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A FINITENESS THEOREM
FOR LAGRANGIAN FIBRATIONS

JUSTIN SAWON

Abstract

We consider (holomorphic) Lagrangian fibrations π : X → Pn that
satisfy some natural hypotheses. We prove that there are only finitely
many such Lagrangian fibrations up to deformation.

1. Introduction

Let X be an irreducible holomorphic symplectic manifold of dimension 2n;
i.e., X is a compact Kähler manifold admitting a holomorphic two-form σ
which is non-degenerate in the sense that σ∧n trivializes the canonical bundle
KX = Ω2n. In this context, irreducibility means that X is simply-connected
and H0(X,Ω2) is generated by σ. Ultimately we would like to classify such
manifolds up to deformation; in this article we assume that X admits the
additional structure of a Lagrangian fibration.

Matsushita [21] proved that if π : X → B is a fibration on X, then dimB
must equal n, the generic fibre must be an n-dimensional complex torus, and
every fibre must be Lagrangian with respect to the holomorphic symplectic
form σ. Hwang [9] later proved that the base must be isomorphic to Pn if it is
smooth and X is projective. In this article, by Lagrangian fibration we shall
mean an irreducible holomorphic symplectic manifold admitting a fibration
π : X → Pn.

Our main result is:

Theorem 1. Fix once and for all positive integers n and d1, . . . , dn, with
d1|d2| · · · |dn. Consider projective Lagrangian fibrations π : X → Pn that
satisfy

(1) π : X → Pn admits a global section,
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2 JUSTIN SAWON

(2) there is a very ample line bundle on X which gives a polarization of
type (d1, . . . , dn) when restricted to a generic smooth fibre Xt,

(3) over a generic point t of the discriminant locus (i.e., of the hypersur-
face ∆ ⊂ Pn parametrizing singular fibres) the fibre Xt is a rank-one
semi-stable degeneration of abelian varieties,

(4) a neighbourhood U of a generic point t ∈ Pn describes a maximal
variation of abelian varieties.

Then there are finitely many such Lagrangian fibrations up to deformation.

The precise meanings of “rank-one semi-stable degeneration” and “max-
imal variation” will be made clear in Section 2, and these hypotheses are
discussed further in Subsections 4.1 to 4.3. Some restrictions on the types of
polarizations that can occur in dimension 2n = 4 were previously found by
the author [31].

The idea of the proof is as follows. The first two hypotheses ensure the
existence of a “classifying map”

φ : Pn\∆ → Ad1,...,dn

from the complement of the discriminant locus in the base to the moduli space
of (d1, . . . , dn)-polarized abelian varieties. The third hypothesis implies that
φ extends over generic points of ∆ to a map

φ̄ : Pn\∆0 → A∗
d1,...,dn

,

where ∆0 ⊂ ∆ is of codimension at least two in Pn and A∗
d1,...,dn

is the partial
compactification of Ad1,...,dn . We choose an ample line bundle H on A∗

d1,...,dn
,

and consider the pullback φ̄∗H to Pn\∆0. We establish an upper bound on
the degree of φ̄∗H (the fourth hypothesis ensures that this degree is non-zero),
from which we conclude that φ̄ must belong to one of finitely many families
of rational maps from Pn to A∗

d1,...,dn
.

Next we study the space of rational maps from Pn to A∗
d1,...,dn

. We describe
conditions on a map that are necessary and sufficient to ensure that a unique
Lagrangian fibration π : X → Pn can be reconstructed from it. We prove that
each of these conditions is either open, closed, or a finite union of locally closed
conditions. In effect, this establishes a bijection between Lagrangian fibrations
and a constructible algebraic subset of the space of rational maps from Pn to
A∗

d1,...,dn
of bounded degree. The latter consists of finitely many connected

components, thereby implying the finiteness of Lagrangian fibrations π : X →
Pn up to deformation.

Theorem 1 may be compared to a result of Gross [2], stating that there are
finitely many elliptic Calabi-Yau threefolds up to deformation. The bulk of
Gross’s article goes into dealing with the relation between a fibration and its
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A FINITENESS THEOREM FOR LAGRANGIAN FIBRATIONS 3

relative Jacobian, and in understanding the singular fibres; we avoid both of
these difficulties by imposing hypotheses 1 and 3. Our main challenge is to
deal with the classifying map, which is relatively simple in the elliptic case.
Huybrechts [8] also proved finiteness theorems for holomorphic symplectic
manifolds; his results do not require the structure of a Lagrangian fibration,
but instead involve H2(X, Z) and the Beauville-Bogomolov quadratic form.

2. Bounding the degree

Our goal in this section is to introduce the classifying map of a Lagrangian
fibration and establish a bound for its degree.

2.1. Classifying maps. We start by recalling some of the theory of mod-
uli spaces of abelian varieties (see Grushevsky [3] and the references contained
therein). Consider first the principally polarized case, and let An := A1,...,1

be the moduli space of n-dimensional principally polarized abelian varieties.
Recall that there is a partial compactification of An, given as a set by

A∗
n = An $ (Xn−1/ ± 1)

where Xn−1 → An−1 is the universal principally polarized abelian variety
of dimension n − 1. The codimension one boundary Xn−1/ ± 1 parametrizes
degenerate abelian varieties in the following way: if x ∈ Xn−1, then x is a point
on an (n− 1)-dimensional abelian variety A. Since A is principally polarized,
we can also think of x as a point on the dual variety Â = Pic0A ∼= A,
corresponding to a degree zero line bundle Lx on A. Take the P1-bundle
P(OA ⊕Lx) over A and glue the zero and infinity sections; these sections are
both isomorphic to A, under the projection P(OA ⊕ Lx) → A, but when we
glue them we include a translation by x ∈ A. Let Y denote the resulting
variety. Note that Y is not normal: topologically it looks like the product of
A with a nodal rational curve, but as a complex algebraic variety Y is only a
product if x = 0. Starting instead with −x produces the same variety, so the
construction only depends on [x] ∈ Xn−1/ ± 1.

Definition. The resulting variety Y is known as a rank-one semi-stable
degeneration of principally polarized abelian varieties. The smooth locus of
Y , which is a C∗-bundle over A, is a semi-abelian variety, i.e., an extension of
an abelian variety by an algebraic torus. Then Y is a toric compactification
of this semi-abelian variety, with rank-one toric part.

Remark. If x has order two in A, then it is fixed by ±1, and A∗
n has

a singularity at that point. Working with moduli stacks rather than moduli
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4 JUSTIN SAWON

spaces, these points correspond to degenerate abelian varieties with additional
automorphisms.

For a general polarization of type (d1, . . . , dn), a rank-one semi-stable de-
generation can consist of several irreducible components. Each component will
be a P1-bundle over an (n− 1)-dimensional abelian variety A (unless there is
only one component), and they will be glued together to form a cycle, with
the infinity section of one glued to the zero section of the next. Overall, the
composition of all the gluings will include a translation by an element x ∈ A.
There is a partial compactification A∗

d1,...,dn
of the moduli space Ad1,...,dn of

(d1, . . . , dn)-polarized abelian varieties, whose boundary divisor

A∗
d1,...,dn

\Ad1,...,dn

parametrizes these rank-one semi-stable degenerations. To determine all the
possibilities for the number of components of a degeneration, the polarization
type of A, and the degrees of the P1 fibres is a complicated combinatorial
problem, but we do not need an explicit solution here. It is enough to note that
there are finitely many possibilities, and each yields an irreducible component
of the boundary divisor.

Example. The case of (1, p)-polarized abelian surfaces, with p a prime, is
treated in detail by Hulek, Kahn, and Weintraub [6]. They show that for the
moduli space of abelian surfaces with level structures , the boundary divisor
consists of two irreducible components, the first parametrizing degenerations
constructed from a single P1-bundle over A and the second parametrizing
degenerations with p irreducible components. However, in the absence of level
structures additional degenerations arise: there could be k < p components,
with P1 fibres of degree ai such that a1 + . . . + ak = p. (Indeed, one already
sees this for elliptic curves with polarizations of degree 3, i.e., plane cubics;
they can degenerate to an irreducible nodal cubic, to a union of three lines,
or to a union of a line and a conic.) Thus the boundary divisor A∗

1,p\A1,p will
consist of more than two irreducible components.

