
Chaos ARTICLE pubs.aip.org/aip/cha

Symbolic regression via neural networks

Cite as: Chaos 33, 083150 (2023); doi: 10.1063/5.0134464

Submitted: 10 November 2022 · Accepted: 20 July 2023 ·
Published Online: 23 August 2023 View Online Export Citation CrossMark

N. Boddupalli,a) T. Matchen, and J. Moehlis

AFFILIATIONS

Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA

a)Author to whom correspondence should be addressed: nibodh@ucsb.edu

ABSTRACT

Identifying governing equations for a dynamical system is a topic of critical interest across an array of disciplines, from mathematics to
engineering to biology. Machine learning—specifically deep learning—techniques have shown their capabilities in approximating dynamics
from data, but a shortcoming of traditional deep learning is that there is little insight into the underlying mapping beyond its numerical output
for a given input. This limits their utility in analysis beyond simple prediction. Simultaneously, a number of strategies exist which identify
models based on a fixed dictionary of basis functions, but most either require some intuition or insight about the system, or are susceptible to
overfitting or a lack of parsimony. Here, we present a novel approach that combines the flexibility and accuracy of deep learning approaches
with the utility of symbolic solutions: a deep neural network that generates a symbolic expression for the governing equations. We first
describe the architecture for our model and then show the accuracy of our algorithm across a range of classical dynamical systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134464

The dynamics of quantities of interest are widely modeled as
differential equations, often derived from first principles. How-
ever, this is not always possible, especially when the underlying
mechanisms are unknown or complex. The identification of mod-
els from data has seen significant advances with the advent of
machine learning. While deep neural networks have enabled suf-
ficient accuracy in forecasting dynamic data with unprecedented
versatility, the models they represent lack closed-form expres-
sions that can be conducive to interpretation and analysis. Here,
we present an algorithm that identifies parsimonious closed-form
ordinary differential equations from noisy data using a novel
deep learning architecture and an information criterion.

I. INTRODUCTION

Mathematical models for systems of scientific, technological,
and societal interest have been pursued for centuries. Models that
capture a system’s dynamics are of particular importance because
they allow prediction and analysis of how quantities of interest
change with time and can often be used to develop control algo-
rithms. For many systems, it is possible to derive mathematical mod-
els from first principles, such as Newton’s laws, Maxwell’s equations,
or the Navier–Stokes equations. Such models have had far-reaching
success over a broad range of length and timescales and have led to
incredible advances in fields ranging from fluid dynamics to solid
mechanics to robotics and beyond. Unfortunately, deriving models

from first principles is not always feasible, which has led researchers
to explore ways to deduce mathematical models from observed
data, a process known as system identification.1 Here, we briefly
summarize several notable methods for system identification.2

A number of authors have approached system identification by
fitting coefficients of a linear combination of basis functions, dat-
ing at least back to Crutchfield and McNamara.3 The set of basis
functions typically includes nonlinear terms, for example, terms that
would arise in a Taylor series expansion about the origin of the
system3–6 or a broader class of functions.7 The coefficients of the
basis functions are determined through comparison of the original
data points with points from computed solutions to the fitted mod-
els. Various sparse optimization approaches have been proposed to
try to avoid an unwieldy number of terms in the resulting models.5–8

Given its recent popularity, here, we highlight the Sparse Identifica-
tion of Nonlinear Dynamics (SINDy) algorithm,7 in which the right-
hand side of the differential equation model is found as the optimal
sparse linear combination of user-specified candidate functions,
which may be nonlinear. The SINDy algorithm has been success-
fully applied to a variety of models, including the Lorenz equations
and vortex shedding past a cylinder,7 and has been extended to
allow for rational function nonlinearities, which commonly appear
in biological networks.9 It was also combined with deep learning
to determine which terms are needed to accurately capture the
dynamics seen in data.10 A limitation of all such approaches is that
they require pre-specified basis functions whose linear combination
gives the model. We call such methods “fixed dictionary” methods.

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-1

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

Mathematically, fixed dictionary system identification approaches
find a model

dx

dt
=

∑

i

aiφi(x)

by making smart choices for the ai’s, where {φi(x)} is a pre-specified
fixed dictionary of functions.

Also of recent interest is dynamic mode decomposition
(DMD), which discovers coherent spatiotemporal modes from mea-
surements of complex systems, and has connections to Koopman
operator theory.11–13 DMD was initially developed in the fluid
dynamics community14 and has since been applied to many other
systems.15 A type of DMD known as extended dynamic mode
decomposition (EDMD) is a regression onto locally linear dynam-
ics of a fixed dictionary of candidate functions and can be used to
generate a nonlinear closed-form mathematical model for a system
based on data.16 However, EDMD can face “curse of dimensional-
ity” challenges and typically requires a large amount of data to be
accurate.

In another class of system identification methods, which we
call “generative dictionary” methods, one only pre-specifies a set
of primitive operations and functions, and the method creates the
dictionary of possible model terms from combinations and com-
positions of these primitives. Historically, such methods have been
referred to as “symbolic regression” because they search a space
of mathematical expressions to find a model, as opposed to con-
ventional regression techniques, which optimize parameters for a
pre-specified model structure (i.e., a fixed dictionary). Typical sym-
bolic regression approaches to system identification17–19 learn mod-
els from observed data by randomly combining various terms and
operations and using genetic programming to “mutate” the candi-
date solutions according to a fitness-weighted selection mechanism.
One such approach20 was to restrict the space of possible mod-
els by searching for invariant sets. While these invariants involved
estimating higher order time and space derivatives that grow combi-
natorially in number with an increase in dimensions, it was also only
suitable to model systems that obeyed conservation laws. Unfortu-
nately, genetic programming strategies typically suffer from bloat,21

excessive terms, and overly complex representations of systems,
making identification of the most physically meaningful represen-
tation of the data difficult.

We emphasize that there is an important distinction between
fixed dictionary and generative dictionary system identification
methods: for the former, only terms that have been included in the
original fixed dictionary can appear in the model. For the latter, any
term that can be generated from combinations and compositions
of the primitives can appear. In particular, let Sk(x) be a (possi-
bly k-dependent) subset of all possible functions of x generated by
the primitive operations and functions. Mathematically, a generative
dictionary system identification method seeks to find a model

dx

dt
= F(SK ◦ · · · ◦ S2 ◦ S1) (1)

by making smart choices for which function F and subsets Sk to
choose. Here, the composition ◦ is interpreted in an element-wise
manner; for example, S2 ◦ S1 can contain functions f2(f1(x)) for any

f1 ∈ S1 and f2 ∈ S2. Moreover, each Sk includes the Identity opera-
tor; therefore, for example, S2 ◦ S1 can contain any function in S1.
The generative dictionary is given by the set SK ◦ · · · ◦ S2 ◦ S1, and
both the generative dictionary and the function F are determined as
part of the system identification algorithm.

An alternative approach to system identification is to use deep
neural networks (DNNs) to obtain a “black box” model in which
the current state of a system is mapped to the future state without
knowledge of the inner workings of the transformation.22–24 For sys-
tem identification, it is notable that DNNs do not make assumptions
about the terms in a model, unlike SINDy or EDMD. This comes at
the cost of estimating the network weights iteratively, but fast opti-
mization algorithms benefit from today’s computational power that
is higher and cheaper than before. On the other hand, generaliz-
ability of the obtained weights to unseen data-sets even in the same
regime is not guaranteed.

In this paper, we present a novel neural network framework
for identifying interpretable models from time series or vector-field
data without a priori knowledge of the governing dynamics. The
models are built up from primitive operations, such as addition,
multiplication, exponentiation, and other user-defined functions of
state variables that commonly occur in dynamical systems. Draw-
ing inspiration from DNNs, we allow the breadth of the network to
determine the number of allowable coefficients in a certain set of
functions and the depth to determine compositions among them.
Our approach allows the generation of interpretable functions of
state variables, including linear combinations, polynomials, and
non-polynomial functions, such as fractional and negative pow-
ers, logistic functions, and expressions that might arise in chemical
kinetics or a conductance-based model for neural activity. The com-
plexity of these generated functions that appear in the model is
determined directly by the depth and width of the neural net-
work rather than having to pre-specify them exactly. Our neural
network architecture is novel in how the weights of the network
determine the form of the terms in the generated dictionary, which
allows a wider variety of model terms than other recent system
identification approaches that use neural networks.25,26 Moreover,
the number of terms in the generated dictionary remains small
enough to handle computationally, but large enough to capture a
rich set of possibilities. Available algorithms for optimizing DNNs
are used to optimize the coefficients of state variables in these
expressions. To obtain parsimonious models, we use a combination
of sparsity-inducing regularization and the Akaike Information Cri-
terion (AIC),27 which selects between candidate models, obtained
through perturbations of model parameters within user-specified
tolerances, to balance model simplicity and accuracy. We call this
SymANNTEx (pronounced as “semantics”), for Symbolic, Artificial
Neural Network-Trained Expressions.

