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Abstract

Background and Aims As the climate changes,
plants and their associated microbiomes face greater
water limitation and increased frequency of drought.
Soil- and root-associated microbes perform impor-
tant functions that affect plant drought resilience, but
the dynamics of their interactions with the host are
poorly understood. Plant growth responses to natural
soil microbiomes, as well as patterns of root coloniza-
tion by microbes, are challenging to predict.
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Methods We collected soil microbiomes from four
native prairies across a steep precipitation gradient in
Kansas, USA. Seedlings of two Zea mays genotypes
were inoculated with each soil microbiome in a facto-
rial drought experiment. We investigated plant pheno-
typic and root microbiome responses to drought and
compared the effects of natural microbiome variation
on plant growth under water-limited and well-watered
conditions.

Results Drought caused plants to accumulate shoot
mass more slowly and achieve greater root/shoot
mass ratios. Drought restructured the bacterial root-
associated microbiome via depletion of Pseudomon-
adota and enrichment of Actinomycetota, whereas
the fungal microbiome was largely unaffected. Taxo-
nomically distinct soil microbiomes from the four
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contrasting environments affected plant growth under
well-watered but not drought conditions.

Conclusion We demonstrated that the functional
consequences of naturally-occurring soil microbi-
ome variation are dependent on water availability,
suggesting that future drying climates may dampen
plants’ responsiveness to beneficial and/or pathogenic
microbes.

Keywords Root microbiome - Soil microbiome -
Maize - Drought - Precipitation gradient

Introduction

Increasing drought frequency due to global climate
change will challenge not only plants, but also soil-
and plant-associated microbiomes (Chiang et al.
2021; Balting et al. 2021). Drought directly limits
microbial growth, mobility, and access to resources,
but also alters plant host traits (e.g., root physiology,
morphology, and exudate composition) that comprise
the habitat available to root-associated microorgan-
isms (Naylor and Coleman-Derr 2018). Therefore,
the availability of water to the host plant is a key
environmental parameter that shifts patterns of root
colonization by soil-dwelling microbes, as has been
observed in several plant species (Fitzpatrick et al.
2018; Xu et al. 2018; Xu and Coleman-Derr 2019;
Wang et al. 2020). Consequently, water availability is
likely to also influence the effect of the root-associ-
ated microbiome on the phenotype and fitness of the
host. Although the potential for microbes to alleviate
host drought stress has been documented repeatedly,
the immense complexity of natural soil microbiomes
makes their functional potential challenging to pre-
dict and even more challenging to harness for appli-
cations in sustainable agriculture (Lau and Lennon
2012; Ngumbi and Kloepper 2016; Armanhi et al.
2021; Ali et al. 2022).

One major complicating factor is the great varia-
tion among microbiome members in their responses
to both water limitation and host phenotype. Because
plants recruit root microbes primarily from the
soil (Zarraonaindia et al. 2015), we would expect
drought-induced changes in the soil microbiome to be
reflected in root-associated microbiomes. However,
because many root-associated microbes are also sen-
sitive to plant root traits, their responses to drought
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may also reflect drought-induced changes in the host
phenotype. Both soil- and root-associated microbi-
omes under drought exhibit consistent enrichment of
gram-positive bacteria and depletion of gram-nega-
tive bacteria (Acosta-Martinez et al. 2014; Fuchslue-
ger et al. 2016; Naylor et al. 2017). Within those
categories, however, some bacterial phyla respond
to drought differently in soil versus roots (Naylor
and Coleman-Derr 2018). For example, enrichment
of Bacillota (formerly Firmicutes) and Actinomy-
cetota (formerly Actinobacteria) during drought
are less pronounced in soil than in root-associated
microbiomes, suggesting that these phyla respond to
drought-induced changes in root physiology (Nay-
lor et al. 2017; Fitzpatrick et al. 2018). Further-
more, the presence of a host plant can influence the
drought responses of the taxa that comprise each phy-
lum (Santos-Medellin et al. 2017). Overall, drought
impacts both soil- and root-associated microbiomes,
but in different ways, owing in part to the influence of
the plant phenotype.

The extent of microbial diversity for direct and
indirect (i.e., plant-mediated) drought responses
suggests that taxonomically distinct soil microbial
communities are likely to differ in their ability to
alleviate host drought stress. Biogeographic varia-
tion among soil microbiomes—which is the domi-
nant factor shaping variation among root microbi-
omes (Coleman-Derr et al. 2016; Bell-Dereske et al.
2023)—reflects both contemporary and historical
environmental conditions such as soil texture, pH,
and nutrient availability (Fierer and Jackson 2006;
Lauber et al. 2009; Xu et al. 2021). Additionally, both
acute and chronic water limitation can leave lasting
impacts, or legacy effects, on soil and root-associated
microbiomes. For instance, geographic patterns of
water availability constrain the functional potential
of soil microbiomes (Hawkes and Keitt 2015; Averill
et al. 2016; Canarini et al. 2021); however, the impli-
cations for host plants, including crops, are not well
understood.

Variation in soil- and root-associated microbi-
omes—including variation caused by historical pre-
cipitation—may affect plant fitness under drought.
For example, in Arabidopsis, a 4-member bacte-
rial synthetic community improved survivorship
and recovery after a 21-day drought via plant hor-
monal modification that enhanced chlorophyll con-
tent in the rosette and biofilm production, which
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was hypothesized to improve root hydration (Yang
et al. 2021). Fungi, particularly arbuscular mycor-
rhizal fungi, also have a beneficial role in plant toler-
ance to drought stress via a myriad of mechanisms,
including soil structure alteration and increased water
retention (Augé et al. 2001) and water transport to
plant roots (Kakouridis et al. 2022). Drought-induced
restructuring of root-associated microbiomes is
hypothesized to be a conserved mechanism that sup-
ports survival of both the plant host and its symbionts
(Naylor et al. 2017; Xu et al. 2018; Xu and Coleman-
Derr 2019). Additional research suggests that expo-
sure to short-term drought creates a microbial legacy
effect that moderates drought stress in plants (Kaiser-
mann et al. 2017; De Long et al. 2019) (and strength-
ens positive plant-soil feedbacks, although many
such patterns were species-specific) (Buchenau et al.
2022). Together, these findings create the expectation
that soil microbiomes from contrasting environments
will vary in their effects on plant phenotype, but it
is unclear whether these effects should be congruent
between water-limited and well-watered conditions.
To address this open question about the con-
gruence of microbiome effects on plant phenotype
under water-stressed vs. unstressed conditions,