Now suppose that Z → U is a family of (d1, . . . , dn)-polarized abelian
varieties over a small open set U , in the analytic topology. There is a map
U → Ad1,...,dn associated to this family.

Definition. We say that Z/U describes a maximal variation of abelian
varieties if the map U → Ad1,...,dn is an immersion.

Having made these clarifications, let us turn to the situation of Theorem 1;
i.e., suppose that π : X → Pn is a projective Lagrangian fibration satisfying
hypotheses 1 to 4. Over the complement Pn\∆ of the discriminant locus we
have a family of n-dimensional complex tori. The first hypothesis, existence
of a global section, rigidifies this family by providing a basepoint in each fibre.
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By the second hypothesis, the fibres are (d1, . . . , dn)−polarized. We therefore
have a map

φ : Pn\∆ → Ad1,...,dn .

By the third hypothesis, the singular fibre of X → Pn over a generic point of
∆ is a rank-one semi-stable degeneration, and therefore φ extends over generic
points of ∆ to a map

φ̄ : Pn\∆0 → A∗
d1,...,dn

,

where ∆0 ⊂ ∆ is codimension at least two in Pn. Finally, φ is an immersion
by the fourth hypothesis. Note, however, that φ̄ might not be an immersion
along ∆\∆0.

Definition. We call φ̄ the classifying map of the Lagrangian fibration
π : X → Pn.

2.2. Line bundles. We first consider line bundles on the moduli space
An of principally polarized abelian varieties and its partial compactification
A∗

n. The Hodge line bundle on An is defined as

L := π∗ωXn/An

where π : Xn → An is the universal abelian variety and ωXn/An
is the relative

canonical bundle. The local system Rnπ∗CXn/An
is a variation of Hodge

structure over An, and L is the bottom piece of the Hodge filtration. In other
words, we have an embedding as a subbundle

L ↪→ OAn ⊗C Rnπ∗CXn/An
.

The Hodge line bundle can be extended to A∗
n in a natural way. Namely,

OAn ⊗C Rnπ∗CXn/An
has an upper canonical extension to a locally free sheaf

on A∗
n, and π∗ωX∗

n/A∗
n

coincides with the corresponding upper canonical ex-
tension of the bottom piece of the Hodge filtration (see Theorem 8.10.7 of
Kollár [15]), where π : X ∗

n → A∗
n is the extension of the universal abelian

variety to the partial compactification A∗
n (we are abusing notation, using π

to denote both projections Xn → An and X ∗
n → A∗

n, but the meaning should
be unambiguous). Then π∗ωX∗

n/A∗
n
, which we will also denote by L, is the

required extension of the Hodge line bundle to A∗
n.

Remark. The Hodge line bundle L on An can also be defined as the bundle
of scalar modular forms of weight one, which again admits a natural extension
to A∗

n (see Grushevsky [3]).

The boundary divisor

D := Xn−1/ ± 1 = A∗
n\An

in A∗
n is irreducible. The Picard group of A∗

n is generated over Q by L and D
(we will use the same notation to denote both divisors and their associated
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6 JUSTIN SAWON

line bundles; the intended meaning will be clear from context). The nef and
ample cones of A∗

n are determined by the following result. Note that A∗
n is

not projective, only quasi-projective; a line bundle on A∗
n is nef (respectively

ample) if its restriction to each complete curve has non-negative (respectively
positive) degree. In addition, we work with Q-divisors because A∗

n is really a
moduli stack.

Theorem 2 (Hulek-Sankaran, Proposition 2.2 [7]). The Q-divisor aL−bD
on A∗

n is nef iff a ≥ 12b ≥ 0 and ample iff a > 12b > 0.

It follows that H = aL− bD will be very ample on A∗
n for sufficiently large

a and b satisfying a > 12b > 0.
For general polarizations, let π : X → Ad1,...,dn be the universal abelian

variety and let π : X ∗ → A∗
d1,...,dn

be its extension to the partial compactifi-
cation. The Hodge line bundle can be defined on Ad1,...,dn in the same way
as before, i.e.,

L := π∗ωX/Ad1,...,dn
,

and extended to the partial compactification by

L := π∗ωX∗/A∗
d1,...,dn

.

The boundary

D := A∗
d1,...,dn

\Ad1,...,dn

will no longer be irreducible, so we write

D =
m⋃

i=1

Di

for the decomposition into irreducible components. In general, L and D1, . . . ,
Dm do not rationally generate the Picard group of A∗

d1,...,dn
, as there can be

additional independent divisors in Ad1,...,dn . For example, He and Hoffman [5]
proved that the Picard group of the moduli space Ad1,d2 of abelian surfaces is
rationally generated by L and the so-called Humbert surfaces. Nonetheless,
L is ample on Ad1,...,dn and we have the following analogue of Theorem 2.

Proposition 3. The Q-divisor H = aL− b1D1 − . . .− bmDm on A∗
d1,...,dn

is very ample for sufficiently large a, b1, . . . , bm, with a * bi. (We fix such a
divisor H for the remainder of the article.)

Proof. The author is grateful to Klaus Hulek for suggesting the following
proof. We start by recalling some facts about moduli spaces of abelian vari-
eties from the book of Hulek, Kahn, and Weintraub [6]. They describe moduli
spaces of abelian surfaces, but the results easily extend to higher-dimensional
abelian varieties. Also, note that they use a superscript ◦ to denote objects
associated to abelian varieties without level structure, whereas we will use
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A FINITENESS THEOREM FOR LAGRANGIAN FIBRATIONS 7

a superscript lev to denote objects associated to abelian varieties with level
structure.

Firstly, let

Λ =

(
0 E

−E 0

)
with E =




d1 0

. . .

0 dn



 ,

and define the paramodular group Γ̃d1,...,dn to be the symplectic group with
respect to Λ,

Γ̃d1,...,dn = Sp(Λ, Z) := {g ∈ GL(2n, Z) | gΛgt = Λ}.

The moduli space Ad1,...,dn is given by the quotient of the Siegel half space
Hn by Γ̃d1,...,dn , whereas the moduli space Alev

d1,...,dn
of abelian varieties with

(canonical) level structure is the quotient of Hn by a certain subgroup Γ̃lev
d1,...,dn

of Γ̃d1,...,dn [6, Theorem 1.10]. This level subgroup Γ̃lev
d1,...,dn

is normal in

Γ̃d1,...,dn and of finite index [6, Proposition 1.16(iii)]. Now it is more conve-
nient to consider subgroups of the standard symplectic group, and we achieve
this by defining a map

ρ : Sp(Λ, Q) −→ Sp(2n, Q)
g +−→ R−1gR

with R =

(
I 0
0 E

)
,

and taking the images in Sp(2n, Q) under ρ,

Γd1,...,dn := R−1Γ̃d1,...,dnR and Γlev
d1,...,dn

:= R−1Γ̃lev
d1,...,dn

R.

In fact, Γlev
d1,...,dn

lies in Sp(2n, Z) [6, Proposition 1.20], and therefore we have
a diagram

Alev
d1,...,dn

= Γlev
d1,...,dn

\Hn

↙ ↘
Ad1,...,dn = Γd1,...,dn\Hn A1,...,1 = Sp(2n, Z)\Hn.

Because Γlev
d1,...,dn

is normal in Γd1,...,dn , the left arrow is a Galois covering with

Galois group G := Γd1,...,dn/Γlev
d1,...,dn

[6, Proposition 1.21(i)]. We can extend
this diagram to partial compactifications

Alev,∗
d1,...,dn

f ↙ ↘ h
A∗

d1,...,dn
A∗

1,...,1.

