = Z, §—(6,7)].

The discriminant group d(T') of T" is I'*/T; it is a finite abelian group whose
order is the discriminant of I'. A lattice is unimodular if its discriminant
group is trivial. If T" is an even lattice, i.e., (7y,7y) € 2Z for all v € T', then
there is a quadratic form

q: d(l") —» Q/2Z z+T'— (z,z) mod 2Z,
called the discriminant form of I'. One also obtains a symmetric bilinear form
b: d(T') x d(T') — Q/Z,
which is characterized by the identity

q(z +y) — q(x) — q(y) = 2b(x,y) mod 2Z.

Nikulin showed in Corollary 1.13.3 of [38] that an even indefinite lattice whose
rank exceeds (by at least 2) the minimal number of generators of d(T') is
determined by its rank, signature and discriminant quadratic form. We will
use this fact in what follows, without explicitly mentioning it every time.

We write d(T"),, for the p-Sylow subgroup of d(I'), and g, for the restric-
tion of ¢ to this subgroup. By Proposition 1.2.2 of [38] there is an orthogonal
decomposition g = @p gp as p runs over prime numbers dividing the order
of d(I).

Let S be a complex projective K3 surface. By §1 of [30], we can write

H*(S,Z) = U, ® Uy ® Us ® Eg(—1)* =: Aks,

where the U; are hyperbolic planes (i.e., even unimodular lattices of signature
(1,1)), and Eg(—1) is the unique negative definite even unimodular lattice of
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rank eight. In particular, Aks is even, unimodular, and has signature (3, 19).
If NS(S) = Zh, with h? = 2d > 0, then by Theorem 1.1.2 of [38], the inclusion
NS(S) = Zh < Axks is unique up to isometry, and therefore we may assume
that
NS(S) =7Zh = Z(l,d) U —=U; & A = AK3,
where A’ = Us @ Us @ Eg(—1)%. Let v = (1,—d) € Uy, so that v? = —2d.
Then
Ts 2 Zvd N = (-2d) d A,

2.2. Discriminant groups of p-torsion Brauer classes
We begin by analyzing the homomorphism « : Ts — Z/pZ associated to a
nonzero element a € Br(S)[p]. Since the lattice A’ is unimodular, and hence
self-dual, there is a A, € A/, whose class in A’/pA’ is uniquely determined,
such that the homomorphism « can be expressed as

a:Ts — Z/pZ,
2w+ N = zig + (A, \) mod p,

for some integer i,, which we may assume is in the range 0 < i, < p — 1. If
io # 0, we write i, ! for the inverse of i, modulo p in the range 1 < i ;! < p—1.
Since « and i, 'a have the same kernel I'(oy, and since the kernel determines
the subgroup (a) C Br(S9)[p], replacing o with i 'c, we may assume that
io = L.

Define ¢, € Z by A2 = —2c¢,; the class of ¢, modulo p is uniquely
determined by «. The lattice A’ is even, unimodular and has signature (2, 18).
Applying Theorem 1.1.2 of [38], we conclude that any embedding A\,Z < A’
is unique up to isometry. Therefore, without loss of generality, we assume
that

Mo = (1,—¢cy) €Uy = Uy @ Us @ FEg(—1)2 = A'.
Let A” = Us @ Eg(—1)? C A/, and let ') = ker(a). We compute
Ly ={2v+(a,b) + X" | z € Z,(a,b) € U3, \" € A", and
Ziq — aCo + b = 0 mod p}
= {zv+ (a,kp — ziq + acy) + X' | 2,0,k € Z,\" € A"}
={z(v+(0,—in)) + a(l,ca) + k(0,p) + X' | z,a,k € Z,\" € A"}.

Hence, for fixed d and p, the lattice Iy (and by extension, its discriminant
form), is determined by the values i, and ¢, modulo p. Let M, be the rank
three lattice with Gram matrix

—2d —iy O
—bo  2Cq P
0 p 0

Our computation shows that I,y = M, © A”. Unimodularity of A” im-
plies that I',y and M, have isomorphic discriminant groups and isometric
discriminant forms. When we need to, we will set I'(oy = T';_ ., -
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Theorem 1. Let S be a complex projective K3 surface of degree 2d such that
NS(S) = Zh, and write Ts = NS(S)t C H%(S,Z) for its transcendental
lattice. Let p be a prime number, and let o € Br(S)[p] be nontrivial, with
associated index p sublattice I' oy =1, ¢, CTs.
1. Ifi, =0, then
d (D) = Z)2dZ & 7| p*7Z if ptco and p is odd,
@)=\ Z)2dZ®L)pL & LIpL  if p|ca orp=2.
2. Ifio, =1, then
D)=\ z)2dpZ e Z/pZ  if p| (1 + 4cad).
Proof. Each element in d (T'(4)) = d(Mgy) = M}, /M, is represented by a v €
M satisfying 2dp?y € M,,. In other words, we can write v = %, with 7' €
M,,. Therefore, we represent elements of d(M,) as triples v/ = (A, B,C) €
M, such that ((4, B,C), (z,y,2)) € 2dp*Z for all x,y,z € Z. Taking (z,y, 2)
to be (1,0,0), (0,1,0) and (0,0, 1), in turn, we see this happens if and only
if there exist some kg, ki, ko € Z such that
A = —p(inkat+pko),
B = 2dpks,
C= 2dpk1 - 7,(2)(]432 - piako - 4Cadl€2.
Case 1: i, = 0. In this case the equations for A, B, C reduce to
A= _p2k07
B = dekz,
C = 2dpk, — 4cydks,
for some kg, k1, ko € Z. In particular, the triples

20,0 0, 2dp, —4c,d 0,0, 2d
vlzzi(p”)71)2::—(7 P, —=¢ )andvgzzi(” )

2dp? 2dp? 2dp?

represent non-trivial elements of d(M,,). If p is odd, then the elements v; and
vo generate subgroups of respective orders 2d and p?/ ged(cq, p), and these
subgroups intersect trivially. If p 1 ¢4, this shows that d(M,) = Z/2dZ &
Z)p*Z. If p | cq, then vy, vo and vz are independent elements that generate
subgroups of respective orders 2d, p and p, showing that d(M,) = Z/2dZ &
Z/pZ ® Z/pZ. If p = 2, then vy has order two, and thus d (T'(ny) = Z/2dZ &
727 ® Z)2Z.

Case 2: i, = 1. Let ks = —1, and kg = k1 = 0. Then
(p, —2dp, 1 + 4cqd)
2dp?
is an element of d(M,). Because of its first component, v, generates a sub-

group of order divisible by 2dp, hence d(M,,) is isomorphic to either Z/2dpZ
or Z/2dpZ & Z./pZ. Therefore, if p{ (1 4 4cyd), then (2dp)vy is not trivial in

V4 =
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d(My,), and hence d(M,) = Z/2dp*Z. On the other hand, if p | (1 + 4c,d),
then v4 and

= ——(0,0,2d
Us 2dp2 ( s Uy p)
generate subgroups, of order 2dp and p respectively, which intersect trivially.
Therefore, d(M,) = Z/2dpZ & Z/pZ. O

2.3. Isomorphism classes of lattices

Our next task is to determine when the lattices appearing in Theorem 1 are
isomorphic. We do this by comparing their discriminant forms. We begin by
comparing lattices with cylic discriminant groups. Throughout this section,
we retain the notation of Theorem 1.

Proposition 2. Let p be an odd prime. Consider the lattices 'y in Theorem 1
for which d (1"<a>) =~ 7./2dp*Z is a cyclic group, generated by an element v.
Write q: d (F<a>) — Q/27Z for the discriminant form of T (4.
(i) If p| d, then all such lattices are isomorphic.
(ii) If p 1 d, then there are two isomorphism classes of lattices. The iso-
morphism type of Ty depends only on whether —2dp?q(v) is a square
modulo p or not.

Remark. The analogous proposition when p = 2 is handled by van Geemen
in Proposition 9.2 of [46].

Proof. Suppose first that p | d. It follows from Theorem 1 and its proof that
io = 1, pt (14 4cnd), and vy = ﬁ(n —2dp, 1 + 4cyd) is a generator for
d(Ma) ~d (F<a))~ Then

q(vg) = (14 4cqd),

 2dp?
and so two lattices Loy = T, and I'(qsy = I'1 ¢, are isomorphic if there
exists « € (Z/2dp*Z) * such that

(1 +4cqad) = 2%(1 4 4cqrd) mod m, (1)

where m = 4dp?. Such an x exists if and only if (1) has a solution when
m = p. Indeed, if the latter congruence has a solution, then so does (1) for all
m = p" with n > 1, by Hensel’s lemma, and if ¢ # p is an odd prime dividing
d, then (1) has a solution for all m = ¢™ with n > 0, again by Hensel’s lemma
(the case n = 1 being trivial since ¢ | d). Finally, if 2 1 d, then (1) clearly
has a solution when m = 4, and if on the other hand 2 | d, then (1) has
a solution when m = 8, and thus for any m = 2" with n > 2, by another
application of Hensel’s lemma. Putting all this together using the Chinese
remainder theorem, we obtain a solution for (1) for m = 4dp?, as claimed.
Since p | d, it is clear that (1) has a solution when m = p. This proves (i).
Next, assume that p { d, and let I'¢py = I';, o, and [y =T, ., be
two lattices with cyclic discriminant group. By Theorem 1 and its proof, we
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may assume that the discriminant group of I'(,) is generated by either vy or

(p2u 2dp7 —4Cad)

v +v2 = 2dp? )

and likewise for I'(,/y. We computed ¢(v4) above; now note that

q(v1 +v9) = (p2 + 4cqd).

 2dp?
Thus, we see that —2dp?q(v; + ve) and —2dp?q(v4) are integers not divisible
by p. Write v and v’ for the generators of d (F<a>) and d(I"(4y), respectively.
Then I'(,y and T,y are isomorphic if and only if the congruence

— 2dp?*q(v) = —2dp®q(v')z* mod m (2)

has a solution when m = 4dp?. Arguing as in (i), this is equivalent to (2)
having a solution when m = p. (I

Suppose next that p { d and that the discriminant group of a lattice I' (o)
is not cyclic. By Theorem 1, we have d(I'()) = Z/2dZ & Z/pZ © Z/pZ, and
there are two possible lattices with this discriminant group, characterized
by the value of i, and ¢,. These two lattices are in fact isomorphic, as the
following lemma shows.

Lemma 3. Let p be an odd prime such that p + d. There is a unique lattice
[iay, up to isomorphism, whose discriminant group d(I‘<a>) 18 not cyclic.
Moreover, in this case we have d (F(a)) >7/2d72 ©7Z/pZ B Z/pZ.

Proof. We have already shown that d (F<a>) > 7/2dZ ® Z/pZ @ Z/pZ. Let
I" be the lattice 'y = T'g,0 determined by i, = 0 and ¢, = 0, and let I' be
the lattice I'(qry = I'; , ¢, determined by i, = 1 and ¢ with p | (144cyd).
Write g and ¢’ for their respective discriminant quadratic forms. We show
that ¢ and ¢’ are isometric. Using the notation of the proof of Theorem 1, we
may assume that

d(T) = (v1) ® {vg,v3) and d(I”) = {pvy) B (2dvy,vs).

