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Free surface flows driven by boundary undulations are observed in many biological
phenomena, including the feeding and locomotion of water snails. To simulate the feeding
strategy of apple snails, we develop a centimetric robotic undulator that drives a thin
viscous film of liquid with the wave speed Vw. Our experimental results demonstrate
that the behaviour of the net fluid flux Q strongly depends on the Reynolds number Re.
Specifically, in the limit of vanishing Re, we observe that Q varies non-monotonically with
Vw, which has been successfully rationalised by Pandey et al. (Nat. Commun., vol. 14,
no. 1, 2023, p. 7735) with the lubrication model. By contrast, in the regime of finite
inertia (Re ∼ O(1)), the fluid flux continues to increase with Vw and completely deviates
from the prediction of lubrication theory. To explain the inertia-enhanced pumping rate,
we build a thin-film, two-dimensional model via the asymptotic expansion in which we
linearise the effects of inertia. Our model results match the experimental data with no
fitting parameters and also show the connection to the corresponding free surface shapes
h2. Going beyond the experimental data, we derive analytical expressions of Q and h2,
which allow us to decouple the effects of inertia, gravity, viscosity and surface tension on
free surface pumping over a wide range of parameter space.
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1. Introduction
The transport and manipulation of a thin liquid film arises in a wide variety of
technological applications, such as coating and printing (Kalliadasis, Bielarz & Homsy
2000; Wierschem, Scholle & Aksel 2002; Decré & Baret 2003; Weinstein & Ruschak
2004), drying (Cairncross, Francis & Scriven 1996) and heat exchange processes (Das,
Choi & Patel 2006). In the biological context, examples of thin-film dynamics can be
found in the membranes of mammalian lungs (Grotberg 1994; Oron, Davis & Bankoff
1997) and tear films in the eye (Braun 2012).

Since the formulation of the analytical Nusselt solution (Nusselt 1916), the transport of
thin films driven by gravity has been extensively studied, with the focus on the nonlinear
interaction between the fluid flow and the surface wave structure (Kapitza 1948; Kapitza
& Kapitza 1949; Benjamin 1957; Yih 1963; Floryan, Davis & Kelly 1987; Pozrikidis 1988;
Prokopiou, Cheng & Chang 1991; Chang 1994; Liu, Schneider & Gollub 1995; Kalliadasis
et al. 2000; Samanta 2022). By contrast, thin films driven by a peristaltic surface have
begun to garner attention relatively recently, inspired by biological systems. For instance,
Joo et al. (2020) uncovered an unusual feeding strategy of apple snails that utilise
muscular undulations of their feet to drive thin, free surface flows and collect floating
food particles. Motivated by this observation, Pandey et al. (2023) built a simple robotic
undulator that generates travelling waves to pump the liquid film. Their experiments have
demonstrated that the pump rate of the thin film varies non-monotonically with the speed
of the undulator’s travelling wave. They also built a lubrication model that successfully
rationalises their experimental observations.

Despite the success of their model, the work by Pandey et al. (2023) solely focuses
on the regime in which viscous effects dominate over inertia. However, as illustrated
in gravity-driven thin films, finite inertia can drastically alter the dynamics of free
surface flows, pointing to a new physical regime of interest. For instance, Malamataris,
Vlachogiannis & Bontozoglou (2002) questioned the validity of the parabolic velocity
profile for a flow over an inclined plane as inertia becomes non-negligible. Their analysis
demonstrated that, with finite inertia, large solitary waves could develop on the free
surface and also lead to the occurrence of a counterflow in the region of minimum fluid
thickness. This theoretical finding was later corroborated experimentally by Tihon et al.
(2003).

In the present manuscript, we extend the study of Pandey et al. (2023) to include
the effects of inertia by conducting new experiments with a robotic undulator. In the
experiments with non-negligible inertial effects, the pump rates show a clear deviation
from the viscous-dominated regime, which cannot be explained by the original lubrication
model. To explain the experimental observations, we develop a new theoretical model for
the thin-film flow. To account for inertia in a mathematically tractable manner, we employ
an asymptotic expansion on the velocity and pressure fields (Ruyer-Quil & Manneville
1998, 2000; Scheid, Ruyer-Quil & Manneville 2006), under the condition of a Reynolds
number around O(1). Similar asymptotic expansions have been previously utilised to study
the effects of inertia and the effects of non-uniform surface on gravity-driven thin films
(Benney 1966; Gjevik 1970; Nakaya 1975; Wang 1981). The method of expansion allows
us to linearise the inertial terms in the Naiver–Stokes equation, so that we can find the
analytical expressions for the velocity field and subsequently solve for fluid fluxes and free
surface profiles numerically. Furthermore, we perform an additional asymptotic expansion
on the free surface shape in the limit of small interfacial deformations, which yields
analytical solutions of the fluid flux and gives us more precise insight into the role of
inertia on free surface pumping.
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Inertial effects on free surface pumping with an undulating surface

Overall, our new theoretical model successfully reproduces the pump rates from the
experiments with no fitting parameters, in the regimes with finite and negligible inertia.
With our simplified model, we are able to more systematically probe the role of inertia,
gravity and viscosity on the free surface shape, going beyond the experimental data. The
analysis is able to elucidate the dependence of the free surface wave structure on the
relevant non-dimensionalised numbers as well as establish the connection between the
pump rate and the free surface shape. The paper is organised as follows: we introduce
the experimental set-up in § 2, while the formulation of the mathematical model and the
numerical method are discussed in § 3. Section 4 comprises the results of the numerical
simulations in comparison with the experimental observations. In § 4.3, the analytical
solutions of the fluid fluxes and the free surface profiles are provided to qualitatively
rationalise the relation between free surface structures and the fluid fluxes. Finally, we
conclude the paper with the summary and discussion in § 5.

2. Experiments
To create a surface with wave-like movements, we engineer an initial mechanical system
depicted in figure 1(a). This system is identical to that of Pandey et al. (2023) which
employs a helix’s rotational motion to induce a sinusoidal travelling wave pattern on a
connected surface such that the wave speed Vw = ωλ. The helix features a constant pitch
and radius which fixes the wavelength (λ) and amplitude (δ) of the travelling wave; the
helix’s rate of rotation is given by ω. The helix is driven by a low-power servo motor which
controls ω. The helix is embedded within multiple rectangular slits which are connected
by a thin (∼0.1 mm) membrane. Rotation of the helix gives rise to a rhythmic undulation
of this membrane forming the travelling wave. All components of this device were 3D
printed with λ = 50 mm and δ = 2.5 mm. On a larger length scale, an alternate method of
generating a pedalling-like motion of the solid surface was demonstrated by Vivanco et al.
(2021) who divided the bottom boundary into small elements with prescribed individual
motion in an elliptical orbit.

The undulator is affixed to the bottom of a fluid-filled tank containing silicone oils
(density ρ = 970 kg m−3, viscosity µ = 0.97 Pa s, interfacial tension σ = 0.021 Nm−1)
and glycerine–water mixtures (ρ = 1164 kg m−3, µ = 0.133 Pa s, σ = 0.067 Nm−1).
The depth of the liquids in the tank is maintained to such levels that only a thin layer
(H) remains on top of the undulator (cf. figure 1a). Across all our experiments H varies
between 4.3 and 8 mm which are much smaller than the wavelength of the undulations, λ.
In this work, we will specifically focus on the experiments with silicone oil at H = 6.8 mm
and water–glycerine at H = 6.3 mm. Travelling waves on the undulator create a directional
transport of liquid within the thin film. To minimise boundary effects, we employ a
spacious, acrylic tank measuring 61 cm × 46 cm.