As already noted, the boundary of A∗
d1,...,dn

has components D1, . . . , Dm,
whereas the boundary of A∗

1,...,1 is an irreducible divisor D. The preimage of
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8 JUSTIN SAWON

Di in Alev,∗
d1,...,dn

will not be irreducible; let us write

f∗Di = ri

mi∑

j=1

Dij .

The coefficient ri indicates that f is branched of order ri along Dij . This
coefficient does not depend on j = 1, . . . , mi because f is a Galois covering
and the Galois group G acts transitively on the set {Dij | j = 1, . . . , mi}. The

preimage of D in Alev,∗
d1,...,dn

can be written

h∗D =
m∑

i=1

mi∑

j=1

sijDij .

Now consider the toric compactification Aperf
1,...,1 of A1,...,1 corresponding

to the first Voronoi decomposition, aka the perfect cone decomposition (see
Section 8 of Namikawa [26]). Because Γlev

d1,...,dn
is a subgroup of Sp(2n, Z),

there exists a corresponding toric compactification Alev,perf
d1,...,dn

of Alev
d1,...,dn

and
a finite map

h̃ : Alev,perf
d1,...,dn

−→ Aperf
1,...,1

that extends the map h between the partial compactifications. Using the
perfect cone decomposition ensures that the only boundary divisors will be
those that already appear in the partial compactifications. Abusing notation,
we will use Dij to denote the closure of Dij in Alev,perf

d1,...,dn
.

Shepherd-Barron [35] proved that aL − bD is a Cartier divisor on Aperf
1,...,1

and that it is ample if a > 12b > 0. Because h̃ is a finite map,

M := h̃∗(aL − bD) = aL − b
m∑

i=1

mi∑

j=1

sijDij

is a Cartier divisor on Alev,perf
d1,...,dn

and it is ample if a > 12b > 0. We symmetrize
over the action of the Galois group to produce an ample divisor that will
descend to A∗

d1,...,dn
. Specifically, define

N :=
∑

g∈G

g∗M.

Then N is ample and it will look like

N = a′L −
m∑

i=1

mi∑

j=1

b′iDij ,

where for each i the divisors Dij will now have the same coefficient b′i for j =

1, . . . , mi. Restricting to the partial compactification Alev,∗
d1,...,dn

⊂ Alev,perf
d1,...,dn

,
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A FINITENESS THEOREM FOR LAGRANGIAN FIBRATIONS 9

this means that

N |Alev,∗
d1,...,dn

= f∗

(
a′L −

m∑

i=1

b′i
ri

Di

)

is the pullback of a divisor on A∗
d1,...,dn

. Finally, the restriction of N to

Alev,∗
d1,...,dn

is still ample, in the sense that N.C > 0 for every complete curve C

in Alev,∗
d1,...,dn

. Because

f : Alev,∗
d1,...,dn

−→ A∗
d1,...,dn

is a finite map, the same will be true for a′L−
∑m

i=1
b′i
ri

Di. Taking a sufficiently
large multiple then yields a very ample divisor on A∗

d1,...,dn
of the required

form, completing the proof. !
We return now to the Lagrangian fibration π : X → Pn. Recall that we

have a classifying map

φ̄ : Pn\∆0 → A∗
d1,...,dn

.

We wish to describe the pullbacks of L and D by φ̄.

Lemma 4. The pullback to Pn\∆0 of the Hodge line bundle is

φ̄∗L ∼= O(n + 1)|Pn\∆0
.

Proof. Because the boundary divisor D of A∗
d1,...,dn

parametrizes rank-
one semi-stable degenerations of abelian varieties, the local system
Rnπ∗CX/Ad1,...,dn

will have unipotent monodromy around every irreducible
component of D. Similarly, hypothesis 3 implies that the corresponding lo-
cal system on Pn\∆ will have unipotent monodromy around every irreducible
component of ∆. By Theorem 8.10.8 of Kollár [15] the canonical extension
of the bottom piece of the Hodge filtration commutes with pullbacks in this
situation. In other words,

φ̄∗L = φ̄∗π∗ωX∗/A∗
d1,...,dn

∼= π∗ωX/(Pn\∆0)

(we are abusing notation again by using π to denote both the projections
X → Pn\∆0 and X ∗ → A∗

d1,...,dn
).

We claim that π∗ωX/Pn ∼= (Rnπ∗OX)∨. To see this, first note that in the
derived category of Pn

Rπ∗ωX [2n] ∼= Rπ∗RHomX(OX ,ωX [dimX])

∼= RHomPn(Rπ∗OX ,ωPn [dimPn])

∼= RHomPn(Rπ∗OX ,ωPn)[n],

where the second step is Grothendieck duality. Tensoring by ω−1
Pn and shifting

by n gives

Rπ∗ωX/Pn [n] ∼= RHomPn(Rπ∗OX , OPn).
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10 JUSTIN SAWON

All fibres of π : X → Pn have dimension n because it is a Lagrangian fibration,
and therefore the highest non-zero cohomology of Rπ∗OX is Rnπ∗OX . The
claim follows.

Finally, Proposition 7.6 of Kollár [14] states that Rnπ∗ωX
∼= ωY for a

fibration π : X → Y of relative dimension n between smooth projective
varieties. In our case X is a holomorphic symplectic manifold, so ωX

∼= OX

and Kollár’s result becomes Rnπ∗OX
∼= ωPn (in fact, Matsushita [23] proved

that Riπ∗OX
∼= Ωi

Pn for all i, though we do not need this stronger statement).
Putting everything together we obtain

φ̄∗L ∼= π∗ωX/(Pn\∆0)
∼= (Rnπ∗OX)∨|Pn\∆0

∼= (ωPn)∨|Pn\∆0
∼= O(n + 1)|Pn\∆0

.

!
Remark. There is an alternate approach to calculating φ̄∗L, which is to

use the generalization of Kodaira’s canonical bundle formula as proved by
Kawamata [13] and described by Kollár in [15]. This formula applies to a
fibration f : X → Y between normal varieties with generic fibre F which
satisfies p+

g = 1, and it looks like

KX + R ∼Q f∗(KY + J(X/Y, R) + BR).(1)

The full statement is rather complicated, and takes about half a page to state
(see Theorem 8.5.1 of [15]), but the main points are:

• the Q-divisor R is chosen so that KX + R is Q-Cartier and rationally
equivalent to the pullback of some Q-Cartier divisor on Y ,

• the reduced divisor B on Y parametrizes “bad” singular fibres, in the
sense that f has slc (semilog canonical) fibres in codimension one over
Y \B,

• these bad singular fibres then contribute to the formula through the
Q-divisor BR, supported on B,

• the term J(X/Y, R) is the moduli part, describing the variation of the
fibres in the family f : X → Y .

Now for a Lagrangian fibration π : X → Pn, KX is trivial, so R can be
chosen to be trivial too. By our hypothesis 3, the codimension one singular
fibres of π are rank-one semi-stable degenerations of abelian varieties, which
are slc. So B is empty, and then BR must also vanish. The canonical bundle
formula therefore looks like

0 = KX ∼Q π∗(KPn + J(X/Pn)),

and we conclude that the moduli part J(X/Pn) ∼= K∨
Pn . But this moduli

part can be identified with the pullback of the Hodge line bundle (see Defini-
tion 8.4.6 and the base-change Proposition 8.4.9 in [15]).
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A FINITENESS THEOREM FOR LAGRANGIAN FIBRATIONS 11

Over each irreducible component of ∆ the fibres of X → Pn will conform to
a particular combinatorial type of degeneration, corresponding to a particular
irreducible component of the boundary divisor D in A∗

d1,...,dn
. Thus we can

write

∆ =
m⋃

i=1

si⋃

j=1

∆ij

for the decomposition of ∆ into irreducible components, where φ̄ maps ∆ij

into Di. Note that si could be zero for some i if X → Pn contains no singular
fibres of the type parametrized by Di.