Recall that v; and pvs have order 2d in their respective discriminant groups,
while vg, v3, 2dvs and vs each have order p. By Proposition 1.2.1 of [38], we
know that

7= q|Z/2dZ D q|d(r)p and ¢’ = q/|Z/2dZ D q/|d(r/)p

Thus, to prove that g and ¢ are isometric, it suffices to exhibit an = €
(Z/2dZ)* such that

q(xv1) = ¢ (pvy) (mod 27Z),
and an isomorphism ¢: d(I'), = d(T), of Z/pZ-vector spaces such that
q(¢(v)) =¢'(v) (mod 2Z) forallved(I),. (3)
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To prove x exists, argue using Hensel’s lemma and the Chinese remainder
theorem, as in Proposition 2. Using {ve, v3} and {2dvs, vs} as bases for d(T"),,
and d(I"),, one can check that the transformation

B 1 0
¢ = 7d(1+;1)ca/d) g

is a witness to (3), where ¢y € {0,...,p — 1} is the constant for the lattice
I'" such that p | (14 4cqyd). O

Finally, we treat the case when p | d. It cannot also be the case that
p | (1 4+ 4cqd), so the lattices in Theorem 1 with i, = 1 and p | (1 +
4cqd) cannot occur. This leaves three possible distinct discriminant groups
for lattices I' (4. First, isomorphism classes of lattices with cyclic discriminant
group are handled in Proposition 2. Second, there is only one lattice, up to
isomorphism, with discriminant group Z/2dZ @ Z/pZ & Z/pZ, characterized
by i = 0 and ¢, = 0. Thus, it remains to understand when two lattices with
discriminant group Z/2dZ @ 7/p*Z are isomorphic to each other.

Lemma 4. Let p be an odd prime such that p | d. Then there are two lattices
['(ay, up to isomorphism, with discriminant group d (1"<a>) ~ 7,/2d7Z.H 7 p?7Z.

Proof. We show that two lattices I'(y and I'(/y with discriminant group
Z/2dZ & 7./p*Z are isomorphic if and only if c,/cqs is a quadratic residue
modulo p. Write d = p® - dy, where p { dp, so that

7./2dZ & 7./ p*7 = 7.)2dZ. & Z.)p°Z & 7] p*Z.
Using the notation of the proof of Theorem 1, we may assume that
d(T (ay) = (p701) ® (2dpv1,va)  and  d(T(ary) = (p“01) ® (2dov1, v3),
— —
d(F(a>)p d(F(a’>)p

where 2dp®vh, = (0,2dp, —4crd). Recall that p°v; and 2dgv; have orders 2dy
and p°, respectively, while vy and v}, each have order p?.

As in the proof of Lemma 3, the quadratic forms ¢, and ¢, associated to
our lattices are isomorphic if and only if there is an ¢ € Aut(Z/p°Z S Z/p*Z)
such that

(¢a)p (#(v)) = (gar)p(v) (mod 2Z) for all v € d(L(ary)p-

The symmetric matrices associated to (¢a)p and (ga’), are respectively equal

to
_ 2dg 0 _2do 0
< (7)” _200> and < 6’ _2ca/>'
p2 p2
First, suppose that ¢, /c. is a quadratic residue modulo p. Then we can
take

10
o=(o 1),
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where y € Z/p*7Z satisfies
2ch 2cary2
P 7
Such a y exists by Hensel’s lemma and because ¢, /cos is a quadratic residue
modulo p.
Now suppose that (g.)p and (ga/), are isometric. Then their associated

bilinear forms must be isomorphic, and there is an A € Aut(Z/p°Z®Z/p*Z),
which can be represented by a 2 x 2 matrix, such that

—2d0 0 —250 0
At ’6 “2c, |- A= ’(’) —2c.., (mod Z). (4)
P p?

If e > 3, then we may assume that A has the form <(Z 2), in which case

(mod 27).

the (2,2) entry in the congruence (4) reads

2cq 2¢qr €2

NG
and we conclude that ¢, /¢, is a quadratic residue modulo p. If e = 2, then
A € GLy(Z/p*Z). Multiplying (4) by p? and taking determinants we arrive
at the same conclusion. Finally, if e = 1, then we may assume that A has the

(mod Z), (5)

form E)L l;), in which case the (2,2) entry in the congruence (4) is again

given by (5), and ¢, /cqs is a quadratic residue modulo p. O

2.4. Counting lattices

We continue using the notation of Theorem 1; in particular, S denotes a
complex projective K3 surface with NS(S) = Zh. The purpose of this section
is to count, for each nontrivial () C Br(S)[p], the number of lattices in each
isomorphism class of T'(oy C T5s.

Since I'(qy € T's has index p, we know that

pTs C Ty CTs
and thus
H, = F(a)/pTS - TS/PTS = Fgl

We may consider H, as a hyperplane in F?,l. Conversely, to every hyperplane
in Ts/pTs, we may associate an index p sublattice ['(ay of Ts. Thus, the
projective space P ((Ts/pTs)*) parametrizes index p-sublattices of Ts. Using
the identification Ts = Zv & A/, and setting v* = —v/2d, the intersection
form on Tg allows us to identify

P((Ts/pTs)") =P (Fp, - v" & A'/pA').
The set of index p lattices I,y that have i, = 0 are then identified with
P (F,) =P (A /pA) CP(F,-v* ® A'/pA’)
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while the set of lattices with i, = 1 can be identified with the distinguished
open affine
A?(F,) = N /pAN CP(F,-v* @ A /pA)
Ao = [U° + Aa)
Define the quadratic form
Q: A /pN —F,
A= — AN

7 mod p.
A lattice 'y is determined by the quantities i, and c,. Recall that —2c, =
(Aay Aa), so for example, lattices with i, = 1 and a prescribed ¢, correspond
to F,-points on the affine quadric {Q(z) = c¢,} C A?°. The following well-
known lemma will help us count the required points on quadrics. We include
a proof here for completeness.

Lemma 5. Let p be an odd prime, and let Q be a nondegenerate, homogeneous
quadratic form in 2n variables over F,. Assume that (—1)"disc(Q) € F)2.
Write f(n) for the number of zeroes of Q (including the trivial zero). For
0#i€TF,, let g;(n) denote the number of solutions to the equation Q = 1.
Then

f)=p" (" +p—1) and gi(n)=p" " (p" —1).
In particular, g(n) := g;(n) is independent of i.
Proof. The hypothesis on p and @ imply that @ is isometric to the form

Q X x129 + -+ + Top_1T2,. We then note that f(n) satisfies the recurrence
relation

f)=fn=1)2p - 1)+ (p*"* — f(n - 1))(p - 1),
because, informally,
f(n) = #(zeroes of x93 + -+ + Tap_3Ton—2) - #(zeroes of xo,_1Tay)
+ #(nonzero values of 129 + -+ Top_3T2,_2)
- #(zeroes of xa,_1Ta, — 1)),
where i € IF¥. The initial condition f(1) = 2p—1 then allows us to determine

f(n), and we obtain the claimed quantity. The function g;(n) obeys the same
recurrence relation, but with initial condition g;(1) = p — 1. O

We begin by counting lattices in isomorphism classes with cyclic discrim-
inant group. The following proposition is a complement to Proposition 2.

Proposition 6. Let p be an odd prime. Consider the lattices ',y in Theorem 1
for which d (I‘<a>) &~ 7./2dp*Z is a cyclic group, generated by an element v.
Write q: d (F<a>) — Q/2Z for the discriminant form of T (4y.

(i) If p | d, then there are p*° such lattices, all isomorphic to each other.
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(ii) If p 1 d, then there are two isomorphism classes of lattices. The iso-
morphism class corresponding to the case where —2dp2q(v) is a square
modulo p has %plo (plo + 1) lattices. The other class has %plo (plo — 1)
lattices.

Proof. We have discussed the isomorphism classes of T'(,y in Proposition 2,
so we focus on the lattice counts. If p | d, then p 1 (1 + 4c,d). Hence d (F<a>)
is cyclic if and only if i, = 1. Lattices with i, = 1 are in one-to-one corre-
spondence with points in the distinguished open affine A?°(F,) = A’/pA’ C
P (F, - v* & A’/pA’). There are thus p?° such lattices.

Next, suppose that p t d. Let us call the two isomorphism classes in
part (ii) of the proposition Cs and Cyp'. Let Cs;, = {Tqy € Cs | T(ay =
Ty, ., for some c,} and similarly for Cy, ;. If i, = 0, then d (F<a>) is cyclic
only if p 1 co. In this case d (F<a>) is generated by v + ve and —2dp?q(vy +
v9) = p? + 4dcod. This is a square modulo p if and only if c,d is a square
modulo p. Note that

#{z cF |ad e F*} = (p—1)/2 and #{z € F} |zd ¢ F *} = (p—1)/2.

In particular, of the p — 1 non-zero ¢,’s mod p, there are (p — 1)/2 such that
cqd is a square (mod p). Therefore, using the notation of Lemma 5, we have

#(1 € (A% \ (0)(F,) | 20 € ;%) = L2 - g(10).

Since i = 0, the A are in P'?(F,,) and we must divide our count by p — 1 to
obtain

2 p—1 2

P (p'° - 1)

5 .

Ifi, =1, thend (I‘<a>) is cyclic only if p t (1+4c,d). In this case d (F(a))
is generated by v4 and —2dp2q(v4) =1+ 4c,d. Since 1 + 4c,d = 1 + 4egrd
(mod p) if and only if ¢, = cor (mod p), we see that as sets F, = {1 +
4cqd|co € Fp}. Therefore

—1 g(10) P’ -1
40— 9(10) _ p(p )

The same calculation shows #C), o =

~1
#&h|0¢1+4%d#x2hNMxeF;}285<

Since ¢, = 0 makes 1 + 4c¢,d a square modulo p, we see that

#u1 = 100+ (P57 = 1) g10) = 21 = 914 p+ 1),

#Cns = 29(10) = 5967~ )(p - 1)

IHere C stands for cyclic, s stands for —2dp?q(v) is a square modulo p and n stand for
—2dp?q(v) is a non-square modulo p.
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Finally,
#Cs = #Cs0+ #Coq = 3" (0" +1),
#Cp = #Cpo+#Cny = 50" (p'° - 1). U
20 _q

-1

Proposition 7. Suppose that p is an odd prime with p{d. There are

lattices Iy in Theorem 1 with noncyclic discriminant group.

P21
p—1
with cyclic group account for a total of p?° lattices. O

Proof. This is clear, since there are a total of lattices I'(o) and the ones

Proposition 8. Suppose that p is an odd prime with p | d. Consider lattices
[(ay as in Theorem 1. There are

o 1p°(p'° — 1) lattices with iq = 0, p t ca and c, is a quadratic residue

modulo p,
° %pg (p'0 —1) lattices with i, = 0, p{ cq and co is a quadratic nonresidue
modulo p,
9 10
* (pHp)(fpl_l) lattices with i, =0 and p | cq,

o p?0 lattices with iq = 1.