We focus on characterising the flow rate within the thin film by performing particle
image velocimetry (PIV) analysis. To this end, we introduce hollow glass particles of
diameter 10 µm and illuminate these tracer particles with a 520 nm 1 Watt laser sheet.
The continuous laser sheet is positioned above the liquid layer to illuminate a longitudinal
plane that passes through the centre of the undulator. Then, we visualise the motion of
the illuminated particles with a high-speed camera. A typical velocity field is shown
in figure 1(a-ii), where the colour coding is based on the horizontal component of the
velocity; blue is the portion of liquid with the horizontal velocity in the same direction as
Vw whereas liquid in the red region has the velocity opposite to Vw.

To estimate the net transport of liquid by an undulator, we integrate the horizontal
component of the fluid velocity at the mid-point of the undulator across the film thickness,
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Figure 1. (a-i) The schematic of the robotic undulator consisting of a motor that rotates a helix encased inside
a thin membrane. (a-ii) The PIV measurement shown with the free surface on top and the undulating solid
boundary on the bottom. (a-iii) The undulator profile over one period of undulation. (b) Instantaneous flow rates
Qi as a function of time t: for silicone oil (blue) at Vw = 90.4 mm s−1 and H = 6.8 mm and for water–glycerine
(orange) at Vw = 78.54 mm s−1 and H = 6.3 mm. (c) Time-averaged flow rate, 〈Q〉 is plotted against the wave
speed Vw scaled with ε2H for silicone oil (blue) at H = 6.8 mm and water–glycerine (orange) at H = 6.3 mm.
The slope of the dashed line is 1.5.

which yields an instantaneous flow rate Qi(t). Figure 1(b) shows the plot of Qi(t) as
a function of time in silicon oil (blue) at Vw = 90.4 mm s−1 and in a water–glycerine
mixture (orange) at Vw = 78.54 mm s−1. The instantaneous flow rate fluctuates with the
same time frequency as the undulator but has a positive offset. This positive offset confirms
the ability of the undulator to maintain a net flow rate over a period of oscillation. Thus,
we introduce a time-averaged flow rate as

〈Q〉 = 1
τ

∫ τ

0
Qi(t) dt, (2.1)

where the time scale τ is chosen to be larger than one period to avoid any end effect of
sinusoidal instantaneous flow rates. Figure 1(c) shows the flow rate vs ε2VwH measured
in two different fluids; silicone oil (blue) at H = 6.8 mm and a water–glycerine mixture
(orange) at H = 6.3 mm. The role of the geometric factor ε ≡ δ/H in this plot will be
clarified in the subsequent sections.

At lower values of ε2VwH (i.e. ! 50), 〈Q〉 is shown to increase linearly with the
wave speed for both the glycerine–water mixture and silicone oil. This liquid-independent
regime is a consequence of the negligible deformation of the free surface at smaller Vw and
follows the relation 〈Q〉 = (3/2)ε2VwH, as previously described by Pandey et al. (2023).
At higher values of ε2VwH, qualitatively different behaviours are observed for the two
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Figure 2. Schematic of a thin-film flow driven by an undulating surface with wave speed Vw and wavelength
λ (a) in the laboratory frame and (b) in the wave frame. Here, the shape of solid boundary is denoted as h1,
while h2 corresponds to the free surface profile.

liquids; while the pump rate of the silicone oil gradually increases with the wave speed,
the glycerine–water mixture exhibits a non-monotonic flow rate. In the rest of the paper,
we present a theoretical model that captures these different behaviours.

3. Theory
We construct a mathematical model based on the experiments. In the two-dimensional
system illustrated in figure 2(a), we consider the flow in a film of a Newtonian liquid
on an undulating boundary that undergoes a periodic deformation. The profiles of the
undulating boundary and the free surface are denoted as h1(X, t) and h2(X, t), respectively,
so that h2 − h1 corresponds to the thickness of the thin film. For simplicity, we model
the shape of the undulating surface as h1(X, t) = δ sin[2π(X − Vwt)/λ], which describes
the time-dependent periodic deformation with the amplitude δ, the wavelength λ and the
speed of the travelling wave Vw. Consistent with the experimental set-up, the X-coordinate
is defined positive in the direction of the travelling wave. We acknowledge that the actual
shape generated by the robotic undulator does not follow a simple sine wave, as shown in
figure 1(a) iii and also previously illustrated by Pandey et al. (2023).

To eliminate the time-dependent effects, we consider a frame moving with the wave
speed Vw (Chan, Balmforth & Hosoi 2005; Lee et al. 2008). For the steady-state
assumption to be valid, the deformation of the fluid–fluid interface and corresponding
fluid flow must also move with Vw, which is qualitatively supported by the fact that the
oscillation frequency of Qi in figure 1(b) matches that of the undulator. We will further
comment on the validity and limitation of our steady-state assumption later in this section.
We use a Galilean transformation that relates the laboratory coordinates (X, Y) to the
wave-frame coordinates (x, y), such that

x = X − Vwt, y = Y. (3.1a,b)

Thus, the transformation of the velocity field can be written as

u(x, y) = U(X, Y, t) − Vw, v(x, y) = V(X, Y, t). (3.2a,b)

Here, (u, v) denotes the wave-frame velocity field in the (x, y) directions, whereas (U, V)
is the laboratory-frame velocity field in (X, Y) (Shapiro, Jaffrin & Weinberg 1969). Note
that we first solve for the flow system in the wave frame and then convert the results back
to the laboratory frame to compare with the experimental observations.
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Next, we non-dimensionalise the governing equations based on the following set of
characteristic scales:

(x, y) = λ(x∗, ay∗), (h1, h2) = H(h∗
1, h∗

2), (3.3a,b)

(u, v) = Vw(u∗, av∗), p = p∗µVwλ/H2, (3.4a,b)

where the asterisk denotes dimensionless variables, p is the gauge pressure and µ is the
liquid viscosity. Note that a ≡ H/λ, where H is the mean thickness of the liquid film.
In addition, the dimensionless shape of the undulating surface corresponds to h∗

1(x
∗) =

ε sin (2πx∗), where ε ≡ δ/H. Then, the linear momentum and mass conservation
equations for the fluid flow can be expressed as

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0, (3.5)

aR̃e
(

u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗

)
= −∂p∗

∂x∗ + a2 ∂2u∗

∂x∗2 + ∂2u∗

∂y∗2 , (3.6)

a3R̃e
(

u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗

)
= −∂p∗

∂y∗ + a2
(

a2 ∂2v∗

∂x∗2 + ∂2v∗

∂y∗2

)
− Bo

Ca
, (3.7)

with Reynolds number R̃e = aρVwλ/µ, Bond number Bo = ρgλ2/σ and the capillary
number Ca = µVw/a3σ . Here, g is the gravitational acceleration. The Bo/Ca term in (3.7)
corresponds to the dimensionless body force on the fluid.

