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1. Introduction

In the 60s, moduli spaces of vector bundles on curves were much studied, following Mumford’s general construction
using Geometric Invariant Theory. Attention then turned to vector bundles on surfaces and higher dimensional varieties.
Several new features immediately arose. A vector bundle on a curve has two numerical invariants, the rank r and degree d
(equivalently, the first Chern class ¢ ), and the construction of moduli spaces as GIT quotients leads naturally to the definition
of stability in terms of the slope i = d/r. Slope stability extends to higher dimensions, but by using the additional numerical
invariants (higher Chern classes c,, etc.) Gieseker was led to another notion of stability. While slope stability is easier to
work with when manipulating vector bundles, Gieseker stability allows for a more general construction of moduli spaces;
of course, these two notions of stability are closely related, and in many cases equivalent. Another difference in higher
dimensions is that, unlike on smooth curves, torsion free coherent sheaves are not automatically locally free. Thus to obtain
compact moduli spaces, one must consider not just vector bundles but also torsion free sheaves.

Moduli spaces of sheaves on P? and on higher dimensional projective spaces were very explicitly described in the late
70s, partly motivated by the relation to Yang-Mills instantons on R* and S*. The geometry of moduli spaces of sheaves on
other specific surfaces were also studied, notably for K3 and abelian surfaces by Mukai in the 1980s. Such moduli spaces
reflect the geometry of the underlying surface; they can be used to reveal properties of the surface, or they may be studied as
interesting spaces in their own right. For instance, Mukai proved that moduli spaces of sheaves on K3 surfaces are examples
of holomorphic symplectic manifolds, i.e., higher dimensional analogues of K3 surfaces, or from a differential geometric
perspective, hyperkdhler manifolds. These moduli spaces have been intensely studied ever since, both for what they tell
us about K3 surfaces (and their curves, linear systems, Chow groups, etc.) and as test cases for uncovering the structure of
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general holomorphic symplectic manifolds. Another impetus for studying moduli spaces of sheaves on surfaces, from the
mid-80s to the mid-90s, was Donaldson’s fundamental work on the topology of smooth four-manifolds via moduli spaces of
Yang-Mills instantons. Because of the Hitchin-Kobayashi correspondence, which gives a Hermitian-Einstein connection on
any stable bundle, Donaldson’s polynomial invariants for algebraic surfaces can be computed using moduli spaces of stable
bundles.

In this article we survey moduli spaces of sheaves on K3 surfaces. In Section 2 we recall simpleness, slope stability,
and Gieseker stability for torsion free coherent sheaves, and describe how these notions are related. We describe some
general properties of moduli spaces of simple, stable, and semistable sheaves on K3 surfaces. We end the section with a
short discussion of the Hitchin-Kobayashi correspondence. Much of the material in this section remains valid for arbitrary
projective surfaces, and almost every result for K3 surfaces has an analogous result for abelian surfaces. The rest of the article
describes some recent developments and applications of sheaves on K3 surfaces, and their moduli spaces. In Section 3 we
review work of Beauville, Voisin, Huybrechts, and O’Grady on the Chow ring of a K3 surface. In Section 4 we discuss Hassett
and Tschinkel’s conjectural description of the Mori cone of curves on a holomorphic symplectic manifold, which determines
the ample and nef cones, and what is known for moduli spaces of sheaves on K3 surfaces. In Section 5 we give a brief
description of Bridgeland stability conditions on derived categories, and present some applications of these ideas to moduli
spaces of sheaves and complexes of sheaves on K3 surfaces due to Bayer and Macri.

For the reader interested in pursuing these topics further, we recommend the excellent survey articles by Mukai [1]
and Yoshioka [2], which, like this article, concentrate mainly on moduli spaces of sheaves on K3 surfaces. A more general
introduction to moduli spaces of sheaves on algebraic surfaces can be found in the books of Friedman [3], Huybrechts and
Lehn [4], and Le Potier [5].

2. Simple and stable sheaves, and their moduli spaces

2.1. Simple sheaves

Let X be a K3 surface. When considering families of holomorphic bundles or coherent sheaves on X, we fix the underlying
topological type of the bundles or sheaves. For this purpose, it is convenient to introduce the following lattice.

Definition. The Mukai lattice of X is
HY(X,Z) .= H (X, Z) ® H*(X, Z) @ H*(X, Z)
with the pairing defined by

(v, w) = / —VoWy4 + Vawy — VqWy.
X
The Mukai vector of a sheaf & on X is defined to be
1 c?
v(8) == ch(&)Td} = (r, C1, 51 -0+ T) )

where ¢ and ¢, are the Chern classes of &, and r its rank. We call € a simple sheaf if Hom(¢&, &) = C.

Under fairly general conditions, moduli of coherent sheaves exists only as Artin stacks. By adding the simpleness
condition, we obtain moduli spaces that are algebraic spaces (possibly non-Hausdorff). For simple sheaves on K3 surfaces,
Mukai proved more.

Theorem 1 (Mukai [6]). Fix an element v = (v, v2, v4) in H¥ (X, Z) with v, lying in the Néron-Severi group NS(X) of X. The
moduli space Spl(v) of simple sheaves & on X with v(&) = v is smooth of dimension (v, v) + 2. Moreover, Spl(v) admits a closed
non-degenerate holomorphic two-form.

Proof. We give a rough sketch of the argument and refer to [6] for details (see also [7,1]). The Zariski tangent space of Spl(v)
at & is isomorphic to Ext' (&, &). Riemann-Roch gives

% (€, &) = dimHom(&, &) — dimExt! (€, &) + dimExt?(&, &)

= / ch(&")ch(&)Tdy
= —X(v, v).
Now Hom(§&, &) = C is one-dimensional, and so is Ext*(&, &) = Hom(€, &)V, by Serre duality and wy = Ox. Therefore
dimExt! (€, &) = (v, v) + 2.

This gives the dimension, though we still have to establish smoothness. In general, the obstruction to deforming a sheaf &
lies in Ext?(€, €). One can prove that taking the trace gives the obstruction in H*(Ox) to deforming the line bundle det &.
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But there is no obstruction to deforming a line bundle on a K3 surface; indeed, line bundles are rigid. Now for a simple sheaf
&, the map

Ext(€, &) —> H?(0x)
is an isomorphism, as it is the dual of

H°(0x) = C —> Hom(§, §).

Thus the vanishing of the obstruction to deforming det & implies the vanishing of the obstruction to deforming & itself, and
Spl(v) is smooth at &.
A bilinear pairing on the tangent space Ext' (&, €) is given by composing and then taking the trace:

Ext! (€, €) x Ext' (€, &) —> Ext2(€, €) — H*(Oy) = C.

If a € Ext'(&, &) then the pairing of a with itself gives the obstruction to deforming & in the direction a, as described above.
Since this obstruction vanishes for simple sheaves &, the pairing is skew-symmetric. For holomorphicity and closedness of
the resulting two-form on Spl(v) see [1], page 154. O

2.2. Stability and semistability

While the moduli space Spl(v) has some nice properties, it is usually non-Hausdorff, and for this reason we consider
instead stable sheaves. Let (X, H) be a polarized K3 surface, i.e., H is an ample divisor on X.