A. Preliminaries

We consider dynamical systems of the form

ẋ = f(x), (2)

where x ∈ Rn and f : Rn → R
n. The ith state of x will be denoted as

xi. We consider data points sampled discretely—but not necessarily
from a single trajectory—in time and denote the jth data point as

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-2

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

x[j]. Given m such data points {x[j]}m
j=1, we train our neural network

on data that approximates f(x[j]) = ẋ|x=x[j] ≡ ẋ[j] at those points, as
follows.

Since real data are expected to be noisy, we consider states

x
[j]
i + xrms

i η
σ1 [j]
i , where η

σ1 [j]
i is independently drawn from the nor-

mal distribution N(0, σ 2
1 ) centered at zero and characterized by

standard deviation σ1, which is scaled by the Root Mean Square
(RMS) of the corresponding state

xrms
i ≡

√

√

√

√

1

m

m
∑

j=1

(

x
[j]
i

)2

,

which is the l2 norm of the corresponding state averaged over
the m data points. We write this using the element-wise product

(xrms � η
σ1)

[j]
i ≡ xrms

i η
σ1 [j]
i and denote the state data as

{

x[j] + (xrms � η
σ1)

[j]
}m

j=1
≡

{

x[j]
σ1

}m

j=1
≡ X. (3)

For example, if we consider noise drawn from a distribution of
standard deviation σ1 = 0.01, we refer to it as 1% noise relative to
the corresponding component of xrms. Similarly, we add noise to
the corresponding derivative data and define the training data Y as
follows:

{

ẋ[j] + (ẋrms � η
σ2)

[j]
}m

j=1
≡

{

ẋ[j]
σ2

}m

j=1
≡ Y, (4)

where η
σ2 [j]
i are each independently drawn from N(0, σ 2

2 ) and ẋrms

is the vector of RMS of derivatives at points considered, which is
computed as

ẋrms
i ≡

√

√

√

√

1

m

m
∑

j=1

(fi(x[j]))
2
.

We note that derivative data could alternatively be obtained from
noisy state data using various numerical differentiation techniques.28

The obtained derivative data may be imprecise, which is what σ2 is
intended to mimic.

Note that we scale the noise added to the states and the deriva-
tives by the RMS of the respective corresponding states and deriva-
tives because our examples span varying length and timescales, and
we found that un-scaled additive noise of a certain level can have
negligible effect on one example or state, while being detrimental to
another. However, we have also verified that our approach success-
fully identifies models when (sufficiently weak) un-scaled additive
noise is used.

Our network’s objective is to map input (noisy state) data X
to the training (noisy derivative) data Y. We call f(x) in Eq. (2)
the “ground truth model,” the model represented by the network

x
[j]
σ1 7→ f̃

(

x
[j]
σ1

)

the “network model,” and the model x
[j]
σ1 7→ f̃A

(

x
[j]
σ1

)

chosen after perturbing the network model and evaluating AIC
scores as the “selected network model.” This can also be directly
applied to identify maps x(k + 1) = F(x(k)) with a closed-form
expression. Note that even the ground truth model probably gives
non-zero errors because the training data Y are not exactly the
derivative evaluated at the data points X as the expected values
E(ẋσ2) 6= E(f(xσ1)) for our examples even with σ1 = σ2.

II. NETWORK ARCHITECTURE

Our approach to symbolic regression fuses the adaptability of
artificial neural networks with the interpretability of dictionary-
based identification methods via a generative dictionary. By design,
the generated candidate functions, which describe the dynamics,
have global support. The width of the network allows different
coefficients, e.g., sin(a1x1) + sin(a2x1), and the depth gives compo-
sitions of increasing complexity that have closed-form expressions,
e.g., sin(x2

1x2). Specifically, the network initially takes as input the n
system states and an additional constant value of 2 to aid with scaling
for n + 1 total states; notationally, we let xn+1 = 2. If desired, time
could be included as well, allowing for n + 2 initial states. The neural
network possesses two principal tiers of organization: “stacks” and
“operational layers.” Stacks serve as the higher-level organizational
structure; they modify the data in series, with the output of each
stack serving as an input to subsequent stacks. The network always
possesses K ≥ 1 stacks. An individual stack is in turn composed of
a predetermined number of operational layers, which generate new
terms for use both in subsequent stacks and the final expression. As
shown in Fig. 1, these operational layers function in parallel, sharing
a common input from the original data as well as any prior stacks.
Each stack possesses L ≥ 1 instances of each operational layer.

Each operational layer consists of four types of sublayers:
(1) linear combinations, (2) polynomial combinations, (3) simple
products of variables, and (4) common operators. As noted, if we
have multiple stacks, the outputs from previous stacks serve as
inputs to subsequent stacks. For example, if K > 1, then the kth
stack takes as input not only the initial n + 1 states but also the
4L

(

k − 1
)

states generated by operations in the previous stacks,
which allows for highly complex analytic expressions with mini-
mal training parameters. Each of these processes and operations is
outlined below. The total number of expressions we combine to gen-
erate the final output is 4LK + n + 1 if the system is autonomous
or 4LK + n + 2 if the system is non-autonomous. These terms are
combined to generate an output via a simple, fully-connected n ×
(4LK + n + 1) dense output layer. Weight vectors for trainable sub-
layers will be referred to as w, with wi denoting the ith component.
The architecture of each operational layer is illustrated in Fig. 2.

A. Linear combinations

These sublayers are linear combinations of the pre-existing
states (including xn+1 = const.),

y =
n+1
∑

i=1

wixi. (5)

B. Polynomial combinations

The output of a polynomial combination sublayer is given by

y =
n+1
∏

i=1

|xi|wi . (6)

The absolute value of each state is used to ensure that each output
value y remains in the domain of real numbers; sign consider-
ations are handled separately; for example, suppose we wish to

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-3

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 1. Network architecture of K stacks with L operational layers within each stack. Input on the far left is the state data xσ1
∈ X concatenated with the constant 2,

making the input Rn+1. Note the 4L(k − 1) + n + 1 dimensional output from the (k − 1)th stack is concatenated to the 4L dimensional output of the kth stack to give a

4Lk + n + 1 dimensional output. After K such stacks, the 4LK + n + 1 dimensional output of the Kth stack is reduced toRn to give the network model f̃ (x) on the far right.
This is optimized to fit the training (noisy derivative) data ẋσ2

∈ Y to minimize the loss shown in Eq. (16). The details of each operational layer (red) are further illustrated in
Fig. 2.

FIG. 2. Architecture of the lth operational layer in the kth stack. Input is the
4L(k − 1) + n + 1 dimensional output of the (k − 1)th stack. The output of each
operational layer is four dimensional, thus giving 4L additional states from L layers
in each stack. The sublayers (purple) denoted are wlin · z ≡ linear combinations
[Eq. (5)],

∏

i |zi |
wi ≡ polynomial combinations [Eq. (6)],

∏

i vi ≡ simple products
[Eq. (7)], win · z, wout · g(ya) ≡ linear combinations [Eqs. (8) and (9)], respec-
tively, where g(ya) ≡ [exp (win · z), sin (win · z), sgn(win · z)] in Eq. (9). The
stack and layer indices (k, l) for the weights and z denoted within the dashed red
line are not shown in interest of clarity, and the summation notation is avoided to
distinguish weights sublayer-wise.

represent the equation ẋ1 = x2
2 where we consider states [x1, x2, 2]

and then the corresponding learned weight vector should yield w
= [0.0, 2.0, 0.0] after training.

C. Simple products

In many instances, the absolute value of a state is insufficient;
the simple product sublayer allows us to combine states raised only
to the first power. These operations are dictated by a product rule,

y =
n+1
∏

i=1

[σ (wi) xi + (1 − σ (wi))] ≡
n+1
∏

i=1

vi. (7)

Here, σ (wi) = 1

1+e−wi
represents the sigmoidal activation function

so that for wi � 0, vi = 1 and for wi � 0, vi = xi.
For example, suppose ẋ1 = x1x2 with states [x1, x2, 2]. Then,

the resulting weight vector after training could, for example, be
equal to w = [1.5, 2.1, −0.99]; here, σ (1.5) ≈ σ (2.1) ≈ 1, while
σ (−0.99) ≈ 0; therefore, according to Eq. (7) yields

(1 · x1 + (1 − 1)) (1 · x2 + (1 − 1)) (0 (2) + (1 − 0)) = x1x2.