Lemma 5. The pullback to Pn\∆0 of the irreducible component Di of the
boundary divisor is

φ̄∗Di = (ki1∆i1 + . . . + kisi∆isi)|Pn\∆0

for some integers kij ≥ 1.

Proof. This follows immediately from the fact that Di and the ∆ij both
parametrize degenerate abelian varieties of the same combinatorial type. Note
that kij could be strictly greater than 1 if φ̄ is ramified along ∆ij . !

Remark. In fact, there should not be ramification along any ∆ij , as ram-
ification would imply that a local base change is possible, leading to stable
reduction of the singular fibres over ∆ij (see Hwang and Oguiso [11]). How-
ever, the singular fibres over ∆ij are already semi-stable by hypothesis 3, and
therefore no stable reduction should be needed. By analogy, if an elliptic fi-
bration has semi-stable singular fibres, then its j-function will have a simple
pole along the discriminant locus ∆; ramification of the j-function along ∆
would correspond to a higher-order pole, which cannot occur.

Combining the previous two lemmas we reach the following conclusion.

Lemma 6. The pullback φ̄∗H of the very ample bundle H on A∗
d1,...,dn

has bounded degree, where we measure the degree by intersecting φ̄∗H with a
generic line in Pn (which will of course avoid the codimension two subset ∆0).

Proof. Remember that we have fixed sufficiently large integers a and b1, . . . ,
bm so that H = aL − b1D1 − . . . − bmDm is very ample. Then

φ̄∗H = aφ̄∗L −
m∑

i=1

biφ̄
∗Di

∼= O



a(n + 1) −
m∑

i=1

si∑

j=1

bikijdeg∆ij





∣∣∣∣∣∣
Pn\∆0

has degree bounded above by a(n + 1). !
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12 JUSTIN SAWON

Corollary 7. For a Lagrangian fibration by principally polarized abelian
varieties the degree of the discriminant locus is bounded:

deg∆ ≤ 12(n + 1).

Proof. Since H is very ample and φ̄ is generically an immersion, we must
have

deg(φ̄∗H) = a(n + 1) −
m∑

i=1

si∑

j=1

bikijdeg∆ij > 0.

In the principally polarized case the boundary divisor D is irreducible, so
m = 1, and dropping i from the notation we have

a(n + 1) − b
s∑

j=1

kjdeg∆j > 0.

Therefore

deg∆ =
s∑

j=1

deg∆j ≤
s∑

j=1

kjdeg∆j <
a(n + 1)

b
.

Since this is true for all sufficiently large a and b satisfying a > 12b > 0, the
lemma follows. !

Remark. Elliptic K3 surfaces can have up to 24 singular fibres, so this
bound is sharp when n = 1. However, it is not sharp when n = 2, as the author
proved in [31] that deg∆ ≤ 30 for Lagrangian fibrations by abelian surfaces
(assuming the generic singular fibres are semi-stable, but allowing arbitrary
polarizations of the fibres). In higher dimensions, deg∆ = 6(n + 3) for the
Beauville-Mukai integrable system, and deg∆ = 6(n + 1) for the Lagrangian
fibration on the generalized Kummer variety (whose fibres are not principally
polarized).

3. Finiteness

To each Lagrangian fibration we have associated a classifying map. In
this section we show that this association is one-to-one; i.e., two Lagrangian
fibrations with the same classifying map must be isomorphic. Then we give
a precise description of the space of all classifying maps. This will ultimately
lead to a proof of Theorem 1.

3.1. Injectivity.

Proposition 8. The association that assigns the classifying map

φ̄ : Pn\∆0 → A∗
d1,...,dn
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A FINITENESS THEOREM FOR LAGRANGIAN FIBRATIONS 13

to each Lagrangian fibration π : X → Pn satisfying hypotheses 1 to 4 of
Theorem 1 is one-to-one.

Remark. Strictly speaking, we should consider Lagrangian fibrations up
to isomorphism and classifying maps up to the natural action of PGL(n+1, C)
on the space of such maps. We will leave these identifications implicit.

Proof. There are two steps to the proof: first we show that the classifying
map uniquely determines the Lagrangian fibration over Pn\∆0, and then we
show that the extension over ∆0 is also unique. The first step is non-trivial
because A∗

d1,...,dn
is not a fine moduli space; it is really a moduli stack.

For the sake of analogy, we begin with a related but simpler problem:
reconstructing an elliptic fibration Y → B from its functional invariant or j-
function. The following theory was developed by Kodaira; see Section V.11 of
Barth, Hulek, Peters, and Van de Ven [1]. As with our Lagrangian fibrations,
we impose several hypotheses on the elliptic fibration: namely, it admits a
global section and the generic singular fibres are stable (i.e., of type Ib in
Kodaira’s classification). Let us again denote the discriminant locus by ∆ ⊂ B
and the codimension two subset of non-generic singular fibres by ∆0 ⊂ B.
Associated to an elliptic fibration is its functional invariant

J : B\∆0 → C ∪ {∞} ∼= M1,1

where M1,1 is the compactification of the moduli space of elliptic curves, i.e.,
genus one curves with one marked point, and its homological invariant, a
representation

R : π1(B\∆) → SL(2, Z)

which describes the monodromy as we pass around ∆. Now composing R
with the quotient

SL(2, Z) → SL(2, Z)/{±1} = PGL(2, Z)

gives a representation

r : π1(B\∆) → PGL(2, Z)

which is already uniquely determined by the functional invariant. Thus a
homological invariant belonging to J is really just a lift of r to R.

First consider elliptic surfaces, so that dimB = 1, ∆ is a collection of points,
and ∆0 is empty. In general, an elliptic surface Y → B which admits a global
section (in particular, without multiple fibres) and with possibly non-stable
singular fibres is uniquely determined by J and R (see Theorem V.11.1 of [1]).
Now up to conjugation, the monodromies around fibres of type Ib and I∗b are

(
1 b
0 1

)
and −

(
1 b
0 1

)
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14 JUSTIN SAWON

respectively. So if there is a lift of r to R such that all singular fibres of the
corresponding elliptic surface are stable, i.e., of type Ib, then any other lift of
r to R would lead to singular fibres of type I∗b , i.e., unstable. In other words,
by imposing the hypothesis that the singular fibres are stable, we ensure that
the elliptic surface is uniquely determined by its functional invariant J alone.

The same arguments applied to higher dimensional elliptic fibrations, with
dimB > 1, enable us to uniquely determine the fibration over B\∆0 from J
and R for fibrations admitting global sections, and from J alone for fibrations
whose generic singular fibres are stable. So if τ1 : Y1 → B and τ2 : Y2 → B are
two elliptic fibrations with the same functional invariant J : B\∆0 → M1,1,
and both admit a global section and have generic singular fibres that are
stable, then there exists a birational map Υ : Y1 ""# Y2 whose restriction to
τ−1
1 (B\∆0) ⊂ Y1 is an isomorphism onto τ−1

2 (B\∆0) ⊂ Y2.
To conclude, we need to show that Υ extends over the codimension two sub-

set τ−1
1 (∆0) ⊂ Y1. This follows from a result of Matsusaka and Mumford [19]

which states that a birational map between smooth projective varieties which
restricts to an isomorphism on the complements of codimension two subsets,
and which takes an ample divisor to an ample divisor, must in fact be an
isomorphism (see Exercise 5.6 of Kollár, Smith, and Corti [18]). There is also
a relative version of this result, with ample divisors replaced by relatively am-
ple divisors (see Exercise 75 of Kollár [17]). In our case, the relatively ample
divisors are given by the sections of τ1 : Y1 → B and τ2 : Y2 → B, which must
be preserved by Υ; or if there are reducible singular fibres we should choose a
relatively ample divisor of higher degree, such as the set of b-torsion points in
each fibre, to ensure ampleness on each irreducible component of the singular
fibres. Applying the relative version of Matsusaka and Mumford’s result, we
conclude that Υ : Y1 → Y2 is an isomorphism.

