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a b s t r a c t

In this survey article we describe moduli spaces of simple, stable, and semistable sheaves
on K3 surfaces, following the work of Mukai, O’Grady, Huybrechts, Yoshioka, and others.
We also describe some recent developments, including applications to the study of Chow
rings of K3 surfaces, determination of the ample and nef cones of irreducible holomorphic
symplectic manifolds, and moduli spaces of Bridgeland stable complexes of sheaves.
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1. Introduction

In the 60s, moduli spaces of vector bundles on curves were much studied, following Mumford’s general construction
using Geometric Invariant Theory. Attention then turned to vector bundles on surfaces and higher dimensional varieties.
Several new features immediately arose. A vector bundle on a curve has two numerical invariants, the rank r and degree d
(equivalently, the first Chern class c1), and the construction ofmoduli spaces as GIT quotients leads naturally to the definition
of stability in terms of the slopeµ = d/r . Slope stability extends to higher dimensions, but by using the additional numerical
invariants (higher Chern classes c2, etc.) Gieseker was led to another notion of stability. While slope stability is easier to
work with when manipulating vector bundles, Gieseker stability allows for a more general construction of moduli spaces;
of course, these two notions of stability are closely related, and in many cases equivalent. Another difference in higher
dimensions is that, unlike on smooth curves, torsion free coherent sheaves are not automatically locally free. Thus to obtain
compact moduli spaces, one must consider not just vector bundles but also torsion free sheaves.

Moduli spaces of sheaves on P2 and on higher dimensional projective spaces were very explicitly described in the late
70s, partly motivated by the relation to Yang–Mills instantons on R4 and S4. The geometry of moduli spaces of sheaves on
other specific surfaces were also studied, notably for K3 and abelian surfaces by Mukai in the 1980s. Such moduli spaces
reflect the geometry of the underlying surface; they can be used to reveal properties of the surface, or theymay be studied as
interesting spaces in their own right. For instance, Mukai proved that moduli spaces of sheaves on K3 surfaces are examples
of holomorphic symplectic manifolds, i.e., higher dimensional analogues of K3 surfaces, or from a differential geometric
perspective, hyperkähler manifolds. These moduli spaces have been intensely studied ever since, both for what they tell
us about K3 surfaces (and their curves, linear systems, Chow groups, etc.) and as test cases for uncovering the structure of
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general holomorphic symplectic manifolds. Another impetus for studying moduli spaces of sheaves on surfaces, from the
mid-80s to themid-90s, was Donaldson’s fundamental work on the topology of smooth four-manifolds via moduli spaces of
Yang–Mills instantons. Because of the Hitchin–Kobayashi correspondence, which gives a Hermitian–Einstein connection on
any stable bundle, Donaldson’s polynomial invariants for algebraic surfaces can be computed using moduli spaces of stable
bundles.

In this article we survey moduli spaces of sheaves on K3 surfaces. In Section 2 we recall simpleness, slope stability,
and Gieseker stability for torsion free coherent sheaves, and describe how these notions are related. We describe some
general properties of moduli spaces of simple, stable, and semistable sheaves on K3 surfaces. We end the section with a
short discussion of the Hitchin–Kobayashi correspondence. Much of the material in this section remains valid for arbitrary
projective surfaces, and almost every result for K3 surfaces has an analogous result for abelian surfaces. The rest of the article
describes some recent developments and applications of sheaves on K3 surfaces, and their moduli spaces. In Section 3 we
review work of Beauville, Voisin, Huybrechts, and O’Grady on the Chow ring of a K3 surface. In Section 4 we discuss Hassett
and Tschinkel’s conjectural description of theMori cone of curves on a holomorphic symplectic manifold, which determines
the ample and nef cones, and what is known for moduli spaces of sheaves on K3 surfaces. In Section 5 we give a brief
description of Bridgeland stability conditions on derived categories, and present some applications of these ideas to moduli
spaces of sheaves and complexes of sheaves on K3 surfaces due to Bayer and Macrì.

For the reader interested in pursuing these topics further, we recommend the excellent survey articles by Mukai [1]
and Yoshioka [2], which, like this article, concentrate mainly on moduli spaces of sheaves on K3 surfaces. A more general
introduction to moduli spaces of sheaves on algebraic surfaces can be found in the books of Friedman [3], Huybrechts and
Lehn [4], and Le Potier [5].

2. Simple and stable sheaves, and their moduli spaces

2.1. Simple sheaves

Let X be a K3 surface.When considering families of holomorphic bundles or coherent sheaves on X , we fix the underlying
topological type of the bundles or sheaves. For this purpose, it is convenient to introduce the following lattice.

Definition. The Mukai lattice of X is

Hev(X, Z) := H0(X, Z) � H2(X, Z) � H4(X, Z)

with the pairing defined by

hv, wi :=

Z

X
�v0w4 + v2w2 � v4w0.

The Mukai vector of a sheaf E on X is defined to be

v(E) := ch(E)Td
1
2
X =

✓
r, c1,

c21
2

� c2 + r
◆

,

where c1 and c2 are the Chern classes of E , and r its rank. We call E a simple sheaf if Hom(E, E) ⇠= C.

Under fairly general conditions, moduli of coherent sheaves exists only as Artin stacks. By adding the simpleness
condition, we obtain moduli spaces that are algebraic spaces (possibly non-Hausdorff). For simple sheaves on K3 surfaces,
Mukai proved more.

Theorem 1 (Mukai [6]). Fix an element v = (v0, v2, v4) in Hev(X, Z) with v2 lying in the Néron–Severi group NS(X) of X. The
moduli space Spl(v) of simple sheaves E on X with v(E) = v is smooth of dimension hv, vi+2. Moreover, Spl(v) admits a closed
non-degenerate holomorphic two-form.

Proof. We give a rough sketch of the argument and refer to [6] for details (see also [7,1]). The Zariski tangent space of Spl(v)
at E is isomorphic to Ext1(E, E). Riemann–Roch gives

�(E, E) = dimHom(E, E) � dimExt1(E, E) + dimExt2(E, E)

=

Z

X
ch(E_)ch(E)TdX

= �hv, vi.

Now Hom(E, E) ⇠= C is one-dimensional, and so is Ext2(E, E) ⇠= Hom(E, E)_, by Serre duality and !X ⇠= OX . Therefore

dimExt1(E, E) = hv, vi + 2.

This gives the dimension, though we still have to establish smoothness. In general, the obstruction to deforming a sheaf E

lies in Ext2(E, E). One can prove that taking the trace gives the obstruction in H2(OX ) to deforming the line bundle det E .
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But there is no obstruction to deforming a line bundle on a K3 surface; indeed, line bundles are rigid. Now for a simple sheaf
E , the map

Ext2(E, E)
tr

�! H2(OX )

is an isomorphism, as it is the dual of

H0(OX ) ⇠= C �! Hom(E, E).

Thus the vanishing of the obstruction to deforming det E implies the vanishing of the obstruction to deforming E itself, and
Spl(v) is smooth at E .

A bilinear pairing on the tangent space Ext1(E, E) is given by composing and then taking the trace:

Ext1(E, E) ⇥ Ext1(E, E) �! Ext2(E, E)
tr

�! H2(OX ) ⇠= C.