A Normal Annual Preciptation (mm)
1990-2021

600 800 1000

Fig.1 Kansas precipitation gradient. A Soil samples were
collected from four prairies in Kansas along an increasing pre-
cipitation gradient. Locations from east to west, Smoky Valley
Ranch prairie (SVR; latitude 38.8665, longitude -100.9951),
Hays prairie (HAY; 38.8355, -99.3033), The Land Institute
prairie (TLI; 38.9698, -97.4690), and Konza native prairie
(KNZ; 39.1056, -96.6099). Boxplots to the right of the map

we designed an experiment to assess plant growth
under a contemporary drought when inoculated
with natural soil microbiomes from contrasting
environments. To ensure that the inocula repre-
sented a meaningful degree of environmental vari-
ation, we collected soil microbiomes from native
prairie remnants spanning a steep precipitation gra-
dient in Kansas (Fig. 1). This precipitation gradi-
ent is coupled with multiple climatic metrics, with
the environment becoming increasingly arid from
east to west resulting in lower soil moisture and
increased reference evapotranspiration (Fig. 1C-E).
We inoculated Zea mays L. (maize) seedlings with
these soil microbiomes and measured plant growth
during our experimental drought. Our goals were
to: 1) compare plant phenotype responses to these
diverse microbiomes under drought-stressed and
well-watered conditions, 2) characterize patterns
of root colonization under both water availability
conditions, and 3) identify microbial taxa that were
associated with plant growth. Our results suggest
that experimental drought treatment induced con-
gruent shifts in the root colonization patterns of
all four microbial communities. Furthermore, the
contrasting soil microbiomes differentially affected
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depict annual climatic metrics extracted from the TerraClimate
database for each collection site from 1990-2021: B precipi-
tation, C reference evapotranspiration, D aridity index, and E
Palmer Drought Severity index. Boxplot hinges represent the
1st and 3rd quartiles; whiskers represent 1.5 times the inter-
quartile range
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plant growth rate under well-watered but not
drought-stressed conditions.

Material and methods
Soil inoculum sources and preparation

Soil samples were collected in May 2019 from four
prairie sites across a steep precipitation gradient in
Kansas, USA (Fig. 1). Prairies were selected at the
same latitude and relative elevation such that they
have very similar temperature profiles throughout
the year. Western prairie sites (SVR and HAY) are
predominantly short- to mixed-grass prairies (e.g.,
Bouteloua spp.), while eastern sites (TLI and KNZ)
are dominated by tallgrass prairie species (e.g.,
Andropogon  gerardi, Schizachyrium scoparium,
Panicum virgatum). All collection sites were high-
quality remnant prairies that have never experienced
tillage or irrigation, which are strong perturbations
that may obscure natural patterns of microbiome vari-
ation. Soil was collected from five evenly-spaced sub-
samples per site, sampling to an approximate depth
of 60 cm. Soil sub-samples were homogenized and
sieved to remove rocks and plant material and then
stored in plastic bags at 4°C until use, approximately
four months after collection.

Inocula were prepared by mixing 20 g of each soil
into 100 mL 1 X phosphate-buffered saline (PBS) and
0.0001% Triton X-100. After settling, the soil slur-
ries were filtered through Miracloth (22-25 um pore
size; Calbiochem, San Diego, CA, USA) and then
centrifuged for 30 min (3000 g). After discarding
the supernatant, we resuspended the microbial pellets
in 20 mL 1 xPBS and kept them shaking for aeration
until use, later that day. Each final inoculum con-
sisted of 10 mL of the resuspended pellet in 1 L 0.5X
Murashige and Skoog basal salt mixture (MS; Sigma-
Aldrich, Darmstadt, Germany). A control treatment
was made by adding 10 mL sterile 1 XPBS into 1 L
0.5X MS.

Planting, inoculation, and greenhouse setup
To increase the generalizability of our results,
two genotypes of Zea mays L. (maize) were used:

B73 and Mol7. These genotypes have been shown
to vary in their growth response to beneficial
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endophytes (Schultz et al. 2022) and so may dif-
fer in response based on microbiome origin. In a
laminar flow hood, seeds were surface sterilized by
submerging in 70% ethanol, then 5% NaClO, fol-
lowed by three rinses with sterile water. To avoid
confounding effects of soil physicochemical proper-
ties, autoclaved calcined clay (“Pro’s Choice Rapid
Dry”; Oil-Dri Corporation, Chicago, IL) was used
as the growth medium. Seeds were planted one inch
deep in 107 mL “cone-tainers” (Stuewe & Sons
Inc., Tangent, OR, USA) with a sterilized cotton
ball pushed to the bottom to prevent clay from pass-
ing through drainage holes. Approximately 100 mL
of sterilized calcined clay was used per cone-tainer.
The day after planting, cone-tainers were assigned
randomly to treatments, inoculated with 25 mL of
one of the four soil inocula (or the sterile control),
and placed two inches apart in randomized com-
plete blocks. Overall, each combination of treat-
ments (drought treatment X soil inocula X genotype)
was replicated 29 to 31 times across 27 randomized
blocks (Figure S1A). Plants were grown in a tem-
perature-controlled greenhouse (23/20 °C day/night,
respectively) at the University of Kansas (Law-
rence, KS, USA) arranged under growth lights (250
W Sun Systems Compact Cool fluorescent lamps)
to supplement natural light for 13 h/day during the
experiment (January-March 2020).