Definition. The slope of a torsion free coherent sheaf & is defined to be
C1 (8)1‘1
rank &

A torsion free coherent sheaf & is -stable (respectively p-semistable) if u(F) < (&) (respectively u(F) < u(8)) for all
coherent subsheaves ¥ C & with 0 < rank ¥ < rank €.

u(g) =

Remark. This is also known as Mumford-Takemoto stability [8] and slope stability.

Definition. The normalized Hilbert polynomial of a torsion free coherent sheaf & is defined to be
x(E®H")
pue) = —————.
rank &

A torsion free coherent sheaf € is stable (respectively semistable) if py # (1) < py e (n) (respectively py #(n) < py ¢(n)) for
n > 0 for all proper subsheaves # C §&.

Remark. This is also known as Gieseker stability [9] and Maruyama stability [10]. (To emphasize the dependence on the
choice of polarization, H-stability is also used; but care needs to be taken since H-stable sometimes means p-stable with
respect to H.) In addition, Simpson [11] generalized the notion of stability to pure-dimensional sheaves.

Lemma 2. 1. Stable sheaves are simple.
2. We have the following implications:
& is u-stable = € is stable = & is semistable = & is y-semistable.

3. Ifthe rank of € and divisibility of c¢1(&) in H>(X, Z) are coprime, and H is v-general where v = v(&), then & is j.-semistable
implies & is -stable. (So in this case, all four notions of stability and semistability in 2 are equivalent for &.)
4. If v(8) € H¥(X, Z) is primitive and H is v-general, then & is semistable implies & is stable.

Remark. For each v € H® (X, Z) there are hyperplanes in the ample cone of X known as walls. We call an ample divisor H
v-general if it does not lie on any of these walls.

Proof. Let & be stable and let a € Hom(§&, &) be non-zero. Suppose that a is not an isomorphism. Denote by ¥ and
g the kernel and image of a, respectively. Then both ¥ and § are proper subsheaves of &, so py #(n) < pp.e(n) and
PH,g(n) < py.e(n) for n > 0, by the stability of &. Now from the short exact sequence

00— F —>86—>6—0
we get

x(E®@H") = x(F @ H") + x(§ ® H"),



J. Sawon / Journal of Geometry and Physics 109 (2016) 68-82 71

and therefore

x(EQH") x(FQH"+ x(§®H")  pys(mrankF + pyg(n)rank §
phe(n) = = — = — < pu.e(n).
rank & rank & 4 rank § rank ¥ 4 rank §
This contradiction shows that the non-zero endomorphism a must be an isomorphism. Next, let A be an eigenvalue of the
induced isomorphism @ : H°(€ @ H") — H°(& ® H"), for some n >> 0, and let b := a — Ald € Hom(§, €). Since the induced
map b : H%(& ® H") — H°(& ® H") is not an isomorphism, b itself cannot be an isomorphism. This means that b must be
zero. Thus a = Ald and & must be simple, proving 1.
By Riemann-Roch, we have

H2
x(EQH") = / ch(€&) exp(nH)Tdy = ranké’jn2 + ¢1(€&).Hn + const.
X .
Therefore

EQH" H? c1(8).H H?
M =—n’+ 16) n + const = —n? + u(&)n + const.
rank & 2! rank & 2!

pHe(n) =

Statement 2 now follows by elementary algebra. For instance, suppose & is u-stable. Then () < (&) for all coherent
subsheaves ¥ C & with 0 < rank & < rank &. This implies that

HZ
2!
for n > 0, and thus & is stable.

Statement 3 also follows by elementary algebra. Suppose & is u-semistable. Then u(¥) < u(E) for all coherent
subsheaves & C & with 0 < rank ¥ < rank &. If € is not u-stable then we must have equality for some ¥, i.e.,

HZ
puF(n) = + w(F)n 4+ const < jnz + n(&)n 4+ const = py ¢(n)

w(F) =

rank #  rank§&

Because H is v-general, this can only happenif ¢; (¥)/rank & = c¢;(&€)/rank &, or equivalently, c; (¥)rank & = c¢;(&)rank .
Thus rank & divides c;(&)rank F, where rank £ < rank &, contradicting the fact that rank & and the divisibility of c; (&) are
coprime.

Finally, statement 4 is proved in a similar manner. If & is semistable but not stable, then there exists a proper subsheaf
F C & such that py #(n) = py.e(n) for n > 0. Because H is v-general, we must have v(¥)rank§ = v(&)rank F. If
rank ¥ < rank & then some prime factor of rank & divides v(&), contradicting the primitivity of v(&). On the other hand, if
rank £ = rank & then the quotient sheaf &/ is torsion. Moreover

X(F @ H") = py g (nrank F = py ¢(n)rank & = x (& @ H"),
so x((&/F) ® H") = 0 for n > 0. This implies that § /F = 0, contradicting the fact that # is a proper subsheafof &. O

Gieseker [9] constructed the moduli space My(v) of stable sheaves & on X with Mukai vector v(§) = v, as a
quasi-projective scheme. If My (v) is not already compact, then one can compactify by adding semistable sheaves. Now
a semistable sheaf & admits a Jordan-Hélder filtration, 0 = § C & C --- C & = &, whose graded factors &;,/&; are
stable sheaves with the same normalized Hilbert polynomials as &. These graded factors are uniquely determined by &, up
to ordering, and two semistable sheaves are said to be S-equivalent if they have the same graded factors. Then Gieseker also
constructed the moduli space My (v)* of S-equivalence classes of semistable sheaves & on X with Mukai vector v(&) = v,
as a projective scheme that compactifies My (v). (Note that a stable sheaf & is also semistable, and its S-equivalence class
consists of just the sheaf & itself.) In particular, if every semistable sheaf is stable, then My (v) will already be projective, and
hence compact. For example, by statement 4 of Lemma 2, this occurs when v is primitive and H is v-general.

Gieseker’s construction applies to arbitrary smooth projective surfaces (X, H), though for K3 surfaces we can invoke
Mukai’s results on the moduli space of simple sheaves. By statement 1 of Lemma 2, the moduli space My (v) of stable
sheaves is an (open) subscheme of Spl(v). Therefore for K3 surfaces, My (v) is smooth and it inherits a closed non-degenerate
holomorphic two-form.

Notice that as the polarization H varies, we generally get different open subschemes My (v) C Spl(v). For example,
if H and H’ lie on opposite sides of a wall of the ample cone, then My (v) and My (v) may be birational but not isomorphic.
What is happening here is that some locus I" of My (v) is removed and replaced by a locus I’ in My (v), and for every point
p € I' C Spl(v) there is a corresponding non-separated point p" € I’ C Spl(v) (recall that Spl(v) is non-Hausdorff!). We
will say more about variations of the polarization in Section 5.