If a 2 Ext1(E, E) then the pairing of awith itself gives the obstruction to deforming E in the direction a, as described above.
Since this obstruction vanishes for simple sheaves E , the pairing is skew-symmetric. For holomorphicity and closedness of
the resulting two-form on Spl(v) see [1], page 154. ⇤

2.2. Stability and semistability

While the moduli space Spl(v) has some nice properties, it is usually non-Hausdorff, and for this reason we consider
instead stable sheaves. Let (X,H) be a polarized K3 surface, i.e., H is an ample divisor on X .

Definition. The slope of a torsion free coherent sheaf E is defined to be

µ(E) :=
c1(E).H
rank E

.

A torsion free coherent sheaf E is µ-stable (respectively µ-semistable) if µ(F ) < µ(E) (respectively µ(F )  µ(E)) for all
coherent subsheaves F ⇢ E with 0 < rankF < rank E .

Remark. This is also known as Mumford–Takemoto stability [8] and slope stability.

Definition. The normalized Hilbert polynomial of a torsion free coherent sheaf E is defined to be

pH,E (n) :=
�(E ⌦ Hn)

rank E
.

A torsion free coherent sheaf E is stable (respectively semistable) if pH,F (n) < pH,E (n) (respectively pH,F (n)  pH,E (n)) for
n � 0 for all proper subsheaves F ⇢ E .

Remark. This is also known as Gieseker stability [9] and Maruyama stability [10]. (To emphasize the dependence on the
choice of polarization, H-stability is also used; but care needs to be taken since H-stable sometimes means µ-stable with
respect to H .) In addition, Simpson [11] generalized the notion of stability to pure-dimensional sheaves.

Lemma 2. 1. Stable sheaves are simple.
2. We have the following implications:

E is µ-stable ) E is stable ) E is semistable ) E is µ-semistable.

3. If the rank of E and divisibility of c1(E) in H2(X, Z) are coprime, and H is v-general where v = v(E), then E is µ-semistable
implies E is µ-stable. (So in this case, all four notions of stability and semistability in 2 are equivalent for E .)

4. If v(E) 2 Hev(X, Z) is primitive and H is v-general, then E is semistable implies E is stable.

Remark. For each v 2 Hev(X, Z) there are hyperplanes in the ample cone of X known as walls. We call an ample divisor H
v-general if it does not lie on any of these walls.

Proof. Let E be stable and let a 2 Hom(E, E) be non-zero. Suppose that a is not an isomorphism. Denote by F and
G the kernel and image of a, respectively. Then both F and G are proper subsheaves of E , so pH,F (n) < pH,E (n) and
pH,G(n) < pH,E (n) for n � 0, by the stability of E . Now from the short exact sequence

0 �! F �! E �! G �! 0

we get

�(E ⌦ Hn) = �(F ⌦ Hn) + �(G ⌦ Hn),
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and therefore

pH,E (n) =
�(E ⌦ Hn)

rank E
=

�(F ⌦ Hn) + �(G ⌦ Hn)

rankF + rankG
=

pH,F (n)rankF + pH,G(n)rankG

rankF + rankG
< pH,E (n).

This contradiction shows that the non-zero endomorphism a must be an isomorphism. Next, let � be an eigenvalue of the
induced isomorphism ā : H0(E ⌦Hn) ! H0(E ⌦Hn), for some n � 0, and let b := a��Id 2 Hom(E, E). Since the induced
map b̄ : H0(E ⌦ Hn) ! H0(E ⌦ Hn) is not an isomorphism, b itself cannot be an isomorphism. This means that b must be
zero. Thus a = �Id and E must be simple, proving 1.

By Riemann–Roch, we have

�(E ⌦ Hn) =

Z

X
ch(E) exp(nH)TdX = rank E

H2

2!
n2

+ c1(E).Hn + const.

Therefore

pH,E (n) =
�(E ⌦ Hn)

rank E
=

H2

2!
n2

+
c1(E).H
rank E

n + const =
H2

2!
n2

+ µ(E)n + const.

Statement 2 now follows by elementary algebra. For instance, suppose E is µ-stable. Then µ(F ) < µ(E) for all coherent
subsheaves F ⇢ E with 0 < rankF < rank E . This implies that

pH,F (n) =
H2

2!
n2

+ µ(F )n + const <
H2

2!
n2

+ µ(E)n + const = pH,E (n)

for n � 0, and thus E is stable.
Statement 3 also follows by elementary algebra. Suppose E is µ-semistable. Then µ(F )  µ(E) for all coherent

subsheaves F ⇢ E with 0 < rankF < rank E . If E is not µ-stable then we must have equality for some F , i.e.,

µ(F ) =
c1(F ).H
rankF

=
c1(E).H
rank E

= µ(E).

BecauseH is v-general, this can only happen if c1(F )/rankF = c1(E)/rank E , or equivalently, c1(F )rank E = c1(E)rankF .
Thus rank E divides c1(E)rankF , where rankF < rank E , contradicting the fact that rank E and the divisibility of c1(E) are
coprime.

Finally, statement 4 is proved in a similar manner. If E is semistable but not stable, then there exists a proper subsheaf
F ⇢ E such that pH,F (n) = pH,E (n) for n � 0. Because H is v-general, we must have v(F )rank E = v(E)rankF . If
rankF < rank E then some prime factor of rank E divides v(E), contradicting the primitivity of v(E). On the other hand, if
rankF = rank E then the quotient sheaf E/F is torsion. Moreover

�(F ⌦ Hn) = pH,F (n)rankF = pH,E (n)rank E = �(E ⌦ Hn),

so �((E/F ) ⌦ Hn) = 0 for n � 0. This implies that E/F = 0, contradicting the fact that F is a proper subsheaf of E . ⇤

Gieseker [9] constructed the moduli space MH(v) of stable sheaves E on X with Mukai vector v(E) = v, as a
quasi-projective scheme. If MH(v) is not already compact, then one can compactify by adding semistable sheaves. Now
a semistable sheaf E admits a Jordan–Hölder filtration, 0 = E0 ⇢ E1 ⇢ · · · ⇢ Ek = E , whose graded factors Ei+1/Ei are
stable sheaves with the same normalized Hilbert polynomials as E . These graded factors are uniquely determined by E , up
to ordering, and two semistable sheaves are said to be S-equivalent if they have the same graded factors. Then Gieseker also
constructed the moduli space MH(v)ss of S-equivalence classes of semistable sheaves E on X with Mukai vector v(E) = v,
as a projective scheme that compactifies MH(v). (Note that a stable sheaf E is also semistable, and its S-equivalence class
consists of just the sheaf E itself.) In particular, if every semistable sheaf is stable, thenMH(v)will already be projective, and
hence compact. For example, by statement 4 of Lemma 2, this occurs when v is primitive and H is v-general.

Gieseker’s construction applies to arbitrary smooth projective surfaces (X,H), though for K3 surfaces we can invoke
Mukai’s results on the moduli space of simple sheaves. By statement 1 of Lemma 2, the moduli space MH(v) of stable
sheaves is an (open) subscheme of Spl(v). Therefore for K3 surfaces,MH(v) is smooth and it inherits a closed non-degenerate
holomorphic two-form.

Notice that as the polarization H varies, we generally get different open subschemes MH(v) ⇢ Spl(v). For example,
if H and H 0 lie on opposite sides of a wall of the ample cone, then MH(v) and MH 0(v) may be birational but not isomorphic.
What is happening here is that some locus � ofMH(v) is removed and replaced by a locus � 0 inMH 0(v), and for every point
p 2 � ⇢ Spl(v) there is a corresponding non-separated point p0 2 � 0 ⇢ Spl(v) (recall that Spl(v) is non-Hausdorff!). We
will say more about variations of the polarization in Section 5.