Monitoring and harvesting plants

All plants received 30 mL of reverse osmosis water
twice weekly until emergence. After emergence,
"well-watered” plants continued twice-weekly
watering while “droughted” plants were watered
every 8—12 days throughout the experiment. Plant
height was measured weekly to the nearest 0.25 cm
on the tallest fully expanded leaf held parallel to the
stem. Plants were sequentially harvested to meas-
ure biomass at one of three time points during the
experiment: 68 plants on day 24 and day 39, and the
remainder (n=224) on day 50 (Figure S1B). Cal-
cined clay was removed from roots by hand. Shoot
and root fractions were separated and oven-dried at
65 °C to a constant weight. Before drying, one nodal
root (from the uppermost soil-borne root whorl) per
plant was collected and stored at -80 °C until DNA
extraction.
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Phenotypic analysis

All statistical analysis for phenotypic and microbi-
ome data (see below) was conducted in R v4.2.2 (R
Core Team 2021). Emergence was tracked daily, and
this value was used, with harvest date, to convert dry
shoot and root mass to accumulation rates (g/day)
to account for the variable number of growing days
plants experienced post-emergence. The ratio of root
to shoot growth was calculated on a per-plant basis
by dividing root dry mass by shoot dry mass. The
Ime4 package v1.1.29 (Bates et al. 2015) was used to
fit a generalized linear mixed model for emergence
(binary) and linear mixed models for shoot and root
mass accumulation rates and root/shoot ratio (con-
tinuous). Models used the following formula (growth
response ~ Inoculum X Treatment X Genotype) ~ with
all possible interactions included. Experimental
block was treated as a random effect with time point
included as an additional random effect in the root/
shoot ratio model. Root/shoot ratio was natural log-
transformed, and both shoot and root mass accumula-
tion rates were square-root-transformed. Differences
among group means were assessed using analysis of
variance (ANOVA) with Type III sums of squares in
the Imertest v3.1.3 package (Kuznetsova et al. 2017)
with post-hoc comparisons made using the emmeans
package v1.7.4.1 (Lenth et al. 2020). Finally, the
estimated marginal mean growth rates of each geno-
type in each soil (derived from the above model)
were modeled as a function of aridity (Annual Pre-
cipitation / Potential Evapotranspiration) and Palmer
Drought Severity Index (PDSI) for the collection site
of each soil using linear regression. Assumptions of
all models were checked by inspecting model residu-
als (Harrison et al. 2018).

DNA extraction and library preparation

Nodal roots were freeze-dried for 48 h (FreeZone
lyophilizer; Labconco, Kansas City, MO, USA) and
ground to powder with a HT Lysing Homogenizer
(OHAUS, Parsippany, NJ, USA). Each ground root
sample was mixed into 800 pL lysis buffer (1 M Tris
pH=8.0; 0.5 mM NaCl; 10 mM EDTA) and trans-
ferred to 96-well plates containing 500 pL of 2 mm
garnet rocks per well (Biospec Products, Bartlesville,
OK, USA), after which DNA purification proceeded

via bead-beating and chemical lysis as previously
described (Wagner et al. 2020).

Amplicon sequencing libraries were prepared
using established protocols and PCR conditions
(Wagner et al. 2020). Briefly, we targeted the V4
region of the 16S SSU rRNA gene for bacteria/
archaea using 515F-806R primers (Apprill et al.
2015; Parada et al. 2016) and the ITS1 region for
fungi using ITS1f and ITS2 primers (White et al.
1990; Gardes and Bruns 1993). Both amplicons were
amplified separately using an initial PCR and then
barcoded via a second index PCR. Amplicons were
sequenced (2x250 bp) on a NovaSeq 6000 SP flow
cell (Illumina, San Diego, CA, USA). Each “batch”
of 96 samples (n=6) remained together throughout
DNA extraction, amplification, and sequencing; indi-
vidual samples were randomized across batches.

To confirm that we inoculated the experimental
plants with realistic microbial communities, we also
sequenced the original soils and freshly derived inoc-
ula. From homogenized soil collected from each site,
we created eight technical replicates which we used to
test whether our protocol for creating microbial slur-
ries preserved the original community composition.
DNA from each soil replicate and from freshly gener-
ated inocula was extracted in December 2022 using
the same protocol that we used for roots, except omit-
ting the lyophilization step and placing 250 mg soil or
800 uL inoculum directly into the garnet plate. From
there, library preparation and sequencing proceeded
as described above for roots.

Bioinformatic processing

Sequence processing and quality filtering were con-
ducted using an established workflow (Wagner et al.
2020). Briefly, Cutadapt v2.3 (Martin 2011) was used
to remove primers and demultiplex reads into 16S
and ITS sequence files. DADA2 v1.14.1 (Callahan
et al. 2016) was used to denoise reads, merge paired-
end sequences, dereplicate, and remove chimeric
sequences. The forward and reverse 16S reads were
truncated to 220 and 170 bp, respectively and filtered
based on the maximum number of expected errors
of eight and nine bp per read, respectively. ITS reads
were processed using DADA?2 in an identical man-
ner, except that reads were not truncated to preserve
biologically relevant length variation. Forward and
reverse 16S and ITS reads were then used separately

@ Springer



Plant Soil

to estimate sequencing error rates for denoising prior
to dereplication of reads into Amplicon Sequence
Variants (ASVs) and merging of pair-end reads.
Taxonomy was assigned to the resulting ASVs by a
naive Bayesian classifier (Wang et al. 2007) trained
on the 11.5 release of the Ribosomal Database Pro-
ject (Callahan 2017) for bacteria and the 01.12.2017
release of the UNITE database (UNITE Community
2017) for fungi. Phyloseq v1.40.0 (McMurdie and
Holmes 2013) was used to remove host sequences
(chloroplast and mitochondria; 0.35% of 16S reads)
and ASVs unassigned to a kingdom. Chaol richness
and diversity indices (Shannon and Inverse Simp-
son) were calculated before the removal of ASVs
not observed>25 times in>5 samples and sam-
ples with <400 reads (200 bacterial and 133 fungal
samples); 98.0% and 94.5% of reads remained after
host filtering and thresholding (bacterial and fungal
reads, respectively). Finally, ASV counts were nor-
malized via a centered-log-ratio (CLR) transforma-
tion using the ALDEx2 package v1.28.1 (Fernandes
et al. 2014; Gloor et al. 2017). Due to low replication
and low sequencing depth at the earlier timepoints,
we analyzed only microbiome samples from the last
time point. This retained 131 bacterial (mean read
depth 123,554+ SE 18,276) and 92 fungal samples
(41,081+10,129).

Microbiome analysis

To test the similarity of inocula to their soils of ori-
gin, a linear model was fit for each alpha diversity
metric with collection site, substrate (soil vs. inocu-
lum), and sequencing depth (Z-transformed) as
main effects. Community composition was assessed
by permutational multivariate analysis of variance
(PERMANOVA) and constrained partial redundancy
analysis (RDA). For PERMANOVA, the adonis2()
function from the vegan package v2.6.2 (Oksanen
et al. 2019) was used to model the matrix of between-
sample Aitchison distances (Gloor et al. 2017) with
collection site and substrate as main effects. The
RDA was fit with the same model, removing variance
attributed to In(Sequencing Depth), and visualized
using an ordination plot.