Example. Let v = (1, 0, 1 — n). A torsion free sheaf & with Mukai vector v(&) = (1, 0, 1 — n) will have rank one, ¢c; = 0,
and c; = n. It will be p-stable because there are no coherent subsheaves # C & with 0 < rank & < rank & = 1. It will
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also be stable with respect to all possible polarizations H because if # C & is a proper subsheaf then rank # = rank & = 1,
&/ ¥ is torsion, and thus

PHe(M) —pur() = x(E®H") — x(F ®H") = x((§/F)QH") >0

for n > 0. Now &V will be reflexive and therefore locally free, as X is a surface; thus &YV = . The cokernel of the
inclusion & < &V will be the structure sheaf @, of a zero-dimensional subscheme Z C X of length n. Thus & is identified
with the ideal sheaf {; of Z,

0— €=y, — &Y =29y — 09, — 0,

and the moduli space My (1, 0, 1 —n) is identified with the Hilbert scheme Hilb"X of length n zero-dimensional subschemes
ZCX.

In low dimensions we can completely describe the moduli spaces.

Theorem 3 (Mukai [7], Corollary 3.6). If (v, v) = —2 then My (v) is empty or a single point.

Proof. Simple sheaves with (v(€), v(€)) = —2 are known as rigid sheaves, because the space Ext' (€, &) parametrizing
their first order deformations is trivial. Mukai first shows that a rigid torsion free sheaf & must be locally free. Moreover, if
€ is stable and # is another semistable sheaf with v(¥) = v (&), then by Riemann-Roch

So at least one of Hom(&, ) and Hom(F, &) = Ext?(&, )" must be non-trivial. But because & is stable, a homomorphism
& — ¥F,respectively £ — &, must be an isomorphism. O

Theorem 4 (Mukai [7], Theorem 1.4, Corollary 4.6). Fix v € H® (X, Z) with (v, v) = 0 and fix an ample divisor H on X. If every
semistable sheaf & with v(&) = v is stable, then My (v) is empty or a K3 surface.

Remark. As we have already observed, if v is primitive and H is v-general then the hypothesis of the theorem is satisfied.

Proof. Recall that the moduli space Spl(v) of simple sheaves with Mukai vector v is smooth of dimension (v, v) + 2 = 2.
As described above, My (v) is an open subscheme of Spl(v). Assume My (v) is non-empty. If every semistable sheaf & with
v(&) = v is stable, then My (v) contains a connected component M that is compact. We claim that every semistable sheaf
F with v(F) = v is isomorphic to a stable sheaf in the family parametrized by M. To see this, one takes a (quasi-)universal
sheaf on X x M, uses it to construct a Fourier—-Mukai transform @ : D?(X) — DP(M), and then shows that & (¥) is the
shift of a skyscraper sheaf on M. Applying the inverse Fourier-Mukai transform then proves the claim (see the proof of
Proposition 4.4 [7] for details). It follows that My (v) = M is irreducible. Moreover, Spl(v), and therefore My (v), admits a
nowhere vanishing holomorphic two-form, so My (v) is an abelian or K3 surface. Finally, the cohomological Fourier-Mukai
transform induces an isometry

9o 1 v /Qu — H (My(v), Q),
where v* denotes the orthogonal complement of Qu in H® (X, Z). We conclude that My (v) is a K3 surface. O

Mukai also proved non-emptyness of these moduli spaces under certain conditions, a result which was generalized by
Yoshioka. Specifically, we say that a Mukai vector v € H® (X, Z) with v, € NS(X) is positive if vg > 0, or if vg = 0 and v, is
effective, or if vy = v, = 0 and v4 > 0. Then it follows from the general results in [12,13] (and also Corollary 3.5 of [ 14] for
the rank zero case) that My (v) is non-empty if v is primitive, positive, and (v, v) > —2.

In higher dimensions we have the following result, the culmination of the work of a number of authors, including Mukai,
Gottsche and Huybrechts, O’Grady, and Yoshioka. First a definition.

Definition. A holomorphic symplectic manifold is a compact Kdhler manifold M that admits a non-degenerate holomorphic
two-form o € H*(M, 22%). Moreover, we say M is irreducible if it is simply connected and H*(M, £2%) is generated by o

Remark. Non-degeneracy means that taking the interior product with ¢ induces an isomorphism TM = §2 : equivalently,

o™ is nowhere vanishing and trivializes K; = .Q,\z,,", where 2n is the dimension of M (which is necessarily even). In addition,
o is d-closed because Hodge theory implies

H°(M, £2;) C H*(M, C).

Theorem 5. Let v € H® (X, Z) be positive, primitive, and let H be v-general. Suppose that 2n := (v, v) + 2 is greater than 2.
Then My (v) is an irreducible holomorphic symplectic manifold that is deformation equivalent to the Hilbert scheme Hilb"X of
n points on a K3 surface. In addition, the weight-two Hodge structure H?(My (v), Z) is isomorphic to v, and this isomorphism

takes the Beauville-Bogomolov quadratic form on H2(My (v), Z) to the restriction of the Mukai pairing on v.
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Remark. Here v denotes the orthogonal complement of v in H® (X, Z), which is given the Hodge structure with (1, 1)-part
equal to

H'(X, Z) ® H'(X, Z) & H*(X, Z).

The Beauville-Bogomolov form [15] of an irreducible holomorphic symplectic manifold M is a natural quadratic form on
H2(M, Z), given by taking

n
j(o) = f/(oc})”’lozz—l—(l—n)/ a“*lc}"a-/ o"e"
2 M M M

and rescaling by a rational constant (to make it primitive and integral).

Proof. As describe above, Mukai [6,1] proved that the moduli space Spl(v) of simple sheaves is smooth of dimension
(v, v) + 2 = 2n, and it admits a non-degenerate holomorphic two-form. Moreover, My (v) is an open subscheme, that
is also compact under the hypothesis that v is primitive and H is v-general. The relation between My (v) and Hilb"X was
explored first in the rank two case, i.e., when vy = 2, by Gottsche and Huybrechts [16], and then for higher rank but with
primitive v, € H?(X, Z) by O'Grady [17]. O'Grady’s idea is to deform the underlying K3 surface X to a certain elliptic
K3 surface, inducing a corresponding deformation of My (v). Then one can implement a backward induction, eventually
reducing the rank of the sheaves to one, i.e., at each step, one identifies My (v) with a moduli space of stable sheaves
whose rank is one less than for v (the identification is a birational map, but Huybrechts [18] later proved that birational
holomorphic symplectic manifolds are also deformation equivalent). Rank one torsion free sheaves on a K3 surface look like
line bundles tensored with ideal sheaves of zero-dimensional subschemes, and thus we can identify the moduli space with
Hilb"X. Finally, Yoshioka removed the hypothesis that v, be primitive (Theorem 8.1 of [ 19]) and treated the rank zero case,
i.e., pure dimension one sheaves [ 13]. Yoshioka’s approach differs from O’Grady’s: he proves that stability is preserved under
Fourier-Mukai transforms, under certain conditions, and uses this to construct isomorphisms between different moduli
spaces. He also proved a generalization of the theorem for non-primitive v and studied non-general H in [12].
Mukai [1] constructed a canonical map