Returning to Lagrangian fibrations, first note that the classifying map φ̄
takes the place of the functional invariant J . In the principally polarized case,
the classifying map will determine a representation

r : π1(Pn\∆) → PSp(2n, Z),

and the homological invariant will be a lift

R : π1(Pn\∆) → Sp(2n, Z)

representing the monodromy around ∆. For general polarizations, PSp(2n, Z)
and Sp(2n, Z) should be replaced by the appropriate discrete symplectic
groups of type (d1, . . . , dn). Suppose the monodromy around a semi-stable
singular fibre is given by the matrix T . If we choose a different lift of r to R,
the monodromy will change to ζT , where ζ is some mth root of unity. By the
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stable reduction theory developed by Hwang and Oguiso [11], the monodromy
ζT will correspond to an unstable singular fibre, as a base change of order
m will be necessary to produce a fibration with a semi-stable singular fibre
(note that their terminology “stable” is equivalent to our “semi-stable”). We
conclude that, as with elliptic fibrations, if there is a lift of r to R such that
all generic singular fibres of the corresponding Lagrangian fibration are semi-
stable, then any other lift of r to R would lead to unstable singular fibres.
Therefore a Lagrangian fibration whose generic singular fibres are semi-stable
is uniquely determined over Pn\∆0 by its classifying map φ̄ alone. Note that
in the principally polarized case, Hwang and Oguiso [12] actually give an ex-
plicit construction of the Lagrangian fibration from φ̄, which they call the
“period map”, but for our argument their stable reduction theory [11], which
applies to all polarization types, is sufficient.

Finally, we can extend our result over ∆0 by applying Matsusaka and Mum-
ford’s result as before. More explicitly, the above arguments will yield a bi-
rational map Υ : X1 ""# X2 between two Lagrangian fibrations with the
same classifying map, whose restriction to π−1

1 (Pn\∆0) ⊂ X1 is an isomor-
phism onto π−1

2 (Pn\∆0) ⊂ X2. By hypothesis 2 of Theorem 1, both X1

and X2 admit very ample divisors that give polarizations of type (d1, . . . , dn)
on the fibres. These very ample divisors will be preserved by Υ, at least
up to the pullback of a divisor on Pn, because the restriction of Υ to a
generic fibre π−1

1 (t) ⊂ X1 will be an isomorphism of polarized abelian varieties
π−1

1 (t) ∼= π−1
2 (t). Therefore after modifying by the pullback of a divisor on

Pn, we obtain relatively ample divisors on X1 and X2 that are preserved by
Υ. The relative version of Matsusaka and Mumford’s result then implies that
Υ : X1 → X2 is an isomorphism. This concludes the proof. !

Remark. Note that for an arbitrary functional invariant J : B\∆0 →
C∪ {∞} there may be no lift of r to R whose corresponding elliptic fibration
has generic fibres that are all stable. Moreover, if such a lift does exist, it may
not be possible to complete the elliptic fibration over B\∆0 to a fibration
over all of B. Similar comments apply to the classifying map φ̄. In the
next subsection, we will identify conditions on φ̄ that ensure that a complete
Lagrangian fibration X → Pn whose generic fibres are semi-stable can be
recovered from φ̄.

Remark. One might be tempted to extend the Lagrangian fibration over
∆0 by first extending the classifying map φ̄ : Pn\∆0 → A∗

d1,...,dn
to a map

from all of Pn to a suitable toroidal compactification of Ad1,...,dn . However,
this cannot work in general because toroidal compactifications of Ad1,...,dn pa-
rametrize semi-stable degenerations of abelian varieties, given by toric com-
pactifications of semi-abelian varieties, whereas for a Lagrangian fibration the
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16 JUSTIN SAWON

singular fibres over ∆0 are often unstable. For example, the Beauville-Mukai
system has singular fibres in codimension two that are given by compact-
ified Jacobians of cuspidal curves [32]. These singular fibres are unstable,
and moreover they persist even after a generic deformation of the Lagrangian
fibration. (See also the discussion in the next section.)

3.2. The space of classifying maps. Recall that we have fixed a and
b1, . . . , bm such that H = aL− b1D1 − · · ·− bmDm is a very ample divisor on
A∗

d1,...,dn
. We therefore have an embedding

A∗
d1,...,dn

↪→ PN

such that H is a hyperplane section of A∗
d1,...,dn

. The composition of φ̄ with
this embedding is a map

ψ : Pn\∆0 → PN ,

which is given by N + 1 homogeneous polynomials ψi(z0, . . . , zn), all of the
same degree

k := deg(ψ∗OPN (1)) = deg(φ̄∗H).

In other words,

ψ = (ψ0, . . . ,ψN ) ∈ C[z0, . . . , zn]⊕(N+1)
k .

In this section, by classifying map we shall mean ψ rather than φ̄. Note that
the locus of indeterminacy of ψ, where the components ψi vanish simultane-
ously, is contained in ∆0.

By Lemma 6, k is bounded by a(n+1), so the space of all classifying maps
lies in

a(n+1)⊔

k=1

Vk :=

a(n+1)⊔

k=1

C[z0, . . . , zn]⊕(N+1)
k .

However, not every map in
⊔a(n+1)

k=1 Vk will arise as a classifying map, so we
need to describe the subset of classifying maps. It is enough to focus on
a particular degree; henceforth we assume that k is fixed and we drop it
from our notation, writing simply V for Vk. We will describe a sequence of
conditions on a map ψ ∈ V that are both necessary and sufficient for ψ to be
the classifying map of a Lagrangian fibration. At each step, we will prove that
the added condition is either open, closed, or locally closed (more precisely, in
this last case the subset of maps satisfying the condition will be a finite union
of locally closed subsets). Ultimately, we will find that the subset V (7) ⊂ V
of classifying maps is a constructible algebraic set, and therefore it consists of
finitely many connected components.

Firstly, as a rational map from Pn to PN , the classifying map should be
defined up to codimension two.
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Definition. Define V (1) ⊂ V to be the subset of maps

ψ = (ψ0, . . . ,ψN ) ∈ V = C[z0, . . . , zn]⊕(N+1)
k

such that ψi do not simultaneously vanish on any codimension one subvariety
of Pn, and which therefore define a rational map ψ : Pn ""# PN that is regular
on the complement of a codimension two subset ∆0 ⊂ Pn. (Note that the
codimension two subset ∆0 is not fixed, but depends on ψ; see the remark
following Lemma 11.)

Lemma 9. The subset V (1) is (Zariski) open in V .

Proof. This follows from a straightforward determinantal argument. !
By hypothesis 4, we are considering only Lagrangian fibrations which are

maximal variations (around generic fibres). Therefore the classifying map
should be an immersion.

Definition. Define V (2) ⊂ V (1) to be the subset of maps such that ψ :
Pn ""# PN is an immersion at a generic point.

Lemma 10. The subset V (2) is (Zariski) open in V (1).

Proof. This also follows from a straightforward determinantal argument.
!

Next, the classifying map must factor through the embedding of the partial
compactification of the moduli space of abelian varieties in PN .

Definition. Define V (3) ⊂ V (2) to be the subset of maps such that the
image of ψ lies in A∗

d1,...,dn
⊂ PN but not entirely inside the boundary divisor

D ⊂ A∗
d1,...,dn

.

Lemma 11. The subset V (3) is (Zariski) locally closed in V (2), i.e., open
in its closure.

Proof. Consider first the subset of maps in V (2) such that the image of ψ
lies in the closure of A∗

d1,...,dn
in PN . This is clearly a closed condition, and

in fact this subset is the closure V̄ (3) of V (3). Since A∗
d1,...,dn

is open in its
closure, and since the complement Ad1,...,dn of the boundary divisor D is open
in A∗

d1,...,dn
, V (3) will be open in V̄ (3). !