D. Common operators

These sublayers are reliant on a set of common symbolic
operations. Each common operator sublayer consists of two con-
secutive dense sublayers; the first dense sublayer returns a linear
combination of the input states,

ya =
n+1
∑

i=1

wixi, (8)

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-4

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

while the second is a linear combination of the different operations
g applied to the output of the first

y =
3

∑

j=1

gj

(

ya

)

Wj. (9)

In the formulation of the model used to generate results in
this paper, three possible operators g are included: the sine func-
tion, the exponential function, and the sign function. The first
two were selected because of their prevalence in dynamical sys-
tems across physics, chemistry, biology, and engineering, while the
third is included to accommodate the absolute-value requirement
imposed on the polynomial sublayers. In principle, other commonly
encountered functions, such as saturation functions and ReLU, can
also be included.

We can now write down the output of each operational layer as
a function. As illustrated in Fig. 2, each operational layer l in stack
k takes as input a vector inR4L(k−1)+n+1 and outputs a vector inR4.
While we showed Eqs. (5)–(9) for each operational layer in the first
stack as functions of the input for simplicity, they can be generalized
to every operational layer as

f k,l
1 (z) = wk,l

lin · z, (10a)

f k,l
2 (z) =

d
∏

i=1

|zi|w
k,l
pow,i , (10b)

f k,l
3 (z) =

d
∏

i=1

[

σ

(

wk,l
prod

)

zi +
(

1 − σ

(

wk,l
prod

))]

, (10c)

f k,l
4 (z) = wk,l

out ·













exp
(

wk,l
in · z

)

sin
(

wk,l
in · z

)

sgn
(

wk,l
in · z

)













, (10d)

where d = 4L(k − 1) + n + 1, z ∈ R4L(k−1)+n+1. These four functions
can be denoted as a vector f k,l : R4L(k−1)+n+1 7→ R

4 of functions

f k,l(z) ≡













f k,1
1

f k,1
2

f k,1
3

f k,1
4













(z). (11)

Now, the neural network model f̃(x), illustrated in Fig. 1 as the
output of the neural network, can be written as

f̃(x) = Wout















fK,1

fK,2

...

fK,L

I















◦ · · · ◦















f 2,1

f 2,2

...

f 2,L

I















◦















f 1,1

f 1,2

...

f 1,L

I















([

x
2

])

, (12)

where I is the Identity operator. Here, we can see the generative
nature of our algorithm introduced in (1), where each operational

TABLE I. Examples of sublayer outputs for n= 2.

Sublayer type
Example output

expression
Trainable

parameters

Linear
combination 0.7x1 + 1.5x2 − 1 n + 1

Polynomial
combination 0.25 |x1 |−1.4 |x2 |0.5 n + 1

Simple products (0.3 + 0.7x1)x2 n + 1

Common operators 0.9 sin (0.2x1 − 0.1 x2) (n + 1) + 3
+ 0.3exp (0.2x1 − 0.1x2)

layer l in stack k, represented as f k,l in (11), is made up of primitives
from Eqs. (10a)–(10d), which are the sublayers elaborated earlier.

Collectively, the structure of these operational layers allows us
to achieve tremendous flexibility in the expressions the network is
capable of generating, while simultaneously tackling the challenge
of overfitting. While we have a significant range of possible expres-
sions, we are able to do so with fewer trainable parameters than
conventional artificial neural networks even when the network is
several stacks deep or the number of copies of the operational layers
in each stack is high. Examples of the sublayer outputs when applied
to a (n + 1) × 1 vector of states are provided in Table I, demonstrat-
ing how low the count of trainable parameters is when compared
to fully connected or even convolutional networks.29 The smaller
number of parameters is a design consequence but offers significant
advantages over conventional DNNs.

The fact that commonly occurring terms in models are func-
tions of state makes them analogous to activation functions in
conventional DNNs. Many functions, such as x,

∏

i |xi|wi , sin(w ·
x), and ew·x, have global support, unlike conventional activation
functions such as tanh(w · x) and ReLU(w · x). While this reduces
fidelity of the neural network’s approximation capability, it also
means that activation functions with local support need not be cen-
tered around data points as is required in k-means clustering or
other activation function centering algorithms. Consequently, far
fewer parameters are required

[

O(102)
]

compared to conventional
DNNs. This carries advantages in terms of generalizability, com-
putational economy, and data requirements. The generalizability
aspect is immediate from the non-local support, meaning that newer
data points far away from the seen data X would not need activation
functions centered around them. The computational requirements
are far smaller both in terms of memory and processing require-
ments, a consequence of the smaller number of trainable parameters.
The examples shown in this paper are run on a fairly standard laptop
PC with an AMD Ryzen 4900HS processor and 16GB of RAM. The
time taken from generating the training data to obtaining the equa-
tions and figures can range from a few minutes to an hour depending
on the dataset and neural network sizes.

E. Regularization and initialization

We designed regularization and initialization of the neural net-
work to achieve two primary goals: (1) promote parsimony in the

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-5

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

output equation and (2) prevent exploding loss/gradient values in
deeper multi-stack implementations. To this end, appropriate ini-
tializers and regularizers were selected for each layer. We will briefly
detail and motivate the choices made for each operational layer here.

We make two preliminary observations before proceeding.
First, parsimony is generally enforced through sparsity, but in the
context of our network, zero matrix weights do not directly cor-
respond to sparsity in most layers. There is a direct connection
between parsimony and sparsity in the dense output layer and
other dense layers. Second, the primary cause of exploding errors
or gradients during training of multi-stack networks arises from the
compounding effects of variables being multiplied by themselves;
therefore, in general, initialization is designed to make most terms
initially nearly constant-valued.

1. Linear combinations

A core challenge across our linear combination layers is that
correct terms may have relatively large coefficients, and the final
mean absolute error for noiseless systems approaches 0. With this
in mind, we note that we would ideally like the linear combi-
nation (and dense output) layers to function as feature selectors,
which motivated us to implement L1 regularization. We found,
however, that the linear growth in error as coefficients increased
was still somewhat unfavorable; therefore, we instead implemented
L1/2 regularization.30 L1/2 regularization allows for greater sparsity
than L1 regularization while simultaneously providing diminishing
penalties for increasing weight magnitudes. The regularization loss
can be calculated as

α1

n+1
∑

i=1

|wi|1/2 ≡ α1L1/2. (13)

Here, α1 is a tuning parameter to modify the relative influence of
this regularization. Linear combinations do not contribute signif-
icantly to the problem of exploding gradients in our application,
and it is straightforward to initialize the system to small values; any
standard initialization protocol with zero mean and non-constant
initialization of weights is acceptable. We use hyperparameter value
α1 = 0.05.

2. Polynomial combinations

Unlike the linear combinations considered above, the polyno-
mial combination layer does not correspond to sparsity in the output
when all weights are 0. Rather, this corresponds to a constant value.
Considering parsimony more broadly, we prefer simpler polynomial
terms to more complicated ones: the lower the overall degree of the
expression, the more we generally prefer it; for example, we view x2

1

as preferable to both x5
1 and x2

1x2; we would also prefer x1x2 to x2
1x2 or

x5
1. Our primary mechanism of modulating the sparsity in the out-

put expression is the constant value of 2 we previously appended to
our state to assist with scaling. If the exponent on 2 is very nega-
tive (say, −10), then that term is virtually negligible. We, therefore,
designed a novel regularizer to reward highly negative values of the
exponent on 2 while penalizing large magnitudes (negative or posi-
tive) of the exponents for the non-constant input values. Formally,

our regularizer loss is calculated as

α21.1
∑n

i=1|wi|+wn+1 ≡ α2Lpoly, (14)

which approaches 0 as wn+1 → −∞ and approaches infinity as the
magnitudes of the non-constant values’ exponents increase. We note

that terms in the network model f̃(·) may be negligible in magnitude
due to regularization but are not discarded unless deemed insignif-
icant by the information criterion in the selected network model

f̃A(·), as described in Sec. III.
Unlike the case of the linear combination operational layers,

here, our initialization is critically important for ensuring stability of
the system as the number of stacks increases. As noted previously,
we generally aim for the initial value of each layer’s output to be
near-constant; in the case of the polynomial combination layer, this
corresponds to a zero vector weight matrix; therefore, we initialize
the layer with a normal distribution about a mean of 0. For deeply
stacked implementations, it is important that the standard deviation
of this distribution is small in magnitude to avoid numerical issues.
We use the hyperparameter value α2 = 0.01.

3. Simple products

Regularization is less of a concern for the simple product oper-
ational layer because the output structure is already significantly
constrained. All simple product layers output polynomials with
degree no higher than the number of input terms, and the degree of a
given variable within that expression is always either 1 or 0. As such,
the enforcement of sparsity as it relates to these expressions can be
safely applied at the dense output layer stage, rather than within the
operational layer.

In contrast, initialization of the simple product operational lay-
ers is vital to the success of multi-stack implementations. Standard,
mean-zero initialization (as was used elsewhere) will cause signifi-
cant numerical issues in deeper networks because a weight of 0 does
not correspond to a constant value, but rather to terms of the form
0.5 + 0.5x1. Instead, we center our initialization around a negative
number, with the standard deviation and mean both decreasing as
we wish to deepen our network. For systems with relatively few
stacks, we found a mean of −1.0 to sufficiently protect against
exploding errors and gradients.