6, : vt — H2(My (v), Z)

using the Chern class of a quasi-universal sheaf on X x My(v). By carefully tracking this map under the birational
identifications above, O’Grady [17] proved that it is an isomorphism of Hodge structures, and an isometry of lattices taking
the Mukai pairing on v* to the Beauville-Bogomolov form on H?(Mjy (v), Z), provided that v, is primitive (a technical
assumption that was later removed by Yoshioka [19]). O

2.3. Singular moduli spaces

Theorem 5 gives a complete description of My (v) for primitive v and v-general H. For both non-primitive v and
non-general H, My (v) will be non-compact, and one must add (S-equivalence classes of) strictly semistable sheaves to
compactify, My(v) C My(v)*. We will discuss variations of the polarization H in Section 5. For non-primitive v, the
strictly semistable locus is the singular locus of My (v)*; only in some special cases do these singularities admit a symplectic
desingularization.

Theorem 6 (O’'Grady [20]). For the Mukai vector v = (2,0, —2) € H®(X, Z), the moduli space My (2, 0, —2)*° admits a
symplectic desingularization. The resulting smooth irreducible symplectic variety of dimension ten is not deformation equivalent
to Hilb®X; indeed, it gives a new deformation class of irreducible holomorphic symplectic manifolds.

If W and Z C X are zero-dimensional subschemes of length two, then {y @ J{7 is a strictly semistable sheaf with
Mukai vector (2, 0, —2); in fact, all strictly semistable sheaves in My (2, 0, —2)% are of this form, so the singular locus is
isomorphic to

Sym? (Hilb%X).

O’Grady desingularizes My (2, 0, —2)* by a sequence of blowups, followed by a blowdown to ensure that the induced
holomorphic two-form on the resulting smooth space is non-degenerate.

In general, suppose that v = mvg € H® (X, Z) where m > 2 and vy is primitive. (Note that we have changed our
notation: in this section vy denotes a Mukai vector, not the degree zero component of the Mukai vector v.) If (vg, vg) = —2
then every semistable sheaf with Mukai vector mvg will be isomorphic to §®™, where & is the unique stable sheaf with Mukai
vector vy (see Theorem 3); thus My (vp)*® consists of a single point. If (vg, vo) = 0 then every semistable sheaf with Mukai
vector mvg will be S-equivalent to a direct sum of m stable sheaves with Mukai vectors vg; thus My (muvg)* is isomorphic to
Sym™My (vg), where My (vp) is a K3 surface by Theorem 4. Assume now that (vg, vg) > 2.

Theorem 7 (Lehn and Sorger [21]). If (vg, vo) = 2 and H is v-general then the blowup of the reduced singular locus of My (2vg)*
is a symplectic desingularization. (In particular, O’Grady’s example is of this form.)
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Theorem 8 (Kaledin, Lehn, and Sorger [22]). If m > 2 and (vg, vg) > 2 or m > 2 and (vg, vg) > 2 then My(muvg) has locally
factorial singularities. Therefore, since the singularities occur in codimension >4, they cannot be resolved symplectically.

Remark. As stated, the theorem is for sheaves of non-zero rank, though Kaledin et al. also proved it for rank zero under
some additional hypotheses.

2.4. The Hitchin-Kobayashi correspondence

We end this section with a discussion of one of the differential geometric aspects of stable bundles. Let E be a holomorphic
bundle equipped with a Hermitian metric (-, -). Recall that there exists a unique unitary connection V that is compatible
with the holomorphic structure on E, i.e.,

d(s1, s2) = (Vs1, $2) + (51, Vsy)

for all smooth sections s; and s, of E, and V%! = 8¢. Then V2 := V o V will lie in £2"!(EndE).

Definition. Let w be a Kadhler form on X, and let E be a holomorphic bundle on X. Then (-, -) is a Hermitian-Einstein metric
on E if its corresponding compatible unitary connection V satisfies

V2 A w = Mdgw? € 2%?(EndE)

where X is a constant (equivalently, the contraction of V2 with w equals Aldg).

Remark. Taking the trace of both sides and integrating gives

/ tr(V?) A w = ArankE / »°.
X X

By Chern-Weil theory, tr(V?) = —2mic;(E). Thus

. —mi E)
= vox M
where
ci(E) Nw
w) = Ha® e
rank E

is the slope of E with respect to the Kdhler form w (if w comes from an ample divisor H then this is just the slope with respect
to H).

Example. The space of two forms £22(M) on a Riemannian four-manifold decomposes into a direct sum .er M) @ 22M)
of self-dual and anti-self-dual two forms. For a compact Kéhler surface (X, w), the complexification of .Qi(X ) is spanned by
(2, 0)-forms, (0, 2)-forms, and @, whereas the complexification of £22 (X) is the orthogonal complement of @ in £211(X).
Let E be a holomorphic bundle on X with c¢(E) = 0, and equip E with a Hermitian metric and corresponding compatible
unitary connection V. If V is Hermitian-Einstein then

VZAw=0,

because E has slope £(E) = 0. Thus V? e £2'!(EndE) and it is orthogonal to , implying that V? lies in £22 (EndE). We
call V an anti-self-dual connection (an example of a Yang-Mills instanton). Conversely, an anti-self-dual connection on a
compact Kdhler surface is Hermitian-Einstein.

The main result we wish to describe is the Hitchin-Kobayashi correspondence. It was proved first for Riemann surfaces
by Narasimhan and Seshadri [23], then for projective surfaces by Donaldson [24], and then for compact Kdhler manifolds in
arbitrary dimension by Uhlenbeck and Yau [25] (and independently, for smooth projective varieties in arbitrary dimension
by Donaldson [26]).

Theorem 9. Let E be a holomorphic bundle on a compact Kéhler manifold (X, w). Then E admits a Hermitian-Einstein metric if
and only if it is u-polystable with respect to w, i.e., it is a direct sum of -stable bundles.

As an application, we consider tensor products of bundles.

Proposition 10. If E and F are j¢-stable bundles then E ® F is j¢-polystable.

Proof. Equip E and F with Hermitian-Einstein metrics, with corresponding connections V¢ and V. The induced Hermitian
metric on E ® F, with corresponding connection Vi ® Idr + Idr ® VF, is easily seen to be Hermitian-Einstein too. Therefore
E ® F is pu-polystable. 0O
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3. The Chow ring of a K3 surface

The Chow ring CH (X) of a K3 surface is the ring of algebraic cycles on X modulo rational equivalence; the ring structure
is given by intersection. The Chow ring is graded by codimension,

CH(X) = CH°(X) @ CH'(X) & CH?*(X),
though in this article we will adopt the common alternative notation

CH(X) = CHy(X) & CH{(X) & CHo(X).
Now CH,(X) = Z[X] for all irreducible surfaces, and CH;(X) = Pic(X) is a lattice for K3 surfaces. On the other hand, the
group CHy (X) of 0-cycles up to rational equivalence is infinite-dimensional and much more complicated; simple and stable
sheaves, and their moduli, play a role in understanding it.
Theorem 11 (Beauville-Voisin [27]). Let cx be the class of a point lying on a rational curve in the K3 surface X. Then

1. cx is independent of the choice of point and rational curve,

2. if Cy and C, are two curves in X, then the class of C; N C, in CHy(X) is a multiple of cx, and
3. the second Chern class c;(X) € CHy(X) is equal to 24cy.