To investigate root microbiome responses,
a model was fit for each alpha diversity met-
ric (Metric ~ Soil Inoculum X Drought
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Treatment X Genotype), with Block and Batch as
random effects. The CLR-transformed abundance
of each family was modeled to test responses to
experimental factors. Across all models and where
appropriate, p-values were adjusted to correct for
multiple comparisons using a Benjamini—Hoch-
berg correction (Benjamini and Hochberg 1995).
To explore changes in community composition, a
PERMANOVA model was fit (Aitchison distance
matrix ~ Soil Inoculum X Drought Treatment X Gen-
otype) with permutations constrained by Batch.
Main effects were tested for homogeneity of dis-
persions using the vegan package. Pairwise dis-
persions among factor levels were assessed using
a permutation test with 999 permutations con-
strained by Batch. Constrained partial redundancy
analysis of the Aitchison distance matrix was con-
ducted to remove variance attributed to Batch and
In(Sequencing Depth) and to visualize the variance
in microbial composition explained by experimental
factors.

The machine-learning package caret v6.0.92
(Kuhn 2008) with ranger’s v0.14.1 (Wright and
Ziegler 2017) implementation of the random forest
algorithm was used to assess how accurately roots
could be classified as droughted or well-watered
based on microbiome community data (bacterial
and fungal, separately). Samples were randomly
split into a training set (80%) and a test set (20%),
with the test set withheld from the model, and used
to determine the final model’s performance. Hyper-
parameters were optimized using a grid search over
minimum node size (1, 5, 10) and the number of
features available at each node (10-100% of the
ASVs). For each combination in the grid, classi-
fier accuracy was used to assess performance on
out-of-bag samples with tenfold cross validation.
Final predictions were made with the trained model
on the withheld test set and visualized using con-
fusion matrices. The contribution of each ASV to
classification accuracy was assessed using permuted
importance: mean decrease in accuracy (MDA) val-
ues were calculated for each ASV across the ten-
fold cross validation. The benefits of this strategy
are twofold, in that we can assess whether drought
induced a predictable shift in the microbiome as a
whole and identify individual ASVs with the great-
est differential abundance as a result of drought.



Plant Soil

Connecting plant growth to microbial abundances

Linear models were used to test associations between
taxon abundances and plant growth. To focus on the
phenotypic variation that could not be explained by
Genotype, Soil Inoculum, Block and Batch effects,
we extracted residuals from a model that contained
these terms and used them as the response variable
for a second model (Growth Response,,g;q,.~ Taxon
abundance X Drought Treatment). The Taxon abun-
dance coefficient described the association of the
taxon (CLR-transformed counts of bacterial and fun-
gal families) with plant growth rate; the interaction
term described whether the taxon’s effect on plant
growth differed under droughted vs. well-watered
conditions. We chose family and order as the taxo-
nomic levels for testing bacteria and fungi, respec-
tively, as a conservative measure to limit the number
of tests. P-values were adjusted by term to account for
multiple testing.

Results

Soil and inocula community composition differs
across collection sites

We assessed the microbial community diversity and
composition of soils and their derived inocula from
the four collection sites (n=28 samples per site). Bac-
terial, but not fungal, alpha diversity of soils differed
across collection sites (Tables S1 and S2); bacterial

diversity was highest in the westernmost prairie soil
(Figure S2). Community composition of both bacte-
rial and fungal microbiomes differed among sites
(Table S3; R?=0.22-0.24; p-value<0.01).

Relative to the original soils, we observed that
inocula generally had lower richness and diversity,
but this difference was non-significant for most met-
rics (Figure S3; Tables S1 and S2). The composition
of both bacterial and fungal communities also shifted
between soils and their derived inocula (Figure S4-5;
Table S3), indicating that this process may be selec-
tive to certain bacterial and fungal taxa. However,
both soil and inocula samples clustered in ordination
space by collection site (Fig. 2). Thus, the derived
inocula largely retained the differences among the
original soil microbial communities.

Plant growth rates vary across soil microbiomes,
genotype, and drought treatment

We found no evidence that soil inocula impacted
emergence rates (p-value=0.19, Pearson’s X2 test;
Table S4), however, maize genotype B73 (81.3%)
emerged more successfully than Mol7 (62.0%;
p-value=0.05, Pearson’s X2 test). Post-emergence,
both drought treatment and maize genotype affected
plant growth (Table 1). Drought decreased both
shoot and root mass accumulation rates (Fig. 3A-
B; p-value= <0.01) and increased root/shoot ratio
(Fig. 3C; p-value<0.01). These traits also differed
between genotypes, with Mo17 investing more into
root growth than B73 (Figure S6; p-value= <0.01).

Fig. 2 Soil community A A B ®
composition is strongly A
differentiated across the 5. AA @) éb
soil sources and substrates. A 41
Redundancy analysis for A Ada Soil Source
(A) bacterial and (B) fungal 2 A _ 2 ® SR
communities from soil < 018 @P f A § a A LA © HAY
sources used to derive soil 22 %9 e
inocula. Soil source and . A A = 07 ° &A A o T
substrate are represented by g Ay < AN A ® KNz
differing colors or shapes, x A @ . . o A
respectively 5 A : A Substrate
419° A A Inocula
' A O Soil
10 ® A
4 0 4 8 6 3 0 3

RDA1 [18.3%]

RDA1 [14.7%)
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Table 1 Type three

; . sqrt(Shoot Mass sqrt(Root Mass log(Root/shoot
analysis of variance rate) Rate) Ratio)
(ANOVA) for plant growth
Factor DF F-value p-value F-value p-value F-value p-value
Drought Treatment (DT) 1 335.67 <0.01 16.96 <0.01 161.21 <0.01
Genotype (G) 1 33.56 <0.01 22.74 <0.01 110.11 <0.01
Soil Inoculum (SI) 3 5.08 <0.01 0.67 0.57 3.30 0.02
DT x G 1 0.08 0.77 093 0.34 0.12 0.73
DT x SI 3 225 0.08 1.73 0.16 0.63 0.59
GxSI 3 2.13 0.10 0.61 0.61 0.44 0.73
DT x Gx SI 3 0.25 0.86 0.09 0.96 0.13 0.94
p-value <0.05
A B C
a b a b a b
0.041 . .
0.015 301
’; — o0 °
g g‘ 0.031 °
o 2 E
(9]
5 0.010 § 5 20 Treatment
2 @ 0.021 (-,8) o E Drought
s g - 3 BE Well-Watered
] = (14
2 8
10 s
0.005 .
0.011 o 4’..
o g0 < .. (X3
L ) E' .o:‘
0.000 0.001 0

Drought Well-Watered

Fig. 3 Shoot and root growth vary across drought treatment.
The effect of drought treatment on (A) shoot mass accumula-
tion rate, B root mass accumulation rate, and (C) root/shoot
ratio. Boxplot hinges represent the 1st and 3rd quartiles;

Shoot mass accumulation rate and root/shoot ratio
were both influenced by soil inoculum (Figure S7;
Table 1; p-value= <0.01-0.02); this effect was
driven by the TLI inoculum which caused the slow-
est accumulation of shoot mass and the lowest root/
shoot ratio. We observed no evidence of interactions
between drought treatment, genotype, and soil inocu-
lum on plant growth.