4. Common operators

The common operational layers are split into two sublayers
of weights: first a sublayer performing a linear combination of the
input expressions and then a sublayer performing a linear com-
bination of the outputs of the operators acting on the first linear
combination. Applying L1/2 regularization to the first of these sub-
layers will help with sparsity and mitigate the risks of exploding
gradients, but it is insufficient to promote parsimony since some
operators possess nonzero values for zero-valued inputs. As such,
we apply L1/2 regularization to both the first and second sublayers of
our system. However, we found in our hyperparameter studies that
a reduced weight of α3 = 0.0375 keeps these functions from being

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-6

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

penalized too much, and thus, we include it alongside Eq. (9) as

α3

3
∑

i=1

|wi|
1
2 ≡ α3Lops. (15)

Initialization is important here as well, and we again make sure to
initialize about mean zero. However, we take an extra precaution
here of also decreasing the standard deviation of our initializa-
tion distribution as we proceed through subsequent stacks of our
network to further reduce the risk of initially high gradients and
losses.

F. Hyperparameters

We use certain hyperparameter values (number of stacks and
layers) to identify a variety of systems, which is analogous to using
the same hyperparameters (width and depth) in a deep neural net-
work to perform regression on entirely different datasets. As with
traditional machine learning, setting the hyperparameters is not an
exact science. Even when set after numerical experiments for one
system such that the desired metrics are at their best, using data
from a different system often requires re-tuning the hyperparame-
ters. However, we found that a set of hyperparameters such as K = 1
stack with L = 10 layers, or K = 2 stacks with L = 2 layers, works
well across multiple systems, as demonstrated in Sec. IV. This is
in conjunction with the same common operators of exponential,
sinusoidal, and sign functions. Thus, we use the same hyperparam-
eters to identify systems with fixed points, limit cycles, and chaotic
attractors.

When using K = 1 stack, we found L < 10 layers to be suffi-
cient for some systems, but all systems were identifiable using K = 1
stack and L = 10 layers. This is surprising as many of the systems

are, in principle, sufficiently expressed with just L = 1 or L = 2 lay-
ers. Such overparameterization is common in deep neural networks
with hundreds of millions of parameters, but so is the issue of over-
fitting to training data. In contrast, our overparameterization seems
to produce equations that are generalizable beyond the training data.
This phenomenon of overparameterization beyond conventionally
accepted number of parameters optimal to the trade-off between
bias and variance31 has recently been reported32 and is an active area
of research.

The hyperparameters used in demonstrations of SymANN-
TEx presented in this work are summarized in Table II. These
examples span various dynamic behaviors, such as hyperbolic
(Takens–Bogdanov) and elliptic (simple pendulum) fixed points,
limit cycles (FitzHugh–Nagumo, chemical kinetics) and a con-
tinuum of periodic orbits (simple pendulum), fast–slow dynam-
ics (FitzHugh–Nagumo), and chaos (Lorenz, Rössler, Chua), gov-
erned by equations with sinusoidal (simple pendulum), exponential
(chemical kinetics), and polynomial terms. We see that such a wide
array of systems are identified by SymANNTEx using nearly the
same hyperparameters of training.

G. Loss function and training

We use a combination of the mean absolute error (MAE) and
sublayer-dependent regularization as the loss, which we seek to min-
imize using iterative optimizers, initialized with layer-dependent
initial weights. While regression in Euclidean spaces is widely done
using the mean squared error (MSE) with L1 regularization, we
found (as shown in Sec. V) this conventional approach to be (1) lack-
ing desired parsimony and (2) giving enormous errors aggravating
the optimization. Instead, we use L1/2 regularization,30 which is
known to promote sparsity to a greater extent than L1 does, but at

TABLE II. Hyperparameters for demonstrated examples.

Parameter Pendulum Chua
Takens–

Bogdanov Rössler Lorenz
FitzHugh–
Nagumo

Chemical
kinetics

Stacks 1 2
Layers 10 1

Learning rate constant 0.032 0.01

L1/2 regularization weight 0.05
Lpoly regularization weight 0.01
Lops regularization weight 0.0375
AIC tolerances Equation (18)

Number of data points 1000 16 000
Training: test split 800: 200 12 000: 4000

Training instances 5 (1 per split)

Training epochs 100 6400 25 400 6400 3200 6400

Batch size min{
√

trainingsplit, 32}

Training noise σ 1 = 0.01 (up to 0.025 in some examples), σ 2 = 0.01 (up to 0.075 in some examples) σ 1 = σ 2 = 0.001

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-7

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

the cost of losing convexity. The loss function is given by

Loss = MAE +
K

∑

k=1

L
∑

l=1

(

α1L
(k,l)
1/2 + α2L

(k,l)
poly + α3L

(k,l)
ops

)

, (16)

where

MAE =
1

m

m
∑

j=1

‖ẋ[j]
σ2

− f̃
(

x[j]
σ1

)

‖1,

and L(k,l)
1/2 , L(k,l)

poly , and L(k,l)
ops are custom regularizers at each sublayer

(denoted by the superscript) in the stacks k ∈ {1, . . . , K} and oper-
ational layers l ∈ {1, . . . , L}. α1, α2, and α3 are user-defined regu-
larization weights. The possibly longer computational time taken to
minimize a non-convex loss is outweighed by the greater sparsity
in fewer iterations of training. Iterations of training are commonly
measured in “epochs” where one epoch is when each of the data
points has been used once in the optimization. Greater sparsity in
fewer epochs is desirable for increased interpretability.

We use the Adam optimizer33 to minimize the loss function.
We use a 4: 1 randomized split of the data for training and testing,
respectively, in a Kfold routine that uses different randomized ini-
tial weights for each of the five instances of the optimization. This
fivefold optimization increases the likelihood of an optimal set of
network weights by concealing a different fifth of the data in each of
the five training runs and choosing that which has the smallest mag-
nitude of the loss function among all five of the instances. Although
it is an algorithm with an adaptive learning rate, it has a learning
rate constant. We found the commonly used default learning rate
constant of 0.001 to be “insufficient” even with 105 epochs; yet, a
learning rate constant of 0.01 seems to yield convergence well within
104 epochs. This larger learning rate constant and the spurts of an
instantaneous increase in the loss function value at some iterations
suggest that we could be observing what has recently been reported
as the edge of stability.34 Our investigations with learning rate con-
stants of {0.001, 0.004, 0.016} in our examples, each with datasets
of {1000, 4000, 16 000}, indicate the lack of a linear relationship
between step-size and the number of epochs taken for convergence
to the expected equations. At slower learning rates, we found that
the optimization seems to fall short of sparsity even when run for
longer. In the interest of practical applications, we use higher learn-
ing rates that seem to remedy this over fewer training epochs. This
is especially apparent with the Lorenz and FitzHugh–Nagumo mod-
els. While some models can be identified from as few as 25 epochs,
we train some examples for up to 6400 epochs. Thus, we have used a
learning rate constant of 0.01 in almost all of our examples. It works
for all the dataset sizes used in our investigation; therefore, we show
results using the smallest datasets, which have only 1000 data points.
These hyperparameters are summarized in Table II.

The learning rate for the simple pendulum has been increased
by a factor of three. We found that the optimizer identifies a har-
monic oscillator even when trained for 12 800 epochs with a learning
rate of 0.01, whereas increasing the learning rate to 0.032 identifies
Eq. (23) in as few as 25 epochs. This indicates that the harmonic
oscillator is a local minimum for the optimization in parameter
space, which is also the classical linear approximation to the sim-
ple pendulum. Reducing the regularization weight α3 [Eq. (15)] of

the common operators in Eq. (9) alleviates this but makes the reg-
ularization sub-optimal in identifying the other examples. We also
found that the higher learning rate worked better for the Chua
double-scroll system.

III. INFORMATION CRITERION FOR PARSIMONIOUS

MODELS

We seek parsimonious expressions for the network model
for given (noisy) data because this increases interpretability. In
practice, we find that the network model has coefficients that (1) do
not exactly match those of the ground truth model, although they
are often approximately equal, and (2) there are a large number of
small but non-zero coefficients despite sparsity-promoting regular-
ization of the empirical loss. Thus, we need a “post-processing” step
that tunes the coefficients of the network model, including the pos-
sibility of setting coefficients of terms to zero. This can be posed as a
problem in model selection.