The boundary conditions in the wave frame can be expressed as

u∗ + 2πεa2 cos(2πx∗)v∗ = −1 at y∗ = h∗
1, (3.8)

−2πε cos(2πx∗)u∗ + v∗ = 0 at y∗ = h∗
1, (3.9)

[

1 + a2
(

∂h∗
2

∂x∗

)2
]

∂u∗

∂y∗ + 2a2 ∂h∗
2

∂x∗

(
∂v∗

∂y∗ − ∂u∗

∂x∗

)
+ O(a4) = 0 at y∗ = h∗

2, (3.10)

p∗ + a2
(

∂h∗
2

∂x∗
∂u∗

∂y∗ − 2
∂v∗

∂y∗

)
+ O(a4) = −

Ca−1 ∂2h∗
2

∂x∗2
[

1 + a2
(

∂h∗
2

∂x∗

)2
]3/2 at y∗ = h∗

2. (3.11)

Here, (3.8) and (3.9) correspond to the no-slip and no-flux boundary conditions on the
undulator surface, respectively. On the free surface, we impose the tangential stress balance
via (3.10) and the jump in normal stress due to surface tension via (3.11). For simplicity,
we drop the asterisk and use ∂x and ∂y to denote partial differentiation with respect to the
x and y coordinates in the following discussion.

Motivated by the previous studies of thin-film flows that include inertial effects
(Ruyer-Quil & Manneville 1998, 2000; Scheid et al. 2006), we take the limit of a ( 1
and apply an asymptotic expansion of the unknowns (i.e. u, v, and p) in terms of a (Roy,
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Inertial effects on free surface pumping with an undulating surface

Roberts & Simpson 2002)

u(x, y) =
∞∑

j=0

a juj(x, y), (3.12)

v(x, y) =
∞∑

j=0

a jvj(x, y), (3.13)

p(x, y) =
∞∑

j=0

a jpj(x, y). (3.14)

Following the formulation of Ruyer-Quil & Manneville (1998), we do not asymptotically
expand h2 in order of a, so that the free surface shape may include the coupled effects
from all orders. In addition to a ( 1, we assume that R̃e ∼ O(1), which ensures that the
leading inertial terms in the x-momentum equation show up at O(a). Hence, our model
approach is expected to fail at R̃e ∼ O(a−1) or larger, as the linearisation of the inertial
terms becomes problematic in that limit. Furthermore, at R̃e * 1, we have experimentally
observed the formation of free surface waves whose speed is distinct from the wave speed
of the undulating surface. The disconnect between the two wave speeds means that our
steady-state assumption in the wave frame is no longer valid. Therefore, we emphasise
that the current model is valid for R̃e ∼ O(1) and a ( 1.

The boundary conditions also need to be decomposed to match the governing equations
at each order. Note that we assume ε to be comparable to a. The curvature term in the
normal stress boundary condition can be expanded as ∂xxh2(1 − 3a2(∂xh2)

2/2 + O(a4))
by applying the binomial expansion. However, since our main purpose for the asymptotic
expansion is to include the inertial effects into the model, we neglect the higher-order
terms in the normal stress boundary condition and simplify (3.11) to p = −∂xxh2/Ca.
We acknowledge that the O(a2) term may become important in the regime where the
free surface deformations are significant, which mostly falls outside our current regime
of interest. Hence, we reasonably neglect the higher-order terms of the normal stress
boundary condition in the rest of the discussion. The boundary conditions can be
decomposed into

u0 = −1, u1 = u2 = · · · = 0 at y = h1, (3.15)
v0 = v1 = v2 = · · · = 0 at y = h1, (3.16)

∂yu0 = ∂yu1 = ∂yu2 = · · · = 0 at y = h2, (3.17)
p0 = −∂xxh2/Ca, p1 = p2 = · · · = 0 at y = h2. (3.18)

Then, at the zeroth order, we find the following governing equations for u0, v0 and p0:

∂xu0 + ∂yv0 = 0, (3.19)
0 = −∂xp0 + ∂yyu0, (3.20)

0 = −∂yp0 − Bo/Ca. (3.21)

We note that u0(x, y) is a second degree polynomial, and the solution does not include the
inertial terms.
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Thus, to study the inertial effects on the free surface flow, we expand the unknowns in
the next two orders. Then, at O(a1), we obtain

∂xu1 + ∂yv1 = 0, (3.22)

R̃e(u0∂xu0 + v0∂yu0) = −∂xp1 + ∂yyu1, (3.23)
0 = −∂yp1, (3.24)

which yield the solution of u1 as a sixth degree polynomial of y. The equations at O(a2)
correspond to

∂xu2 + ∂yv2 = 0, (3.25)

R̃e(u0∂xu1 + u1∂xu0 + v0∂yu1 + v1∂yu0) = −∂xp2 + ∂xxu0 + ∂yyu2, (3.26)
0 = −∂yp2 + ∂yyv0, (3.27)

resulting in u2 as a tenth degree polynomial of y. Note that both u1 and u2 are explicit
functions of R̃e. Finally, to obtain the resulting liquid flux q through the liquid layer, we
integrate the velocity field in y, so that

q =
∫ h2

h1

n∑

j=0

uj(x, y) dy. (3.28)

Here, we replace the infinite sum in the asymptotic expansion with the partial sum up
to the order n. We select n = 2 to provide an appropriate physical description of inertial
effects with a reasonable computational cost (Ruyer-Quil & Manneville 1998, 2000). In
the current wave-frame coordinates that are independent of time, conservation of mass
ensures that q is constant.

Notably, q and h2 are unknown a priori. Hence, we simultaneously solve for q and h2 by
imposing additional boundary conditions. As previously noted, q and h2 are not expanded
in orders of a. This enables us to numerically compute the free surface shape and fluid
flux that include the effects from all orders. Based on the assumption that the undulating
surface undergoes periodic deformations, we apply periodic boundary conditions for h2
at x = 0 and x = 1. The periodic boundary conditions over each wavelength are: h2(0) =
h2(1), ∂xh2(0) = ∂xh2(1), ∂xxh2(0) = ∂xxh2(1), . . ., ∂xn+2h2(0) = ∂xn+2h2(1) where n is the
number of terms in the partial sum. In addition, we assume that the total fluid area A is
conserved (i.e. A =

∫ 1
0 (h2 − h1) dx = 1).

Then, the method of solving q and h2 can be summarised as the following steps, with
the details of the numerical scheme included in Appendix A:

(i) Make an initial guess for the flux q.
(ii) Find h2(x) by solving (3.28) numerically with the periodic boundary conditions.

(iii) Check the total area Ai =
∫ 1

0 (h2 − h1) dx.
(iv) Change the initial guess q until the root of the function f (q) = A − Ai reaches zero.

The numerical solutions of h2 and q are presented in §§ 4.1 and 4.2. Furthermore, we
obtain the analytical solution of h2, by asymptotically expanding it in the limit of a ‘nearly
flat’ surface. This allows us to derive an explicit relationship between the flux, the free
surface shape and the key dimensionless parameters. The analytical results are presented
in § 4.3.
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Inertial effects on free surface pumping with an undulating surface

Vx
–0.0075 –0.0050 –0.0025 0 0.0025 0.0050
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Fluid

Undulator

(a)

(b)

Figure 3. Results of PIV for silicone oil at Vw = 0.0177 m s−1 at two different instances of time: (a) at
t = 0 and (b) t = 0.48 s. The colour coding inside the thin film represents the horizontal component of the
laboratory-frame velocity field that is taken to be positive in the direction of Vw. The black and the blue dashed
line are the theoretical predictions of the dimensional free surface shape and the dimensional profile of the
undulating boundary with (a) h1 = sin(2πx) for x + 0–0.81 and (b) h1 = sin(2πx + 0.873) for x + 0–0.81.