Root microbiomes and community responses to
drought differed between bacteria and fungi

We observed different patterns of richness and
diversity for bacterial and fungal root microbiomes
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Drought Well-Watered

Drought Well-Watered

whiskers represent 1.5 times the interquartile range; letters
above box plots denote significant differences in estimated
marginal means (p-value= <0.01; see Table 1 for full ANOVA
table)

exposed to prairie inoculum and drought (Tables S5
and S6). Bacterial Chaol richness varied across soil
inocula (Table S5; p-value=0.03), with roots receiv-
ing the KNZ inoculum exhibiting the highest rich-
ness. Drought increased Shannon and Inverse Simp-
son’s diversity of fungal communities (Table S6). We
observed no difference in bacterial or fungal richness
or diversity between the maize genotypes (Tables S5
and S6).

Root bacterial community composition was also
structured by soil inoculum (Table 2; R%2=0.05,
p-value= <0.01) and drought treatment (Fig. 4A;
R?>=0.01, p-value=0.01). We found no evidence
that bacterial community dispersion differed among
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Table 2 Permutational ~ Multivariate ANOVA  (PER-
MANOVA) table bacterial community composition of maize
nodal roots

Factor DF SS R?  F-value p-value
Genotype (G) 1 2687 0.01 0.88 0.47
Soil Inoculum (SI) 3 19091 0.05 2.10 <0.01
Drought Treatment 1 5484 0.01 1.81 0.01
(DT)

G x SI 3 9849  0.02 1.08 0.47
Gx DT 1 2289  0.01 0.75 0.72
SIx DT 3 10026  0.02 1.10 0.43
Gx SIx DT 3 6352  0.02 0.70 0.95
Residual 115 349180 0.86

p-value <0.05

treatments, genotypes, or inocula (p-value>0.05,
Multivariate Levene’s test). Redundancy analysis
aligned with PERMANOVA results: soil inocu-
lum and drought treatment explained the largest

proportions of variance (6.09% and 1.57%; Figure S8
and 4B, respectively), while genotype explained < 1%
of variance (Figure S9). Among bacterial families,
Sphingomonadaceae was responsive to drought treat-
ment (g=7.1e™*), with this family decreasing from
1.11% relative abundance to 0.46% under drought
conditions.

In contrast to bacteria, drought treatment did
not alter relative abundances of any fungal fami-
lies, nor overall root fungal community profiles
(Fig. 5A). Variance in fungal community composi-
tion was mostly due to initial soil inoculum source
(Figure S10; Table 3; R%=0.09, p-value= <0.01).
As observed for bacterial communities, neither
drought treatment, maize genotype, nor soil inocu-
lum source affected fungal community dispersion
(p-value= >0.05, Multivariate Levene’s test).
Drought and maize genotype each explained only a
small portion of the variance in fungal community
composition (Fig. 5B and S11, respectively). Thus,
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Fig. 4 Bacterial community composition across drought treat-
ments. A Bacterial taxonomic barplots for drought-stressed
and well-watered plants. Each site is represented by a facet
with samples denoted by individual lines and the relative abun-
dance (non CLR transformed data) of each phylum displayed
by color. B Redundancy analysis on bacterial communities

constrained by drought treatment, conditioned on sequencing
batch and In-transformed usable reads per sample. C Confu-
sion matrix depicting the classification accuracy of a random
forest classifier predicting drought treatment trained on bacte-
rial communities. Above, the confusion matrix balanced accu-
racy is shown; for additional classifier statistics, see Table S8
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Fig. 5 Fungal community composition across drought treat-
ment. A Fungal taxonomic barplots for drought-stressed and
well-watered plants. Each site is represented by a facet with
samples denoted by individual lines and the relative abun-
dance (non CLR transformed data) of each phylum displayed
by color. B Redundancy analysis on fungal communities con-

while root-associated bacterial community compo-
sition responded to drought treatment, we observed
no such trend for fungal community composition.

Table 3 PERMANOVA table for fungal community composi-
tion of maize nodal roots

Factor DF SS R?  F-value p-value
Genotype (G) 1 586 0.01 0.89 0.49
Soil Inoculum (SI) 3 5896 0.09 3.00 <0.01
Drought Treatment 1 541 0.01 0.83 0.63
(DT)

Gx SI 3 2181 0.03 1.11 0.60
Gx DT 1 740 0.01 1.13 0.18
SIx DT 3 2335 0.04 1.19 0.17
GxSIxDT 3 1969 0.03 1.00 0.61
Residual 76 49822 0.78

p-value <0.05
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strained by drought treatment, conditioned on sequencing
batch and In-transformed usable reads per sample. C Confu-
sion matrix depicting the classification accuracy of a random
forest classifier predicting drought treatment trained on fungal
communities. Above, the confusion matrix balanced accuracy
is shown; for additional classifier statistics, see Table S9

Identification of bacterial and fungal ASVs
responding to drought

Our random forest models showed greater accuracy
in predicting the drought treatment of a given sam-
ple when trained on bacterial communities than on
fungal communities (Figs. 4C and 5C). Three bacte-
rial ASVs greatly aided the prediction of treatment
(Figs. 4C and S12-13): two from the family Sphin-
gomonadaceae (Pseudomonadota) and one from the
family Sphingobacteriaceae (Bacteroidota). These
ASVs showed mean decrease in accuracy (MDA)
values of 1.6%, 1.2%, and 1.2% when withheld from
the model, respectively. In other words, these three
bacterial ASVs contributed to~4% increase of clas-
sifier accuracy in predicting. All these bacterial
ASVs were depleted in drought-stressed plants rela-
tive to well-watered plants: the Sphingomonadaceae
ASVs decreased in relative abundance by an order
of magnitude (0.37% and 0.31% to 0.03% and 0.04%
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relative abundance, respectively) and the Sphingob-
acteriaceae ASV responded similarly (0.9% to 0.1%
relative abundance). We also detected two fungal
ASVs that aided the prediction of treatment (Fig. 5C
and S14-15), from the families Aspergillaceae (1.1%
MDA; Eurotiomycetes) and Sarocladiaceae (0.76%
MDA; Sordariomycetes). These fungal ASVs showed
different patterns in response to drought treatment:
the Aspergillaceae ASV was enriched while the Saro-
cladiaceae ASV was depleted in drought-stressed
plants.