Example. Let v = (1, 0, 1 � n). A torsion free sheaf E with Mukai vector v(E) = (1, 0, 1 � n) will have rank one, c1 = 0,
and c2 = n. It will be µ-stable because there are no coherent subsheaves F ⇢ E with 0 < rankF < rank E = 1. It will
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also be stable with respect to all possible polarizations H because if F ⇢ E is a proper subsheaf then rankF = rank E = 1,
E/F is torsion, and thus

pH,E (n) � pH,F (n) = �(E ⌦ Hn) � �(F ⌦ Hn) = �((E/F ) ⌦ Hn) > 0

for n � 0. Now E
__ will be reflexive and therefore locally free, as X is a surface; thus E

__ ⇠= OX . The cokernel of the
inclusion E ,! E

__ will be the structure sheaf OZ of a zero-dimensional subscheme Z ⇢ X of length n. Thus E is identified
with the ideal sheaf IZ of Z ,

0 �! E ⇠= IZ �! E
__ ⇠= OX �! OZ �! 0,

and themoduli spaceMH(1, 0, 1�n) is identified with the Hilbert scheme HilbnX of length n zero-dimensional subschemes
Z ⇢ X .

In low dimensions we can completely describe the moduli spaces.

Theorem 3 (Mukai [7], Corollary 3.6). If hv, vi = �2 then MH(v) is empty or a single point.

Proof. Simple sheaves with hv(E), v(E)i = �2 are known as rigid sheaves, because the space Ext1(E, E) parametrizing
their first order deformations is trivial. Mukai first shows that a rigid torsion free sheaf E must be locally free. Moreover, if
E is stable and F is another semistable sheaf with v(F ) = v(E), then by Riemann–Roch

�(E, F ) = �hv(E), v(F )i = 2.

So at least one of Hom(E, F ) and Hom(F , E) ⇠= Ext2(E, F )_ must be non-trivial. But because E is stable, a homomorphism
E ! F , respectively F ! E , must be an isomorphism. ⇤

Theorem 4 (Mukai [7], Theorem 1.4, Corollary 4.6). Fix v 2 Hev(X, Z) with hv, vi = 0 and fix an ample divisor H on X. If every
semistable sheaf E with v(E) = v is stable, then MH(v) is empty or a K3 surface.

Remark. As we have already observed, if v is primitive and H is v-general then the hypothesis of the theorem is satisfied.

Proof. Recall that the moduli space Spl(v) of simple sheaves with Mukai vector v is smooth of dimension hv, vi + 2 = 2.
As described above, MH(v) is an open subscheme of Spl(v). Assume MH(v) is non-empty. If every semistable sheaf E with
v(E) = v is stable, then MH(v) contains a connected component M that is compact. We claim that every semistable sheaf
F with v(F ) = v is isomorphic to a stable sheaf in the family parametrized byM . To see this, one takes a (quasi-)universal
sheaf on X ⇥ M , uses it to construct a Fourier–Mukai transform � : Db(X) ! Db(M), and then shows that �(F ) is the
shift of a skyscraper sheaf on M . Applying the inverse Fourier–Mukai transform then proves the claim (see the proof of
Proposition 4.4 [7] for details). It follows that MH(v) = M is irreducible. Moreover, Spl(v), and therefore MH(v), admits a
nowhere vanishing holomorphic two-form, so MH(v) is an abelian or K3 surface. Finally, the cohomological Fourier–Mukai
transform induces an isometry

'Q : v?/Qv �! H2(MH(v), Q),

where v? denotes the orthogonal complement of Qv in Hev(X, Z). We conclude thatMH(v) is a K3 surface. ⇤

Mukai also proved non-emptyness of these moduli spaces under certain conditions, a result which was generalized by
Yoshioka. Specifically, we say that a Mukai vector v 2 Hev(X, Z) with v2 2 NS(X) is positive if v0 > 0, or if v0 = 0 and v2 is
effective, or if v0 = v2 = 0 and v4 > 0. Then it follows from the general results in [12,13] (and also Corollary 3.5 of [14] for
the rank zero case) that MH(v) is non-empty if v is primitive, positive, and hv, vi � �2.

In higher dimensions we have the following result, the culmination of the work of a number of authors, including Mukai,
Göttsche and Huybrechts, O’Grady, and Yoshioka. First a definition.

Definition. A holomorphic symplecticmanifold is a compact KählermanifoldM that admits a non-degenerate holomorphic
two-form � 2 H0(M, ⌦2

M). Moreover, we sayM is irreducible if it is simply connected and H0(M, ⌦2
M) is generated by � .

Remark. Non-degeneracy means that taking the interior product with � induces an isomorphism TM ⇠= ⌦1
M ; equivalently,

� n is nowhere vanishing and trivializes KM = ⌦2n
M , where 2n is the dimension ofM (which is necessarily even). In addition,

� is d-closed because Hodge theory implies

H0(M, ⌦2
M) ⇢ H2(M, C).

Theorem 5. Let v 2 Hev(X, Z) be positive, primitive, and let H be v-general. Suppose that 2n := hv, vi + 2 is greater than 2.
Then MH(v) is an irreducible holomorphic symplectic manifold that is deformation equivalent to the Hilbert scheme HilbnX of
n points on a K3 surface. In addition, the weight-two Hodge structure H2(MH(v), Z) is isomorphic to v?, and this isomorphism
takes the Beauville–Bogomolov quadratic form on H2(MH(v), Z) to the restriction of the Mukai pairing on v?.
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Remark. Here v? denotes the orthogonal complement of v in Hev(X, Z), which is given the Hodge structurewith (1, 1)-part
equal to

H0(X, Z) � H1,1(X, Z) � H4(X, Z).

The Beauville–Bogomolov form [15] of an irreducible holomorphic symplectic manifold M is a natural quadratic form on
H2(M, Z), given by taking

q̃(↵) =
n
2

Z

M
(� �̄ )n�1↵2

+ (1 � n)
Z

M
� n�1�̄ n↵ ·

Z

M
� n�̄ n�1↵

and rescaling by a rational constant (to make it primitive and integral).

Proof. As describe above, Mukai [6,1] proved that the moduli space Spl(v) of simple sheaves is smooth of dimension
hv, vi + 2 = 2n, and it admits a non-degenerate holomorphic two-form. Moreover, MH(v) is an open subscheme, that
is also compact under the hypothesis that v is primitive and H is v-general. The relation between MH(v) and HilbnX was
explored first in the rank two case, i.e., when v0 = 2, by Göttsche and Huybrechts [16], and then for higher rank but with
primitive v2 2 H2(X, Z) by O’Grady [17]. O’Grady’s idea is to deform the underlying K3 surface X to a certain elliptic
K3 surface, inducing a corresponding deformation of MH(v). Then one can implement a backward induction, eventually
reducing the rank of the sheaves to one, i.e., at each step, one identifies MH(v) with a moduli space of stable sheaves
whose rank is one less than for v (the identification is a birational map, but Huybrechts [18] later proved that birational
holomorphic symplectic manifolds are also deformation equivalent). Rank one torsion free sheaves on a K3 surface look like
line bundles tensored with ideal sheaves of zero-dimensional subschemes, and thus we can identify the moduli space with
HilbnX . Finally, Yoshioka removed the hypothesis that v2 be primitive (Theorem 8.1 of [19]) and treated the rank zero case,
i.e., pure dimension one sheaves [13]. Yoshioka’s approach differs fromO’Grady’s: he proves that stability is preserved under
Fourier–Mukai transforms, under certain conditions, and uses this to construct isomorphisms between different moduli
spaces. He also proved a generalization of the theorem for non-primitive v and studied non-general H in [12].