4. Results

4.1. Comparison with experiments

4.1.1. Silicone oil
We first extract the free surface shapes of silicone oil (SO) at Vw = 0.0177 m s−1

and compare them with our theoretical prediction. Figure 3 shows the experimental
oil–air interface in solid lines at two different times in the presence of an undulating
boundary. Note that the experimental profiles are accompanied by the instantaneous PIV
measurements in the laboratory frame. Figure 3 also includes the free surface shape and
the undulating surface profile from our model in dashed lines. In order to compare our
steady state solution with the experimental data at two different times, we have shifted
our solution by an empirical offset of δoff + 0.873, such that h1 = sin(2πx + 0.873) to
fit the experimental image at t = 0.48 s. We do not expect the match between theory
and experiments to be perfect, as the experimental solid boundary cannot be accurately
described by a simple sine wave. We quantify the differences in h1 and h2 between theory
and experiments by computing their L2 norm, or ‖h1 − h1 exp‖ and ‖h2 − h2 exp‖, where
the subscript ‘exp’ denotes the profiles from the experimental measurements. We find that
‖h1 − h1 exp‖ and ‖h2 − h2 exp‖ are of the same order of magnitude and are approximately
0.1 over the entire domain. Despite this discrepancy, the results in figure 3 indicate the
crest of the theoretical free surface profile is slightly ahead of that of the solid boundary,
which qualitatively coincides with the experimental observations.

To further delve into the free surface shapes, figure 4(a) shows the theoretical prediction
for the free surface shapes at Vw = 0.02, 0.04, 0.06 and 0.08 m s−1. As Vw increases,
the shape of the free surface gradually starts to resemble the undulating surface. The
physical mechanism behind free surface deformations can be understood by comparing
the dimensionless numbers in the flow system. Based on the governing equations and
boundary conditions (i.e. (3.5) to (3.11)), we note that the flow system is controlled by
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Figure 4. (a) The theoretical prediction of the free surface shapes for varying Vw. The different solid lines
(coloured from light to dark green) correspond to the different values of Vw = 0.02, 0.04, 0.06 and 0.08 ms−1.
(b) The plot of laboratory-frame flux from the experiments (black dot) and theoretical predictions (blue lines) of
SO. The error bars account for the uncertainty associated with the experimental measurement of H. The solid
line and dashed line correspond to theoretical predictions including inertial effects (Q) and under lubrication
approximations (Qlub), respectively.

Re, Bo and Ca, where we have defined a modified Reynolds number Re ≡ aR̃e to account
for the prefactor a in front of R̃e in (3.6). Since the magnitude of Re is around O(10−2) as
Vw ∼ O(10−2 m s−1), the inertial effect is insignificant, and the flow system is governed by
Ca and Bo only. Specifically, Ca/Bo ≡ µVw/(a3ρgλ2) represents the competition between
viscous and hydrostatic effects, which increases linearly with increasing Vw. Hence, for
smaller Vw (or smaller Ca/Bo), a relatively flat liquid–air interface can be observed since
the hydrostatic effects are dominant. By contrast, with increasing Vw (i.e. larger Ca/Bo),
the free surface deformations tend to increase, which also coincides with an increase in
Ca, or reduced surface tension effects.

Next, we discuss how the liquid flux varies with Vw. We propose two different theoretical
predictions of the liquid flux and compare them with the experimental results. The
first prediction includes inertial effects, which is equivalent to q in (3.28). The second
prediction does not include inertial effect and is denoted as qlub. In order to obtain qlub,
we follow the same procedure in § 3 but only include the terms at O(a0). Since all
the inertial terms are neglected, the solution is identical to the results under lubrication
approximations. However, q and qlub are wave-frame fluxes, whereas the experimental
results are in the laboratory frame.

To compare the theoretical predictions with the experimental results, we transform the
theoretical results of the wave-frame flux into the laboratory frame by using the relation
U(X, Y, t) = u(x, y) + 1. We find Qi(X0, t) = q + (h2(X0, t) − h1(X0, t)) by integrating
the velocity from Y = h1(X0, t) to Y = h2(X0, t). Here, Qi(X0, t) is the instantaneous
laboratory-frame flux at a horizontal location X0, examples of which were previously
plotted in figure 1(b) from the PIV data. We time average Qi based on

1
τ

∫ τ

0
Qi(X0, t) dt = Q(X0) = q + (h2(X0) − h1(X0)). (4.1)

Due to the periodic nature of flow system, we note that h2(X0) − h1(X0) = 1. Since the
right-hand side of (4.1) is a constant, the laboratory-frame flux Q is independent of the
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Inertial effects on free surface pumping with an undulating surface

horizontal location X. Thus, we arrive at the following equation:

Q = q + 1. (4.2)

The above transformation is also applicable under the lubrication assumption, such that
Qlub = qlub + 1.

Figure 4(b) shows the experimental results of Q, plotted with the theoretical predictions
of Q (solid line) and Qlub (dashed line) for the range of Vw = 0.01–0.1 m s−1. As the
inertial effects are negligible (i.e. Re ( 1), there are only small differences between
Qlub and Q, and they both effectively capture the overall decrease in the liquid flux
with an increase in Ca/Bo. As Vw increases, the viscous effects gradually dominate
the gravitational effects, which implies that the fluid becomes easier to undulate and
move with the bottom profile, yielding a decrease in Q. However, despite the qualitative
match between theory and experiments, theoretical Q tends to consistently over-predict
the experimental values due to the simplified nature of our model. Specifically, the
two-dimensional model cannot capture any leakage flow from the sides of the undulator,
which may explain why the experimental measurements tend to be lower than the idealised
model results. Finally, while the differences Qlub and Q are small, Qlub is systematically
lower than Q as Vw is increased. This implies that the inertial effects tend to enhance the
flux, which will be further explored in the next section.

4.1.2. Glycerine–water mixture
Next, we consider the case of choosing the glycerine–water (GW) mixture as the working
liquid at Vw = 0.023 m s−1. As shown in figure 5, the amplitude of the surface wave
is relatively small and the free surface shape is flat for both experiments (solid lines)
and theory (dashed lines). We set h1 = sin(2πx + 0.698) and h1 = sin(2πx + 2.09) to
best match the experimental undulating boundaries in figures 5(a) and 5(b), respectively.
Consistent with the results in figure 3, ‖h1 − h1 exp‖ and ‖h2 − h2 exp‖ from figure 5 are
again comparable to each other and of O(10−1). To understand the resultant free surface
shape, we note that the magnitude of Ca/Bo for the GW mixture is an order of magnitude
smaller than the SO case in figure 3, while the magnitude of Ca is two orders of magnitude
smaller than the SO data. Hence, as the hydrostatic and surface tension effects tend to
dominate in the present case, the fluid–fluid interface remains relatively flat.