Proof. The first two types of lattices can be counted the same way we counted
Cs0 and C, o in Proposition 6. The third type corresponds to F,-points of
f(10)—1

a smooth quadric in P'?, of which there are T The fourth type were

counted in Proposition 6. (]

2.5. Summary

Theorem 9. Let S be a complex projective K3 surface of degree 2d with Néron-
Severi group NS(S) isomorphic to Zh, and write Ts = (h)* C H?(S,Z)
for its transcendental lattice. Let p be an odd prime, and let o € Br(S)[p]
be nontrivial, with associated index p sublattice I'iqy = T’ C Ts. Write
q:d (1"<a>) — Q/2Z for the discriminant form of T 14y.
1. If p t d, then there are three isomorphism classes of lattices T,. They
are classified in Table 1.

2. Ifp | d, then there are four isomorphism classes of lattices T,. They are
classified in Table 2.

2.6. Lattice theory for Mukai dual K3 surfaces

Let S be a complex K3 surface of degree two with NS(.S) = Zh. In §9 of [46],
van Geemen showed that sublattices of index two I'(,y of Ts in a particular
isomorphism class naturally give rise to K3 surfaces of degree eight via a
primitive embedding T'(,y < Aks, using the surjectivity of the period map
for K3 surfaces. In this section, we explain a well-known generalization of
this framework due to Mukai [35].

Using the notation of Section 2.1, we let S denote a complex projective
K3 surface of degree 2d with NS(S) = Zh, and we fix a primitive vector v €
H2(S,Z) such that v> = —2d and Ts = (—2d) ® A’. Then T := (—2dp?) & A’

la,Ca
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d (F(a)) Distinguishing Feature | Number of T'(4)
1

Z/2dp22 = <'U> _2dp2q(v) = O mod P §p10(p10 + 1)
1

Z/2dp*Z = (v) —2dp?q(v) # 0 mod p 5pm(plo —1)

p20 -1
Z7/2d7 & Z/pZ & L] pZ -
p—

TABLE 1. Sublattices I'(qy = T';, ¢, C Ts of index p { d. The
symbol O stands for “a square”.

d (1"<a>) o Co, mod p Number of T4
Z/2dZ & 7./ p*Z 0 quadratic residue %pg (p'® —1)
Z)2dZ & 7./ p*Z 0 | quadratic nonresidue %pg (p'® —1)
Z/2dZ & L/pZ & T/pL | 0 0 v’ +;)£p10 —1
7)2dp*7 1 no restriction P20

TABLE 2. Sublattices I'(qy = I';, ¢, € Ts of index p | d.

is a sublattice of index p of Tis. One checks that d (') & Z/2dp*Z, generated
by ﬁ, from which it follows that —2dp?q(v) = 1, which is a square modulo

p. By Theorem 9, if p 1 d, then there are %plo(pm + 1) sublattices of Tg
of index p isomorphic to I', and if p | d, there are p?° such lattices. Up
to isomorphism there is a unique primitive embedding I" < Aks. By the
surjectivity of the period map for K3 surfaces, there is a complex projective
K3 surface Y of degree 2dp? such that Ty = I'. Moreover, we obtain an
isomorphism of rational Hodge structures H(Y, Q) — H?(S, Q).

The Hodge isogenies above appear naturally in Mukai’s work on moduli
spaces of stable sheaves on K3 surfaces (see Section 3.1 below for precise
definitions). In this context, one starts with a polarized K3 surface X of
degree 2dp? such that NS(X) = Zh/, and one defines S := Mx (p, h’,dp) to
be the moduli space of sheaves on X with Mukai vector v’ := (p, h’, dp). Then
S is a K3 surface, and by Theorem 1.5 of [35], there is an isomorphism of
Hodge structures between v'1/Zv' and H?(S,Z), which is compatible with
the Mukai pairing on v'*/Zv" and cup product on H?(S, Z). Moreover, there



Brauer Groups on K3 Surfaces and Arithmetic Applications 191

is a rational Hodge isometry

/-
H?(X,Q) = v /720 @ Q 2z~ (O,x7 hpx)

mapping h'/p to h := (0, h’/p,2d), which is integral in v'*/Zv’ ® Q because
(0,h'/p,2d) —v'/p = (—1,0,d). Composing the two isometries, we obtain a
rational Hodge isometry

¢: H*(X,Q) — H*(S,Q)

mapping h’/p to an integral class h € H%(S,Q) such that h? = 2d, giving S
a polarization of degree 2d. The isometry ¢ induces an injection Tx — T
whose image has index p. As in Section 2.1, since NS(X) = Zh', we have
Tx = (=2dp?) &N, so d (Tx) = 7Z/2dp*Z, and —2dp*q(u) is a square modulo
p, where ¢ is the discriminant form on d(Tx) = (u). Mukai’s moduli spaces
of stable sheaves therefore give geometric manifestations to the lattice theory
discussed in this section.

In Section 3, we explain some geometric constructions realizing the
Mukai duality between the surfaces X and S via projective dualities, and
in Section 5, we use one of these constructions (the case d = 1 and p = 2) for
an arithmetic application.

2.7. Special Cubic fourfolds

Continuing the theme of the previous section, we explore the connection
between certain sublattices of Ts of index p on general K3 surfaces and
special cubic fourfolds. Geometric correspondences explaining these lattice-
theoretic connections have arithmetic applications: such correspondences can
yield Brauer-Severi bundles representing a generator for an order p subgroup
of Br(S). This idea was exploited in [12] to obtain counterexamples to weak
approximation on a K3 surface, starting from a cubic fourfold containing
a plane. The results of this section are easily derived from general work of
Hassett [10] on special cubic fourfolds. We include them here to alert the
arithmetically inclined audience about a source of constructions of transcen-
dental Brauer classes on K3 surfaces. For example, the results of this section
suggest that cubic fourfolds containing a del Pezzo surface of degree 6 form
a source of transcendental 3-torsion elements on a K3 surface of degree 2.
It would be very interesting to have a geometric correspondence capable of
producing such a 3-torsion element, as a Brauer-Severi bundle, starting from
the special cubic fourfold.

Recall that a special cubic fourfold ¥ C P® is a smooth cubic fourfold
that contains a surface T" not homologous to a complete intersection. Let h
denote the hyperplane class of P?; assume that the lattice K := (h%,T) C
H*(Y,Z) is saturated. The discriminant of (Y, K) is the determinant of the
Gram matrix of K. The nonspecial cohomology of (Y, K) is the orthogonal
complement K+ of K with respect to the intersection form. By Theorem 1.0.1
of [10], special cubic fourfolds (Y, K) of discriminant D form an irreducible
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divisor Cp of the moduli space of cubic fourfolds. In what follows, we write
Kp for the special cohomology lattice of a special cubic fourfold in Cp.

Proposition 10. Let S be a K3 surface of degree 2d with NS(S) = Zh and p a
prime number. For a nonzero o € Br(S)[p], denote by T' (o its corresponding
sublattice of index p in Ts.

1. Suppose that d =1 and p > 3. There is precisely one isomorphism class
of lattices T'(oy C Ts such that there exist a special cubic fourfold (Y, K)
of discriminant 2p?, and an isomorphism of lattices Ty = (K+)(—1).

2. Suppose that p = 3. There is an isomorphism class of lattices I' oy C Ts
such that there exist a special cubic fourfold (Y, K) of discriminant 18d,
and an isomorphism of lattices T (o) = (K+)(—1) if and only if (6,d) = 1
and if q is a prime dividing d, then ¢ = 1 mod 3.

Remark. The divisor Cp is nonempty if and only if D > 6 and D = 0 or
2 mod 6 (see Theorem 1.0.1 of [10]). This implies that if p > 3 and d = 2 mod
6, then no special cubic fourfolds have nonspecial cohomology isomorphic to
a twist of an index p sublattice T'(,y C Ts for a K3 surface S of degree 2d.

Proof of Proposition 10.
(1.) In Proposition 3.2.5 of [10], Hassett shows that the discriminant group
d(KQJ;Dz(fl)) is cyclic, and a generator u can be chosen so that its value for

27
the discriminant quadratic form is — 4%;)2 L Then

4p? -1
—2p?q(u) = —2p* - (— 5 ) = —2 mod p,

so —2p%q(u) is a quadratic residue modulo p if p = 1 mod 3 and otherwise
it is a quadratic nonresidue. Let ',y be an index p sublattice of Ts with
cyclic discriminant group d(I' 4y ) generated by v, and such that the quadratic
characters of —2p%q(v) and —2p2q(u) coincide (such a lattice exists, and is
unique up to isomorphism, by Theorem 9). We claim that I,y = Kzz(fl).
Since d = 1, using Theorem 1, either i, = 0 and p { ¢4, or iy, = 1 and
p 11+ 4e,. On the other hand, Proposition 2 shows that the isomorphism
class of I' () depends only on whether —2p?q(v) is a square modulo p or not.
Thus, each lattice I'(oy with i, = 1 and p {1 + 4c, is isomorphic to a lattice
[y with ior = 0 and p { cos. Consequently, we may assume that i, = 0 and
Dt co. As in the proof of Proposition 2, there is a generator whose value for
the discriminant form is —ﬁ(p2 + 4c, ). Therefore, there is an isomorphism
T'(o) = Ky (—1)if and only if there exists an x € (Z/2p°Z)* such that

4p? — 1 244
i _P Tt A z2 mod 2Z.
6p2 2p?

Multiplying by 2p? this becomes

4p? -1

T = (p? + 4cq)z® mod 4p°7Z.
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Modulo 4 there is always such an z. Modulo p, we need 1 = —3c,2? mod p.
If p =1 mod 3, then —3 and ¢, are squares modulo p. If p = 2 mod 3, then
both are not squares modulo p. Thus —3¢,, is always a square modulo p.
(2.) We know from Proposition 3.2.5 in [10] that d(Kis,(—1)) & Z/6dZ &
Z/3Z. If 3 divides d, then no discriminant group in Theorem 9 is isomorphic
to d(Kis,(—1)). Assume that 3 t d; then d(Kis,(—1)) = Z/2dZ & Z/3Z &
Z/3Z. Let uw = (3,0) € Z/6dZ © Z/3Z be a generator for the subgroup
7./2d7Z of d(Ki5,(—1)). Using Proposition 3.2.5 of [10], we have q(u) = ;. By
Theorem 9, there is unique isomorphism class I'() with d(I'(o)) = Z/2dZ ©
Z/3Z & Z/37Z; without loss of generality, we may assume that i, = 0 and
co = 0. In this case, the vector vy in the proof of Theorem 1 is a generator
for the subgroup Z/2dZ of d(T'(,y), and its value for the quadratic form is —55.
Thus, to have an isomorphism d(T" () = d(Ki5,(—1)), we need x € (Z/2dZ)*
such that

3 1,
ﬁ:_@x mod 27Z.

Multiplying by 2d we have
3 = —z2 mod 4d.

Such an « exists if and only if 2 1 d and if for any prime ¢ | d, we have
¢ = 1 mod 3. This shows that the conditions on d in the statement of the
proposition are necessary. To see they are sufficient, we need only show that
the 3-Sylow part of d(Kjig,(—1)) is isometric to the 3-Sylow part of d(T'(,)).
The intersection forms of d(Kig,(—1))3 and d(T'(4))s are given by

2d 0 0 2
3 3
(o —z) and (z o>’

respectively. Note that under the necessary conditions, we have d = 1 mod 6.
This implies that %d = % mod 27Z. It follows from this that the two discrimi-
nant forms are isometric. (]

Remark. The proof of Proposition 10 shows that, when d = 1 and p =
1 mod 3, the twisted nonspecial cohomology of a special cubic fourfold of
discriminant 2p? and the transcendental lattice of a general K3 surface of
degree 2p? are both isomorphic to the same sublattice of index p in Tg. While
seemingly surprising, this phenomenon reflects the existence of associated K3
surfaces, in the sense of Hassett, for cubic fourfolds in Cy,2; see Theorem 5.1.3
of [10].