We use the Akaike Information Criterion (AIC)27 to fine-tune
the network model’s parameters. If an approximate model can be
expressed using fewer terms in the equation, it could be viewed as
carrying similar informativity but with fewer parameters. Informa-
tion theoretic criteria have been used in statistics for model selection
given a possible set of models, including with SINDy;35 in particular,
AIC can be viewed as quantifying the complexity of a model via the
number of terms in its equation alongside the residual relative to the
actual data, found from maximum likelihood estimates. As we work
in a Euclidean space, we use the MSE for m data points. AIC uses the
log-likelihood estimate alongside a correction term that accounts for
finite data size,36

AIC =
(

2P + m loge(MSE)
)

+ 2
(P + 1)(P + 2)

m − P − 2
, (17)

where

MSE =
1

m

m
∑

j=1

∥

∥

∥
ẋ[j]

σ2
− f̃S

(

x[j]
σ1

)

∥

∥

∥

2

2
,

and P is the number of estimated parameters. Here, f̃S(·) is a
“simpler” model obtained by using the Python library SymPy’s

nsimplify that rounds parameters of the network model f̃(·) to
within a given tolerance. This command also searches for com-
monly occurring constants like π , e, etc., to within the tolerance.
We compute the AIC scores for the network model over a range of

user-specified tolerances and select the model f̃A(·) with the lowest
AIC score. The tolerances considered are 11 logarithmically spaced
numbers between 0.01 and 1 as

Tolerances used ≡ [0.01, 0.0158, 0.0251, 0.0398, 0.0631,

0.1, 0.1585, 0.2512, 0.3981, 0.6310, 1]. (18)

Rounding parameters of the network model f̃(·) to each of these
11 tolerances could give up to 11 models differing in parameters.
The AIC score is computed on each of these models, and the one

with the lowest score is the selected network model f̃A(·). The effect
of the above rounding-off can sometimes be drastic when used in
conjunction with sparsity-inducing regularization because many of

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-8

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

TABLE III. Approximate relative-RMSE for each of the examples computed using

ground truth models over 100 000 data points spread across 1000 trajectories for the

non-chaotic examples and over single trajectories computed for T = 1000 time-units

for the chaotic examples.

Model Approximate relative-RMSE (%)

Takens–Bogdanov 2.04
Simple pendulum 4.37
Rössler 2.69
Lorenz 2.67
FitzHugh–Nagumo 2.64
Chemical kinetics 0.44
Chua double-scroll 1.83

the network model parameters could be close to 0. By following

the aforementioned procedure on a network model f̃(·) with 322

parameters, the Lorenz system is identified exactly as f̃A(·) with
five parameters or the simple pendulum is identified closely with
two parameters.

IV. EXAMPLES

We have successfully identified a number of models whose
characteristics span a variety of dynamic behaviors of scientific and
engineering importance using noisy data. Here, we provide some of
those examples to demonstrate identification of systems with stable,
unstable, and saddle fixed points, a limit cycle, and chaotic behavior.
Some of these systems also show timescale separation via fast initial
transient dynamics onto a slow manifold. We also compare trajec-
tories generated from a random initial condition by the selected
network models to that of the ground truth model.

In this paper, we present examples trained on data with 1%
noise [as defined in Eq. (3)], but we first show how that added noise
translates to the metrics of performance used. Although we use the
MAE in the loss function [Eq. (16)] that we optimize for, our data lie
in a Euclidean space so that we look at the root mean squared error
(RMSE), which is the l2 error averaged over our dataset. We already
defined MSE in Eq. (17) and the RMSE is the square-root of the
same, but it can vary across different dynamical systems; therefore,
we consider the relative-RMSE, which is defined as

Relative-RMSE =

√

√

√

√

√

∑m
j=1

∥

∥

∥
f̃A

(

x
[j]
σ1

)

− ẋ[j]
σ2

∥

∥

∥

2

2
∑m

j=1

∥

∥ẋ[j]
σ2

∥

∥

2

2

. (19)

The above would be non-zero even if the ground truth model is
identified exactly since E(ẋσ2) 6= E(f(xσ1)) from Sec. I A. While in

principle, it is possible that some f̃A(·) could over-fit any finite
dataset, we know that the least relative-RMSE of interest is obtained
if f̃A ≡ f. This can be used to lower-bound the relative-RMSE. Com-
puting it theoretically becomes cumbersome; therefore, we instead
provide numerical estimates in Table III using Eq. (19) for each
example, in the limit of large data, to better approximate the errors.

A. Takens–Bogdanov normal form

We consider the Takens–Bogdanov normal form37 to demon-
strate identification of a model using data for a system that has fixed
points with different stability characteristics,

ẋ = y, (20a)

ẏ = µ1 + µ2 y + x2 + x y. (20b)

This is the prototypical example of a dynamical system which is
close to parameter values for which a fixed point has a double zero-
eigenvalue, and possible special solutions can include fixed points
P± ≡ (±

√
−µ1, 0) and limit cycles. We consider the parameter val-

ues µ1 = −4.41, µ2 = 1.5, which is a first-order approximation to
values for which there exists a homoclinic orbit.37 For the consid-
ered parameter values, there is a stable fixed point P−, an unstable
(saddle) fixed point, no limit cycles, and trajectories with initial
conditions outside of the basin of attraction of P− grow without
bound.

To test our system identification algorithm, we consider as
input the four randomly initialized trajectories shown in Fig. 3(a).
There are a total of 1000 data points (250 for each trajectory of length
T = 1). We find that SymANNTEx identifies the model

ẋ = y, (21a)

ẏ = −4.333 + 1.5 y + x2 + x y, (21b)

using the following network structures: (1) L = 10 layers with K = 1
stack with 236 trainable parameters and (2) L = 1 layer and K = 2
stacks with 68 trainable parameters. This model is estimated after 25
epochs on Y at X shown in Fig. 3 with a relative-RMSE of ≈2.10%.
For reference, the ground truth model gives an error of ≈2.04% on
the dataset referred to in Table III. SymANNTEx estimated similar
models up to noise levels of σ1 = 0.02, σ2 = 0.075.

B. Simple pendulum

To demonstrate the ability to identify models with sinusoidal
terms, we consider the simple pendulum

θ̈ = −
g

l
sin θ , (22)

with g = 9.81, l = 2. As our algorithm is designed to approximate
first-order ordinary differential equations (ODEs) as functions of
state, we reformulate the above second-order ODE equation as
two first-order ODEs, which is a classical technique in analyzing
dynamical systems.37 The simple pendulum has a continuum of

time-periods ranging from 2π
√

l
g

near the fixed point at (0, 0) to

infinity near the unstable fixed points (±kπ , 0). We remark that this
continuum of time periods is reflected in the Koopman operator
perspective as a continuous spectrum,38 which makes analysis using
DMD challenging.39

To test our algorithm, we consider as input the four randomly
initialized trajectories shown in Fig. 4. There are a total of 1000
data points (250 for each trajectory of length T = 4). We find that

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-9

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

(a)

(b)

FIG. 3. (a) State-space comparison of the trajectory generated (dashed
magenta) by Eqs. (21a)–(21b) estimated at X (light green) with that generated
by the ground truth model [Eqs. (20a) and (20b)] (solid green), which here is visu-
ally indistinguishable. The stable and unstable manifolds of the saddle fixed point
are shown as dark gray lines, and other trajectories are shown as light gray lines
for better depiction of the dynamics. (b) The same trajectory (dashed) plotted as a
time series compared with that generated by the ground truth model (solid), which
are nearly identical. (a) Phase portrait. (b) Time series.

our algorithm identifies the model in the state-space form, denoting
x ≡ θ and y ≡ θ̇ , as

ẋ = y, (23a)

ẏ = −4.857 sin x, (23b)

using L = 10 layers and K = 1 stack with 236 trainable parame-
ters after 100 epochs on training data Y at the input data X with
a relative-RMSE of ≈4.45%. For reference, the ground truth model
gives an error of ≈4.37% on the dataset referred to in Table III. Here,
we remark that a higher learning rate of 0.032 is used to identify the
above equations in as few as 25 epochs as compared to a learning rate

(a)

(b)

FIG. 4. (a) State-space comparison of the trajectory generated (dashed
magenta) by Eq. (23) estimated at X (light green) with that generated by the
ground truth model [Eq. (22)] (solid green), which here is visually indistinguish-
able. The separatrices between angular displacement −π and π are shown as
dark gray lines. (b) The same trajectory (dashed) plotted as a time series com-
pared with that generated by the ground truth model (solid), which are nearly
identical. (a) Phase portrait. (b) Time series.

of 0.01 only giving a linear approximation even after 12 800 epochs,
indicating a large region of local minima. SymANNTEx estimated
similar models up to noise levels of σ1 = 0.02, σ2 = 0.075.

C. Rössler equations

We now demonstrate the identification of chaotic dynamical
systems from noisy data. Identifying the flow-map or solution of
state of chaotic systems is challenging due to their sensitive depen-
dence on initial conditions and usual lack of closed-form solutions.
Their analysis using DMD methods is also challenging due to the
lack of discrete modes.12 Here, we consider the Rössler equations,

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-10

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

which find relevance in chaotic behavior of chemical reactions,40

ẋ = −y − z, (24a)

ẏ = x + 0.5 y, (24b)

ż = 2 + z (x − 4). (24c)

This model has a chaotic attractor with sensitive dependence on
initial conditions. It also has a region of state-space beyond the
attractor’s region of attraction where trajectories grow unboundedly.