Connecting plant growth to bacterial and fungal
communities

Soil inocula derived from collection sites across Kan-
sas had only a small impact on plant growth on aver-
age, with no single inoculum causing significantly
improved growth over other inocula or the control
(Table 1; Fig. 6A and S7). However, the effects of the
inocula on plant growth were more pronounced in the
well-watered treatment than in the drought treatment
(Fig. 6A). Although we lacked the statistical power
to confirm it (N=4 soils; Table S10), our data sug-
gested a negative relationship between mean annual

aridity and PDSI for the soil collection site and the
inoculum’s effect on plant growth under well-watered
conditions (Fig. 6B-C). Of note is mean annual PDSI
values do not follow a linear trend as does aridity,
with the collection from Konza prairie (KNZ) having
a higher propensity for drought stress than would be
expected with aridity alone.

We identified bacterial and fungal taxa that were
correlated with promotion or suppression of plant
growth. Overall, 11 bacterial families showed a sig-
nificant positive (3/11) or negative (8/11) association
with shoot mass accumulation rate (Table 4). These
represented only a few phyla (5 Actinomycetota, 4
Pseudomonadota, and 2 Bacillota) and were a mix
of gram-positive (7) and gram-negative (5). One of
the identified families, Streptococcaceae, interacted
with drought treatment, indicating that its relation-
ship with shoot mass accumulation was modulated
by the amount of water the plant received. The abun-
dance of Streptococcaceae was negatively correlated
with shoot mass rate in well-watered plants but not in
droughted plants (Figure S16). Relative to shoot mass
accumulation rate, fewer bacterial families were asso-
ciated with root mass accumulation rate (only Aceto-
bacteraceae and Corynebacteriaceae, Table 4). This

Genotype
@ B73 { Mo17
Treatment
Soil Inoculum E3 Control B SVR B3 HAY E3 TLI B8 KNZ Drought ¢ Well-Watered
Drought | | Well-Watered
%0.012
T
>
0.015 0 0.010
&
«» 0.008
173
= o % 0.005
© ] Q
3 2
20.010 » 0.002
2 03 04 05 06 07 08
o Aridity Index | Dry to Wet
§ ' c
. P~
3 30.012 ™
2 0.005 g’
KR 2 0.010 III‘
&
«» 0.008 4 ¢4
. @
g 0.005
o
0.000 . Z/g; 0.002

Fig. 6 Shoot mass is dependent on drought and soil inocula.
Boxplots are colored by soil inoculum for (A) shoot mass rate
with separate facets representing drought-stressed (D) and
well-watered plants (W). Boxplot hinges represent the 1st and

0.2 0.4 0.6 08
PDSI | Dryto Wet

3rd quartiles; whiskers represent 1.5 times the interquartile
range. Estimated marginal means per site (shaded rectangles)
and genotype (shape) for shoot mass rate vs. (B) mean annual
aridity and (C) Palmer Drought Severity Index (PDSI)
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Table 4 Bacterial and

o . Taxon Trait Slope Intercept PVEg,, Rel. Abund ¢
fungal families associated
with PlaﬂtftraltS:i S%uare Acetobacteraceae SMR  -1.25E-04 -133E-02 6.67 0.02 2.76E-03
root transformec: shoot Corynebacteriaceae ~ SMR  -546E-04 -129E-02 860 0.0l 1.90E-04
mass accumulation rate
(SMR), square root Dietziaceae SMR  -1.07E-03 -131E-02 4.94 0.00 6.48E-03
transformed root mass Lactobacillaceae SMR 5.64E-04 -1.46E-02  4.26 0.09 1.55E-02
aczulmulaﬂonfrate ?M?’ Microbacteriaceae  SMR ~ -1.07E-05  -1.32E-02  5.27 1.23 6.48E-03
and log transformed roo .
shoot ratio (RSR). For each Micrococcaceae SMR -8.43E-06 -1.31E-02 3.84 8.47 2.46E-02
taxon the slope, intercept, Nocardiaceae SMR  -3.71E-04 -133E-02 3.58 0.02 2.75E-02
residual percent variance Rhodocyclaceae SMR  -4.92E-04 -1.14E-02 3.51 0.06 2.75E-02
explained (PV]?Res)’ relative Sinobacteraceae SMR  2.12E-04  -1.38E-02 3.70 0.05 2.07E-02
abundance (Rel. Abund.), Sphingomonadaceae  SMR ~ -1.03E-04  -1.24E-02 531 113 6.48E-03
and corrected p value (g)
are provided Streptococcaceae™ SMR 1.38E-04 -1.34E-02  5.50 0.01 4.10E-03
Acetobacteraceae RMR  2.32E-05 -5.94E-03 8.15 0.02 1.41E-02

55 b Corynebacteriaceae RMR  -2.65E-04 -5.74E-03  6.29 0.01 3.39E-02

replococcaceae Shows Polyangiaceae RSR  2.19E-02  137E-01 8.0l 0.08 1.81E-02
a significant interaction
between the family Sinobacteraceae RSR -1.48E-03  1.67E-01 5.8 0.05 2.96E-02
abundance and drought Sphingomonadaceae ~ RSR 6.96E-04 1.58E-01 7.44 1.13 1.81E-02
treatment, presented in Sporidiobolaceae SMR  3.33E-04  -124E-02 6.17 0.48 2.95E-02

Figure S11

result may be due to variance in this trait decreasing
over the course of the experiment as roots expanded
to fill the entire container regardless of treatment or
inoculum (Figure S17). Notably, Acetobacteraceae
abundance was negatively associated with shoot mass
accumulation rate but positively associated with root
mass accumulation rate. We found that the families
associated with root/shoot ratio, Sinobacteraceae and
Sphingomonadaceae (Table 4), were a subset of fami-
lies associated with shoot mass accumulation rate,
suggesting that a change in shoot mass was responsi-
ble for this relationship. For fungi, only a single fam-
ily, Sporidiobolaceae, was correlated with shoot mass
accumulation rate (Table 4). Similar results were
found at lower taxonomic levels for both bacteria and
fungi (Table S11-12).