Definition. The Beauville-Voisin ring is defined to be

R(X) == CH,(X) ® CH{(X) ® Zcx = Z[X] & Pic(X) & Zcy.

Remark. By statement 2 above, R(X) is a subring of CH (X). Moreover, the Mukai vector

al?  oX)
2 T 24)

1
v(l) = ch(D)Td? = (1, c1(L),
of a line bundle L on X, regarded as an element of the Chow ring, must lie in R(X).

Definition. A spherical object on X is a bounded complex of sheaves, &* € D?(X), such that

kipe ooy~ JC ifk=0o0r2,
Ext (e, €%) = {0 otherwise.

Line bundles are spherical objects, as are rigid sheaves. Spherical objects are the generalization of rigid sheaves to objects
of the derived category.

Theorem 12 (Huybrechts [28]). Let X be a projective K3 surface with Picard number p(X) > 2.

1. If €* € D*(X) is a spherical object, then v(&*) € R(X).
2. Derived equivalences preserve R(X), i.e., if @ : D'(X) — DP(X’) is an equivalence of triangulated categories then
dM(R(X)) = R(X'), where @ : CH(X) — CH(X') is the induced isomorphism of Chow groups.

Remark. Statement 1 also holds when p(X) = 1. Huybrechts proved this under the additional hypothesis that v(§°) =
(r, kH, s), where H generates PicX and k = +1 (mod r). Without this hypothesis, we can argue as follows: If r = 0 then

2=x(6°,8%) = —(v(€"),v(E")) = —kK’H* < 0,

a contradiction; so without loss of generality we can assume r > 0. As explained in the proof of Corollary 3.3 of [28],
there exists a spherical locally free sheaf E such that v(E) = v(&°®) in cohomology. Corollary 2.6 of [28] shows that in
fact v(E) = v(&°®) in the Chow ring. Finally, rigid sheaves are simple, so the theorem of Voisin stated below shows that
c3(E) € So(X). This means that v(E) € R(X).

O’Grady [29] introduced a filtration on CHy (X),
So(X) :="7Zcx CS1(X) CSH(X) C - CSe(X) C--- CCHy(X),

by defining S, (X) to be the set of classes [Z] + acx, where Z = p; + - - - + p; is an effective 0-cycle of length g and a € Z.
Equivalently, S¢ (X) is the set of elements of the form ¢.[Z], where Z is a 0-cycle on a genus g curve C and ¢ : C — X is any
non-constant morphism (not necessarily an inclusion). Rigid sheaves belong to zero-dimensional moduli spaces; therefore
the following conjecture is a generalization of Theorem 12 of Huybrechts.
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Conjecture 13 (O'Grady [29]). Suppose that My (v) has dimension 2d. If & is a stable sheaf in My (v), or a semistable sheaf
whose S-equivalence class [&] lies in My (v)*, then c; (&) lies in Sq(X). Moreover, as we vary € in My (v), and [€] in My (v)*, the
set of all second Chern classes c,(8) is precisely the set of elements of Sq(X) of the appropriate degree, i.e.,

{c2(8) | [€] € My(v)™} = {[Z] € Sa(X) | degZ = c2(v)}.
The conjecture is true in many cases.

Theorem 14 (0’Grady [29]). Suppose that My (v) is non-empty and one of the following holds:

1. v, € H%(X, Z) is primitive and equal to H, and v4 > 0,
2. the Picard number p(X) > 2, the rank vy is coprime to the divisibility of v, € H*(X, Z), and H is v-general,
3. the rank vg < 2 and H is v-general if vg = 2.

Then the above conjecture is true for My (v).

Theorem 15 (Voisin [30]). If E is a simple bundle with Mukai vector v(E) = v, then c;(E) € S4(X), where 2d is the dimension
of My (v). Moreover,

{c2(E) | E € Spl(v)} = {[Z] € Sa(X) | degZ = c2(v)}.

Remark. Voisin’s result is for bundles that are simple, rather than stable or semistable. But there are no restrictions on p(X)
or v, so in the locally-free case, this generalizes both Huybrechts’s and O’Grady’s results.

In addition, Voisin [30] characterized S4(X) in terms of dimensions of rational equivalence classes. Namely, fork > d > 0,
SaX) N{[Z] | degZ =k}

is precisely the set of [Z] € CHo(X) such that the subset of Sym*X parametrizing effective cycles rationally equivalent to [Z]
is non-empty and contains a component of dimension at least k — d.

In higher dimensions, a variation of 0'Grady’s definition produces a filtration on the Chow ring CHo(X™) of the Hilbert
scheme of points on the K3 surface X. Voisin [31] again characterized this filtration in terms of dimensions of rational
equivalence classes. This led to a picture, still partly conjectural, of the structure of the Chow ring of an arbitrary hyperkahler
(i.e., holomorphic symplectic) variety.

4. Ample and nef cones of holomorphic symplectic manifolds

Let X be a smooth projective variety, and denote by N; (X, Z) C H3(X, Z) the group of curve classes modulo homological
equivalence. The Mori cone of curves is the convex cone NE; (X) C N;(X, R) = N;1(X, Z) ® R generated by effective classes.
The importance of NE; (X), or rather its closure NE; (X), is that it determines the ample and nef cones of X, as follows.

Theorem 16 (Kleiman’s Criterion). A divisor D in X is ample (respectively, nef) if and only if D.C > 0 (respectively, >0) for all
curves C € NE{(X).

An extremal ray R of NE;(X) is generated by the class of a rational curve C C X, and it yields a morphism ¢ : X — Z
that contracts all rational curves equivalent to C. In this way, the cone of curves describes the birational geometry of X.
Example. Let X be a projective K3 surface with polarization H. Then the cone of curves is given by

NE;(X) = (C e N;(X,Z) | C> > —2,C.H > 0),

where () denotes the cone spanned by the given curve classes. In this case, NE; (X) is already closed, so a divisor D in X
is ample if D.C > 0 for all curves C C X with C> > —2 and C.H > 0. An extremal ray R of the cone of curves will be
generated by a (—2)-curve, and the morphism ¢ : X — Z will contract this curve, thereby producing a rational double
point singularity in Z.

For higher-dimensional holomorphic symplectic manifolds, Hassett and Tschinkel introduced the following conjectural
description of the cone of curves. Recall that we have the Beauville-Bogomolov integral quadraticformq( , )onH?*(X, Z) =
H?"2(X, Z). We will denote the dual form on

H*2(X,2)* = H,(X, Z)

also by g( , ); note that it is Q-valued since the Beauville-Bogomolov form is not necessarily unimodular.