Mukai [1] constructed a canonical map

✓v : v?
�! H2(MH(v), Z)

using the Chern class of a quasi-universal sheaf on X ⇥ MH(v). By carefully tracking this map under the birational
identifications above, O’Grady [17] proved that it is an isomorphism of Hodge structures, and an isometry of lattices taking
the Mukai pairing on v? to the Beauville–Bogomolov form on H2(MH(v), Z), provided that v2 is primitive (a technical
assumption that was later removed by Yoshioka [19]). ⇤

2.3. Singular moduli spaces

Theorem 5 gives a complete description of MH(v) for primitive v and v-general H . For both non-primitive v and
non-general H , MH(v) will be non-compact, and one must add (S-equivalence classes of) strictly semistable sheaves to
compactify, MH(v) ⇢ MH(v)ss. We will discuss variations of the polarization H in Section 5. For non-primitive v, the
strictly semistable locus is the singular locus ofMH(v)ss; only in some special cases do these singularities admit a symplectic
desingularization.

Theorem 6 (O’Grady [20]). For the Mukai vector v = (2, 0, �2) 2 Hev(X, Z), the moduli space MH(2, 0, �2)ss admits a
symplectic desingularization. The resulting smooth irreducible symplectic variety of dimension ten is not deformation equivalent
to Hilb5X; indeed, it gives a new deformation class of irreducible holomorphic symplectic manifolds.

If W and Z ⇢ X are zero-dimensional subschemes of length two, then IW � IZ is a strictly semistable sheaf with
Mukai vector (2, 0, �2); in fact, all strictly semistable sheaves in MH(2, 0, �2)ss are of this form, so the singular locus is
isomorphic to

Sym2(Hilb2X).

O’Grady desingularizes MH(2, 0, �2)ss by a sequence of blowups, followed by a blowdown to ensure that the induced
holomorphic two-form on the resulting smooth space is non-degenerate.

In general, suppose that v = mv0 2 Hev(X, Z) where m � 2 and v0 is primitive. (Note that we have changed our
notation: in this section v0 denotes a Mukai vector, not the degree zero component of the Mukai vector v.) If hv0, v0i = �2
then every semistable sheafwithMukai vectormv0 will be isomorphic to E

�m, where E is the unique stable sheafwithMukai
vector v0 (see Theorem 3); thus MH(v0)

ss consists of a single point. If hv0, v0i = 0 then every semistable sheaf with Mukai
vectormv0 will be S-equivalent to a direct sum ofm stable sheaves with Mukai vectors v0; thusMH(mv0)

ss is isomorphic to
SymmMH(v0), whereMH(v0) is a K3 surface by Theorem 4. Assume now that hv0, v0i � 2.

Theorem 7 (Lehn and Sorger [21]). If hv0, v0i = 2 andH is v-general then the blowup of the reduced singular locus of MH(2v0)
ss

is a symplectic desingularization. (In particular, O’Grady’s example is of this form.)
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Theorem 8 (Kaledin, Lehn, and Sorger [22]). If m � 2 and hv0, v0i > 2 or m > 2 and hv0, v0i � 2 then MH(mv0) has locally
factorial singularities. Therefore, since the singularities occur in codimension �4, they cannot be resolved symplectically.

Remark. As stated, the theorem is for sheaves of non-zero rank, though Kaledin et al. also proved it for rank zero under
some additional hypotheses.

2.4. The Hitchin–Kobayashi correspondence

Weend this sectionwith a discussion of one of the differential geometric aspects of stable bundles. Let E be a holomorphic
bundle equipped with a Hermitian metric h·, ·i. Recall that there exists a unique unitary connection r that is compatible
with the holomorphic structure on E, i.e.,

dhs1, s2i = hrs1, s2i + hs1, rs2i

for all smooth sections s1 and s2 of E, and r0,1 = @̄E . Then r2 := r � r will lie in ⌦1,1(EndE).

Definition. Let ! be a Kähler form on X , and let E be a holomorphic bundle on X . Then h·, ·i is a Hermitian–Einstein metric
on E if its corresponding compatible unitary connection r satisfies

r
2
^ ! = �IdE!

2
2 ⌦2,2(EndE)

where � is a constant (equivalently, the contraction of r2 with ! equals �IdE).

Remark. Taking the trace of both sides and integrating gives
Z

X
tr(r2) ^ ! = �rank E

Z

X
!2.

By Chern–Weil theory, tr(r2) = �2⇡ ic1(E). Thus

� =
�⇡ i
volX

µ(E),

where

µ(E) :=

R
X c1(E) ^ !

rank E
is the slope of E with respect to the Kähler form! (if! comes from an ample divisorH then this is just the slopewith respect
to H).

Example. The space of two forms ⌦2(M) on a Riemannian four-manifold decomposes into a direct sum ⌦2
+
(M) � ⌦2

�
(M)

of self-dual and anti-self-dual two forms. For a compact Kähler surface (X, !), the complexification of ⌦2
+
(X) is spanned by

(2, 0)-forms, (0, 2)-forms, and !, whereas the complexification of ⌦2
�
(X) is the orthogonal complement of ! in ⌦1,1(X).

Let E be a holomorphic bundle on X with c1(E) = 0, and equip E with a Hermitian metric and corresponding compatible
unitary connection r . If r is Hermitian–Einstein then

r
2
^ ! = 0,

because E has slope µ(E) = 0. Thus r2 2 ⌦1,1(EndE) and it is orthogonal to !, implying that r2 lies in ⌦2
�
(EndE). We

call r an anti-self-dual connection (an example of a Yang–Mills instanton). Conversely, an anti-self-dual connection on a
compact Kähler surface is Hermitian–Einstein.

The main result we wish to describe is the Hitchin–Kobayashi correspondence. It was proved first for Riemann surfaces
by Narasimhan and Seshadri [23], then for projective surfaces by Donaldson [24], and then for compact Kähler manifolds in
arbitrary dimension by Uhlenbeck and Yau [25] (and independently, for smooth projective varieties in arbitrary dimension
by Donaldson [26]).

Theorem 9. Let E be a holomorphic bundle on a compact Kähler manifold (X, !). Then E admits a Hermitian–Einstein metric if
and only if it is µ-polystable with respect to !, i.e., it is a direct sum of µ-stable bundles.

As an application, we consider tensor products of bundles.

Proposition 10. If E and F are µ-stable bundles then E ⌦ F is µ-polystable.

Proof. Equip E and F with Hermitian–Einstein metrics, with corresponding connections rE and rF . The induced Hermitian
metric on E ⌦ F , with corresponding connection rE ⌦ IdF + IdE ⌦rF , is easily seen to be Hermitian–Einstein too. Therefore
E ⌦ F is µ-polystable. ⇤
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3. The Chow ring of a K3 surface

The Chow ring CH(X) of a K3 surface is the ring of algebraic cycles on X modulo rational equivalence; the ring structure
is given by intersection. The Chow ring is graded by codimension,

CH(X) = CH0(X) � CH1(X) � CH2(X),

though in this article we will adopt the common alternative notation

CH(X) = CH2(X) � CH1(X) � CH0(X).