Next, we elaborate on the geometric connection between special cubic
fourfolds and K3 surfaces when d = 1 and p > 3. Let D’ be the local period
domain of marked special cubic fourfolds (Y, Ky,2) of discriminant 2p?. The
domain D’ is an open subset of a quadratic hypersurface in P(K ;;,2 ® C) and
is a connected component of

{lw] € P(KQLPQ RC) | (w,w)=0, (w,@)<0}.
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Let I'y,2 be the arithmetic group such that D :=T'5,2\D’ is the global period
domain of special cubic fourfolds of discriminant 2p? (see Section 2.2 of [10] for
the definition of this group). The Torelli theorem for cubic fourfolds implies
that the period map Csp2 — D is an open immersion [49]. Let Ay be the
primitive cohomology lattice of a degree two polarized K3 surface. Write N’
for the local period domain of K3 surfaces of degree two, which is an open
domain of
{lw] eP(A2®C) | (w,w) =0, (w,w)>0}.

Let T's be the arithmetic group such that N := T';\N" is the global period
domain for K3 surfaces of degree two. Surjectivity of the period map for K3
surfaces identifies the global period domain A/ with the coarse moduli space
Ko of degree two polarized K3 surfaces.

Proposition 11. An embedding j : ijQ — —Ay induces a dominant morphism
Cop2 — Ko of quasi-projective varieties.

Proof. The divisor Cyp2 is algebraic by Theorem 3.1.2 of [10]. Next, we de-
scribe a holomorphic map Cyp> — Ky, by mirroring the argument of Lemma
3.2 of [26]. Proposition 10 allows us to identify the local period domain D’
with N’. We show that O(K;;)z) C O(A2). Identifying Kﬁz with a index
p sublattice of —Ay, we may consider the subgroup M = (71\2)/1(2%02 of

d(ijg)7 which is isotropic. By Proposition 1.4.1 of [38], we have

Ao ={x € (KQLPQ)* |  mod Kzlpz € M}.

Any map ¢ € O(Ki}z) naturally extends to (K;;)z)*. Hence ¢ induces an
isomorphism on d(K;;Jz). The group d(K;;ﬁ) being cyclic, M is preserved by
. This shows that ¢ induces an isomorphism on As, i.e., ¢ € O(Ay). To
see that the holomorphic map Cy,> — K2 obtained thus far is algebraic, one
argues as in the proof of Proposition 2.2.2 of [10]. The morphism is dominant
because the map Cype — D is an open immersion. ]

Remark. There is an analogous morphism of coarse moduli spaces Kgp2 — Ko
encoding the Mukai duality explained in Section 2.6. Kondo has studied this
morphism in detail [26]; it has degree p'°(p'® + 1).

3. Mukai dual K3 surfaces

Moduli spaces of sheaves on K3 surfaces were first studied by Mukai [34, 36].
The theory was further developed by Gottsche and Huybrechts [9], O’Grady
[39], Yoshioka [50], and others. We will mainly be interested in two-dimen-
sional moduli spaces; see Mukai [35]. A general reference for these moduli
spaces is the book of Huybrechts and Lehn [15]. The modern approach also
relies heavily on Fourier-Mukai transforms [33], and their twisted version due
to Caldararu [5, 6]. A general reference for these derived equivalences is the
book of Huybrechts [14].
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Our goal in this section is to elaborate on Section 2.6 and describe
certain K3 surfaces and their Mukai dual surfaces, which are (twisted) derived
equivalent. The Mukai dual surfaces can be described in several ways: they
are moduli spaces of stable sheaves on the original K3 surface, and they also
arise via projective duality. The former approach leads us to natural elements
of the Brauer group, whereas the latter gives explicit equations for the Mukai
dual surface, and is therefore indispensible for arithmetic applications.

3.1. Set-up

Let X be a generic K3 surface of degree 2k. We use generic to mean that
X belongs to a Zariski open subset of the moduli space of all K3 surfaces
with primitive ample divisors h with h%2 = 2k. The condition NS(X) = Zh is
sufficient to ensure genericity of X. Fix a Mukai vector

v = (a,bh,c) € H'(X,Z) © H* (X, Z) © H*(X, Z),
and define Mx(v) to be the moduli space of stable sheaves £ on X with
Mukai vector

v(€) == ch(E)Td/? = (r, c(€),r+ %01(5)2 - 62(5)) =v.

Here stable means p-stable with respect to the polarization h of X i.e., any
proper subsheaf F of £ must have slope

L C1 (.F) . h
strictly less than the slope
L C1 (g) . h

of £. In the examples that interest us, v will be primitive (i.e., ged(a, b, c) =

1), in which case p-stability coincides with the related notion of Gieseker

stability, and it also coincides with p-semistability and Gieseker semistability.
Mukai [34] proved that Mx (v) is smooth of dimension

v? +2:=b?h% — 2ac+ 2,

and it admits a holomorphic symplectic structure. In particular, v? must be at
least —2 if there exists a stable sheaf £ with v(£) = v. When v is primitive,
Mx (v) is compact; it is an irreducible symplectic variety. When v is also
isotropic (i.e., v? := b2h% — 2ac = 0), S := Mx(v) is a K3 surface [35]. The
degree of S will be 2ac/ged(a, ¢)?. If n := ged(a, bh?,¢) = 1, then S is a fine
moduli space, the universal sheaf on X x S induces an equivalence between
the derived categories of coherent sheaves on X and S, and we say they are
Mukai dual [33]. If n # 1, then there is an n-torsion Brauer element o on
S obstructing the existence of a universal sheaf. Instead, there is a twisted
universal sheaf and the derived category of X is equivalent to the derived
category of a-twisted sheaves on S (see Caldararu [5, 6]).

Some particular cases are when h? = 2k = 2dn? and v = (n,h,nd).
These cases were studied by Hassett and Tschinkel [11] (d = 1), Iliev and
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Ranestad [21] (d = 2 and n = 2), the author [42], and Markushevich [32].
By the general principles outlined above, S is a K3 surface of degree 2d that
comes equipped with an n-torsion Brauer element a.

In some low degree cases the Mukai duality can be realized by pro-
jective duality. The starting point is to describe X as a linear section of a
homogeneous variety. In the next three sections we will consider the cases

e d =1, n = 2, producing a degree two K3 surface S with a 2-torsion
Brauer element,

e d =1, n = 3, producing a degree two K3 surface S with a 3-torsion
Brauer element,

e d = 2 n = 2, producing a degree four K3 surface S with a 2-torsion
Brauer element.

The first of these is precisely the remaining example of van Geemen. In the
first two cases, we represent the Brauer elements by Brauer-Severi varieties
with fibres isomorphic to P3 and P2, respectively.

For general K3 surfaces over C, Huybrechts and Schroer [16] proved
that the Brauer group equals the cohomological Brauer group, i.e., the group
of sheaves of Azumaya algebras up to equivalence is isomorphic to the tor-
sion part of the analytic cohomology group H?(S, 0*). Their proof involves
showing that any n-torsion element in H?(S,0*) can be represented by a
Brauer-Severi variety with fibres P*~!, which we call a minimal Brauer-
Severi variety. For a K3 surface arising as a non-fine moduli space of sheaves,
with an associated mn-torsion Brauer element obstructing the existence of a
universal sheaf, there are natural ways to represent the Brauer element as a
Brauer-Severi variety, but in general they do not produce a minimal Brauer-
Severi variety. In terms of sheaves of Azumaya algebras, the representatives
are all Morita equivalent (naturally) but we do not necessarily obtain a sheaf
of Azumaya algebras of minimal rank in this way. For example, in cases one
and two above, the moduli space approach produces non-minimal Brauer-
Severi varieties with fibres isomorphic to P3 and P°, respectively. However,
there is also a geometric approach that produces a minimal Brauer-Severi va-
riety in case two. We leave as an open question the existence of Brauer-Severi
varieties in the third case.

3.2. The degree eight/degree two duality

A general degree eight K3 surface X is a complete intersection of three
quadrics in P°. To describe it as a linear section, we embed Y := P5 = P(V)
in P20 = P(Sym?V) using the Veronese embedding. The K3 surface X will
be the intersection of Y C P20 with a codimension three linear subspace
P(U) = P17,

Now we projectively dualize. The dual variety Y is a sextic hypersurface
in P20 = P(Sym?V*), the determinantal variety, and P(U') = P? intersects
this hypersurface in a plane sextic curve C. Here UL C Sym?V* denotes the
annihilator of U. We therefore obtain a degree two K3 surface S as the double
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cover of P? branched over the sextic C. We say that X and S are projectively
dual varieties.

Lemma 12. The K3 surface S can be naturally identified with the moduli
space Mx (2, h,2).

Proof. This is Example 0.9 of Mukai [34], and Example 2.2 in [36]; a very
detailed discussion is given by Ingalls and Khalid [22]. The basic idea is as
follows. A point p in P? C P20 corresponds to a hyperplane H, in P20 which
intersects Y = P5 C P?° in a quadric four-fold Z,. The complete picture is:

dually
Y =P° = P(V) < P(Sym?V) = P Y < P(Sym?V*) = P20
U U U U
Z, —  H,=PY C— PUL) =P
U U U
X —  P(U)=PY .

If p € P?\C, then Z, is a smooth quadric. Now every smooth quadric in P®
can be identified with the Grassmannian Gr(2,4). The Grassmannian comes
with two natural vector bundles of rank two: the universal bundle F and the
universal quotient bundle F', which fit in the exact sequence

0—-E—-C'®@0—F—=0.

Dualizing gives
0—F* = (CHY"®0— E* =0,

so E* can also be regarded as a quotient bundle on Gr(2,4). Restricting E*
and F to X via the embedding X C Z, = Gr(2,4) yields two stable vector
bundles on X with Mukai vectors v = (2,h,2) (see [22] for details, partic-
ularly page 450 and Corollary 3.5). Note that we had to choose an identi-
fication Z, = Gr(2,4), but a different identification yields the same pair of
bundles E*|x and F|x, up to interchanging them (the automorphism group
of Gr(2,4) has two connected components, and as homogeneous bundles, E*
and F are invariant under pullbacks by automorphisms in the connected com-
ponent of the identity, and interchanged by pullbacks by automorphisms in
the other component). Alternatively, the identification Z, = Gr(2,4) could
be made canonical in the following way: Recall that there are two P3-families
of maximal isotropic planes contained in a smooth quadric. The subfamily of
maximal isotropic planes from, say, the first family that pass through a fixed
point of the quadric will be parametrized by a line P! in P3. Equivalently,
each point of the quadric gives a plane C? in C*, and this leads to an iso-
morphism of the quadric with Gr(2,4). The second family will yield a second
isomorphism of the quadric with Gr(2,4), and of course the automorphism
of Gr(2,4) given by composing these isomorphisms will interchange E* and
F.