To test our algorithm, we consider 1000 data points from a
single randomly initialized trajectory (equally spaced in time on
the time interval [0, 100]), as shown in Fig. 5. Since the terms in
(24a)–(24c) can be represented without stacking, we use L = 10 lay-
ers and K = 1 stack with 322 trainable parameters. This network was
found to successfully identify the equations exactly, including the
exact parameters, in 800 epochs on training data Y at the input data
X, which has a relative-RMSE of ≈2.60%. We remark that the noise
levels in Table III are estimates that vary slightly with the number
of data points and are, therefore, not exact. SymANNTEx estimated
the exact model up to noise levels of σ1 = 0.01, σ2 = 0.05.

D. Lorenz equations

We further demonstrate the ability of SymANNTEx to identify
chaotic dynamical systems from noisy data. We consider the clas-
sical Lorenz equations with standard parameters, originally used to
model two-dimensional atmospheric convection,41

ẋ = 10 (y − x), (25a)

ẏ = x (28 − z) − y, (25b)

ż = x y − 8z/3. (25c)

This model has a chaotic attractor with sensitive dependence on ini-
tial conditions and a lack of closed-form expression for its solution
of state, which manifests itself in forecasting time series. Reser-
voir computing42 does an excellent job in predicting the state for
many Lyapunov time-units but eventually diverges. Its associated
Koopman operator lacks a discrete spectrum,13 and thus, analysis
using DMD is challenging with results continuously varying with
the order of approximation.

To test our algorithm, we consider 1000 data points from a
single randomly initialized trajectory (equally spaced in time on
the time interval [0, 25]), as shown in Fig. 6. Since the terms in
(25a)–(25c) can be represented without stacking, we use L = 10 lay-
ers and K = 1 stack with 322 trainable parameters. This network was
found to successfully identify the equations exactly, including the
exact parameters, in 6400 epochs on training data Y at the input data
X, which has a relative-RMSE of ≈2.59%. We remark that the noise
levels in Table III are estimates that vary slightly with the number
of data points and are, therefore, not exact. This example with coef-
ficients as large as 28 alongside most of the other coefficients from
the trainable parameters that get approximated to 0 shows the wide
range of parameters that can be identified across orders of magni-
tude. SymANNTEx estimated the exact model up to noise levels of
σ1 = 0.01, σ2 = 0.05.

(a)

(b)

FIG. 5. (a) State-space visualization of the trajectory generated by
Eqs. (24a)–(24c) (solid green). It coincides with that generated (dashed
magenta) by the model identified at X (light green) as it is the same as the ground
truth model. (b) The same trajectory (dashed) plotted as a time series coinciding
with the ground truth. The time-evolution of the states is without any coherence
due to the chaotic nature of the system. [z is not shown in (a), and y is not shown
in (b) to avoid cluttering the figures.] (a) Phase portrait. (b) Time series.

E. FitzHugh–Nagumo equations

We consider the FitzHugh–Nagumo model43

v̇ = v − v3/3 − w + I, (26a)

ẇ = ε(v + aw + b) (26b)

to demonstrate identification of a system with oscillatory behavior
and a separation of timescales. This is a model for neural dynamics,
which shares key features with conductance-based models, such as
the Hodgkin–Huxley equations. Here, we use the parameter values
I = 0.328, ε = 0.08, a = −0.8, b = 0.7, for which there is a stable
limit cycle with spiking behavior.

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-11

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

(a)

(b)

FIG. 6. (a) State-space visualization of the trajectory generated by
Eqs. (25a)–(25c) (solid green). It coincides with that generated (dashed
magenta) by the model identified at X (light green) as it is the same as the ground
truth model. (b) The same trajectory (dashed) plotted as a time series coinciding
with the ground truth. The time-evolution of the states is without any coherence
due to the chaotic nature of the system. [z is not shown in (a) and y is not shown
in (b) to avoid further cluttering the figures.] (a) Phase portrait. (b) Time series.

To test our algorithm, we consider as input 100 randomly ini-
tialized trajectories shown in Fig. 7(a). There are a total of 1000
data points (10 for each trajectory of length T = 1). We find that
SymANNTEx identifies the model

v̇ = 0.998 v − v3/3 − 0.971 w + 0.311 − 0.006 v2, (27a)

ẇ = 0.078 v − 0.06 w + 0.054 (27b)

using L = 1 layer and K = 2 stacks with 68 trainable parameters.
We note that stacking is necessary because powers of state are taken

(a)

(b)

FIG. 7. (a) State-space comparison of trajectory generated (dashed magenta)
by Eqs. (27a) and (27b) estimated at X (light green) with that generated by the
ground truth model [Eqs. (26a) and (26b)] (solid green). The fast initial transient
of the trajectory and subsequently closely following the slow manifold onto the
periodic orbit are almost exact. The periodic orbit itself is also reproduced closely.
(b) Evolution of the same trajectories as a time series shows how the transients
are almost exact, and the time-period of the identified model (dashed) is slightly
different from the ground truth model (solid). (a) Phase portrait. (b) Time series.

on the absolute value; therefore, the cubic term in Eq. (26a) can-
not be exactly formed using a single stack: v3 = |v|2 × v. This model
is identified in 3200 epochs on training data Y at the input data
points X with a relative-RMSE of ≈2.40%. For reference, the ground
truth model gives an error of ≈2.64% on the dataset referred to
in Table III indicating a slight overfit. Yet, from Fig. 7, we remark
that the phase portraits nearly coincide with the ground truth
model, including the dynamic range of oscillations and the fast
and slow transients. In particular, the time-period of the limit cycle
behavior is also nearly the same, as seen from Fig. 7(b). SymAN-
NTEx estimated similar models up to noise levels of σ1 = 0.025,
σ2 = 0.025.

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-12

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

F. Chemical kinetics with Arrhenius rate dependence

We consider the exponential approximation to Arrhenius rate
law in chemical kinetics in the context of two first-order reactions,44

which gives the nonlinear dependence of the reaction rate on the
temperature. When the rise in temperature in an exothermic reac-
tion is small in comparison with the ambient temperature, the rate
can be approximated as exponentially dependent on the rise in the
temperature. After scaling the governing equations of mass and
energy by relevant quantities,

α̇ = −κ α eθ + µ, (28a)

θ̇ = α eθ − θ (28b)

are the set of dimensionless equations, where α is the intermedi-
ate chemical concentration and θ represents a temperature rise. We
consider reactant concentration measure µ = 0.1 and reaction rate
constant κ = 0.07 for which this system of equations has a stable
limit cycle.

To test our algorithm, we consider as input 100 trajectories
shown in Fig. 8(a). There are a total of 16 000 data points (160 for
each trajectory of length T = 0.001). We find that SymANNTEx
identifies

α̇ = −0.07 α e0.9 θ 1.014 + 0.171 θ

θ 0.1 e0.1 α
+ 0.1, (29a)

θ̇ = α e0.9 θ 1.028 + 0.175 θ + 0.007 θ 2

θ 0.1 e0.1 α
− θ (29b)

using L = 1 layer and K = 2 stacks with 68 trainable parameters. We
note from Eqs. (28a) and (28b) that stacking is necessary because
the exponential term eθ is multiplied with a state α, which cannot
be exactly formed using a single stack. This model is identified in
6400 epochs on training data Y at the input data points X with a
relative-RMSE of ≈1.56%. For reference, the ground truth model
gives an error of ≈0.44% in Table III. The differences in Eqs. (29a)
and (29b) compared to Eqs. (28a) and (28b) are terms with coeffi-
cients that are an order of magnitude smaller, which are even smaller
when the range of X (α ∈ (0, 0.7], θ ∈ (0, 7]) is considered. We
see from Fig. 8(a) that the phase portraits are very similar to the
ground truth model, including the dynamic range of oscillations.
Although there is a slight mismatch in the fast transients, it is a
range of state-space outside of X and on a faster timescale than Y.
From Fig. 8(b), we can also see that the time-period and the dynamic
range of oscillations are also nearly reproduced. We remark that the
fast and slow transients are also reproduced closely. This also shows
our algorithm’s ability to identify datasets with large separation of
timescales. SymANNTEx estimated similar models up to noise levels
of σ1 = 0.001, σ2 = 0.01.