Now CH2(X) = Z[X] for all irreducible surfaces, and CH1(X) ⇠= Pic(X) is a lattice for K3 surfaces. On the other hand, the
group CH0(X) of 0-cycles up to rational equivalence is infinite-dimensional and much more complicated; simple and stable
sheaves, and their moduli, play a rôle in understanding it.

Theorem 11 (Beauville–Voisin [27]). Let cX be the class of a point lying on a rational curve in the K3 surface X. Then

1. cX is independent of the choice of point and rational curve,
2. if C1 and C2 are two curves in X, then the class of C1 \ C2 in CH0(X) is a multiple of cX , and
3. the second Chern class c2(X) 2 CH0(X) is equal to 24cX .

Definition. The Beauville–Voisin ring is defined to be

R(X) := CH2(X) � CH1(X) � ZcX = Z[X] � Pic(X) � ZcX .

Remark. By statement 2 above, R(X) is a subring of CH(X). Moreover, the Mukai vector

v(L) = ch(L)Td
1
2
X =

✓
1, c1(L),

c1(L)2

2
+

c2(X)

24

◆

of a line bundle L on X , regarded as an element of the Chow ring, must lie in R(X).

Definition. A spherical object on X is a bounded complex of sheaves, E• 2 Db(X), such that

Extk(E•, E
•) ⇠=

⇢
C if k = 0 or 2,
0 otherwise.

Line bundles are spherical objects, as are rigid sheaves. Spherical objects are the generalization of rigid sheaves to objects
of the derived category.

Theorem 12 (Huybrechts [28]). Let X be a projective K3 surface with Picard number ⇢(X) � 2.

1. If E
• 2 Db(X) is a spherical object, then v(E•) 2 R(X).

2. Derived equivalences preserve R(X), i.e., if � : Db(X) ! Db(X 0) is an equivalence of triangulated categories then
�CH(R(X)) = R(X 0), where �CH : CH(X) ! CH(X 0) is the induced isomorphism of Chow groups.

Remark. Statement 1 also holds when ⇢(X) = 1. Huybrechts proved this under the additional hypothesis that v(E•) =

(r, kH, s), where H generates PicX and k ⌘ ±1 (mod r). Without this hypothesis, we can argue as follows: If r = 0 then

2 = �(E•, E
•) = �hv(E•), v(E•)i = �k2H2

 0,

a contradiction; so without loss of generality we can assume r > 0. As explained in the proof of Corollary 3.3 of [28],
there exists a spherical locally free sheaf E such that v(E) = v(E•) in cohomology. Corollary 2.6 of [28] shows that in
fact v(E) = v(E•) in the Chow ring. Finally, rigid sheaves are simple, so the theorem of Voisin stated below shows that
c2(E) 2 S0(X). This means that v(E) 2 R(X).

O’Grady [29] introduced a filtration on CH0(X),

S0(X) := ZcX ⇢ S1(X) ⇢ S2(X) ⇢ · · · ⇢ Sg(X) ⇢ · · · ⇢ CH0(X),

by defining Sg(X) to be the set of classes [Z] + acX , where Z = p1 + · · · + pg is an effective 0-cycle of length g and a 2 Z.
Equivalently, Sg(X) is the set of elements of the form ◆⇤[Z], where Z is a 0-cycle on a genus g curve C and ◆ : C ! X is any
non-constant morphism (not necessarily an inclusion). Rigid sheaves belong to zero-dimensional moduli spaces; therefore
the following conjecture is a generalization of Theorem 12 of Huybrechts.
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Conjecture 13 (O’Grady [29]). Suppose that MH(v) has dimension 2d. If E is a stable sheaf in MH(v), or a semistable sheaf
whose S-equivalence class [E] lies in MH(v)ss, then c2(E) lies in Sd(X). Moreover, as we vary E in MH(v), and [E] in MH(v)ss, the
set of all second Chern classes c2(E) is precisely the set of elements of Sd(X) of the appropriate degree, i.e.,

{c2(E) | [E] 2 MH(v)ss} = {[Z] 2 Sd(X) | deg Z = c2(v)}.

The conjecture is true in many cases.

Theorem 14 (O’Grady [29]). Suppose that MH(v) is non-empty and one of the following holds:

1. v2 2 H2(X, Z) is primitive and equal to H, and v4 � 0,
2. the Picard number ⇢(X) � 2, the rank v0 is coprime to the divisibility of v2 2 H2(X, Z), and H is v-general,
3. the rank v0  2 and H is v-general if v0 = 2.

Then the above conjecture is true for MH(v).

Theorem 15 (Voisin [30]). If E is a simple bundle with Mukai vector v(E) = v, then c2(E) 2 Sd(X), where 2d is the dimension
of MH(v). Moreover,

{c2(E) | E 2 Spl(v)} = {[Z] 2 Sd(X) | deg Z = c2(v)}.

Remark. Voisin’s result is for bundles that are simple, rather than stable or semistable. But there are no restrictions on ⇢(X)
or v, so in the locally-free case, this generalizes both Huybrechts’s and O’Grady’s results.

In addition, Voisin [30] characterized Sd(X) in terms of dimensions of rational equivalence classes. Namely, for k > d � 0,

Sd(X) \ {[Z] | deg Z = k}

is precisely the set of [Z] 2 CH0(X) such that the subset of SymkX parametrizing effective cycles rationally equivalent to [Z]

is non-empty and contains a component of dimension at least k � d.
In higher dimensions, a variation of O’Grady’s definition produces a filtration on the Chow ring CH0(X [n]) of the Hilbert

scheme of points on the K3 surface X . Voisin [31] again characterized this filtration in terms of dimensions of rational
equivalence classes. This led to a picture, still partly conjectural, of the structure of the Chow ring of an arbitrary hyperkähler
(i.e., holomorphic symplectic) variety.

4. Ample and nef cones of holomorphic symplectic manifolds

Let X be a smooth projective variety, and denote by N1(X, Z) ⇢ H2(X, Z) the group of curve classes modulo homological
equivalence. The Mori cone of curves is the convex cone NE1(X) ⇢ N1(X, R) = N1(X, Z)⌦ R generated by effective classes.
The importance of NE1(X), or rather its closure NE1(X), is that it determines the ample and nef cones of X , as follows.

Theorem 16 (Kleiman’s Criterion). A divisor D in X is ample (respectively, nef) if and only if D.C > 0 (respectively, �0) for all
curves C 2 NE1(X).

An extremal ray R of NE1(X) is generated by the class of a rational curve C ⇢ X , and it yields a morphism 'R : X ! Z
that contracts all rational curves equivalent to C . In this way, the cone of curves describes the birational geometry of X .

Example. Let X be a projective K3 surface with polarization H . Then the cone of curves is given by

NE1(X) = hC 2 N1(X, Z) | C2
� �2, C .H > 0i,

where h i denotes the cone spanned by the given curve classes. In this case, NE1(X) is already closed, so a divisor D in X
is ample if D.C > 0 for all curves C ⇢ X with C2 � �2 and C .H > 0. An extremal ray R of the cone of curves will be
generated by a (�2)-curve, and the morphism 'R : X ! Z will contract this curve, thereby producing a rational double
point singularity in Z .