Discussion
Plant and microbiome responses to drought

Understanding plant-microbiome interactions under
drought stress is critical to safeguard agricultural
systems in the face of global climate change. In our
experiment, maize displayed phenotypic tradeoffs in
response to drought. Drought-treated plants increased
root growth relative to shoot growth, resulting in
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shorter plants over the course of the experiment.
This supports our understanding of plant responses
to drought, as plants prioritize root over shoot growth
(Sharp and Davies 1979; Lynch et al. 2014), favor-
ing deeper and often denser root systems in order to
obtain sufficient water (Zhan et al. 2015; Gao and
Lynch 2016; Sebastian et al. 2016). The maize geno-
types, B73 and Mol7, showed significant differences
between root/shoot allocation patterns, but in general
both genotypes responded to drought in a similar
manner. These phenotypic changes in root growth,
along with direct effects of water limitation in the
soil, contributed to the responses of the root microbi-
omes in our study.

Drought altered the bacterial communities of maize
roots, although the magnitude of compositional change
within our study was small (R?=0.01) relative to other
studies (R>=0.04-0.10) (Santos-Medellin et al. 2017;
Naylor et al. 2017; Fitzpatrick et al. 2018; Xu et al.
2018). Similar to previous studies (Xu and Coleman-
Derr 2019), we observed a depletion of gram-negative
and an enrichment of gram-positive bacteria in response
to drought, likely relating to the desiccation resistance
provided by the thick peptidoglycan cell wall of gram-
positive bacteria (Manzoni et al. 2012). Enrichment of
Actinomycetota during drought tends to be more pro-
nounced in root-associated microbiomes than in soil,
suggesting that shifts in plant root physiology also play
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a role (Xu et al. 2018; Xu and Coleman-Derr 2019);
however, the specific root traits driving this effect are
unknown. During drought, root exudate production is
generally maintained or increased (Henry et al. 2007;
Preece and Pefiuelas 2016; Karlowsky et al. 2018),
while the exudate composition is typically altered
(Svenningsson et al. 1990; Canarini et al. 2016; Calvo
et al. 2017) which can contribute to the root microbi-
ome drought response (Zhalnina et al. 2018). In Sor-
ghum, for instance, drought-induced changes in root
exudate composition and iron homeostasis contribute
to Actinomycetota enrichment in the rhizosphere (Xu
et al. 2018, 2021).

Fungal communities of maize roots were less sen-
sitive to drought relative to their bacterial neighbors.
While drought increased root fungal diversity in the
plants inoculated with the TLI prairie soil inoculum,
it did not significantly affect overall fungal commu-
nity composition. Machine learning classification by
drought treatment further illustrated this difference:
when trained on bacteria, we achieved 70% balanced
accuracy, while for fungi, we achieved only 47%
accuracy. This discrepancy indicates that bacterial
communities responded in a predictable manner to
drought, whereas fungal communities were less pre-
dictable between well-watered and drought plants.
This cross-kingdom difference agrees with previous
reports, as both free living and root-associated fun-
gal communities tend to tolerate desiccation (de Vries
et al. 2012; Furze et al. 2017). The observed differ-
ence in survival between bacteria and fungi under
drought may relate to both the vegetative and dor-
mant growth forms of fungi: compared to bacterial
cells, fungal hyphae comprise most vegetative growth
and can cross air-gaps within dry soil in search of
resources (Griffin 1985; Manzoni et al. 2012), and
dormant spores are generally desiccation-resistant
(Wyatt et al. 2013). Finally, the process of generat-
ing the soil inocula led to a small decrease in fungal
richness (i.e., soil vs. inocula comparison; Table S2).
We note that while unlikely, this could impact fungal
community responsiveness to drought, if drought-
sensitive fungi were excluded.

Impacts of soil microbiomes on plant phenotype
under low and high water availability

We observed that although the four soil microbiomes
in our study were shaped by contrasting environments

and were taxonomically distinct (Figs. 1 and 2), none
of them improved or reduced plant performance
under drought conditions, relative to the others or to
the control. In contrast, the variation in plant growth
caused by these inocula was apparent only under well-
watered conditions (Fig. 6A). In other words, plant
performance responded to soil microbiome variation
under stressful but not more permissive conditions.
Our result is opposite to one recent study in maize,
which found that two microbiomes from contrasting
environments (a grassland and an organic farm) dif-
ferentially affected shoot and root fresh weight under
drought-stressed but not well-watered conditions
(Zhang et al. 2022). Another recent maize study, how-
ever, found that both natural microbiome differences
(between a forest and an unirrigated dryland farm
soil) and experimentally-induced microbiome differ-
ences (in response to a drought conditioning phase)
had consistent effects on root growth and stem diam-
eter regardless of the amount of water available to the
plants (Carter et al. 2023). A related study reported
very similar results: consistent growth stimulation by
a forest-derived inoculum relative to an agricultural
inoculum, regardless of contemporary water avail-
ability (Moore et al. 2023). Altogether, these studies
provide mixed support for the stress gradient hypoth-
esis (Bertness and Callaway 1994), which predicts
that drought-stressed plants should perform better in
the presence of microorganisms from historically dry
soils, where chronic drought stress would have fos-
tered positive interactions with neighboring plants.
The reason for our varied results among inocula
sources is not immediately clear, but there are sev-
eral possible explanations. The availability of water
may relax the fitness consequences of expression of
microbial traits that are critical under drier environ-
ments; for instance, microorganisms counteract the
physiologic stress of drought by accumulating sol-
utes, which reduces their internal water potential as
a mechanism to avoid desiccation (Harris 1981). The
accumulation of solutes requires considerable energy
expenditure and constitutes a large sink of C and N
resources (Killham and Firestone 1984; Schimel
et al. 1989, 2007). The contemporary well-watered
conditions relax these costly solute needs, perhaps
allowing drought-adapted microbes to reallocate
resources to functions mutually beneficial to plants.
Another possibility is that soils from historically wet-
ter sites generally possess greater microbial biomass
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and diversity (Neilson et al. 2017; Araya et al. 2020;
Wan et al. 2021), which is predicted to promote posi-
tive interactions and improved community function
(Hooper et al. 2005). We found this to be the case for
fungi, where our wettest prairie site showed the high-
est diversity, but this was less consistent for bacterial
communities (Figure S2-3). A third potential explana-
tion involves the balance of beneficial and pathogenic
microbes in the soil community. Pathogen richness in
soil, root, and shoot microbiomes is often positively
associated with mean annual temperature and pre-
cipitation (Vétrovsky et al. 2019; Delgado-Baquerizo
et al. 2020; Chen et al. 2021). Thus, soil communi-
ties from historically dry sites may have relatively
fewer plant pathogens, resulting in greater plant per-
formance under contemporary well-watered condi-
tions. We cannot distinguish between these possible
explanations using the data in hand; however, a future
experiment that leverages rain exclusion structures to
manipulate precipitation for a given site could effec-
tively monitor changes in diversity and composition
over time. In addition, this experimental manipulation
strategy paired with a technique to quantify micro-
bial biomass (e.g. quantitative stable-isotope probing)
(Greenlon et al. 2022) could enable the exploration
of the balance between beneficial, neutral, and patho-
genic microbes.