Remark. Each ψ ∈ V (3) gives a rational map ψ : Pn ""# A∗
d1,...,dn

whose
image is not contained in the boundary divisor D ⊂ A∗

d1,...,dn
. We can combine

these into a universal map

V (3) × Pn ""# A∗
d1,...,dn

,

and the inverse image of the boundary divisor D ⊂ A∗
d1,...,dn

then gives a
universal discriminant locus

D ⊂ V (3) × Pn.
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18 JUSTIN SAWON

By definition, if ψ ∈ V (3), then {ψ}×Pn is not contained in D, and therefore
the closure of D∩({ψ}×Pn) is a divisor {ψ}×∆ in {ψ}×Pn, the discriminant
locus of ψ.

Similarly, the universal map has a universal indeterminacy locus

D0 ⊂ D ⊂ V (3) × Pn,

which gives the codimension two indeterminacy {ψ}×∆0 of ψ when restricted
to {ψ}× Pn. It is important to remember that both ∆ and ∆0 depend on ψ,
despite our simplified notation.

If ψ ∈ V (3), then we can pull back the universal family X ∗ → A∗
d1,...,dn

by ψ, to obtain a family X → Pn\∆0 of abelian varieties of polarization
type (d1, . . . , dn), and rank-one semi-stable degenerations thereof. Note that
Ad1,...,dn is not a fine moduli space, so there could be more than one family
of abelian varieties X → Pn\∆ associated to the map ψ|Pn\∆ (where, by the
definition of ∆, Pn\∆ is the inverse image of Ad1,...,dn under ψ). As described
in the previous section, these different families would have the same classifying
map but different homological invariants. However, we saw in the proof of
Proposition 8 that the homological invariant is uniquely determined by the
classifying map if the generic singular fibres are required to be semi-stable.
Therefore the above family X → Pn\∆0 is uniquely determined.

Next we need to add a condition that will ensure that the family X →
Pn\∆0 can be completed to a family over Pn. We have a (regular) map from
Pn\∆0 to A∗

d1,...,dn
, but it is too much to expect this to extend to a map from

Pn to, say, a toroidal compactification of Ad1,...,dn (indeed, the author knows
no examples in dimension 2n ≥ 4 where this happens; Lagrangian fibrations
always seem to contain unstable fibres in higher codimension). On the other
hand, the fibres Xt are polarized and can be embedded in projective space.
So instead of using compactifications of moduli spaces of abelian varieties, we
will use Hilbert schemes.

By the definition of a Lagrangian fibration, X is smooth and π : X → Pn

is equidimensional. Therefore by the corollary after Theorem 23.1 in Mat-
sumura’s book [20], π : X → Pn is a flat family. Our hypothesis 2 ensures the
existence of a very ample line bundle A on X which restricts to a polarization
At of type (d1, . . . , dn) on a generic smooth fibre Xt. Thus

h0(Xt, At) = d1 · · · dn

and the higher cohomology must vanish. We will show that this is also true
for singular fibres.
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Claim 12. Let t be an arbitrary point in Pn and let At be the restriction
of the very ample line bundle A to the fibre Xt. Then

hj(Xt, At) =

{
d1 · · · dn j = 0,
0 j > 0.

Proof. As already explained, hj(Xt, At) = 0 for j > 0 and for generic t.
Therefore the higher direct image sheaves Rjπ∗A are torsion. On the other
hand, Theorem 2.2 of Hacon [4] states that Rjπ∗(ωX ⊗ A) is torsion free for
j ≥ 0. Since ωX is trivial, we conclude that Rjπ∗A must vanish for j > 0.

Now Corollary 3 on page 50 of Mumford [25] states that if Hj(Xt, At)
vanishes for all t ∈ Pn, then the natural map

Rj−1π∗A ⊗Ot k(t) −→ Hj−1(Xt, At)

is an isomorphism for all t ∈ Pn. Since Hn+1(Xt, At) vanishes for all t ∈ Pn

for dimension reasons, and since Rnπ∗A vanishes, we conclude that Hn(Xt, At)
vanishes for all t∈Pn. Continuing by reverse induction, we find that Hj(Xt, At)
vanishes for all j > 0 and for all t ∈ Pn.

Finally, π : X → Pn is a flat family and

h0(Xt, At) = χ(Xt, At)

is topological, so for all t ∈ Pn we find that h0(Xt, At) agrees with the value
d1 · · · dn for a smooth fibre. Moreover, π∗A is a locally free sheaf of rank
d1 · · · dn on Pn. !

Since At is very ample, each fibre Xt is embedded in P(H0(Xt, At)∨), which
by the claim is isomorphic to PM−1, where M = d1 · · · dn. We would like to
interpret this as giving a point in Hilb, where Hilb denotes the component of
the Hilbert scheme of subschemes of PM−1 which contains the abelian varieties
with polarization type (d1, . . . , dn). But the subscheme Xt ⊂ PM−1 is only
defined up to the action of PGL(M, C) on PM−1. To get an actual point in
Hilb for each t, we need to choose a basis for H0(Xt, At). To summarize, there
is a principal GL(M, C)-bundle G on Pn, which is the bundle of local frames
of the rank M vector bundle π∗A on Pn, and a map from G to Hilb.

To make this work for an arbitrary classifying map, we first need the rank
M vector bundle to extend to Pn. Then we need the map from the associated
GL(M, C)-bundle to Hilb to extend.

Definition. Let ψ ∈ V (3), let π : X → Pn\∆0 be the corresponding
family of abelian varieties, and let A be the relative polarization for this
family (restricted to each fibre Xt, At := A|Xt is very ample, but A need
not be very ample or even ample on X itself). Define V (4) ⊂ V (3) to be the
subset of maps such that the rank M vector bundle π∗A on Pn\∆0 extends
to a vector bundle on all of Pn.
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Lemma 13. The subset V (4) is a constructible subset of V (3); i.e., it is a
finite union of (Zariski) locally closed subsets in V (3).

Proof. If a vector bundle W on Pn\∆0 extends to Pn, then the extended
vector bundle will be given by ι∗W , where ι : Pn\∆0 ↪→ Pn is the inclusion
map. Therefore V (4) is the subset of maps for which ι∗W is locally free, where
W is the vector bundle π∗A on Pn\∆0.

Consider the universal situation. Thus we have a vector bundle W on
(V (3) × Pn)\D0 which we can push forward by the inclusion

ι : (V (3) × Pn)\D0 ↪→ V (3) × Pn

to get a coherent sheaf ι∗W . Restricting ι∗W to each {ψ} × Pn gives the
appropriate ι∗W corresponding to ψ. In other words, we obtain a family of
coherent sheaves on Pn parametrized by ψ ∈ V (3).

Kollár studied this situation, and proved that there is a decomposition of

V (3) into finitely many locally closed subsets V (3)
j such that the sheaves ι∗W

on Pn form a flat family as ψ varies in any given V (3)
j (see Theorem 21 in [16]).

Moreover, the subset

V (4)
j := {ψ ∈ V (3)

j |ι∗W is locally free}

is open in V (3)
j . We conclude that V (4) is constructible, since it is the (finite)

union of the locally closed subsets V (4)
j . !

Definition. Let ψ ∈ V (4), let W be the resulting vector bundle on Pn

given by extending π∗A, and let G be the principal GL(M, C)-bundle on Pn

given by the bundle of local frames of W . For t ∈ Pn\∆0, each point f ∈ Gt

represents a choice of basis for H0(Xt, At), so there is a morphism

α : G|Pn\∆0
→ Hilb

given by mapping f to the point in the Hilbert scheme Hilb which represents

Xt ↪→ P(H0(Xt, At)
∨)

f∼= PM−1.

Define V (5) ⊂ V (4) to be the subset of maps ψ such that α extends to a
morphism

ᾱ : G → Hilb.