Thesis 17 (Hassett-Tschinkel [32]). Let X be an irreducible holomorphic symplectic manifold of dimension 2n with
polarization H.
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1. There exists a positive rational number cy, depending only on the deformation class of X, such that
NE1(X) = (C e Ni(X, Z) | q(C) = —cx, C.H > 0).

2. The extremal case q(C) = —cx arises as follows: if £ is a line in a Lagrangian P" C X then q(£) = —cx.

Remark. When X is a deformation of the Hilbert scheme of n points on a K3 surface (in particular, when X is a moduli
space My (v) of stable sheaves on a K3 surface with v positive, primitive, and H v-general), Hassett and Tschinkel [32] gave
a conjectural value of cx = "%3 They also gave proposals for the birational maps resulting from various values of g(R) < 0.
They proved that an extremal ray R corresponding to a divisorial contraction satisfies —2 < q(R) < 0 (this is Theorem 2.1
in [32]).

Example. Let X be the Hilbert scheme Hilb"S of n points on a K3 surface S. The exceptional divisor E, i.e., the locus of
non-reduced subschemes, is 2-divisible in H?(X, Z); write E = 28. Then
H* (X, Z) = H*(S, Z) & 78

is an isomorphism of lattices that takes the Beauville-Bogomolov form q on the left hand side to the direct sum of the
intersection pairing on H2(S, Z) and (8, §) = —2(n — 1) on the right hand side. Let C be a generic fibre of E over the ‘big’
diagonal in Sym"S. Then C is a rational curve and E|¢ is isomorphic to @ (—2). This implies that

C = —8§Y € NE;(X) C Hy(X, R) = H*(X, R)*.

Note that
q(C) = q(8) = -1
q@ 2n—1)
The corresponding contraction is of course the Hilbert-Chow morphism Hilb"S — Sym"S.
Example. Now suppose that the K3 surface S contains a rational (—2)-curve C. Then Sym"C gives a Lagrangian P" in

X = Hilb"S. A line £ in this P" is given by fixing n — 1 points in C and allowing the nth point to vary. To identify the
class of £ in Hy(X, R) = H?(X, R)* we intersect it with various divisors. Firstly

1
5=—-CE=n—1,
2

as each intersection of £ with E has multiplicity 2. Secondly, let D be the divisor of subschemes whose support intersects C.
Because £ is equivalent to a rational curve in X given by one point on C and n — 1 fixed points not on C,
¢D=C>=-2.
Since q(D) = —2, we conclude that
£=D+ (n—1)8".
Finally, we can calculate
-1

_ _ 1\2 AN _1\2 _
q(6) =qD) + (= 1)°q(6") = =2+ (n—1) <2(n_1)>—

n+3
5

The corresponding contraction collapses the Lagrangian P" C X to a point.

Remark. The last example verifies the second part of Hassett and Tschinkel’s conjecture in this case, but it does not prove
it outright because a priori there could exist other Lagrangian P"s in different monodromy group orbits of X. Nonetheless,
the fact that q(¢) = —%3 for a line £ in any Lagrangian P" in a deformation X of Hilb"S was proved for n = 2 by Hassett
and Tschinkel [33], for n = 3 by Harvey, Hassett, and Tschinkel [34], and for n = 4 by Bakker and Jorza [35].

Returning to the first part of Hassett and Tschinkel’s conjecture, they proved the following.

Theorem 18 (Hassett-Tschinkel [33]). Let X be a deformation of the Hilbert scheme of two points on a K3 surface. Then a divisor
Din X is ample if D.C > 0 for all curves C in

(CeNy(X,2Z) | q(C) = —5/2,C.H > 0).
In fact, it is enough to consider curves C with C.H > 0 and q(C) = —5/2, =2, —1/2, or >0.

Thus Hassett and Tschinkel established sufficient conditions for D to be ample in this case; they did not prove that these
conditions are necessary. In fact, in general they are not: Proposition 10.3 and Remark 10.4 of Bayer and Macri [36](and also
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independent work of Markman) shows that the cone of curves could be smaller than predicted, though the first instance
of this happening is in dimension ten. Theorem 12.2 of Bayer and Macri [37] gives the correct description of the Mori cone
of curves when X is a moduli space of sheaves on a K3 surface, and this was extended to the case when X is an arbitrary
deformation of Hilb"S by Bayer, Hassett, and Tschinkel [38]. The precise statement is somewhat lengthy; in any case, we
will say more about Bayer and Macri’s methods in the next section. These methods also led to a verification of the bounds
on the curves generating extremal rays.

Theorem 19 (Bayer, Hassett, and Tschinkel [38], Mongardi [39]). Let X be a deformation of Hilb"S, and let R be an extremal ray
of NE{(X). Then R contains an effective curve C with q(C) > —”zﬁ.

Remark. Bayer et al. proved this result in the projective case, whereas Mongardi’s argument, obtained independently, works
also in the non-projective case.

5. Moduli of stable complexes

Fourier-Mukai transforms are equivalences
@ :D'(X) — D"(X))

of triangulated categories [40]. They have become an indispensable tool in studying moduli spaces because they induce
birational maps of the form

M.y (v) --> M gy (V')
& > P(&)°.

Here & (&)* is an element of the derived category D”(X"), i.e., a priori it is a complex of sheaves, but in nice situations it will
be a sheaf (or shifted sheaf), and even a stable sheaf with respect to some polarization H' of X'. If @ (&)* is a stable sheaf for
all & in M(x py (v) then the above map will be an isomorphism. More generally, one would like to deal with moduli spaces of
complexes of sheaves, and this is one of the motivations behind extending the notion of stability to complexes. Henceforth,
we will drop the e and write a complex of sheaves &® simply as €.

Definition (Bridgeland [41]). A stability condition (Z, #) on D(X) consists of a homomorphism Z : K(X) — C from the
Grothendieck K -group of X and full additive subcategories #(¢) C D?(X) for each ¢ € R, that satisfy:

1. Z(&) € Cis a positive multiple of exp(ir ¢) for all & € £ (¢),
2. P(p+1)=P(p)[1]forall ¢ € R,
3. if ¢1 > ¢ then Hompy (&1, &) = O for all & € £ (),
4. every & € D(X) admits a generalized Harder-Narasimhan filtration
0=¢& — & — & — - — &1 — & =6,

RYRN v 1IN v [N v
A1 A2 Hn

where A; € P(¢;) and ¢ > ¢y > -+ - > ¢y

Remark. The homomorphism Z is known as the central charge; its argument ¢ can be regarded as a generalization of
the slope 1 of a sheaf, or rather, of tan~! 4 € S! (see the example below). The collection of subcategories # is known
as a slicing of D?(X). The Harder-Narasimhan filtration of a sheaf has graded pieces of descending slope; the generalized
Harder-Narasimhan filtration extends this to complexes of sheaves.