Furthermore, in the experiments with the GW mixture, the magnitude of Re ranges from
O(10−1) to O(1), which means that the inertial effects are no longer negligible. However,
due to the dominance of Bo and the flat free surface in figure 5, the role of inertial effects
remains unclear. For the following discussion, we will systematically change the wave
speed to see how inertial effects may affect the free surface profile. In figure 6(a), we
present the theoretical predictions of free surface profiles with Vw = 0.03, 0.06, 0.09 and
0.12 m s−1, which show that the interface deforms more as Vw increases. At the same
time, the free surface gradually becomes more out of phase with the undulating surface, as
more clearly illustrated in figure 6(c). The zoomed-in plot of h2 in figure 6(c) shows that
the minimum point of the free surface (denoted as a triangle) moves to the left towards
the peak of the undulating substrate. This means that, distinct from the SO case, the free
surface profile no longer tends to conform to the undulating surface, as the wave speed is
increased.

To isolate the effects of inertia on this phenomenon, we compute and plot the free
surface profiles under lubrication approximations in figure 6(b). Although the deformation
of the free surface profile is insignificant compared with the SO case, it gradually changes
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Vx
–0.0075 –0.0050 –0.0025 0 0.0025 0.0050

10 mm

Undulator

Fluid
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(b)

Figure 5. Results of PIV for the glycerine–water mixture at Vw = 0.023 m s−1: (a) at t = 0 and (b) t = 0.96s.
The black and the blue dashed lines are the theoretical dimensional free surface shapes and the dimensional
profiles of the undulating boundary, which are given by (a) h1 = sin(2πx + 0.698) for x + 0–0.81, and
(b) h1 = sin(2πx + 2.09) for x + 0–0.81.

to become more in phase with h1. This is evident in the zoomed-in plot of figure 6(d)
that shows that the minimum point in h2 gradually moves to the right with increasing
Vw, in direct contrast to the model results in figure 6(c). The above observation implies
two things: (i) the inertial effects enhance the amplitude of free surface deformations, and
(ii) inertia causes the free surface to fall out of phase with h1.

Next, we discuss how the free surface profile influences the fluid flux. Figure 6(e) shows
the experimental results of Q and theoretical predictions for Q and Qlub for the range of
Vw = 0.01–0.1 m s−1. We clearly observe that only the solution with the inertial effects is
able to correctly capture the increase in Q with the Vw, while Qlub gradually decreases with
Vw. Hence, these results once again validate the role of inertia to increase the fluid flux. To
connect Q to free surface shapes, we recall that inertia causes the free surface deformations
to be out of phase with the lower boundary, which suggests the potential interaction
between the free surface and undulating substrate. At higher Reynolds numbers, the free
surface tends to form a dip towards the peak of the undulating surface. The fluid is then
‘squeezed’ by the bottom boundary and free surface that move towards each other, which,
thereby, increases the liquid flux.

4.2. The effects of Re and Ca/Bo
While our results so far suggest that inertia enhances the fluid flux, we cannot clearly
decouple the effects of inertia from viscous and hydrostatic ones, as both Re and Ca/Bo
increase with Vw. To address this problem, we construct a phase map of the flux Q
by varying Re and Ca/Bo independently. We first set a = 0.126, H = 6.3 mm and
σ = 0.02 N m−1 for all the simulations herein. While σ drops out of Ca/Bo, the value
of σ is needed to satisfy the normal stress boundary condition at the free surface (i.e.
(3.11)). In the regime with large Bo (i.e. Bo ∼ O(102)–O(103)), we find that the effects of
varying σ on Q are minimal and can be neglected.
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Figure 6. (a) The theoretical prediction of free surface shapes, where the different solid lines (coloured from
light to dark green) correspond to the different values of Vw = 0.03, 0.06, 0.09 and 0.12 m s−1. (b) Free surface
shapes under under lubrication approximation for Vw = 0.03, 0.06, 0.09 and 0.12 m s−1 (coloured from light to
dark green). (c) The zoom-in plot of the free surface profiles from the lubrication model in (a); the red triangle
corresponds to the minimum point in h2. (d) The zoom-in plot of the free surface profiles from the lubrication
model in (b); the red triangle corresponds to the minimum point in h2. (e) The plot of laboratory-frame flux
from the experiments (black dot) and theoretical predictions (blue lines) of GW. The error bars account for the
uncertainty associated with the experimental measurement of H. The solid line and dashed line correspond to
theoretical predictions including inertial effects (Q) and under lubrication approximations (Qlub), respectively.
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Figure 7. (a) Phase diagrams summarising the magnitude of Q with varying Re and Ca/Bo. The two arrows
are identified as the fluid types SO and GW. The direction of the arrows corresponds to an increase in Vw.
(b) A the zoomed-in plot of (a) that highlights the range of Re = 0–0.5. The grey contour lines correspond to
constant Q.

To obtain Q at given Ca/Bo and Re, we start the simulation at (Ca/Bo, Re) = (0.01, 0)
and gradually increase Ca/Bo (with an increment of 0.1) and Re (with an increment of
0.1). Once the values of Q are obtained for the given range of Ca/Bo and Re, we apply a
MATLAB function, griddata with the cubic method to interpolate our discrete simulation
data and generate a smooth phase map. Notably, because Re and Ca/Bo are both linearly
dependent on Vw, their ratio is independent of Vw and is given by

Re
Ca/Bo

= a2H3g
(

ρ

µ

)2
, (4.3)

where a, H and g are not fluid-dependent and remain fixed in all simulations. This implies
that, once a working fluid is selected, Q for the given fluid can be represented by a straight
line passing through (0, 0) with a fixed slope, where Re/(Ca/Bo) corresponds to the slope.

The resulting Ca/Bo–Re phase maps of Q are shown in figure 7; the phase map in
figure 7(b) reproduces a smaller range of Re from figure 7(a) for clarity. In addition, the
two arrows in figure 7 correspond to the simulation results for the SO and the GW mixture,
respectively. The phase maps in figure 7 reveal that Q decreases with Ca/Bo for small Re,
qualitatively similar to the SO case. However, for large Re, this trend is reversed, as Q is
shown to increase with Ca/Bo, with the maximum Q corresponding to the top-right corner
of figure 7(a).

For an intermediate range for Re (i.e. Re = 0.1–0.5), we can clearly see in figure 7(b)
that Q varies non-monotonically with Ca/Bo. To investigate this further, we plot Q as a
function of Ca/Bo for different values of Re in figure 8. Figure 8(a) demonstrates that Q
monotonically decreases with Ca/Bo at small Re (see blue lines) and gradually exhibits
a non-monotonic behaviour with Ca/Bo as Re is increased (see green lines). Then for
Re > 0.5, Q is shown to increase monotonically with Ca/Bo in figure 8(b). Hence, the
effects of increasing Ca/Bo on Q are strongly dependent on Re, pointing to the potential
mixed effects of Ca/Bo and Re on Q.

On the other hand, the phase diagrams in figure 7 appear to validate our earlier
observation that inertia enhances the flux. To further corroborate this, we plot Q as a
function of Re at constant Ca/Bo in figure 8(c). The main panel in figure 8(c) shows
a monotonic increase in Q with increasing Re for Ca/Bo ranging from 0.2 to 0.8.
This demonstrates positive effects of inertia on the flux. Surprisingly, at low Ca/Bo
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Figure 8. (a) The theoretical predictions of Q plotted against Ca/Bo with different values of Re from 0 to 0.5,
and (b) from 0.6 to 0.8. (c) The theoretical predictions of Q plotted against Re with different values of Ca/Bo
from 0.2 to 0.8. The inset shows the predictions of Q as a function of Re for Ca/Bo = 0.01 (blue) and 0.1
(green). The y-axis of the inset ranges from Q = 0 to 0.3, while the range of Re on the x-axis of the inset is the
same as the main plot.