For higher-dimensional holomorphic symplectic manifolds, Hassett and Tschinkel introduced the following conjectural
description of the cone of curves. Recall thatwehave the Beauville–Bogomolov integral quadratic form q( , ) onH2(X, Z) ⇠=

H2n�2(X, Z). We will denote the dual form on

H2n�2(X, Z)⇤ ⇠= H2(X, Z)

also by q( , ); note that it is Q-valued since the Beauville–Bogomolov form is not necessarily unimodular.

Thesis 17 (Hassett–Tschinkel [32]). Let X be an irreducible holomorphic symplectic manifold of dimension 2n with
polarization H.
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1. There exists a positive rational number cX , depending only on the deformation class of X, such that

NE1(X) = hC 2 N1(X, Z) | q(C) � �cX , C .H > 0i.

2. The extremal case q(C) = �cX arises as follows: if ` is a line in a Lagrangian Pn ⇢ X then q(`) = �cX .

Remark. When X is a deformation of the Hilbert scheme of n points on a K3 surface (in particular, when X is a moduli
spaceMH(v) of stable sheaves on a K3 surface with v positive, primitive, and H v-general), Hassett and Tschinkel [32] gave
a conjectural value of cX =

n+3
2 . They also gave proposals for the birational maps resulting from various values of q(R) < 0.

They proved that an extremal ray R corresponding to a divisorial contraction satisfies �2  q(R) < 0 (this is Theorem 2.1
in [32]).

Example. Let X be the Hilbert scheme HilbnS of n points on a K3 surface S. The exceptional divisor E, i.e., the locus of
non-reduced subschemes, is 2-divisible in H2(X, Z); write E = 2�. Then

H2(X, Z) ⇠= H2(S, Z) � Z�

is an isomorphism of lattices that takes the Beauville–Bogomolov form q on the left hand side to the direct sum of the
intersection pairing on H2(S, Z) and (�, �) = �2(n � 1) on the right hand side. Let C be a generic fibre of E over the ‘big’
diagonal in SymnS. Then C is a rational curve and E|C is isomorphic to O(�2). This implies that

C = ��_
2 NE1(X) ⇢ H2(X, R) ⇠= H2(X, R)⇤.

Note that

q(C) = q(�_) =
1

q(�)
=

�1
2(n � 1)

.

The corresponding contraction is of course the Hilbert–Chow morphism HilbnS ! SymnS.

Example. Now suppose that the K3 surface S contains a rational (�2)-curve C . Then SymnC gives a Lagrangian Pn in
X = HilbnS. A line ` in this Pn is given by fixing n � 1 points in C and allowing the nth point to vary. To identify the
class of ` in H2(X, R) ⇠= H2(X, R)⇤ we intersect it with various divisors. Firstly

`.� =
1
2
`.E = n � 1,

as each intersection of ` with E has multiplicity 2. Secondly, let D be the divisor of subschemes whose support intersects C .
Because ` is equivalent to a rational curve in X given by one point on C and n � 1 fixed points not on C ,

`.D = C2
= �2.

Since q(D) = �2, we conclude that

` = D + (n � 1)�_.

Finally, we can calculate

q(`) = q(D) + (n � 1)2q(�_) = �2 + (n � 1)2
✓

�1
2(n � 1)

◆
= �

n + 3
2

.

The corresponding contraction collapses the Lagrangian Pn ⇢ X to a point.

Remark. The last example verifies the second part of Hassett and Tschinkel’s conjecture in this case, but it does not prove
it outright because a priori there could exist other Lagrangian Pns in different monodromy group orbits of X . Nonetheless,
the fact that q(`) = �

n+3
2 for a line ` in any Lagrangian Pn in a deformation X of HilbnS was proved for n = 2 by Hassett

and Tschinkel [33], for n = 3 by Harvey, Hassett, and Tschinkel [34], and for n = 4 by Bakker and Jorza [35].

Returning to the first part of Hassett and Tschinkel’s conjecture, they proved the following.

Theorem 18 (Hassett–Tschinkel [33]). Let X be a deformation of the Hilbert scheme of two points on a K3 surface. Then a divisor
D in X is ample if D.C > 0 for all curves C in

hC 2 N1(X, Z) | q(C) � �5/2, C .H > 0i.

In fact, it is enough to consider curves C with C .H > 0 and q(C) = �5/2, �2, �1/2, or �0.

Thus Hassett and Tschinkel established sufficient conditions for D to be ample in this case; they did not prove that these
conditions are necessary. In fact, in general they are not: Proposition 10.3 and Remark 10.4 of Bayer andMacrì [36](and also
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independent work of Markman) shows that the cone of curves could be smaller than predicted, though the first instance
of this happening is in dimension ten. Theorem 12.2 of Bayer and Macrì [37] gives the correct description of the Mori cone
of curves when X is a moduli space of sheaves on a K3 surface, and this was extended to the case when X is an arbitrary
deformation of HilbnS by Bayer, Hassett, and Tschinkel [38]. The precise statement is somewhat lengthy; in any case, we
will say more about Bayer and Macrì’s methods in the next section. These methods also led to a verification of the bounds
on the curves generating extremal rays.

Theorem 19 (Bayer, Hassett, and Tschinkel [38], Mongardi [39]). Let X be a deformation of HilbnS, and let R be an extremal ray
of NE1(X). Then R contains an effective curve C with q(C) � �

n+3
2 .

Remark. Bayer et al. proved this result in the projective case,whereasMongardi’s argument, obtained independently,works
also in the non-projective case.

5. Moduli of stable complexes

Fourier–Mukai transforms are equivalences

� : Db(X) �! Db(X 0)

of triangulated categories [40]. They have become an indispensable tool in studying moduli spaces because they induce
birational maps of the form

M(X,H)(v) 99K M(X 0,H 0)(v
0)

E 7! �(E)•.

Here �(E)• is an element of the derived category Db(X 0), i.e., a priori it is a complex of sheaves, but in nice situations it will
be a sheaf (or shifted sheaf), and even a stable sheaf with respect to some polarization H 0 of X 0. If �(E)• is a stable sheaf for
all E inM(X,H)(v) then the above map will be an isomorphism. More generally, one would like to deal with moduli spaces of
complexes of sheaves, and this is one of the motivations behind extending the notion of stability to complexes. Henceforth,
we will drop the • and write a complex of sheaves E

• simply as E .

Definition (Bridgeland [41]). A stability condition (Z, P ) on Db(X) consists of a homomorphism Z : K(X) ! C from the
Grothendieck K -group of X and full additive subcategories P (�) ⇢ Db(X) for each � 2 R, that satisfy:

1. Z(E) 2 C is a positive multiple of exp(i⇡�) for all E 2 P (�),
2. P (� + 1) = P (�)[1] for all � 2 R,
3. if �1 > �2 then HomDb(X)(E1, E2) = 0 for all Ei 2 P (�i),
4. every E 2 Db(X) admits a generalized Harder–Narasimhan filtration

0 = E0 �! E1 �! E2 �! · · · �! En�1 �! En = E,
[1] - . [1] - . [1] - .

A1 A2 An

where Ai 2 P (�i) and �1 > �2 > · · · > �n.

Remark. The homomorphism Z is known as the central charge; its argument ⇡� can be regarded as a generalization of
the slope µ of a sheaf, or rather, of tan�1 µ 2 S1 (see the example below). The collection of subcategories P is known
as a slicing of Db(X). The Harder–Narasimhan filtration of a sheaf has graded pieces of descending slope; the generalized
Harder–Narasimhan filtration extends this to complexes of sheaves.