If p € C, then Z, is a singular quadric. Assuming the K3 surface X is
generic, this singular quadric will always be of rank five, so Z, will be a cone
over a smooth quadric threefold. This quadric in P* can be identified with
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the lagrangian Grassmannian LGr(2,4). The blow-up Zp of Z,, at the apex
of the cone is therefore a P!-bundle over LGr(2,4). The embedding X C Z,
lifts to an embedding X C Zp because X does not contain the apex. Now the
universal bundle F and universal quotient bundle F over LGr(2,4) are dual,
yielding a self-dual sequence

05 F*=>C*'@0— F—0.

Thus the pair of bundles on X degenerate to isomorphic bundles in this
case, as pulling back E* = F' to Zp, and then restricting to X C Zp, yields
isomorphic bundles. We conclude that the double cover S of P2 branched
over C naturally parametrizes a family of stable bundles on X with Mukai
vectors v = (2, h,2). Now let us show that every bundle in Mx (2, h, 2) arises
in this way.

Claim. A stable bundle & with Mukai vector v(£) = (2, h, 2) satisfies

4, ifi=0,

h(€) = dimH'(X, &) = { 0, otherwise.

Proof. This follows from standard arguments involving stable sheaves. Firstly,
H%(X,€) = HY(X,&Y)Y vanishes because £V is also a stable bundle, with
slope p(€EY) = —h?/2 = —4. Next, suppose that H!(X, £) is non-vanishing.
Then Ext'(0,&Y) = HY(X,£Y) = H'(X, €)Y is also non-vanishing, so there
is a non-trivial extension

0& =>F—=0=0.
Now F has Mukai vector (3, —h, 3) and
(3,~h,3)? = (—h)* =233 = 10 < -2,
so F cannot be stable. Let G C F be a destabilizing sheaf; then G has slope

c1(G) - h - —h?
W > u(F) = 3

Moreover, G is necessarily of rank 1 or 2, so writing ¢1(G) = dh with d € Z,
we find that d > —r(G)/3 > —1. Therefore d > 0 and u(G) > 0. Let g be the
composition

wg) =

G—F—O.

The kernel of g is then a subsheaf of £V with slope p(kerg) > 0; by the
stability of £, kerg must vanish. So G = O and G — F gives a splitting of
the exact sequence defining F, contradicting the fact that the extension class
is non-trivial. We conclude that H!(X,£) must vanish. Finally, Riemann-
Roch gives

x(€) = /X(2,h,2)(1,0, 1) =4,

so h?(€) = 4. This completes the proof of the claim. O
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It follows from the claim that £ has precisely four independent sections.
Moreover, we can show that £ is generated by its sections, i.e., the evaluation
map

H(X, &) 0 — &
is surjective. Roughly, if the evaluation map were not surjective, it would
factor through
H(X, )00 — & — €.
One can then argue that £ has Mukai vector (2,h,2 — k) where k > 1, and
hence the kernel F in

F—H (X, )20 —¢&

will have Mukai vector v(F) = (2, —h,2 + k). Since v(F)? = —4k < -2, F
will be unstable. Looking at the slope, we see that F must have a section.
The composition
0O —F —H(X,)®0

will identify O isomorphically with its image in H?(X, £) ® O, which will look
like (s) ® O for some non-zero section s € H(X, £). But then (s) ® O will lie
in the kernel of the evaluation map H°(X,&) ® O — £. This is only possible
if s =0, a contradiction.

Thus every stable sheaf £ with Mukai vector (2,h,2) is naturally a
quotient of the trivial rank four bundle, implying that there is a classifying
map X — Gr(2,4) such that £ is the pullback of the universal quotient
bundle on Gr(2,4). Generically, the classifying map will be an embedding and
compatible with the embeddings into P5, and thus Gr(2,4) can be identified
with a smooth quadric four-fold containing X, i.e., we have

X cGr(2,4)=Z,CP®

for some p € P2\C. But then £ belongs to the family of bundles on X
parametrized by S, as described above. Note that the covering involution is
given by mapping £ to the cokernel of the adjoint map

& —HY(X,&)*® 0.

In the non-generic case, the stable bundle £ obtained in this way fits
into a self-dual sequence

S HU(X, )0 =2HY X, )00 — &.
In particular, there is a skew two-form on H°(X, &), and the classifying map
factors through the lagrangian Grassmannian
X — LGr(2,4) C Gr(2,4);

it is no longer an embedding. The lagrangian Grassmannian is a hyperplane
section of the usual Grassmannian, LGr(2,4) C P*, and the required singular
quadric Z, containing X is a cone over LGr(2,4). O

Remark. We could instead observe that S parametrizes a complete family of
stable sheaves on X, which therefore must be all of Mx (v), since the latter
is two-dimensional.
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Lemma 13. The K3 surface S comes with a Brauer-Severi variety W — S
whose fibres are isomorphic to P3.

Proof. We have a family Z — P? of quadric fourfolds over P2. Let W — P?
be the Fano variety of maximal isotropic planes (=2 P?) contained in the
fibres of Z — P2. If p € P?\C, then Z, is a smooth quadric fourfold, which
therefore contains two P3-families of maximal isotropic planes. Therefore the
fibre W, will consist of two copies of P2. If p € C, then Z, is a singular
quadric fourfold, and the above familes degenerate to a single P3-family of
maximal isotropic planes. Therefore the fibre W, will be a single P3.

The morphism W — P2 therefore factors through the double cover of
P2 branched over C, i.e., it factors through W — S — P2 (this is the Stein
factorization). Then W — S is the required Brauer-Severi variety, with fibres
isomorphic to P3; see Proposition 3.3 of [12]. O

Lemma 14. The Brauer-Severi variety W — S gives a class a € Br(S) in the
Brauer group of S of order two.

Proof. A priori, the order of the class o must divide four, as locally W is the
projectivization of a rank four bundle. By Proposition B.3 of Auel, Bernar-
dara, and Bolognesi [2] « is also the class arising from the even Clifford algebra
on the discriminant cover S — P2. Specifically, a P2-family of quadrics in P° is
equivalent to a quadratic form ¢ in six variables over the field C(IP?). Because
the rank of ¢ is even, the corresponding Clifford algebra C(q) is a central sim-
ple algebra over C(PP?), whereas the centre of the even Clifford algebra Cy(q)
is the quadratic extension C(S) of C(IP?) given by adjoining the square root
of the sextic discriminant; Cp(g) is then a central simple algebra over C(S)
(see Lam [29]). The result of Auel et al. identifies @ € Br(S) C Br(C(95))
with the Brauer class of Cy(q).

Now the Clifford algebra C'(¢) admits a canonical involution ¢ sending
T1Q- - -Qxp t0 TE®- - -®x1. This anti-automorphism induces an automorphism
of Azumaya algebras

Clg®C(q) — End(C(q))
xRy +— (2 z20(y)),

implying that the Brauer class of C(q) in Br(C(PP?)) has order two. Finally,
the Brauer class of Cy(q) is the pull-back of the Brauer class of C(q) to
C(S). To see this, let V' be the underlying six-dimensional vector space of the
quadratic form g. Then the map

V @cwey C(S) — Endg,q)(Colq) ® Ci(q))

v — 0 v
v 0

induces the required isomorphism of Azumaya algebras

C(q) ®cez) C(S) — Endg, (4)(Co(q) © C1(q)) 2 Co(q) @c(pzy Maxa(C(F?))
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by the universal property of the Clifford algebra. It follows that the Brauer
class of Cy(q), and hence a € Br(S), also has order two. O

Remark. It is not obvious from the Clifford algebra description that « €
Br(.9) is non-trivial, but this follows from the following lemma, since we saw
in Section 3.1 that S is a non-fine moduli space when n := ged(2, h%,2) = 2
is greater than 1.

Lemma 15. The class o € Br(S) of the Brauer-Severi variety W — S is
the obstruction to the existence of a universal sheaf for the moduli space
S =Mx(2,h,2).

Proof. Universal sheaves exist locally, so let S = U;S; be a cover such that
there exists a local universal sheaf Uf; on each X x S;. Denote by p and ¢ the
projections from X x S to X and S, respectively. On the overlap

(XXSZ')Q(XXSJ')

U; and U; will differ by tensoring with ¢*L,;, where £;; is a line bundle on
Sij == S;N ;. The collection of line bundles £;; defines a holomorphic gerbe
on S, whose Brauer class is the obstruction to the existence of a universal
sheaf on X x S.

By the claim in the proof above, HO(X, U] x » {s}) is four-dimensional for
all s € §;. Therefore q.U; is a locally free sheaf of rank four on S;. Moreover,

¢:U; = (¢ Lij @U;) = Lij @ q:U;.

Therefore the local P3-bundles P(q.U;) patch together to give a globally de-
fined P3-bundle on S.

Claim. This P3-bundle can be identified with the Brauer-Severi variety W —
S.

Proof. Let £ := U;|x x (s} Recall that £ is realized as a quotient
H(X,6)®0 — €&,

which is the pullback of
C'®0—F

by the classifying map X — Gr(2,4). Therefore a line in H(X, £) corresponds
to a line £ in C*. But each line ¢ in C* determines a maximal isotropic plane
in Gr(2,4), namely, the set of planes in C* containing ¢ is isomorphic to
P(C*/¢) = P2. Thus the family of lines in H(X, £) gives one half of the Fano
variety of maximal isotropic planes in Gr(2,4), parametrized by P(C*) = P3.

To get the other half, recall that the covering involution of S — P? takes
s to the point representing the cokernel & of

& —HY(X,E)*®0.
For this sheaf &', a line in HY(X, &) = HY(X, £)* will correspond to a line ¢
in (C*)*, or equivalently, a hyperplane ¢+ in C*. Each hyperplane ¢+ in C*
determines a maximal isotropic plane in Gr(2,4), namely, the set of planes
in C* contained in ¢ is isomorphic to P(¢+) = P2. This gives the other half
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of the Fano variety of maximal isotropic planes in Gr(2,4), parametrized by
P(C4)* — (P3>*.

In summary, if the points s and s’ € S sitting above p € P? represent
sheaves € and £’ on X, then the family of lines in H(X, £) and H°(X, £’) can
be identified with W,,, the Fano variety of maximal isotropic planes contained
in the quadric Z, = Gr(2,4). But this implies that the P3-bundle on S given
locally by P(q.l;) is precisely the Brauer-Severi variety W — S, proving the
claim. O

It follows from the claim that if there exists a universal sheaf U on
X x S, then the Brauer-Severi variety W — S is the projectivization of the
rank four bundle ¢.U/, and hence the Brauer class « is trivial. Conversely, if
« is trivial, then the P3-bundle is the projectivization of a rank four bundle
VY on S. Moreover, V must be locally isomorphic to ¢.U;, i.e., it must be equal
to M; ® q.U; for some line bundle M; on S;. Then the local universal sheaves
¢ M; @U; on X x S; will patch together to give a global universal sheaf U/
on X x S. (I

3.3. The degree eighteen/degree two duality

The fact that general K3 surfaces of degrees four, six, and eight are complete
intersections is classical. Mukai [37] extended this analysis by showing that
K3 surfaces of degrees ten to eighteen are linear sections of homogeneous
varieties. In particular, a general degree eighteen K3 surface X is a linear
section of a certain homogeneous variety Y := G5/P. This homogenous va-
riety Y is five-dimensional and embeds in P(V) = P!3 (here V is the adjoint
representation of Gz, and Y is the orbit of the maximal weight vector). The
K3 surface X will be the intersection of Y C P'3 with a codimension three
linear subspace P(U) = P10,

As before, we projectively dualize. The dual variety Y is again a sextic
hypersurface in P'* = P(V*) and P(U') = P? intersects this hypersurface in
a plane sextic curve C. So once again the projective dual of X is a degree two
K3 surface S, the double cover of P2 branched over C. The geometry of this
projective duality was studied extensively by Kapustka and Ranestad [23],
and we shall use their results below.