Theorem 20 (Bridgeland [41]). The space of stability conditions Stab(X) on D’(X) is a topological space that is locally
homeomorphic to a complex vector space.

More precisely, for each connected component X of Stab(X) there is a linear subspace V(X') of Homz (K (X), C), and the
local homeomorphism X — V(X) is given by the forgetful map (Z, ) — Z, which takes a stability condition to its central
charge.

Example. Suppose that X is a K3 surface with polarization H. Naively one would like to define a stability condition with
central charge Z(&) = rank & + ic1(&).H, whose argument ¢ satisfies

C1 (8)1‘1

rank &

tanmw¢ = = uy(8).

However, this homomorphism Z : K(X) — C vanishes on sheaves with zero-dimensional support, whereas the central
charge of a stability condition must be non-zero on all non-zero sheaves. Instead, Bridgeland [42] found the following
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construction. Let 8 + iw be a complexified Kahler class on X, i.e., 8 and w lie in NS(X) ® R with @ in the ample cone.
Define

. 1 2 2 2 2 .
Z(8) == (exp(B + iw), v(€)) = > ((c3 = 2rs) + r’w* — (c1 — 1B)?*) + i(c1 — TB).0,

where & has Mukai vector v(§) = (r, ¢y, s). For generic 8 and w (more precisely, one requires Z(&) ¢ R<o for all spherical
sheaves & on X), Bridgeland described how to construct a stability condition with central charge Z. These stability conditions
belong to a distinguished component Stab’ (X) C Stab(X) of the space of all stability conditions on D?(X).

Now define & (X) := Z & NS(X) & Z, with inclusion & (X) ® C C Homz(K(X), C) given by the Mukai pairing. There
is an open subset #(X) C N (X) ® C given by vectors whose real and imaginary parts span positive definite two-planes in
N (X) ® R. Denote by £ (X) C £ (X) the component containing exp(8 + iw), and let !PO+ (X) C 1 (X) be the complement
of the union of all 8+, i.e., complex hyperplanes orthogonal to §, where § ranges over all spherical classes in & (X) with
(8, 8) = —2. Bridgeland proved that the forgetful map

7 @ Stabf (X) — Nz (X) ® C C Homy (K (X), C)
Z, ) —> exp(B +iw),

is a covering map over ,?’0+ (X). The group of deck transformations is given by the subgroup of the group of autoequivalences
of D?(X) that act trivially on cohomology and that preserve the component Stab’ (X) C Stab(X).

Remark. Although there is no Bridgeland stability condition on D?(X) with central charge Z(&) = rank & + ic;(€).H, one
can recover H-stability by letting o € Stab(X) go to a ‘large volume limit’.

For moduli spaces of sheaves, stability depends on the choice of polarization H in the ample cone, which has a wall and
chamber structure (dependent on v). As we vary H inside a chamber, the moduli space does not change. But when H hits a
wall, some stable sheaves can become strictly semistable; and when H passes into a new chamber, they can become unstable.
Thus we may find that My, (v) and My_(v) are birational for H; and H_ in adjacent chambers of the ample cone, and an
analysis of which sheaves become strictly semistable for H on the wall will allow us to describe the birational transformation
in more detail.

Similarly, the space of stability conditions Stab(X) admits a wall and chamber structure (dependent on v). In some
situations, the above wall-crossing procedure allows us to construct moduli spaces M,, (v) of stable complexes on X, by

1. starting with a stability condition o for which all stable complexes & with Mukai vector v(§) = v are actually sheaves
(and thus M, (v) is simply a moduli space of stable sheaves on X),
2. and then varying the stability condition o and keeping track of the birational modifications that occur as we cross walls.

As we cross a wall, the locus of sheaves that become unstable will be replaced by a new locus of sheaves, or complexes of
sheaves, that are stable for the new stability condition. Obviously it is important to understand the shapes and positions of
walls in Stab(X), and this has been studied by several authors; for example, Maciocia [43] proved some results for general
projective surfaces.

Example. Arcara and Bertram [44] considered the case v = (0, H, H?/2) with Bridgeland stability conditions o; given by
B+ iw = %H + itH where t € R. . For sufficiently large t (in fact, for t > %) all oy-stable complexes & with Mukai vector
v(€&) = v are actually sheaves. These sheaves look like ¢, L, where L is a rank-one torsion free sheafon C € |H|,and:: C — X
is the inclusion; thus for t > % M,, (v) is just the compactified relative Jacobian of the family of curves in the linear system

|H|. As t is decreased, we run into walls at certain values t4. Arcara and Bertram described the Mukai flops
MU[d+€ (U) -2 M(Ttd—g (U)

that occur when we cross these walls. The universal object (complex of sheaves) on X x M,
universal object on X x M,, ,_(v) by an elementary modification.

e (v) is obtained from the

tg+e

In the above example, even after varying t and performing Mukai flops, a generic point of My, (v) will still represent a
sheaf on X, which is a rather special case. Indeed, this procedure does not yield a method of constructing moduli spaces
M, (v) of stable complexes for general v. A priori, these most general moduli spaces exist as Artin stacks of finite type
over C, as proved by Toda [45]. But stronger results are possible by applying Fourier-Mukai transforms, as observed by
Minamide, Yanagide, and Yoshioka [46] in the Picard rank p(X) = 1 case and further developed in Section 7 of Bayer and
Macri [36] for p(X) > 1. Specifically, they show that for a generic stability condition ¢ € Stab' (X) there is a Fourier-Mukai
transform @ : D’(X) — D’(X’) from X to another K3 surface X’ that takes o -stable complexes on X with Mukai vectors v
to @ (o )-semistable sheaves on X’. Here & () is the stability condition on D?(X") coming from o and the homeomorphism
Stab’(X) — Stab'(X’) induced by &. Thus M, (X) can be identified with a moduli space of semistable sheaves on X’. (More
precisely, there may be a non-trivial gerbe o € Br(X’), and the sheaves on X’ will be «-twisted.)

An important step in studying the birational geometry of these moduli spaces is the description of ample and nef line
bundles. Bayer and Macri gave a natural construction of a ‘polarization’ on any family of semistable complexes of sheaves
admitting a universal object.
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Theorem 21 (Bayer and Macri [36]). Let o = (Z, &) be a Bridgeland stability condition on X. Let S be a family of o -semistable
objects in D®(X) with Mukai vector v, and with a universal family € € D?(S x X). Then there exists a natural divisor class £, on
S that is nef, and moreover £,.C = 0 for a curve C C S if and only if & is S-equivalent to & for all t and t’ in C.

Proof. We just give the definition of the divisor class ¢, and refer to [36] for the proof of its properties. A divisor class is
uniquely determined by its values on curves. Given a (projective, reduced, and irreducible) curve C C S, we can take its
structure sheaf ¢ and apply the integral transform @ : D*(S) — D?(X) coming from & to get ®(O¢) € D?(X). Then we
define

Z(v)

Ly.C:=Jdm <M> .