Below, we also show another model identified for the same
dataset but with a worse AIC score,

α̇ = −0.075 α eθ + 0.167, (30a)

θ̇ = 1.016 α eθ − θ . (30b)

At first glance, these equations look more similar to the ground truth
model but in comparison with Eqs. (29a) and (29b), they have larger

(a)

(b)

FIG. 8. (a) State-space comparison of trajectory generated (dashed magenta)
by Eqs. (29a) and 29b) estimated at X (light green) with that generated by the
ground truth model [Eqs. (28a) and (28b)] (solid green). The initial transient of the
trajectory onto the periodic orbit happens very quickly and is reproduced almost
exactly. The periodic orbit itself is similar, capturing that the dynamic range in the
two states differs nearly by an order of magnitude. (b) Evolution of the same trajec-
tories in time shows how the transient and the time-period of the identified model
(dashed) is almost exactly the same as that of the ground truth model (solid).
(a) Phase portrait. (b) Time series.

relative-RMSE, and, as seen from Fig. 9, the trajectory they generate
is not as close to that of the ground truth model.

G. Chua double-scroll attractor

Last, we demonstrate the estimation of a model for a dynamical
system that has functions which are not included in our opera-
tional layer. For this purpose, we consider the Chua double-scroll
attractor,45

ẋ = 15.6y −
31.2

7
x + 3.343(|x + 1| − |x − 1|), (31a)

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-13

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 9. State-space trajectory generated by Eqs. (30a) and (30b) (dashed
magenta) compared to that generated by Eqs. (28a) and (28b) (solid green).
Although the equations are visually similar, Eqs. (29a) and (29b) are a better
approximation to the ground truth model in terms of the RMSE over X and the
trajectories generated.

ẏ = x − y + z, (31b)

ż = −28y. (31c)

The circuit modeled by the above equations shows chaotic behav-
ior that has been observed by an analog oscilloscope. It has
one nonlinear element, which is a piecewise-linear resistor. This
nonlinearity is modeled by the absolute-valued function of state as
|x + 1| − |x − 1|, which is not a differentiable function of state. To
test our algorithm, we again consider 1000 data points from a single
randomly initialized trajectory (equally spaced in time on the time
interval [0, 100]) as shown in Fig. 10(a). We use L = 10 layers and
K = 1 stack with 322 trainable parameters. Without including the
absolute-value function in the operational sublayers, we know that
this model cannot be identified exactly. We find that most of the
identified models consist of one or more sinusoidal terms, such as

ẋ = 15.857 y −
1

4
x + 2.143 sin(2 x), (32a)

ẏ = x − y + z, (32b)

ż = −28.667 y. (32c)

This model is identified in 6400 epochs on training data Y at the
input data points X with a relative-RMSE of ≈5.41%. For refer-
ence, the ground truth model gives an error of ≈1.83% in Table III.
We see from Fig. 10(c) that the selected network model gives
good short-time tracking of the trajectory of the exact model, and
from Fig. 10(b), they have similar long-time statistical behavior.
SymANNTEx identified this model up to noise levels of σ1 = 0.01,
σ2 = 0.01.

FIG. 10. (a) State-space comparison of the trajectory generated by
Eqs. (32a)–(32c) (dashed magenta) estimated at X (light green) with that
generated by the ground truth model [Eqs. (31a)–(31c)] (solid green). Without
the absolute-valued function in our primitives, the identified model cannot give
exactly the same attractor as the true model, but we can see similar dynamics
and switching behavior. (b) The same trajectories plotted as a time series for x
and z shows that while the solution of the identified model (dashed) diverges from
that for the true model (solid), both show similar statistical behavior. Moreover,
the identified model tracks the true model for the initial times as shown in (c),
before gradually diverging. (a) Phase portrait. (b) Time series. (c) Zoomed-in
view of (b).

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-14

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

V. COMPARISON WITH A L1 REGULARIZED MEAN

SQUARED ERROR AS THE LOSS

Our choice of using the mean absolute error (MAE) along-
side L1/2, Lpoly, and Lops regularization as the loss function [Eq. (16)]
to be optimized differs from the common usage of L1 regularized
mean squared error (MSE) in the literature.31 Despite working in
a Euclidean space and our own metric for performance presented
above being RMSE, this choice is driven by empirical observations
that the loss function of MAE with custom regularization identi-
fies models that are far more parsimonious than those identified
using L1 regularized MSE as the loss function. While this could in
part be attributed to the sparsity-promoting L1/2 regularization,30

we found that its usage with MSE did not generate models as
parsimonious as our choice of loss function. Some analysis and
comparison between MAE and MSE as loss functions have been
done46 in the context of conventional DNNs without regularization.
Here we summarize preliminary findings on this in Sec. V, but a
detailed investigation is beyond the scope of this work. Here, we
present some examples of models identified with the conventional
L1 regularized MSE. These examples are summarized in Table IV.
In comparison with our custom loss function, we see that some of
the identified models have far larger relative-RMSE than the train-
ing noise itself. Deep learning literature suggests that this could
arise from underfitting,47 but we can see that the models identified
using SymANNTEx have a higher number of parameters than both
the ground truth models and selected network models in Table IV.
However, there are also models with acceptable relative-RMSE, but
we can see that those models seem to have been overfitted47 to
the training data using the corresponding number of parameters,
which are more than those in the ground truth models. How-
ever, we noticed that the Rössler model was consistently identified.
In our numerical investigations using other combinations of error
and regularization, namely, MAE with L1 regularization, MAE with
L1, Lpoly, Lops regularizations, and MSE with L1, Lpoly, Lops regular-
izations, we see trends similar with some models being identified
well while others being overfitted. Thus, we avoid tabulating them
in the interest of brevity and summarize only the results from L1

regularized MSE in Table IV as it is the most commonly used
one.

We remark that the AIC score, which considers the number of
non-zero parameters alongside MSE, could be seen as the so-called

L0 regularization. Although we do not optimize the network param-
eters using this in the training process, our model selection through
computing AIC scores clearly takes this into account.

VI. DISCUSSION

We presented a novel algorithm for identifying interpretable,
closed-form models for a dynamical system from its time series data
based on simple operations on state variables and functions. It is a
generative dictionary system identification method, which only pre-
specifies a set of primitive operations and functions, and creates the
dictionary of possible model terms from combinations and com-
positions of these primitives. Moreover, it is a symbolic regression
algorithm, in that it searches a space of mathematical expressions to
find the model, as opposed to conventional regression techniques,
which optimize parameters for a fixed dictionary. These charac-
teristics allow a much wider array of possible model terms than
fixed dictionary system identification methods. Our neural network
architecture is novel in its utilization of the weights of the network
to determine the form of the terms in the generated dictionary,
the number of which remains small enough to handle computa-
tionally, but large enough to capture a rich set of possibilities. The
depth of our network, characterized by the number of stacks, rep-
resents the level of complexity obtained by composing functions.
Each stack is made up of operational layers that span the breadth
of the network, and which account for multiple occurrences of a
function in the model but with different coefficients. The AIC score
was used to select between models with parameters chosen within
given tolerances. Unlike deep learning and reservoir computing
approaches for forecasting a system’s state,24,48 SymANNTEx gives
closed-form models for the dynamics, which could be useful for
designing control algorithms. A powerful feature of our approach is
that it builds upon desired primitive functions via compositions and
linear combinations rather than requiring pre-specified fixed basis
functions whose linear combination describes the system’s dynam-
ics. When a requisite function is absent from our chosen primitives,
say, the absolute value (which is also non-differentiable), we found
that SymANNTEx gives its best estimate with possible terms. Our
algorithm gives accurate models even when the derivative data are
noisy, but there can be a trade-off between the accuracy of the model
and the number of terms that it contains. It would be interesting to

TABLE IV. Selected network models for demonstrating versatility of SymANNTEx. Note the similarity of the relative-RMSEs with those in Table III and the number of parameters

in the estimated and ground truth models.

Identified model L1 regularized MSE

Example ≈ Relative-RMSE (%) Parameters Parameters in a ground truth model ≈ Relative-RMSE (%) Parameters

Takens–Bogdanov 2.10 4 4 2.82 10
Simple pendulum 4.45 2 2 66.78 3
Rössler 2.60 4 4 2.62 4
Lorenz 2.59 5 5 5.09 54
FitzHugh–Nagumo 2.40 10 8 6.00 11
Chemical kinetics 1.56 11 7 0.61 48
Chua double-scroll 5.41 8 10 8.43 18

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-15

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

explore the use of recently proposed approaches for model selec-
tion with SymANNTEx when the data are more highly corrupted by
noise.49,50

We found empirically that training data with a larger ‖ · ‖2

norm averaged over the data points—a notion of “power” in the
derivatives—leads to more accurate models with a smaller gen-
eralization error. Preliminary analysis of metrics during training
indicate that data with lower power in the derivatives are prone to
the occurrence of vanishing gradients.47 Thus, as for SINDy7 and
EDMD,16 we do not normalize the training data. This is in contrast
to algorithms where normalizing training data are considered to be
better practice.47 Despite this, SymANNTEx has successfully iden-
tified the FitzHugh–Nagumo model and the model with Arrhenius
terms, both of which exhibit separation of timescales.