Lemma 16. The K3 surface S can be naturally identified with the moduli
space Mx(3,h,3).

Proof. This is Theorem 1.2 of [23]. A point p in P> C P corresponds to
a hyperplane H, in P13, which intersects Y C P in a Fano fourfold Zy, of
genus ten and index two. The picture is:

dually
Y =Gy/P — P(V)=P8 Y — PV*) =P8
@] @] @] @]
Z, — H,=P"? C — PU*) =P?
@] @] @]
X — PU) =P .
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If p € P2\C, then Z, is smooth. Kuznetsov [27] showed that Z, admits a
pair of vector bundles of rank three, each with six independent sections. This
result was clarified by Kapustka and Ranestad, who showed that Z, admits
a unique embedding as a linear section of the Grassmannian Gr(3,6), up
to automorphisms of Gr(3,6) of course. Denoting the universal bundle and
universal quotient bundle on the Grassmannian by F and F' respectively, the
required rank three bundles on Z,, are precisely the restrictions of E* and F'.
Further restricting the bundles to X C Z,, yields two stable vector bundles
on X with Mukai vectors v = (3, h, 3).

If p € C, then Z, is singular and the pair of bundles on X degenerate
to isomorphic bundles in this case. Thus the double cover S of P? branched
over C naturally parametrizes a family of stable bundles on X with Mukai
vectors v = (3, h, 3). Since this is a complete family, and the moduli space
Mx (v) is two-dimensional, we conclude that S = Mx (3, h, 3). O

Lemma 17. The K3 surface S comes with a Brauer-Severi variety W — S
whose fibres are isomorphic to P?.

Proof. We have a family Z — P2 of Fano fourfolds of genus ten and index two
over P2. Let W — P2 be the Fano variety of cubic surface scrolls contained
in the fibres of Z — P2. If p € P?\C, then Z, is smooth and Proposition 1.5
of [23] states that there are two disjoint P2-families of cubic surface scrolls
on Z,. Therefore the fibre W), will consist of two copies of P2. If p € C, then
Z, is singular, the above families degenerate to a single P?-family of cubic
surface scrolls, and the fibre W), is a single P2,

The morphism W — P2 therefore factors through the double cover of
P2 branched over C, i.e., it factors through W — S — P? (this is the Stein
factorization). Then W — S is the required Brauer-Severi variety, with fibres
isomorphic to P2. O

Remark. The Brauer-Severi variety W — S gives a class « in the Brauer
group of S whose order divides three. If « is non-trivial, it will therefore be
3-torsion. Non-triviality will follow from the next lemma.

Lemma 18. The class o € Br(S) of the Brauer-Severi variety W — S is
the obstruction to the existence of a universal sheaf for the moduli space
S = Mx(3,h,3).

Proof. As in Lemma 15, we let S = U;S; be a cover such that there exists
a local universal sheaf Uf; on each X x S;. These local universal sheaves will
differ by tensoring with ¢*L£;;, where ¢ : X x § — S is projection to the
second factor, and the collection of line bundles £;; on S; NS; will define
a holomorphic gerbe on S, whose Brauer class obstructs the existence of a
universal sheaf on X x S.

Applying the same argument as earlier, one can show that the space
HO(X, Ui|x x{s}) is six-dimensional for all s € S;. Therefore ¢.l; is a locally
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free sheaf of rank six on S;. Moreover, ¢.U; = L;; ® g.U;, so the local P5-
bundles P(q.U;) patch together to give a global P5-bundle on S.

Claim: This P°-bundle can be identified with the second symmetric power
Sym?W — S of the Brauer-Severi variety W — S.

Remark. We follow the convention that applying Sym? to a projective space
means taking Sym? of the underlying vector space, then projectivizing. Thus
Sym?W — S denotes the Brauer-Severi variety that is locally given by
P(Sym?E;) — S;, where E; — S; are rank three bundles such that W|g, =
P(E;).

In fact, this operation can be applied directly to the corresponding Azu-
maya algebra. In Section 5 of [45], Suslin described how to construct exterior
powers A*A of an Azumaya algebra A, an idea that was further developed
by Parimala and Sridharan [40]. The symmetric powers s°A of an Azumaya
algebra can be constructed in a similar way; for example, see Section 3.A of
Knus et al.’s book [25].

Proof. The bundle &£ := U;|x (s} is realized as a quotient
H(X, )20 — &,

which is the pullback of
C'20—F

by the classifying map X < Z, < Gr(3,6). Therefore a line in H(X, &)
corresponds to a line ¢ in C°. The set of 3-planes in C® containing ¢ then
determines a subvariety Ty C Gr(3,6) of codimension three, isomorphic to
Gr(2,5). For a generic line ¢, T, N Z, will be a curve. However, for some
choices of ¢, the intersection Ty N Z), is not transversal; instead, T, N Z, is a
cubic surface scroll (two-dimensional). Moreover, the set

Wzgl) .= {¢ c C%T, N Z, is a cubic surface scroll}

is isomorphic to P?, embedded as a Veronese surface in the space P® of all
lines in CY (see Section 3 of [23], particularly Proposition 3.13). Since the
Veronese embedding is given by the second symmetric power,

P(C?) — P(Sym?C?),
we see that the family of lines in HY(X, £) can be canonically identified with
SmeWISl), where ngl) =~ P2 is one half of the Fano variety W, of cubic
surface scrolls in Z,.

To recover the other half of the Fano variety W,,, we consider instead hy-
perplanes in HY(X, £). These correspond to hyperplanes ¢+ in C%, which de-
termine subvarieties T,. C Gr(3,6), again isomorphic to Gr(3,5) = Gr(2, 5),
parametrizing 3-planes in ¢*. The set

Wéz) := {¢+ C CYTy. N Z, is a cubic surface scroll}

is isomorphic to P2, again embedded as a Veronese surface in the space (P®)*
of all hyperplanes in C®. Thus the family of hyperplanes in H°(X, £) can be
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canonically identified with SyszV]EZ)7 where W,gQ) is the other half of the
Fano variety W), of cubic surface scrolls in Z,.

Finally, we observe that the covering involution of S — P? takes the
point s representing £ to the point representing the cokernel £’ of

& —HY(X,E)*®0.

Then a hyperplane in H°(X, &) will correspond to a line in H(X,&’) =

HO(X, &)*.
Altogether, we have shown that the P°-bundle on S given locally by
P(q.U;) is precisely the Brauer-Severi variety Sym?W — S, proving the claim.
O

The symmetric power s2A of an Azumaya algebra is Brauer equivalent
to A®y, A (see page 33 of [25]). Equivalently, the Brauer class of Sym*W — S
is the same as the Brauer class of the tensor product ®?W — S, which is
given by o. If there exists a universal sheaf I/ on X x S, then the claim implies
that the Brauer-Severi variety Sym?W — S will be the projectivization of
the rank six bundle ¢.l{, and hence its Brauer class o will be trivial. Since
the order of « divides three, we conclude that « is trivial.

Conversely, if « is trivial, then the P°-bundle is the projectivization of a
rank six bundle V on S. Moreover, V is locally isomorphic to ¢.U;, i.e., equal
to M; ® q.U; for some line bundle M; on S;. The local universal sheaves
¢*M; @ U; will then patch together to give a global universal sheaf &/ on
X xS. O

3.4. The degree sixteen/degree four duality

By Mukai’s results [37] every degree sixteen K3 surface X is a linear section
of the Lagrangian Grassmannian Y := LGr(3,6). The homogeneous variety
Y is six-dimensional and embeds in P(V) = P13, The K3 surface X will be the
intersection of Y C P*? with a codimension four linear subspace P(U) = P?.

As before, we projectively dualize. The dual variety Y is a quartic hy-
persurface in P'3 = P(V*) and P(U+) = P? intersects this hypersurface in
a quartic K3 surface S. This is the projective dual of X. It was studied by
liev and Ranestad [20, 21].

Lemma 19. The K3 surface S can be naturally identified with the moduli
space Mx (2, h,4).

Proof. This is Theorem 3.4.8 of [20]. A point p in Y corresponds to a hyper-
plane H,, in P!3 that is tangent to Y C P'3. In particular, if p € S C Y, then
H, intersects Y in a singular fivefold Z,. The picture is:

dually
Y = LGr(3,6) — P(V)=P3 Y < PV*) =P
@] @] @] @]
Z, —  H,=P? S — PUY) =P
@] @] @]
X — PU)=P p.
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The five-fold Z,, will have a single node at the point of tangency of H, and
Y. Projecting from this node yields an embedding of the blow-up Zp in P,
Note that Z, is degree sixteen in P'2, whereas Z, will be degree fourteen in
P'1. In fact, by Theorem 3.3.4 of [20], Z, embeds as a linear section of the
Grassmannian Gr(2,6), which itself embeds as a degree fourteen subvariety
of P'*. The picture is:
Gr(2,6) «— P
U U
Z, — P
The node of Z, does not lie on the K3 surface X, so that the embedding
X C Z, lifts to an embedding X C Zp. Composing this with the embedding
Z, C Gr(2, 6) yields an embedding of X in the Grassmannian. We then obtain
a rank two bundle on X by restricting the dual E* of the universal bundle of
the Grassmannian. Iliev and Ranestad prove that this vector bundle on X is
stable with Mukai vector v = (2, h,4).
Thus the quartic K3 surface S naturally parametrizes a family of stable
bundles on X with Mukai vectors v = (2,h,4). Since this is a complete

family, and the moduli space Mx (v) is two-dimensional, we conclude that
S Mx(2,h,4). ([l

Question. The moduli space Mx(2,h,4) is not fine. Rather, there is a 2-
torsion Brauer class on the K3 surface S = Mx (2, h,4) obstructing the exis-
tence of a universal sheaf. Can a Brauer-Severi variety W — S representing
this Brauer class be described in a natural way? Does it have fibres isomorphic
to P! or to P3?

Remark. Kuznetsov also studied projective duality for the Lagrangian Grass-
mannian LGr(3,6), in Section 7 of [27]. He constructed a conic bundle over
the smooth part of the quartic hypersurface ¥ (Lemma 7.8 [27]). This P!-
bundle is a Brauer-Severi variety representing the Brauer class of a certain
Azumaya algebra on (the smooth part of) Y (Proposition 7.9 [27]). When
restricted to S C Y, presumably this Brauer class gives the obstruction to a
universal sheaf for the moduli space S = Mx (2, h,4), and the conic bundle
gives W — S. Assuming this is true, we would still like to find an interpre-
tation of W — S in terms of Fano varieties of the hyperplane sections Z,,, as
in the previous examples.