Lemma 14. The subset V (5) is (Zariski) locally closed in V (4).
Proof. First consider a simpler situation. Suppose we have a rational map

β : Cn ""# PN that is regular on the complement of the origin O. Resolving
the indeterminacy, we obtain a morphism β̂ : Ĉn → PN where Ĉn is Cn with
the origin blown up, possibly several times. Let E ⊂ Ĉn be the exceptional
locus of the blow-up. When considering families of such maps β, we look at
the dimension of the image of E under β̂. For each integer l ≥ 0, let Ul be
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the subset of rational maps β such that β̂(E) has dimension greater than or
equal to l; by semi-continuity this is a closed condition; i.e., Ul is a closed
subset. Therefore U := U0\U1 is a locally closed subset. But U is precisely
the subset of rational maps β such that β̂(E) is a single point, which means
that the rational map β must extend to a morphism defined on all of Cn. We
have thus shown that extendability of the rational map β is a locally closed
condition.

The above argument can be adapted to show that, in general, extendability
of maps is a locally closed condition. Therefore V (5) is locally closed in V (4).

!
Suppose ψ ∈ V (4). As described above, there is an associated map

α : G|Pn\∆0
→ Hilb.

The group PGL(M, C) acts on the GL(M, C)-bundle G fibrewise. It also acts
on Hilb, which is a component of the Hilbert scheme of subschemes of PM−1,
by acting on the ambient space. The PGL(M, C)-equivariance of α follows
immediately from its definition.

Now if ψ ∈ V (5), then the map α extends to

ᾱ : G → Hilb.

We claim that ᾱ will also be PGL(M, C)-equivariant. To see this, fix g ∈
PGL(M, C). The set

{f ∈ G|ᾱ(g.f) = g.ᾱ(f)}

is closed in G and it contains the dense open subset G|Pn\∆0
. It follows that

ᾱ(g.f) = g.ᾱ(f) for all f ∈ G, and for all g ∈ PGL(M, C), proving the claim.
So for each point t ∈ ∆0, the fibre Gt maps to a PGL(M, C)-orbit in

Hilb, corresponding to a subscheme Xt ⊂ PM−1 defined up to projective
transformations of the ambient space. Moreover, these Xt fit together to give
a completion X → Pn of the original family of abelian varieties over Pn\∆0

(we are abusing notation here, using X to denote the original family and its
completion, but the meaning should be clear from the context). Thus V (5)

is the subset of maps ψ which yield complete families X → Pn. Moreover,
the fibres Xt all have the same Hilbert polynomial, since they correspond to
points in Hilb, and the family X → Pn is flat.

Definition. Define V (6) ⊂ V (5) to be the subset of maps such that the
corresponding family X → Pn is smooth; i.e., the total space X is smooth.
Define V (7) ⊂ V (6) to be the subset of maps such that X is an irreducible
holomorphic symplectic manifold, and thus X → Pn is a Lagrangian fibration.
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Lemma 15. The subset V (6) is open in V (5), and the subset V (7) is open
in V (6).

Proof. Each map ψ ∈ V (5) yields a variety X. Given any family of varieties,
the singular ones form a closed subset; this proves that V (6) is open in V (5).

Sufficient conditions to ensure that a smooth variety X of dimension 2n
will be an irreducible holomorphic symplectic manifold are that X is simply-
connected, h2,0(X) = 1, σ∧n 3= 0 where σ is a generator of H0(X,Ω2) (unique
up to scale because h2,0(X) = 1), and KX is trivial. This is because the
triviality of KX will imply that σ∧n ∈ H0(X, KX) is nowhere vanishing, and
thus σ will be a non-degenerate holomorphic symplectic form.

Now V (6) parametrizes a family of smooth varieties, so the diffeomorphism
type will be locally constant, and the subfamily of varieties with X simply-
connected and h2,0(X) = 1 will consist of a connected component of V (6). If
X is simply-connected, then H1(X, OX) vanishes and the Picard group of X
will be discrete. Therefore the subfamily of varieties with KX trivial will also
consist of a connected component. Finally, the condition σ∧n 3= 0 is open.
Therefore V (7) is open in V (6). !

3.3. Conclusion of the proof.

Proof of Theorem 1. We have described an association that assigns a clas-
sifying map

ψ ∈
a(n+1)⊔

k=1

Vk

to each Lagrangian fibration π : X → Pn satisfying hypotheses 1 to 4. By
Proposition 8 this association is one-to-one. By definition, the subset

a(n+1)⊔

k=1

V (7)
k ⊂

a(n+1)⊔

k=1

Vk

describes precisely those maps ψ which arise as classifying maps of Lagrangian
fibrations. In other words, there is a bijection between the set of Lagrangian

fibrations satisfying hypotheses 1 to 4 and the set
⊔a(n+1)

k=1 V (7)
k . By Lem-

mas 9 to 15,
⊔a(n+1)

k=1 V (7)
k is a constructible algebraic set inside

⊔a(n+1)
k=1 Vk,

so it consists of finitely many connected components. Each connected com-
ponent then parametrizes a continuous family of Lagrangian fibrations, which
are therefore deformation equivalent. It follows that there are finitely many
Lagrangian fibrations satisfying hypotheses 1 to 4, up to deformation. !
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4. The hypotheses

4.1. Rank-one semi-stable singular fibres. Matsushita [22] classified
the codimension one singular fibres which can occur in a Lagrangian fibra-
tion of dimension four. Hwang and Oguiso [10,11] extended this classification
to higher dimensions (see also Matsushita [24] for the projective case). Our
hypothesis 3, that the generic singular fibre is a rank-one semi-stable degen-
eration of abelian varieties, corresponds to type Im or A∞ in Hwang and
Oguiso’s notation. More precisely, their classification is of the characteristic
1-cycles ; if the (rank-one semi-stable) singular fibre consists of k irreducible
components, then the characteristic 1-cycle will be either of type Im where m
is a multiple of k or of type A∞.

Note that a rank r semi-stable degeneration of an abelian variety is a toric
compactification of a semi-abelian variety with rank r toric part; it occurs over
a codimension r boundary component of a toric compactification of Ad1,...,dn

(see the book of Hulek, Kahn, and Weintraub [6] for the abelian surface case).
However, by Hwang and Oguiso’s classification, these higher rank semi-stable
degenerations cannot occur as generic singular fibres of Lagrangian fibrations.
In other words, hypothesis 3 is equivalent to requiring that the generic singular
fibre be semi-stable, as it would then automatically be rank-one as well.

When n = 1, our hypothesis is that the elliptic K3 surface has only singular
fibres of type Im in Kodaira’s classification. This is not true for every elliptic
K3 surface, but it is true for a generic elliptic K3 surface, which in fact has
only nodal rational curves (type I1) as singular fibres. We expect similar
behaviour in higher dimensions.

Conjecture 16. Let π : X → Pn be a Lagrangian fibration by abelian
varieties. Then a generic deformation of X, which preserves the Lagrangian
fibration, will have rank-one semi-stable degenerations as singular fibres in
codimension one. Moreover, if π : X → Pn admits a global section, then we
can restrict to deformations that also preserve the section.

Remark. A generic elliptic K3 surface which admits a section will have Pi-
card number ρ = 2. This means that, a priori, it can only have singular fibres
of types I1 and/or II, i.e., only nodal and/or cuspidal rational curves. All
other singular fibres in Kodaira’s classification would contribute non-trivially
to the Picard group, and force ρ > 2.

While this simple argument does not eliminate cuspidal rational curves,
it does have the advantage of generalizing to higher dimensional Lagrangian
fibrations. Firstly, the deformation theory is analogous to the corresponding
theory for elliptic K3 surfaces (see Matsushita [23] and the author’s arti-
cle [33]). In particular, the local Torelli theorem can be used to show that a
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generic Lagrangian fibration which admits a section will have Picard number
ρ = 2. Next, Oguiso [28] generalized the Shioda-Tate formula to fibrations
by abelian varieties. Using this formula, one can show that most of the sin-
gular fibres in Hwang and Oguiso’s classification contribute non-trivially to
the Picard group. So if ρ = 2, the Lagrangian fibration can only have generic
singular fibres of types Im, A∞, II, III, and/or IV , i.e., only semi-stable
degenerations and/or higher dimensional analogues of cuspidal rational curves,
tacnodes, and triple points. The conjecture above asserts that, generically,
type II, III, and IV singular fibres should not occur either.