Theorem 20 (Bridgeland [41]). The space of stability conditions Stab(X) on Db(X) is a topological space that is locally
homeomorphic to a complex vector space.

More precisely, for each connected component ⌃ of Stab(X) there is a linear subspace V (⌃) of HomZ(K(X), C), and the
local homeomorphism ⌃ ! V (⌃) is given by the forgetful map (Z, P ) 7! Z , which takes a stability condition to its central
charge.

Example. Suppose that X is a K3 surface with polarization H . Naively one would like to define a stability condition with
central charge Z(E) = rank E + ic1(E).H , whose argument � satisfies

tan⇡� =
c1(E).H
rank E

= µH(E).

However, this homomorphism Z : K(X) ! C vanishes on sheaves with zero-dimensional support, whereas the central
charge of a stability condition must be non-zero on all non-zero sheaves. Instead, Bridgeland [42] found the following
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construction. Let � + i! be a complexified Kähler class on X , i.e., � and ! lie in NS(X) ⌦ R with ! in the ample cone.
Define

Z(E) := hexp(� + i!), v(E)i =
1
2r

�
(c21 � 2rs) + r2!2

� (c1 � r�)2
�
+ i(c1 � r�).!,

where E has Mukai vector v(E) = (r, c1, s). For generic � and ! (more precisely, one requires Z(E) 62 R0 for all spherical
sheaves E on X), Bridgeland described how to construct a stability conditionwith central charge Z . These stability conditions
belong to a distinguished component StabÑ(X) ⇢ Stab(X) of the space of all stability conditions on Db(X).

Now define N (X) := Z � NS(X) � Z, with inclusion N (X) ⌦ C ⇢ HomZ(K(X), C) given by the Mukai pairing. There
is an open subset P (X) ⇢ N (X) ⌦ C given by vectors whose real and imaginary parts span positive definite two-planes in
N (X)⌦R. Denote by P

+(X) ⇢ P (X) the component containing exp(� + i!), and let P
+

0 (X) ⇢ P
+(X) be the complement

of the union of all �?, i.e., complex hyperplanes orthogonal to �, where � ranges over all spherical classes in N (X) with
h�, �i = �2. Bridgeland proved that the forgetful map

⇡ : StabÑ(X) �! N (X) ⌦ C ⇢ HomZ(K(X), C)

(Z, P ) 7�! exp(� + i!),

is a coveringmap over P
+

0 (X). The group of deck transformations is given by the subgroup of the group of autoequivalences
of Db(X) that act trivially on cohomology and that preserve the component StabÑ(X) ⇢ Stab(X).

Remark. Although there is no Bridgeland stability condition on Db(X) with central charge Z(E) = rank E + ic1(E).H , one
can recover H-stability by letting � 2 StabÑ(X) go to a ‘large volume limit’.

For moduli spaces of sheaves, stability depends on the choice of polarization H in the ample cone, which has a wall and
chamber structure (dependent on v). As we vary H inside a chamber, the moduli space does not change. But when H hits a
wall, some stable sheaves can become strictly semistable; andwhenH passes into a newchamber, they can becomeunstable.
Thus we may find that MH+

(v) and MH�
(v) are birational for H+ and H� in adjacent chambers of the ample cone, and an

analysis ofwhich sheaves become strictly semistable forH on thewall will allow us to describe the birational transformation
in more detail.

Similarly, the space of stability conditions Stab(X) admits a wall and chamber structure (dependent on v). In some
situations, the above wall-crossing procedure allows us to construct moduli spacesM� (v) of stable complexes on X , by
1. starting with a stability condition � for which all stable complexes E with Mukai vector v(E) = v are actually sheaves

(and thusM� (v) is simply a moduli space of stable sheaves on X),
2. and then varying the stability condition � and keeping track of the birational modifications that occur as we cross walls.
As we cross a wall, the locus of sheaves that become unstable will be replaced by a new locus of sheaves, or complexes of
sheaves, that are stable for the new stability condition. Obviously it is important to understand the shapes and positions of
walls in Stab(X), and this has been studied by several authors; for example, Maciocia [43] proved some results for general
projective surfaces.

Example. Arcara and Bertram [44] considered the case v = (0,H,H2/2) with Bridgeland stability conditions �t given by
� + i! =

1
2H + itH where t 2 R>0. For sufficiently large t (in fact, for t > 1

2 ) all �t-stable complexes E with Mukai vector
v(E) = v are actually sheaves. These sheaves look like ◆⇤L, where L is a rank-one torsion free sheaf on C 2 |H|, and ◆ : C ,! X
is the inclusion; thus for t > 1

2 ,M�t (v) is just the compactified relative Jacobian of the family of curves in the linear system
|H|. As t is decreased, we run into walls at certain values td. Arcara and Bertram described the Mukai flops

M�td+✏ (v) 99K M�td�✏ (v)

that occur when we cross these walls. The universal object (complex of sheaves) on X ⇥ M�td�✏ (v) is obtained from the
universal object on X ⇥ M�td+✏ (v) by an elementary modification.

In the above example, even after varying t and performing Mukai flops, a generic point of M�t (v) will still represent a
sheaf on X , which is a rather special case. Indeed, this procedure does not yield a method of constructing moduli spaces
M� (v) of stable complexes for general v. A priori, these most general moduli spaces exist as Artin stacks of finite type
over C, as proved by Toda [45]. But stronger results are possible by applying Fourier–Mukai transforms, as observed by
Minamide, Yanagide, and Yoshioka [46] in the Picard rank ⇢(X) = 1 case and further developed in Section 7 of Bayer and
Macrì [36] for ⇢(X) > 1. Specifically, they show that for a generic stability condition � 2 StabÑ(X) there is a Fourier–Mukai
transform � : Db(X) ! Db(X 0) from X to another K3 surface X 0 that takes � -stable complexes on X with Mukai vectors v
to �(� )-semistable sheaves on X 0. Here �(� ) is the stability condition on Db(X 0) coming from � and the homeomorphism
StabÑ(X) ! StabÑ(X 0) induced by � . ThusM� (X) can be identified with a moduli space of semistable sheaves on X 0. (More
precisely, there may be a non-trivial gerbe ↵ 2 Br(X 0), and the sheaves on X 0 will be ↵-twisted.)

An important step in studying the birational geometry of these moduli spaces is the description of ample and nef line
bundles. Bayer and Macrì gave a natural construction of a ‘polarization’ on any family of semistable complexes of sheaves
admitting a universal object.
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Theorem 21 (Bayer and Macrì [36]). Let � = (Z, P ) be a Bridgeland stability condition on X. Let S be a family of � -semistable
objects in Db(X) with Mukai vector v, and with a universal family E 2 Db(S ⇥ X). Then there exists a natural divisor class `� on
S that is nef, and moreover `� .C = 0 for a curve C ⇢ S if and only if Et is S-equivalent to Et 0 for all t and t 0 in C.

Proof. We just give the definition of the divisor class `� and refer to [36] for the proof of its properties. A divisor class is
uniquely determined by its values on curves. Given a (projective, reduced, and irreducible) curve C ⇢ S, we can take its
structure sheaf OC and apply the integral transform � : Db(S) ! Db(X) coming from E to get �(OC ) 2 Db(X). Then we
define

`� .C := Im
✓
Z(�(OC ))

Z(v)

◆
.