4. Other dualities

Other examples of projective dualities do not appear to lead to Brauer ele-
ments on K3 surfaces. A K3 surface X of degree fourteen embeds as a linear
section of the Grassmannian Y := Gr(2,6) C P'*. The dual variety Y C P'4 s
a cubic hypersurface, and the projective dual of X is a Pfaffian cubic fourfold
F'. The picture is:
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dually
Y =Gr(2,6) — P4 Y — PH
@] @] @] @]
X — P8 F < P>

Beauville and Donagi [4] showed that the Fano variety of lines on a (general)
cubic fourfold is a four-dimensional holomorphic symplectic manifold, and in
particular, the Fano variety of lines on the Pfaffian cubic F' is isomorphic to
the Hilbert scheme Hilb!? X of two points on X. We can write Hilb2 X as
a Mukai moduli space Mx (1,0, —1). Unfortunately it is a fine moduli space,
so it does not come with a Brauer element.

Iliev and Ranestad [19] associated a second cubic fourfold to a degree
fourteen K3 surface X, which they called the apolar cubic. The Fano variety
of lines on the apolar cubic parametrizes presentations of the Pfaffian cubic as
a sum of ten cubes. This Fano variety is also isomorphic to Hilbl? X , though
with a different polarization. So again there is no Brauer element; in any case,
the apolar cubic does not arise from projective duality.

Another duality, studied by Iliev and Markushevich [18], is between
pairs of degree twelve K3 surfaces. A K3 surface X of degree twelve is a linear
section of a ten-dimensional spinor variety in P'®. The projective dual is an-
other K3 surface S of degree twelve, which can be identified with Mx (2, h, 3).
However, since this is a fine moduli space, it does not come with a Brauer
element.

There are also interesting derived equivalences between these dual va-
rieties. The appropriate machinery is Kuznetsov’s Homological Projective
Duality, and some of these examples are studied from that point of view
in [27, 28].

5. Application: Failure of weak approximation

Let X be a K3 surface of degree eight over a number field k, given as a
complete intersection of three quadrics in P®

X =V (Q1,Q2,Q3) CP° = Projk[xzo, ...,xs].

In this section we give an explicit description, in terms of quaternion algebras
over function fields, for the class a € Br(5) that obstructs the existence of a
universal sheaf on the Mukai moduli space S = Mx(2, h, 2) described in §3.2.
We then use the description of a to exhibit K3 surfaces S of degree two
that fail to satisfy weak approximation on account of «, via a Brauer-Manin
obstruction.

The incidence correspondence

Z = {zQ1 +yQ2 + 2Q3 = 0} C P* x P°,
has X as it base locus, and projection map Z — P? is a family of quadric
fourfolds. Let W — P? be the Fano variety of maximal isotropic planes

contained in the fibers of Z — P2. We saw in Lemmas 13 and 14 (and their
proofs) that the Stein factorization W — S — P? consists of the discriminant
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cover S — P? and a Brauer-Severi variety W — S that is étale-locally a P3-
bundle over S. The image of the corresponding Brauer class o € Br(S) in
Br (k(S)) is thus an algebra of degree 4 and exponent 2; a result of Albert
ensures that it is Brauer equivalent to a bi-quaternion algebra; see [1]. To
compute this biquaternion algebra, we use the interpretation of a € Br(.S)
as the class associated to the even Clifford algebra on the discriminant cover
S — P? (see the proof of Lemma 14).

Fori =1, 2 and 3, let M; denote the Gram symmetric matrix associated
to the quadric @;. The Gram symmetric matrix of the quadratic form ¢ in
six variables associated to S — P? is M(z,y,2) := xMy + yM; + zMs, and
the signed discriminant of ¢ is

A = —det(zMy + yMy + zM>).

Thus, we may write S as the surface in P(1,1,1,3) = Proj k[z, y, z, w] given
by
w? = —det (M(z,y,2)). (6)

The discriminant algebra k(P?)(v/A) is the function field k(S). To compute
a as the class in im (Br(S) — Br (k(S5))) of the even Clifford algebra Cy(q),
we recall some facts about quadratic forms.

Notation. Given nonzero elements a and b of a field K, write (a,b) for the
quaternion algebra which, as a four-dimensional K-vector space, is spanned
by 1, i, j, and 4j, with multiplication determined by the relations i*> = a,
j2 = b and ij = —ji. Abusing notation, we sometimes also denote by (a,b)

the class of the quaternion algebra in Br(K).

5.1. Quadratic forms of rank 6 and the even Clifford algebras
Let ¢ be a nondegenerate quadratic form of even rank over a field K of charac-
teristic not two. Let A be the signed discriminant of ¢, and let L = K (\/Z)

be the discriminant extension (we assume that A is not a square in K). Write
c(q) € Br(K) (resp. co(q) € Br(L)) for the class of the Clifford algebra C(q)
(resp. the even Clifford algebra Cy(q)). A straightforward generalization of
the last part of the proof of Lemma 14 establishes the following lemma.

Lemma 20. We have co(q) = c(q) ®kx L as classes in Br(L). O

Lemma 21. Let a € K*, and write (a) for the rank one quadratic form aX?2.
Let q, q1, and g2 be nondegenerate quadratic forms of even rank, with respec-
tive signed discriminants A, Ay, and As.

(i) c({a) @ q) = c(q) @ (a,A),
(i) clqr L g2) = c(q1) @ c(g2) ® (A1, Ag),
(ili) c(q L (a,—a)) = c(q).
Proof. Ttems (i) and (ii) follow from Proposition IV.8.1.1 of [24]. For (iii),

recall that ¢({a,b)) = (a,b), so that by (ii) we have c¢(q¢ L (a,—a)) = ¢(q) ®
(a,—a) ® (1,A) and both (a, —a) and (1, A) are trivial in Br(X). O
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We specialize to quadratic forms ¢ of rank six; diagonalizing, we may
assume that ¢ = (ai,...,as) for some a; € k, i = 1,...,6. Lemma 21(iii)
allows us to add hyperbolic planes to ¢ without so changing the class of ¢(q).
Consider the quadratic form

(a1, a2,as3,a4,as,a6) L (a1asas, —aiazas)

= (a1, a2,as,a1a2a3) L (a4, as, a6, —aiazas),
which is equivalent to the sum

(a1az2a3) ® (1, a1az, azas, a1as)

(7)

1 (—ajaza3) ® (1, —ajasasa4, —a1a2a3a5, —A1020306)-

The quadratic form (1, aqas2,asas,ara3) is the norm form of the quaternion
algebra (—ajag, —ajas). Applying Lemma 21 to the forms ¢; = (1, aja9) and
g2 = {(asas,aias) we obtain

c({1,ay1a9, azas,a1a3)) = (—ajas, —aiasz).
Applying Lemma 21 to (7) we compute the class of ¢(q) and obtain

(—a1a2, —a1a3) ® c((1, —a1a2a3a4, —a1a2a3a5, —Q1A20306))
® (—arazas, A(q)) € Br(k).

Over the discriminant extension L = K (\/K), the quaternion algebra
(—ayrazas, A) splits, and we have an equivalence of quadratic forms
(1, —ayasasaq, —ayasasas, —ajasasag) = (1, —ajasasaq, —ayasasas, asas),
the latter of which is the norm form of the quaternion algebra
(arazaza4, ajasasas).

Putting this all together, we obtain

c(q) ®kx L = (—ayaz, —ara3) @ (ajasazay, ajasasas) € BrL.
Lemma 20 then allows us to conclude the following.

Proposition 22. Let ¢ = (ay,...,as) be a nondegenerate diagonal quadratic
form of rank siz over a field K of characteristic not two, with nontrivial
discriminant extension L. Then

co(q) = (—araa, —aja3) ® (ar1azazay, ajazagas) € Br(L). O

Corollary 23. Let q be a nondegenerate quadratic form of rank 6 over a field
K of characteristic different from 2, with nontrivial discriminant extension
L. Write m; for the determinant of the leading principal i X i minor of the
Gram symmetric matriz of q. Then

co(q) = (—ma, —mim3) ® (mg, —mzms) € Br(L).
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Proof. Symmetric Gaussian elimination of M allows us to diagonalize M to
the matrix

diag(my, ma/my, ..., me/ms);
See the proof of Lemma 12 in [3] for details on this operation. Proposition 22
implies that

co(q) = (—ma, —mimsz/ma) @ (M4, mams/my).
Finally, we have the equalities of classes in Br(L)
(*m27 *mlm:s/mz) = (*mz, *mlmzms) = (*mz, mz) ® (*mz, *m1m3)
= (—=mg, —mims3)

and similarly
(m4, m3m5/m4) = (7’TL47 —m3m5). U

5.2. Brauer-Manin obstructions

Let S be a smooth projective geometrically integral variety over a number
field k. Write k for a fixed algebraic closure of k, and let S denote the fibered
product S x, k. Write A for the ring of adeles of k, and 2 for the set of places
of k. Since S is projective, the sets S(A) and [], . S(ky) coincide; here k,
denotes the completion of k at v € Q. A class C of varieties as above is said
to satisfy the Hasse principle if

S(A)#0 = S(k)#0 forevery S e€C.

We say that S satisfies weak approximation if the diagonal embedding of
S(k) in [],cq S(ky) = S(A) is dense for the product topology of the v-adic
topologies.

Manin used class field theory to observe that any subset S of the Brauer
group Br(S) = H2 (S, G,,) gives rise to an intermediate set

S(k) € S(8)% € S(A), ®)

where S(k) denotes the closure of S(k) in S(A); see [31]. These intermediate
sets can thus obstruct the Hasse principle (if S(A) # () yet S(A)® = (}), and
weak approximation (if S(A) # S(A)®). This kind of obstruction is known
as a Brauer-Manin obstruction.

For each z, € S(k,), there is an evaluation map Br(S) — Br(k,),
a + a(z,) obtained by applying the functor H2 (—,G,,) to the morphism
Speck, — S corresponding to x,. The set S(A)S is the intersection over
a € S of the sets

S(A) = {(mv) € S(A) : ;zinvv (a(2y)) = o};

here inv, : Br(k,) — Q/Z is the local invariant map at v from local class field
theory.
There is a filtration on the Brauer group

Bry(S) € Bry(S) C Br(S)
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where Brg(S) := im (Br(Spec k) — Br(S)) is the subgroup of constant Brauer
clements, and Bry(S) := ker (Br(S) — Br(S)) is the subgroup of algebraic
Brauer elements. Classes o € Br(S) \ Bry(.5) are called transcendental.

K3 surfaces are some of the simplest varieties on which transcendental
classes exist: curves and surfaces of negative Kodaira dimension have trivial
geometric Brauer groups. For example, if S is a K3 surface with S(A) # 0 and
Pic(S) = NS(S) =2 Z, then any nonconstant class in Br(S) is transcendental,
because there is an isomorphism

Bry(S)/Bro(S) = HY(Gal(k/k), Pic(S)),
coming from the Hochschild-Serre spectral sequence, and the group
HY(Gal(k/k), Pic(S))

is trivial because Pic(S) is free with trivial Galois action in this case.
Details for the material in this subsection can be found in the surveys
[41, 48] and Chapter 5 of Skorobogatov’s book [44].