A more direct way to avoid the hypothesis of semi-stable singular fibres
would be to generalize Theorem 1 so that it applies in the presence of any
of the singular fibres on Hwang and Oguiso’s (or Matsushita’s) list. Now the
canonical bundle formula (1) will apply in the general situation: the divisor
B precisely accounts for the singular fibres in codimension one which are not
semi-stable. Moreover, Matsushita [24] has determined the contributions to
BR for the various possible singular fibres. Notice that as the contribution BR

of the “bad” singular fibres increases, the degree of the moduli part J(X/Pn)
will decrease, so that we should get an even stronger bound on the degree of
the classifying map φ̄ in these cases. The difficulty is in defining the extension
φ̄ of φ, since we don’t have an appropriate compactification of Ad1,...,dn whose
boundary parametrizes all of the additional non-semi-stable singular fibres
that we must allow.

4.2. Existence of a section. Let π : X → Pn be a Lagrangian fibration
that admits a global section. Away from the singular fibres, X|Pn\∆ is a group
scheme, as the fibres are abelian groups. Moreover, the semi-stable singular
fibres are toric compactifications of semi-abelian varieties, so their smooth
loci are also abelian groups. If instead π : X → Pn does not admit a global
section, then X|Pn\∆ will be a torsor over an associated group scheme U over
Pn\∆. For example, U could be defined as the relative Albanese variety of
X|Pn\∆.

Question. Can U be compactified to produce a Lagrangian fibration π0 :
X0 → Pn?

Remark. Assume that X has semi-stable singular fibres, at least generi-
cally, i.e., over ∆\∆0. If the monodromy around each component of ∆ is the
same for X and U , then we can partially compactify U by adding in the same
semi-stable singular fibres over ∆\∆0, to produce a proper fibration W over
Pn\∆0. There still remains the question of whether W can be compactified
to a Lagrangian fibration over Pn; it would suffice to show that W can be
compactified to an equidimensional fibration π0 : X0 → Pn, as the argument
in Lemma 6 of [34] then shows that we have a Lagrangian fibration. Although
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such a compactificiation of W will not exist in general (cf. Lemmas 14 and 15
above), in this case we can probably use the fact that the torsor X|Pn\∆ can
be compactified to produce a corresponding compactification of W .

On the other hand, the following example shows that one may be able to
compactify a torsor by adding in different singular fibres over ∆\∆0.

Example. O’Grady constructed a ten-dimensional holomorphic symplec-
tic manifold by desingularizing a moduli space of sheaves on a K3 surface [27].
For certain K3 surfaces S, O’Grady’s space admits a Lagrangian fibration,
which was further studied by Rapagnetta [29]. This Lagrangian fibration
is closely related to the Beauville-Mukai system on Hilb5S. Indeed, over
P5\∆, the Beauville-Mukai system is a torsor over the O’Grady-Rapagnetta
Lagrangian fibration (see Section 5.3 of [30]). However, these two fibrations
differ over some components of ∆: the Beauville-Mukai system has semi-
stable singular fibres whereas the O’Grady-Rapagnetta fibration has unstable
fibres. This means that they must have different homological invariants, i.e.,
different monodromy around these components of ∆. Moreover, Hwang and
Oguiso’s stable reduction theory [11] suggests that applying a base change
to the unstable fibres of the O’Grady-Rapagnetta fibration should yield the
semi-stable fibres of the Beauville-Mukai system.

Let us now assume that the above question has been answered in the af-
firmative. Thus to each Lagrangian fibration π : X → Pn we can associate a
Lagrangian fibration π0 : X0 → Pn such that X|Pn\∆ is a torsor over X0|Pn\∆.
We call X a compactified torsor over X0. Note that π0 : X0 → Pn admits a
section, or at least a rational section (over Pn\∆).

Conjecture 17. Up to deformation, there are finitely many compactified
torsors π : X → Pn associated to a fixed Lagrangian fibration π0 : X0 → Pn.

Example. Let S → P1 be an elliptic K3 surface with only nodal rational
curves as singular fibres. Then S is a compactified torsor over its relative
Jacobian S0 → P1. The set of all compactified torsors over a fixed S0 forms a
group known as the Tate-Shafarevich group. For K3 surfaces it is isomorphic
to the analytic Brauer group H2(S0, O∗), which fits into the exact sequence

. . . → H2(S0, O) → H2(S0, O∗) → H3(S0, Z) → . . . .

Since H2(S0, O) ∼= C and H3(S0, Z) vanishes, the Brauer group is connected,
and hence all compactified torsors over S0 are deformation equivalent (of
course, all K3 surfaces are deformation equivalent).

Example. An elliptic Calabi-Yau threefold Y will also have a relative
Jacobian Y 0, but in this case we find that H2(Y 0, O) vanishes while H3(Y 0, Z),
and hence H2(Y 0, O∗), is discrete. Gross [2] shows that the Tate-Shafarevich
group is finite in this case.
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Example. For Lagrangian fibrations, H2(X0, O) ∼= C while H3(X0, Z)
may or may not vanish. In some cases, the Tate-Shafarevich group is con-
nected (see [32]). In other cases, it has several connected components (the
Beauville-Mukai system in ten dimensions is a compactified torsor over the
O’Grady-Rapagnetta fibration, but they are not deformation equivalent). In
general, we expect the number of compactified torsors over X0 (up to de-
formation) to be bounded by a formula involving the number of irreducible
components of the generic singular fibres of π0 : X0 → Pn. We assume that
the generic singular fibre is semi-stable, so this is equal to the number of con-
nected components of the corresponding semi-abelian variety; we believe this
can be related to the number of components of the Brauer group.

4.3. Maximal variation of abelian varieties. Our fourth hypothesis
was that π : X → Pn describes a maximal variation of abelian varieties around
a generic point t ∈ Pn. In other words, a sufficiently small neighbourhood V
of t is embedded in Ad1,...,dn by the classifying map φ, or equivalently, the
derivative (dφ)t has rank n at a generic point t ∈ Pn.

Example. If an elliptic K3 surface does not describe a maximal variation,
then (dφ)t must have rank zero at a generic point, but this means that dφ
vanishes identically and φ is constant. An example of such an elliptic K3
surface, with constant functional invariant, is given by constructing a Kummer
K3 surface from an abelian surface A which is fibred over an elliptic curve E.
This gives an elliptic fibration

Blow(A/ ± 1) → A/ ± 1 → E/ ± 1 ∼= P1

which is locally isotrivial: every smooth fibre is isomorphic to a fixed elliptic
curve.

Note that this elliptic K3 surface has four singular fibres of Kodaira type
I∗0 , sitting above the four branch points of the double cover E → P1. These
are certainly not semi-stable singular fibres. Indeed, a locally isotrivial elliptic
K3 surface cannot have semi-stable singular fibres: otherwise the functional
invariant J would extend to all of P1, and since it is constant, every fibre
would be smooth. So an elliptic K3 surface with semi-stable singular fibres
must also describe a maximal variation.

We expect a similar dichotomy in higher dimensions.

Conjecture 18 (Matsushita). Let π : X → Pn be a Lagrangian fibration.
After choosing a local section over a neighbourhood of a generic point t ∈ Pn,
we can define a classifying map φ locally. Then we either have a maximal
variation (the image of φ in Ad1,...,dn is n-dimensional; equivalently, (dφ)t is
of rank n) or a minimal variation (φ is constant and dφ vanishes).
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Remark. As with elliptic K3 surfaces, a Lagrangian fibration which is both
a minimal variation and which has semi-stable singular fibres must be smooth
up to codimension one, which is impossible. So Matushita’s conjecture implies
that a Lagrangian fibration whose generic singular fibres are semi-stable must
also describe a maximal variation.
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