(i.e. Ca/Bo = 0.01, 0.1), the inset in figure 8(c) reveals that Q tends to decrease as Re
approaches O(1); this is also evident in figure 8(b) that shows smaller Q for larger Re
near Ca/Bo + 0. This unexpected reduction in Q at relatively large Re at low Ca/Bo
has two contributions. First, low Ca/Bo (i.e. large gravitational effects) ensures minimal
deformation of the fluid–fluid interface, which suppresses changes in Q from the free
surface shape. Second, inertia-induced changes in the velocity profile can enhance viscous
dissipation from the higher-order terms, which tend to reduce Q at low Ca/Bo. Apart from
this small Ca/Bo and large Re regime, increasing Re clearly enhances the overall flux.
Hence, we will primarily focus on the non-monotonic behaviour of Q with Ca/Bo for
non-zero Re in the next section.

Finally, the results with the SO and GW mixture in § 4.1 have demonstrated the
connection between the free surface shape and the resultant flux Q. Namely, in the limit
of Re ( 1, increasing Ca/Bo leads to the transition of the fluid–fluid interface from flat to
that conforming to the solid surface, which yields a decrease in Q. On the other hand, for
Re ∼ O(0.1)–O(1), increasing Re (and Ca/Bo) causes the free surface shape to become
out of phase with the undulating boundary and leads to a corresponding increase in Q.

Similar observations can be made by systematically plotting free surface shapes for
varying either Re or Ca/Bo, respectively, while the other parameter is fixed. As shown in
figure 9(a), we observe that the free surface becomes more deformed and more out of phase
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Figure 9. (a) The theoretical predictions of h2 for Ca/Bo = 0.5 under different Re. The different solid lines
(coloured from light to dark green) correspond to the values of Re = 0, 0.25, 0.5, 0.75 and 1. (b) The theoretical
predictions of h2 for Re = 0.4 under different Ca/Bo. The different solid lines (coloured from light to dark
green) correspond to the values of Ca/Bo = 0.2, 0.4, 0.6, 0.8 and 1. The grey grid lines have been added to (b)
to highlight the changes in h2 with Ca/Bo.

with the undulating surface as we vary Re from 0 to 1 at Ca/Bo = 0.5. As demonstrated in
figure 8(c), this change in the free surface shape corresponds a monotonic increase in Q,
in a manner that is qualitatively similar to the GW case. By contrast, figure 9(b) includes
the free surface shapes at Re = 0.4, as Ca/Bo is increased from 0.2 to 1. In this range of
parameters, the free surface shape is shown to gradually evolve from flat to more in phase
with the undulating surface with a larger amplitude. However, the resultant flux Q plotted
in figure 8(a) varies non-monotonically, reaching a maximum around Ca/Bo + 0.4 before
slightly decreasing with Ca/Bo. This suggests an inherent shortcoming of determining an
‘optimal’ free surface shape by simply plotting h2. To help resolve the unclear connection
between the free surface shape and the flux, we will derive the analytical solutions of h2
and Q in § 4.3.

4.3. Analytical solutions of Q and h2

To elucidate the mixed effects of Ca/Bo and Re, we obtain an analytical expression for
Q via asymptotic expansions. First, we recall q = q(h1, h2) via q =

∫ h2
h1

∑2
j=0 uj(x, y) dy,

which contains a term with the prefactor of Bo/Ca and that with 1/Ca. Since the
magnitude of Bo is approximately O(102) to O(103) based on the characteristic parameters,
we neglect the term prefaced with 1/Ca. Then, we expand q as q = q0 + aq1 + a2q2 +
a3q3 + O(a4) by applying an asymptotic expansion of h2 in orders of a

h2 = 1 + af1 + a2f2 + a3f3 + O(a4). (4.4)

In addition, q is also a function of the shape of the undulating surface, h1 = ε sin(2πx),
where ε ≡ δ/H and δ is the characteristic undulation amplitude of the solid boundary (Lee
et al. 2008). Based on the characteristic values from the experiments, we find that a and ε
have the same order of magnitude. Hence, we define an O(1) parameter (, where ε = (a,
and replace ε with (a to ensure that q can be consistently expanded in orders of a.

The resultant expressions of q at each order as functions of the free surface profile are
listed in Appendix B, from which we solve for q0, q1, q2 and q3, together with f1, f2
and f3. The analytical solutions for q0, q1, q2 and q3 and our detailed solution procedure
are also included in Appendix B. Once q is known at each order, we use Q = q + 1
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Figure 10. (a) The analytical solutions of Q plotted against Ca/Bo with different values of Re from 0 to 0.8.
(b) Same asymptotic solutions with the range of Ca/Bo from 0 to 1.5, with the grey grid lines. The red dashed
line depicts the maximum Q for any given Re.

(i.e. Q0 = 1 + q0, Q2 = q2 and Q3 = q3) to find the analytical expression of the
laboratory-frame flux Q

Q = 6π2a2(2

9(Ca/Bo)2 + 4π2 + 9a3

40
(2R̃e

{
45(Ca/Bo)3π2 + 148(Ca/Bo)π4

(9(Ca/Bo)2 + 4π2)2

}
+ O(a4),

(4.5)

where Q1 = 0. We plot the first two non-zero orders of Q in (4.5) as a function of Ca/Bo
for given Re, or aR̃e, where a = 0.126. The resultant plot in figure 10(a) qualitatively
matches the full numerical solutions of Q in figures 8(a) and 8(b) for the same parameter
range. However, the asymptotic results do not exhibit the reduction in Q with increasing Re
in the limit of Ca/Bo → 0, as this analysis does not include the higher-order viscous terms
that give rise to a slight dip in Q in this limit. As Re and R̃e simply differ by a constant
prefactor, we interpret our asymptotic results in terms of Re instead of R̃e to be consistent
with the results shown in figures 7 and 8.

The first term in (4.5) corresponds to a2Q2 and only consists of Ca/Bo and
monotonically decreases with increasing Ca/Bo, while the second term, a3Q3, is the
product of Re and a rational function of Ca/Bo. Specifically, for given Ca/Bo, the second
term increases linearly with Re, which validates the effects of inertia to enhance the fluid
flux. On the other hand, the effects of Ca/Bo on Q strongly depend on the value of Re,
which helps determine the relative importance of the two terms. For instance, at Re = 0,
only the first term is retained and leads to a decrease of Q with Ca/Bo, matching the results
of the SO data.

To further elucidate the coupled effects of Re on Ca/Bo, we set ∂Q/∂(Ca/Bo) = 0
to compute the critical value of Ca/Bo (i.e. Ca/Bocr) that yields the maximum value
of Q at given Re. The resultant Ca/Bocr is plotted as a red dashed line in figure 10(b).
The plots shows that Ca/Bocr monotonically increases with Re, such that Ca/Bocr +
0.7 around Re + 0.4. This explains why, in the range of Ca/Bo from 0 to 0.7, we
observe the transition of Q from monotonically decreasing, being non-monotonic, then
to monotonically increasing with Ca/Bo, as Re is increased (see figures 8 and 10a).