Of course this definition depends implicitly on the universal family & € D’(S x X), but one can show that changing & by the
pullback of a line bundle on S does not change ¢,,.C, and so we suppress & from the notation. O

If the stability condition o lies in the interior of a chamber € of Stab(X) then every o-semistable complex is actually
o-stable. This implies that if M, (v) is the moduli space of o-stable complexes on X with Mukai vector v, then ¢, will be
ample on M, (v) (in the Picard rank p(X) = 1 case, the ampleness of £, also appears as Corollary 5.17 of Minamide et al. [46]).
The assignment ¢ — £, then gives a map from € to the ample cone Amp (M, (v)), and from the closure € to the nef cone
Nef(M, (v)).

Bayer and Macri [36] then studied the following situation. Suppose that oy is a generic stability condition on the boundary
of the closure G, i.e., on a wall of Stab(X), and suppose that the locus of strictly oo-semistable complexes in M, (v) is
codimension at least two. Then £, is big and nef and induces a birational contraction M, (v) — Y. If oy lies on a wall
separating two chambers €, and C_ then we obtain two birational contractions as above. In fact, the resulting spaces Y,
and Y_ are isomorphic and we obtain a flop

Mmr (v) -2 M,_(v)

v
Yo=Y ,

where 0, € C, and o_ € C_ are stability conditions near oy but on opposite sides of the wall. Thus M,,_ (v) is a different
birational model of M, (v). Moreover, the maps

C+ —> Nef(M,, (v)) and C_ —> Nef(M,_(v))

can be ‘glued’ along the wall, and after extending this process to all chambers, we arrive at a map from the space Stab’(X)
of stability conditions to the cone of movable divisors on M, (v).

The main difficulty with this argument is that there also exist totally semistable walls that arise from spherical objects in
D®(X). On these walls, every complex in M, (v) will be strictly semistable, and the corresponding birational transformation
could be a flop, a divisorial contraction, or even an isomorphism. The different possibilities are classified in Theorem 5.7 of
Bayer and Macri [37].

These ideas have numerous applications to the geometry of moduli spaces of sheaves on K3 surfaces. For example, they
can be used to determine the nef cone of certain Hilbert schemes of points on K3 surfaces.

Theorem 22 (Bayer and Macri [36], Proposition 10.3). Let X be a K3 surface with polarization H of degree H?> = 2d, and assume
that the Néron-Severi group is generated over Z by H. For n > %2, the nef cone of Hilb"X is generated by H and H — 5.
(Here 28 denotes the locus of non-reduced subschemes, and we regard H as a divisor on Hilb"X via the isomorphism

H2(Hilb"X, Z) = H2(X, Z) & Z8,

as in Section 4.)

Remark. This result is also a special case of Proposition 4.39 of Yoshioka [47], applied to the moduli space My (1,0, 1—n) =
Hilb™X. Of course this earlier proposition is proved without reference to moduli spaces of stable complexes.

Remark. Bayer and Macri also identify an extremal ray R, as a curve of S-equivalent og-semistable complexes, that is
contracted by the morphism corresponding to H — %8. This ray satisfies

_n—|—3+(d+1)(2n—d—3) >_n—|—3

R) =
9(R) 2 2n—2 - 2

)

revealing that the Mori cone can be smaller than predicted by Hassett and Tschinkel [32].
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Another application is to the existence of Lagrangian fibrations on Hilbert schemes of points on K3 surfaces, i.e., fibrations
over P" whose fibres are Lagrangian with respect to the holomorphic symplectic form. The Hyperkdhler SYZ Conjecture
asserts that an irreducible holomorphic symplectic manifold admits a (rational) Lagrangian fibration if and only if it contains
an isotropic divisor, i.e., a divisor D such that g(D) = 0 where q is the Beauville-Bogomolov form (see Huybrechts [48] or
the author’s article [49]). For a divisor

D = C + k8 € HX(Hilb"X, Z) = H*(X, Z) & Z3,

this means that q(D) = €% — 2k*(n — 1) must vanish. It was proved, independently by Markushevich and the author, that
this leads to a Lagrangian fibration if H = C generates the Néron-Severi group of X.

Theorem 23 (Markushevich [50], Sawon [51]). Let X be a K3 surface with Néron-Severi group generated over 7 by the
polarization H. If H?> = 2k?(n — 1) for some integer k, then Hilb"X admits a Lagrangian fibration.

Proof. We just give an outline of the argument. For w = (k, H, k(n — 1)) € H®(X, Z), the moduli space My (w) of stable
sheaves on X is a K3 surface, which we denote by X’, and there exists a twisted Fourier-Mukai transform @ : D’(X) —
Db(x’, B). The twist B is necessary because My(w) is not a fine moduli space. For Z € Hilb"X, one can show that the
transform of the ideal sheaf { is a sheaf concentrated in a single degree. In fact, @ ({7)[1] is a torsion sheaf supported on a
curve C’ inX’. Therefore @ induces an isomorphism of Hilb"X with a so-called Beauville-Mukai integrable system [52] on X',
i.e., the relative compactified Jacobian of a complete linear system |C’| of curves on X’. The latter is obviously a Lagrangian
fibration, with the map to |C’| = P" given by taking supports. 0O

Theorem 10.8 of Bayer and Macri [36] extends the above theorem to the case where C = 2H is twice the generator of the
Néron-Severi group. Their argument is roughly as follows. The hypothesis is that 4H?> = 2k?(n — 1) for some odd integer
k. One considers the moduli spaces M, (v) of stable complexes where v = (1,0, 1 — n) and o; is the family of Bridgeland
stability conditions on D®(X) given by 8 + iw = —%H + itH, where t > 0. For t 3> 0 we have M,, (v) = Hilb"X. There is
also a Fourier-Mukai transform & : D?(X) — DP(X’, B), as above, that induces an isomorphism of moduli spaces

Mg, (v) = Mg (o) (@ (V).

For t close to 0, the right hand side is a moduli space of sheaves on X’; indeed it is a Beauville-Mukai system, and therefore
a Lagrangian fibration. Finally, one describes what happens as t varies from very large to very small: there are finitely
many wall-crossings, and each wall-crossing induces a birational modification of the moduli space. It follows that Hilb"X is
birational to a Lagrangian fibration; we say that it admits a rational Lagrangian fibration. Moreover, Bayer and Macri proved
that every minimal model for Hilb"X arises as a moduli space of stable complexes in D?(X) for some stability condition.

In their subsequent paper [37], Bayer and Macri broadly generalized these results so as to apply to any moduli space
My (v) of stable sheaves on a K3 surface, not just Hilbert schemes of points. They showed that

1. every minimal model of My (v) can be interpreted as a moduli space of o -stable complexes with Mukai vector v for some
Bridgeland stability condition o € Stab’(X),

2. the chamber decomposition of the movable cone of My (v) can be determined from the wall and chamber structure of
the special component Stab’(X) C Stab(X) described above,

3. and the Hyperkdhler SYZ Conjecture holds for My (v).

Since we have already given an indication of the ideas and methods involved, we refer the reader to the original paper [37]
for precise statements and more details.
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