In addition to these ecological and evolutionary
mechanisms that may have shaped the soil microbi-
ome differences observed across the Kansas precipi-
tation gradient, real-time changes in microbial physi-
ology could also explain our finding that microbiome
effects on plant growth were more pronounced under
well-watered conditions. Microbiome members that
have the potential to influence plant growth under
optimal conditions may instead invest their energy
into survival mechanisms such as solute regulation
and water retention, as has been recently demon-
strated for communities of microbial decompos-
ers (Malik et al. 2020). Additionally, in the absence
of water an unknown portion of the microbial com-
munity goes dormant or dies (Salazar et al. 2018;
Schimel 2018), suspending or ending their normal
metabolic activities that could influence plant growth.
In the rhizosphere of field-grown maize, for instance,
drought and heat stress depleted levels of ammonium
and nitrate, the bioavailable forms of nitrogen pro-
duced by soil bacteria via the processes of mineraliza-
tion and nitrification, respectively (Yuan et al. 2024).
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Another study used metatranscriptomics and metab-
olomics to characterize the effects of experimental
drought on the function of three soil microbiomes col-
lected from Konza Prairie, which was also the source
of one of our soil inocula (Fig. 1). Across commu-
nities, bacterial genes involved in both primary and
secondary metabolism were differentially expressed
under dry conditions, indicating a shift from growth
to stress mitigation (Roy Chowdhury et al. 2019).
Notably, however, despite their close proximity and
shared historical climate, the three microbiomes each
showed a unique metabolic response to 15 days of
water limitation, indicating that functionally relevant,
naturally-occurring soil microbiome variation exists
even on local scales and interacts with real-time water
availability.

Microbial taxa associated with plant growth

Multiple bacteria and fungi had abundances corre-
lated with plant responses to drought, with more taxa
associated with shoot growth than root growth. This is
likely the result of space limitation in the pots, as root
mass accumulation rates tended to decrease across
the experiment regardless of the drought treatment
(Figure S17). Even so, we identified two families
that were associated with both shoot and root mass,
Acetobacteraceae and Corynebacteriaceae. Aceto-
bacteraceae was associated with suppressed shoot
growth but increased root growth. Although in our
dataset Acetobacteraceae was represented mainly by
the poorly-studied genus Rhodopila, this family con-
tains many known diazotrophs, which may improve
mineral nutrition of the plant (Reis and Teixeira
2015). Members of Acetobacteraceae, including the
particularly well-studied Gluconacetobacter diazo-
trophicus, have been observed to colonize internal
root tissues under both natural conditions and inocu-
lation experiments (Luna et al. 2010; Rouws et al.
2010). This root colonization proficiency may help
to explain the increased root mass we observed from
this association; however, given the decreased shoot
mass we also observed, Acetobacteraceae may have
compartment-specific dynamics that warrant further
investigation. In contrast, Corynebacteriaceae was
associated with suppressed growth of both roots and
shoots. Members of this family have been identified
as root endophytes of multiple plant species (Staf-
ford et al. 2005; Vik et al. 2013), with some showing
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phytopathogenic properties and specificity to maize
(Vidaver and Mandel 1974; Dye and Kemp 1977).
Additionally, during a multi-generation experimental
evolution study, Corynebacteriaceae (among other
bacterial families) was consistently associated with
delayed flowering in multiple plant species (Panke-
Buisse et al. 2015). Streptococcaceae was the only
family that showed an association with plant growth
that was modulated by the drought treatment, with
this family’s relative abundance negatively correlated
with shoot mass accumulation rate in well-watered
plants but not in droughted plants. Less is known
about the relevance of Streptococcaceae to plant
growth. In Zingiber officinale, this family was sig-
nificantly enriched in rhizomes with advanced stages
of soft rot (Huang et al. 2022). However, Streptococ-
caceae is prevalent in soil and plants (Chuah et al.
2016; Wang et al. 2021), typically at higher abun-
dance in aerial plant compartments than in the rhizo-
sphere (Minervini et al. 2015; Yu et al. 2020). These
families represent targets for direct manipulation and
in-planta testing to better understand the mechanism
responsible for the growth suppression we observed
under well-watered conditions.

Conclusions

Water is a critical and limiting resource for plant
growth as well as a beneficial microbiome. As maize
is cultivated widely across the United States, produc-
tion will have to contend with more frequent episodes
of drought as the global climate warms. Engineering
plant microbiomes to assist in plant resilience under
drought remains an ambitious, but worthwhile goal.
Our work illustrates the differential responses of root
and shoot growth allocation to drought in two well-
studied maize genotypes and shows that bacterial,
but not fungal, microbiota undergo restructuring with
drought, with decreases in the relative abundance
of drought-intolerant taxa. In contrast to predictions
based on the stress gradient hypothesis, soil micro-
biomes from perennially dry environments along a
natural precipitation gradient did not enhance plant
growth under drought. Instead, the effects of contrast-
ing soil microbiomes on plant phenotype were only
apparent under well-watered conditions. The bacterial
and fungal groups associated with biomass can serve

to direct future cultivation and in-planta testing on
maize growth.
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