As shown in figure 10(b), once we expand the range of Ca/Bo, we can clearly observe
that Q always varies non-monotonically with Ca/Bo for non-zero Re. Increasing Re simply
extends the range of Ca/Bo over which Q increases, coinciding with larger Ca/Bocr.
Furthermore, in the limit of Ca/Bo * 1, we find that Q + (6/9)π2a2(2(Ca/Bo)−2 +

998 A6-17

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 �/

�
��

��
��

		
	�

��
�4

2:
1.

��
7�

42�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.888


Z.-Y. Chen, A. Pandey, D. Takagi, S. Jung and S. Lee

(1/8)π2a3(2R̃e(Ca/Bo)−1, which shows a monotonic decrease with Ca/Bo for all Re.
Therefore, we reasonably conclude that Q is reduced in the regime where Ca/Bo
dominates regardless of Re, while in the intermediate regime where Re and Ca/Bo are
comparable, Q is shown to increase with Ca/Bo.

4.3.1. Connecting free surface shapes to Q
Going back to the asymptotic expansions in § 4.3, the free surface shape is given by h2 =
1 + af1 + a2f2 + O(a3) in response to the undulating surface of h1(x) = a( sin (2πx). In
the limit of a ( 1, we obtain the analytical expressions for f1 and f2 from (B3) and (B4)
in Appendix B

f1 = 6π((Ca/Bo) cos (2πx) + 9((Ca/Bo)2 sin (2πx)
9(Ca/Bo)2 + (2π)2 , (4.6)

f2 = 12π2(Ca/Bo)(R̃e
[

12π(Ca/Bo) cos (2πx) + (9(Ca/Bo)2 − 4π2) sin (2πx)
5(9(Ca/Bo)2 + 4π2)2

]

+ Q2(Ca/Bo) + F(x, Ca/Bo), (4.7)

where F(x, Ca/Bo) corresponds to

F = 6π2(2 64π4 + 180π2(Ca/Bo)2 + 81(Ca/Bo)4

(9(Ca/Bo)2 + 4π2)2(Ca/Bo)2 + 16π2)
+ 6π2(2

Bo/Ca

×
[

9(Ca/Bo)(9(Ca/Bo)2 − 20π2) cos (4πx) − 24π(9(Ca/Bo)2 − 2π2) sin (4πx)
(9(Ca/Bo)2 + 4π2)2(Ca/Bo)2 + 16π2)

]
.

(4.8)

Notably, f1 is a linear superposition of cos (2πx) and sin (2πx), independent of Re, while
f2 comprises sine and cosine functions of higher wavenumbers and exhibits dependence
on both Re and Ca/Bo. Specifically, the periodic functions with higher wavenumbers in
f2 suggest the effects of nonlinearities in our model. However, since they persist even at
R̃e = 0, they must stem from the nonlinearity of the free surface itself and are not related
to the inertia term in the governing equation (i.e. (3.6)). On the other hand, fluid inertia
from (3.6) leads to the term in f2 that is linear in R̃e. As will be further discussed, the R̃e
term causes the free surface to become out of phase with h1, which helps enhance the fluid
flux.

Figure 11 includes the plots f1 and f2 for different dimensionless parameters; note
that the dashed curve corresponds to the shape of the undulating surface, or h1/a =
( sin (2πx), as a reference point. As shown in figure 11(a), f1 is uniformly zero at
Ca/Bo = 0 and gradually deforms more with increasing Ca/Bo. Then, as Ca/Bo reaches
10 (see the inset of figure 11a), f1 closely matches the shape of the undulating surface, as
the ( sin (2πx) term comes to dominates in the limit of Ca/Bo → ∞.

For f2 that depends on both Re and Ca/Bo, we first consider the effects of Ca/Bo
on f2 while Re is held constant at 0.5. Similar to the evolution of f1, f2 becomes more
deformed as Ca/Bo is increased from 0 to 2, as shown in figure 11(b). However, distinct
from f1, f2 has a flattened region near x = 0 that grows in amplitude with Ca/Bo, due to
the contributions from constants and higher wavenumber terms in (4.8). Then, as Ca/Bo
is increased above 2 (see figure 11c), the flat region near x = 0 appears to saturate and
no longer grow with Ca/Bo, while the deformation of f2 away from x = 0 decreases. This
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Figure 11. (a) The profiles of f1 under different Ca/Bo. The different solid lines (coloured from light to dark
green) correspond to the different values of Ca/Bo = 0, 0.25, 0.5, 0.75 and 1. The inset shows the profiles of
f1 for Ca/Bo = 1 − 10. (b) The profile of f2 at Re = 0.5 for Ca/Bo = 0, 0.5, 1, 1.5 and 2 and (c) for Ca/Bo =
2, 2.5, 3, 3.5 and 4. (d) The profile of f2 at Ca/Bo = 0.5 under different Re. The different solid lines (coloured
from light to dark green) correspond to the different values of Re = 0, 0.25, 0.5, 0.75 and 1. The red-dashed
lines in the figures correspond to the shape of ( sin(2πx).

non-monotonic behaviour of f2 with Ca/Bo may have connections to the non-monotonicity
in the flux Q, which will be further explored. Finally, when we instead fix Ca/Bo at 0.5
and vary Re, figure 11(d) shows that the wavenumber of f2 is reduced with increasing Re,
while the amplitude of deformation increases. Furthermore, f2 becomes more out of phase
with the undulating surface for increasing Re, which suggests the formation of a slight dip
and a corresponding increase in Q as observed in the GW mixture case.

To more clearly understand the connection between the free surface shapes and Q, we
write the resultant flux explicitly as a function of f1 and f2, such that

Q2 = Bo
Ca

∫ 1

0
f ′
1( f1 − ( sin (2πx)) dx, (4.9)

Q3 = Bo
Ca

∫ 1

0
[ f ′

2( f1 − ( sin (2πx)) + R̃ef ′
1(16π( cos (2πx) − 5f ′

1)/48 + f ′
1f2] dx, (4.10)

which have been reduced from (B3) and (B4) via integration (i.e.
∫ 1

0 Q2 dx = Q2 and∫ 1
0 Q3 dx = Q3). Here, the prime denotes the differentiation with respect to x. Note that

combining (4.7)–(4.10) leads to the expression for Q given in (4.5). Clearly, Q2 scales
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Figure 12. (a) Values of Q30 and Q31 plotted against Ca/Bo with Re = 0.5 and (b) Q30 and Q31 plotted
against Re with Ca/Bo = 0.5.

with f1 − ( sin (2πx), which explains the reduction in Q as f1 approaches the shape of the
undulating surface with increasing Ca/Bo. Furthermore, Q2 is completely independent of
Re and shows a monotonic decrease with Ca/Bo.

The effects of inertia on the flux are introduced exclusively through Q3 in two ways:
via terms that are linear in Re and those that depend on f2. Hence, we divide up Q3 in the
following way:

Q30 = R̃e
48Ca/Bo

∫ 1

0
f ′
1(16π( cos (2πx) − 5f ′

1) dx = 9π(Ca/Bo)(2R̃e
72(Ca/Bo)2 + 32π2 , (4.11)

Q31 = Bo
Ca

∫ 1

0
[ f ′

2( f1 − ( sin (2πx)) + f ′
1f2] dx = 144π4(Ca/Bo)(2R̃e

5(9(Ca/Bo)2 + 4π2)2 , (4.12)

so that Q30 contains the effects of inertia from the changes in the flow itself, while
Q31 includes the effects of inertia through the changes in the free surface shape via f2.
Interestingly, the higher wavenumber terms in f2 drop out of Q31 upon integration, so that
only inertia-induced changes in the free surface contribute to the fluid flux at O(a3).