5.3. Local invariants at the real place

We return to the situation at the beginning of §5, specializing to the case
where £ = Q. So let X be a K3 surface of degree eight over QQ, and let
S C P(1,1,1,3) be the associated degree two K3 surface, together with
the class a € Br(S). Write, as before, M(z,y,z) for the Gram symmet-
ric matrix of the quadratic form ¢ in six variables associated to S — P2.
Let Py = [0,Y0,20,w0] € S(R) be a real point of S. From (6) it fol-
lows that det (M (xo,yo0,20)) < 0, so the signature of the symmetric matrix
M(%;?/o&o) is (175)7 (57 1) or (373)

Lemma 24. Write co for the real place of Q. We have

il’lVoo (Oé(P())) _ 01 Zf Slgn(M('/EOa Yo, ZO)) - (35 3)7
5 if Sign(M (0,0, 20)) = (1,5) or (5,1).
Proof. This is an application of Proposition 22, noting that ¢ has coeflicients
in K := Q(P?), and that the discriminant extension L is Q(S). The proof of
Lemma 14 shows that oo = ¢g(g) in Br(Q(S)). We deduce from Proposition 22
that

a = (—ayaz, —ara3) @ (ar1aza3a4, aazazas) € Br(Q(S9)). (9)
We may now compute invariants for the specialization «(P,). For example,
suppose that Sign(M (zg, yo, 20)) = (3, 3). Without loss of generality, we may
assume that a;(Pp) is positive for ¢ = 1,2 and 3, and negative for i = 4,5,
and 6. Then all the entries of the quaternion algebras in (9) are negative, and
hence a(Py) = 0 as an element of Br(R). Consequently, inve, (a(Fp)) = 0.
The other possible signatures for M (xg, yo, z0) are handled similarly. ([l

Corollary 25. Suppose that S(R) # (. Then there exists a point P € S(R)
such that
inve (a(P)) =0.



212 K. McKinnie, J. Sawon, S. Tanimoto and A. Vérilly-Alvarado

Proof. The set S(R) of real points of S is a 2-dimensional real manifold since
it is not empty; see [43], p. 106. Hence there is a point P = [z, yo, 20, Wo] €
S(R) such that det(M (xo,yo0,20)) # 0, because the set of real points of the
discriminant curve in S is either empty or has real dimension 1. Consider
the signed projective plane S = R? \ {(0,0,0)}/R~¢, which is topologically
a sphere. Write Q = [z0,¥0,20] € S and —Q = [—zg, —yo, —20] € S for the
two points in S corresponding to P. If the signature of M(Q) is (3,3), then
by Lemma 24 we are done. Since the signature of M(—@Q) is negative that
of M(Q), we may assume that M(Q) has signature (1,5) and M(—Q) has
signature (5, 1).
Let v denote the discriminant curve in S, i.e.,

v ={[z,y,2] €S| det(M(z,y,z)) =0},

which is a disjoint union of smooth closed curves. We claim there is a line
¢ C S that contains @ and —@, and that meets y transversally. This is an
application of Bertini’s theorem: Consider @ as a point in P?, and note that
the set of lines passing through @ is a P!. Bertini assures us that (over C)
the set of lines through @ meeting the curve det(M(z,y,2)) = 0 in P? forms
a nonempty open subset U C P!. Hence U(R) = U NPY(R) # (), and any
element of this set gives a line £ C S, as desired.

Let f be the restriction of det(M (x,y, z)) to £. Then f has simple roots
by transversality of v N #. This implies that as we travel from @ to —@Q along
¢ and cross +, the signature of M(z,y,z) will change from (a,b) to either
(a+1,b—1) or (a —1,b+ 1), and starting from signature (1,5), we must
reach signature (5,1). Hence, along ¢, there must be a point R € S such that
the signature of M(R) is (3,3), and consequently det(M(R)) < 0. Lifting R
to a point in S(R), and applying Lemma 24, we obtain the desired result. O

5.4. An explicit example

Let X be the K3 surface of degree eight over Q given as the smooth complete
intersection of three quadrics in P?° with Gram matrices

-6 1 -3 3 -1 1 0 -1 0 -3 1 3
1 26 3 2 2 3 -1 8 1 -2 -2 3
-3 3 2 1 2 -3 0 1 24 2 -3 -3
M=o o 1 98 o o M=|_3 9o 2 o _1 _of
-1 2 2 0 12 1 1 -2 -3 -1 28 3
1 3 -3 0 1 8 3 3 -3 -2 3 16
8 2 -1 -2 0 0
2 32 0 0 -3 -2
and Mye— |1 0 8 -1 3 0

-2 0 -1 24 -3 -1
o -3 3 -3 28 3
o -2 0 -1 3 32
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Proposition 26. Let S be the K3 surface of degree two in P(1,1,1,3) =
ProjQ[z,y, z, w] given by

w? = —det (xMy +yMy + zMs3) .
Then Pic(S) = NS(S) = Z.
Proof. We follow the strategy of §5.3 of [13], which can be summarized as
follows:

1. Prove that Pic (S x Fs) is isomorphic to Z?2, generated by the two com-
ponents of the pullback from P? of a tritangent line to the sextic branch
curve.

2. Find a prime p > 3 of good reduction of S for which the reduced sextic
branch curve has no tritangent line.

3. Apply Proposition 5.3 of [13] to conclude that Pic(S) 2 Z: otherwise
the tritangent line over F3 would lift to Q, giving rise to a tritangent
line over IF), for any other prime p of good reduction for S.

The surface S has good reduction at 3. An equation for S x 3 is given

w? = (x4 22)(zy + 2239 + 22322 + 2279 + 2223 4 22y?

+ 2’2 + 20227 4wy + 202 + 32 + 225) + (2%y + y7)?,
from which it is clear that the line z+2z = 0 is tritangent to the branch sextic
on P2. The pullback of this tritangent line to S x F3 generates a rank two sub-
lattice of Pic (S X Fg). Let f be the characteristic polynomial for the action
of Frobenius on HZ (S X Fg,@g), where ¢ # 3 is a prime number. Normalize
this polynomial by setting f3(t) = 3722 f(3t). Then the rank of Pic (S x F3)
is bounded above by the number of roots of f3(¢) that are roots of unity;
see Corollary 2.3 of [47]. The computation of f3(t) is standard: it suffices to
determine #S(F3n) for n = 1,...,10; the Lefschetz trace formula and the
functional equation for f then allows one to determine enough traces of pow-
ers of Frobenius acting on HZ, (S X Fg,@g) to reconstruct f by elementary
linear algebra. See [47] for details. We obtain

1 ,
f3(t) = g(zt — 1)2(3t%0 4 ¢19 4 2418 1 17 1 3410 4 415 poptd 413 412

— " B T 25 7 4 3t P 262+t 4 3).

The roots of the degree 20 factor of f3(t) are not roots of unity, because they
are not integral. Hence Pic (S x F3) = Z2.

A Grobner basis computation, using [8, Algorithm 8], shows that the
reduction of S at 5 (which is smooth) has no line tritangent to the branch
curve. This concludes the proof of the proposition. ([l

By Corollary 23, the Brauer class o € Br(S) arising from X is repre-
sented over Br (Q(S)) by tensor product of quaternion algebras

(—ma, —mims) @ (Mg, —mams),
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where
mp = —6x + 82,

mo = —1572% — 46zy + 12x2 — y* + 68yz + 25222,

ms = —5122% — 388422y — 1790222 — 109421y — 48zyz
+ 370x22 — 241> + 1618y%2 + 6580y 2% + 198423,

my = —148962* — 11225623y — 641962°2 — 13639221y — 8868622y2
— 314152%2% + 12302y + 2838022 + 190454xy 22 + 66580x2>
— 1967y* — 1427413 2 + 12573y 22 + 148652y2> + 4621224,

ms = —1546222° — 18324942y — 1088428z 2 — 32612703y
— 626462223 Y2 — 208675823 2% — 35389022y> — 230672022y% 2
— 99265222y 22 — 1240862223 + 2698zy* 4+ 587200zy°
+ 6271452xy° 22 + 91844262y 2> + 227902022* — 51948y°
— 439790y 2 — 82534y 22 + 43741249223 4 5413502y2* + 121495225,

(10)
Consider the real points on S given by
P :=11,2,-1,924] and P, :=][0,—1,1,V1863673].
Using Lemma 24, we compute
1
invee (a(P1)) =0, and inve (a(FPz)) = 3 (11)

The point P;, embedded diagonally in S(A), lies in the se
Let (P,) € S(A) be the adelic point given by

P _ Py, if v # oo,
v P, otherwise.

—+

S(A)%; see (8).

The containment P; € S(A)* and (11) together imply that

1

Zian a(P,) = 5 € Q/Z.
Hence (P,) € S(A) \ S(A)*, which shows that S is does not satisfy weak
approximation on account of «. As explained in §5.2, Proposition 26 implies
that

H' (Gal(@/Q). Pic(S)) = 0.
so there is no algebraic Brauer-Manin obstruction to weak approximation on
S. We summarize our results in the following theorem.

Theorem 27. Let My, My and Ms be the three symmetric matrices defined
above. Let S be the K3 surface of degree two inP(1,1,1,3) = ProjQ[z, y, z, w]
given by

w? = —det (xM;y +yMs + zMs)
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Let a € Br(Q(S)) be the tensor product of quaternion algebras
(=ma, —mim3) ® (ma, —mzms),

with my, ..., ms as in (10). Then « extends to an element of Br(S) that gives
rise to a transcendental Brauer-Manin obstruction to weak approximation on

S.

5.5. What about the Hasse principle?

It is natural to ask if elements a € Br(S)[2] as above can obstruct the exis-
tence of rational points on S. This does not happen for the surface of Theo-
rem 27: the point P; is rational.

A Brauer-Manin obstruction to the Hasse principle arising from a 2-
torsion Brauer element « requires the image of the evaluation maps

eVap: S(Qu) = 3Z/Z, P+ inv,(a(P))

be constant for all places v, including the infinite place. Otherwise, an adelic
point (P,) € S(A) can be modified at a place where ev, , is non constant to
arrange that > ev, ,(P,) = 0, which means that (P,) € S(A)%, so « does
not obstruct the Hasse principle. We must also have ) ev, ,(P,) = % for
every (P,) € S(A).

The evaluation map ev, , can only take nonzero values at a finite num-
ber of places: the places of bad reduction for .S, the places where o ramifies,
and the infinite place. To obtain an obstruction to the Hasse principle from
a, we must have ev, oo(P) = 0 for all points P € S(R), by Corollary 25.
We expect that an argument similar to that of Lemma 4.4 of [13], shows
that, for any prime p # 2 of good reduction for «, we have ev, o(P) = 0
for all P € S(Q,). For primes p # 2 of bad reduction, Proposition 4.1 and
Lemma 4.2 of [13] show that ev, , is constant, provided the singular locus
of the reduction of S consists of at most 7 ordinary double points. We thus
expect that the a reasonable way to construct a counterexample to the Hasse
principle using elements of the form « is to pick matrices M7, M5, and M3 in

1

such a way that ev, 2(P) = 5 for all points P € S(Qz); an analysis similar

to that in Section 4.3 of [13] may prove sufficient for this purpose.
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