Of course this definition depends implicitly on the universal family E 2 Db(S ⇥X), but one can show that changing E by the
pullback of a line bundle on S does not change `� .C , and so we suppress E from the notation. ⇤

If the stability condition � lies in the interior of a chamber C of Stab(X) then every � -semistable complex is actually
� -stable. This implies that if M� (v) is the moduli space of � -stable complexes on X with Mukai vector v, then `� will be
ample onM� (v) (in the Picard rank⇢(X) = 1 case, the ampleness of `� also appears as Corollary 5.17 ofMinamide et al. [46]).
The assignment � 7! `� then gives a map from C to the ample cone Amp(M� (v)), and from the closure C to the nef cone
Nef(M� (v)).

Bayer andMacrì [36] then studied the following situation. Suppose that �0 is a generic stability condition on the boundary
of the closure C, i.e., on a wall of Stab(X), and suppose that the locus of strictly �0-semistable complexes in M� (v) is
codimension at least two. Then `�0 is big and nef and induces a birational contraction M� (v) ! Y . If �0 lies on a wall
separating two chambers C+ and C� then we obtain two birational contractions as above. In fact, the resulting spaces Y+

and Y� are isomorphic and we obtain a flop

M�+
(v) 99K M��

(v)
& .

Y+ = Y� ,

where �+ 2 C+ and �� 2 C� are stability conditions near �0 but on opposite sides of the wall. Thus M��
(v) is a different

birational model of M�+
(v). Moreover, the maps

C+ �! Nef(M�+
(v)) and C� �! Nef(M��

(v))

can be ‘glued’ along the wall, and after extending this process to all chambers, we arrive at a map from the space StabÑ(X)
of stability conditions to the cone of movable divisors onM�+

(v).
The main difficulty with this argument is that there also exist totally semistable walls that arise from spherical objects in

Db(X). On these walls, every complex inM�0(v) will be strictly semistable, and the corresponding birational transformation
could be a flop, a divisorial contraction, or even an isomorphism. The different possibilities are classified in Theorem 5.7 of
Bayer and Macrì [37].

These ideas have numerous applications to the geometry of moduli spaces of sheaves on K3 surfaces. For example, they
can be used to determine the nef cone of certain Hilbert schemes of points on K3 surfaces.

Theorem 22 (Bayer and Macrì [36], Proposition 10.3). Let X be a K3 surface with polarization H of degree H2 = 2d, and assume
that the Néron–Severi group is generated over Z by H. For n �

d+3
2 , the nef cone of HilbnX is generated by H and H �

2d
d+n�.

(Here 2� denotes the locus of non-reduced subschemes, and we regard H as a divisor on HilbnX via the isomorphism

H2(HilbnX, Z) ⇠= H2(X, Z) � Z�,

as in Section 4.)

Remark. This result is also a special case of Proposition 4.39 of Yoshioka [47], applied to themoduli spaceMH(1, 0, 1�n) ⇠=

HilbnX . Of course this earlier proposition is proved without reference to moduli spaces of stable complexes.

Remark. Bayer and Macrì also identify an extremal ray R, as a curve of S-equivalent �0-semistable complexes, that is
contracted by the morphism corresponding to H �

2d
d+n�. This ray satisfies

q(R) = �
n + 3
2

+
(d + 1)(2n � d � 3)

2n � 2
� �

n + 3
2

,

revealing that the Mori cone can be smaller than predicted by Hassett and Tschinkel [32].
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Another application is to the existence of Lagrangian fibrations onHilbert schemes of points on K3 surfaces, i.e., fibrations
over Pn whose fibres are Lagrangian with respect to the holomorphic symplectic form. The Hyperkähler SYZ Conjecture
asserts that an irreducible holomorphic symplecticmanifold admits a (rational) Lagrangian fibration if and only if it contains
an isotropic divisor, i.e., a divisor D such that q(D) = 0 where q is the Beauville–Bogomolov form (see Huybrechts [48] or
the author’s article [49]). For a divisor

D = C + k� 2 H2(HilbnX, Z) ⇠= H2(X, Z) � Z�,

this means that q(D) = C2 � 2k2(n � 1) must vanish. It was proved, independently by Markushevich and the author, that
this leads to a Lagrangian fibration if H = C generates the Néron–Severi group of X .

Theorem 23 (Markushevich [50], Sawon [51]). Let X be a K3 surface with Néron–Severi group generated over Z by the
polarization H. If H2 = 2k2(n � 1) for some integer k, then HilbnX admits a Lagrangian fibration.

Proof. We just give an outline of the argument. For w = (k,H, k(n � 1)) 2 Hev(X, Z), the moduli space MH(w) of stable
sheaves on X is a K3 surface, which we denote by X 0, and there exists a twisted Fourier–Mukai transform � : Db(X) !

Db(X 0, �). The twist � is necessary because MH(w) is not a fine moduli space. For Z 2 HilbnX , one can show that the
transform of the ideal sheaf IZ is a sheaf concentrated in a single degree. In fact, �(IZ )[1] is a torsion sheaf supported on a
curve C 0 in X 0. Therefore� induces an isomorphism of HilbnX with a so-called Beauville–Mukai integrable system [52] on X 0,
i.e., the relative compactified Jacobian of a complete linear system |C 0| of curves on X 0. The latter is obviously a Lagrangian
fibration, with the map to |C 0| ⇠= Pn given by taking supports. ⇤

Theorem 10.8 of Bayer andMacrì [36] extends the above theorem to the case where C = 2H is twice the generator of the
Néron–Severi group. Their argument is roughly as follows. The hypothesis is that 4H2 = 2k2(n � 1) for some odd integer
k. One considers the moduli spaces M�t (v) of stable complexes where v = (1, 0, 1 � n) and �t is the family of Bridgeland
stability conditions on Db(X) given by � + i! = �

2
k H + itH , where t > 0. For t � 0 we have M�t (v) = HilbnX . There is

also a Fourier–Mukai transform � : Db(X) ! Db(X 0, �), as above, that induces an isomorphism of moduli spaces

M�t (v) ⇠= M�(�t )(�(v)).

For t close to 0, the right hand side is a moduli space of sheaves on X 0; indeed it is a Beauville–Mukai system, and therefore
a Lagrangian fibration. Finally, one describes what happens as t varies from very large to very small: there are finitely
many wall-crossings, and each wall-crossing induces a birational modification of the moduli space. It follows that HilbnX is
birational to a Lagrangian fibration; we say that it admits a rational Lagrangian fibration. Moreover, Bayer and Macrì proved
that every minimal model for HilbnX arises as a moduli space of stable complexes in Db(X) for some stability condition.

In their subsequent paper [37], Bayer and Macrì broadly generalized these results so as to apply to any moduli space
MH(v) of stable sheaves on a K3 surface, not just Hilbert schemes of points. They showed that

1. everyminimal model ofMH(v) can be interpreted as amoduli space of � -stable complexes withMukai vector v for some
Bridgeland stability condition � 2 StabÑ(X),

2. the chamber decomposition of the movable cone of MH(v) can be determined from the wall and chamber structure of
the special component StabÑ(X) ⇢ Stab(X) described above,

3. and the Hyperkähler SYZ Conjecture holds forMH(v).

Since we have already given an indication of the ideas and methods involved, we refer the reader to the original paper [37]
for precise statements and more details.
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