We observed several interesting artifacts in training. We
found that a loss function constituted by MAE alongside sublayer-
specific regularization—some of which are non-convex, such as the
L1/2 regularization30—outperforms the conventional combination
of MSE with L1 regularization in estimating parsimonious mod-
els generalizable beyond seen data X, even when trained for 105

epochs. The generalizable aspect could also be related to the recently
reported double-descent phenomenon32 where increasing the num-
ber of trainable parameters beyond the widely accepted optimal
range in the bias–variance trade-off seems to promote generaliz-
ability. An example is the usage of L = 10 layers in identifying the
Takens–Bogdanov normal form, the Lorenz, and the Rössler equa-
tions: all of these should, in principle, be identifiable with L = 2
layers, but we find that two layers are consistently insufficient. We
also observed faster training at the edge of stability34 with initial
learning rates higher than the default in Adam.33 For example, train-
ing using a default learning rate constant of 0.001 even for over
20 000 epochs yields residual terms in the identified Lorenz and
FitzHugh–Nagumo equations that vanish in as few as 800 epochs
with a learning rate constant of 0.01.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
(Grant No. NSF-2016004).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

N. Boddupalli and T. Matchen contributed equally to this paper.

N. Boddupalli: Conceptualization (equal); Investigation (equal);
Software (equal); Validation (equal); Visualization (equal); Writ-
ing – original draft (equal). T. Matchen: Conceptualization (equal);
Investigation (equal); Software (equal); Validation (equal); Visu-
alization (equal); Writing – review & editing (equal). J. Moehlis:
Conceptualization (supporting); Funding acquisition (lead); Project
administration (lead); Supervision (lead); Writing – review & edit-
ing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1L. Ljung, System Identification: Theory for the User, 2nd ed. (Prentice Hall, Upper
Saddle River, NJ, 1999).
2S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering (Cambridge
University Press, Cambridge, 2019).
3J. P. Crutchfield and B. S. McNamara, “Equations of motion from a data series,”
Complex Syst. 1, 417–452 (1987).
4C. Yao and E. M. Bollt, “Modeling and nonlinear parameter estimation with
Kronecker product representation for coupled oscillators and spatiotemporal
systems,” Physica D 227, 78–99 (2007).
5W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting catas-
trophes in nonlinear dynamical systems by compressive sensing,” Phys. Rev. Lett.
106, 154101 (2011).
6Y.-C. Lai, “Finding nonlinear system equations and complex network
structures from data: A sparse optimization approach,” Chaos 31, 082101
(2021).
7S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proc. Natl.
Acad. Sci. U.S.A. 113, 3932–3937 (2016).
8D. Napoletani and T. D. Sauer, “Reconstructing the topology of sparsely con-
nected dynamical networks,” Phys. Rev. E 77, 026103 (2008).
9N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Inferring biological
networks by sparse identification of nonlinear dynamics,” IEEE Trans. Mol. Biol.
Multi-Scale Commun. 2, 52–63 (2016).
10K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven discov-
ery of coordinates and governing equations,” Proc. Natl. Acad. Sci. U.S.A. 116,
22445–22451 (2019).
11I. Mezić, “Spectral properties of dynamical systems, model reduction and
decompositions,” Nonlinear Dyn. 41, 309–325 (2005).
12M. Budisic, R. Mohr, and I. Mezic, “Applied Koopmanism,” Chaos 22, 047510
(2012).
13H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposition, and
computation of spectral properties of the Koopman operator,” SIAM J. Appl. Dyn.
Syst. 16, 2096–2126 (2017).
14P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5–28 (2010).
15J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems (SIAM, Philadelphia,
PA, 2016).
16M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven approxi-
mation of the Koopman operator: Extending dynamic mode decomposition,” J.
Nonlinear Sci. 25, 1307–1346 (2015).
17J. Bongard and H. Lipson, “Automated reverse engineering of nonlinear
dynamical systems,” Proc. Natl. Acad. Sci. U.S.A. 104, 9943
(2007).
18M. Quade, M. Abel, K. Shafi, R. K. Niven, and B. R. Noack, “Predic-
tion of dynamical systems by symbolic regression,” Phys. Rev. E 94, 012214
(2016).
19M. Quade, J. Gout, and M. Abel, “Glyph: Symbolic regression tools,” J. Open
Res. Softw. 7, 19 (2019).
20M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” Science 324, 81–85 (2009).
21W. Banzhaf and W. B. Langdon, “Some considerations on the reason for bloat,”
Genet. Program. Evolvable Mach. 3, 81–91 (2002).
22A. Lapedes and R. Farber, “How neural nets work,” in Neural Information Pro-
cessing Systems, edited by D. Z. Anderson (American Institute of Physics, 1988),
pp. 442–456.
23R. Rico-Martinez, K. Krischer, I. G. Kevrekidis, M. C. Kube, and J. L. Hudson,
“Discrete- vs continuous-time nonlinear signal processing of Cu electrodissolu-
tion data,” Chem. Eng. Commun. 118, 25–48 (1992).

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-16

Published under an exclusive license by AIP Publishing



Chaos ARTICLE pubs.aip.org/aip/cha

24M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature
learning and deep learning for time-series modeling,” Pattern Recognit. Lett. 42,
11–24 (2014).
25S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić, and M. Sol-
jačić, “Integration of neural network-based symbolic regression in deep learning
for scientific discovery,” IEEE Trans. Neural Netw. Learn. Syst. 32, 4166–4177
(2020).
26C. Fronk and L. Petzold, “Interpretable polynomial neural ordinary differential
equations,” Chaos 33, 043101 (2023).
27H. Akaike, “A new look at the statistical model identification,” IEEE Trans.
Autom. Control 19, 716–723 (1974).
28F. Van Breugel, Y. Liu, B. W. Brunton, and J. N. Kutz, “PyNumDiff: A Python
package for numerical differentiation of noisy time-series data,” J. Open Source
Softw. 7, 4078 (2022).
29J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G.
Wang, J. Cai, and T. Chen, “Recent advances in convolutional neural networks,”
Pattern Recognit. 77, 354–377 (2018).
30Z. Xu, H. Zhang, Y. Wang, X. Chang, and Y. Liang, “L 1/2 regularization,” Sci.
China Inf. Sci. 53, 1159–1169 (2010).
31M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learn-
ing (MIT Press, Cambridge, MA, 2018).
32M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-
learning practice and the classical bias–variance trade-off,” Proc. Natl. Acad. Sci.
U.S.A. 116, 15849–15854 (2019).
33D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Pro-
ceedings of the 3rd International Conference on Learning Representations (ICLR)
(2015).
34J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar, “Gradient descent on
neural networks typically occurs at the edge of stability,” in Proceedings of the 9th
International Conference on Learning Representations (ICLR) (2021).
35N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor, “Model selection for
dynamical systems via sparse regression and information criteria,” Proc. R. Soc. A
473, 20170009 (2017).

36K. Burnham and D. Anderson, Model Selection and Multimodel Inference, 2nd
ed. (Springer, New York, 2002).
37J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields (Springer, New York, 1983).
38I. Mezić, “Spectrum of the Koopman operator, spectral expansions in functional
spaces, and state-space geometry,” J. Nonlinear Sci. 30, 2091–2145 (2020).
39B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nat. Commun. 9, 4950 (2018).
40O. E. Rössler, “Chaotic behavior in simple reaction systems,” Z. Naturforsch. A
31, 259–264 (1976).
41E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141
(1963).
42E. Bollt, “On explaining the surprising success of reservoir computing fore-
caster of chaos? The universal machine learning dynamical system with contrasts
to VAR and DMD,” Chaos 31, 013108 (2021).
43R. FitzHugh, “Impulses and physiological states in theoretical models of nerve
membrane,” Biophys. J. 1, 445–466 (1961).
44P. Gray and S. K. Scott, Chemical Oscillations and Instabilities (Oxford Univer-
sity Press, Oxford, 1990).
45L. Chua, M. Komuro, and T. Matsumoto, “The double scroll family,” IEEE
Trans. Circuits Syst. 33, 1072–1118 (1986).
46J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, “On mean absolute error
for deep neural network based vector-to-vector regression,” IEEE Signal Process.
Lett. 27, 1485–1489 (2020).
47I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, Cam-
bridge, MA, 2016).
48D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, “Next generation
reservoir computing,” Nat. Commun. 12, 5564 (2021).
49G. Tran and R. Ward, “Exact recovery of chaotic systems from highly corrupted
data,” SIAM J. Multiscale Model. Simul. 15, 1108–1129 (2017).
50A. A. R. AlMomani, J. Sun, and E. Bollt, “How entropic regression beats
the outliers problem in nonlinear systems identification,” Chaos 30, 013107
(2020).

Chaos 33, 083150 (2023); doi: 10.1063/5.0134464 33, 083150-17

Published under an exclusive license by AIP Publishing