We plot Q30 (blue) and Q31 (red) together in figure 12 as a function of Ca/Bo for
Re = 0.5 and also for varying Re for Ca/Bo = 0.5, respectively. The results in figure 12
demonstrate that Q31 is overall larger than Q30. Hence, the effects of inertia enter more
strongly through the changes in the free surface shape than through the inertia-induced
changes in the flow. Specifically, figure 12(b) shows a monotonic increase in both Q30 and
Q31 for increasing Re. This increase in Q31 can be understood via the gradual increase in
f2 that becomes more out of phase with h1 as Re is increased (see figure 11d).

By contrast, Q30 and Q31 in figure 12(a) show non-monotonic dependence on Ca/Bo at
Re = 0.5, reaching a maximum at Ca/Bo = 2π/3 and 2π/(3

√
3), respectively. Curiously,

the transitional behaviour in f2 as observed in figures 11(b) and 11(c) occurs around
Ca/Bo + 2, which is larger than the local maximum of Q31 (i.e. Ca/Bo = 2π/(3

√
3)).

This difference in the transitional points for f2 and Q31 may be explained by the fact
that Q31 also contains a term that scales with f1 − ( sin (2πx). As f1 − ( sin (2πx)
monotonically decreases towards zero with Ca/Bo, this term mitigates the effects of f2
on the flux and causes Q31 to reach a maximum at lower Ca/Bo. Overall, we find that
the changes in the flux with Re and Ca/Bo can be sufficiently explained through the
corresponding changes in the free surface shape.

998 A6-20

1�
�8

:

  

�7
2�7

�0
 �

��
��

��
 �/

�
��

��
��

		
	�

��
�4

2:
1.

��
7�

42�
.�

�!
��

��
��

2�
0.

�

�2

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.888
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4.3.2. Selection of the working fluid
While decoupling Re and Ca/Bo is crucial in isolating the effects of inertia, in practice,
we select a working fluid (i.e. ρ, µ, σ ) with given film thickness H and then systematically
vary Vw, which causes Re and Ca/Bo to change simultaneously. As we have experimentally
demonstrated in § 4.1, once the working fluid has been selected, the resultant pump
rate Q may increase or decrease with Vw, which we have rationalised in terms of
Re and Ca/Bo and with corresponding free surface shapes. Building on our original
experimental observations, we will discuss how the selection of working fluids determines
the dependence of Q on Vw.

Going back to the phase map in figure 7, we first seek a boundary that separates Q
that either increases or decreases with Vw, where the boundary satisfies the condition:
dQ/dVw = 0. In addition, we recall that Q for a given fluid can be represented by a line
passing through the origin of the phase map, whose slope is given by Re/(Ca/Bo) ∝
(ρ/µ)2 from (4.3). For instance, on the phase diagram in figure 7, SO corresponds to a
straight line with a slope of Re/(Ca/Bo) = 0.039, while the GW mixture has a slope of
2.983. Hence, we will analyse how the boundary of dQ/dVw = 0 interacts with straight
lines that represent unique fluids. As the analytical solution of Q in (4.5) is a function of
Re and Ca/Bo, we apply the chain rule

dQ
dVw

= ∂Q
∂Re

∂Re
∂Vw

+ ∂Q
∂(Ca/Bo)

∂(Ca/Bo)

∂Vw
= 0, (4.13)

so that
9a3R̃e(2

40

{
45(Ca/Bo)2π2 + 148π4

(9(Ca/Bo)2 + 4π2)2

}
+ 9a3(2R̃e(135(Ca/Bo)2π2 + 148π4)

40(9(Ca/Bo)2 + 4π2)2

− 108a2(2(Ca/Bo)π4

(9(Ca/Bo)2 + 4π2)2 − 81a3(2R̃e(45(Ca/Bo)4π2 + 148(Ca/Bo)2π4)

10(9(Ca/Bo)2 + 4π2)3 = 0

≡ G(R̃e, Ca/Bo). (4.14)

We plot G(R̃e, Ca/Bo) as a dashed line in figure 13(a), which corresponds to the
boundary of dQ/dVw = 0. The boundary has a positive slope that monotonically increases
with Ca/Bo, so the minimum slope at the origin is given by Re/(Ca/Bo) + 0.164.
Therefore, a fluid with a slope smaller than 0.164 will yield Q that monotonically decreases
with Vw. On the other hand, the critical slope that separates non-monotonic Q from
increasing Q depends on the range of Vw considered. For instance, the critical value of
Re/(Ca/Bo) above which Q increases monotonically with Ca/Bo corresponds to 0.243, in
the current range of Re from 0 to 1. Hence, for a fluid with Re/(Ca/Bo) larger than 0.164,
the behaviour of the resultant Q with Vw depends on by how much the slope exceeds 0.164
and the range of Vw considered.

To demonstrate this, in figure 13(b), we have plotted Q as a function of Vw for three
different values of Re/(Ca/Bo), representing three different fluid properties. Specifically,
for a fluid whose slope is slightly higher than 0.164 (i.e. Re/(Ca/Bo) = 0.188), Q
first increases with Vw and then begins to decrease with Vw once the line intersects
G(R̃e, Ca/Bo), shown as cyan in figure 13(b). When Re/(Ca/Bo) is set even higher at
0.243 (green line), Q monotonically increases with Vw, in a qualitatively similar manner as
the GW mixture. Finally, for the fluid with Re/(Ca/Bo) = 0.141 < 0.164 shown in a solid
blue line, Q monotonically decreases with Vw, consistent with the result of SO. Hence, we
have developed a simple criterion for predicting how Q will vary with Vw based on the
fluid properties and the film geometry.
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Figure 13. (a) The phase diagram summarising the magnitude of dQ/dVw with varying Re and Ca/Bo. The
black dot-dashed line refers to dQ/dVw = 0, with the grey contour lines corresponding to constant dQ/dVw.
(b) Three lines whose slopes are given by Re/(Ca/Bo) = 0.141 (blue), 0.188 (cyan) and 0.243 (green) exhibit
distinct behaviours of Q with Vw.

5. Conclusion
In summary, we experimentally and theoretically analyse the dynamics of thin, free
surface flows that are driven by an undulating surface. We experimentally demonstrate
that the net pumping rate Q of the free surface flow behaves in a qualitatively different
way depending on Re, which cannot be explained by the standard lubrication model
of Pandey et al. (2023). To rationalise the experimental observations, we construct a
two-dimensional mathematical model that incorporates the effects of finite inertia by
applying an asymptotic expansion on the velocity and pressure fields. Our theoretical
model correctly captures the behaviour of Q for varying wave speed Vw with no fitting
parameters. The theoretical model also provides the prediction of the free surface profile
for increasing Vw. Specifically, in the viscosity-dominated regime, we find that the free
surface profile gradually conforms to the shape of the undulating surface and yields a
decrease in Q, as observed in the experiments with SO. By contrast, in the regime with
finite inertia, our model predicts that the free surface becomes out of phase with the
bottom surface, which leads to a corresponding increase in Q. This is consistent with
the experiments of the GW mixture.

In addition to rationalising experimental observations, we construct a phase map with
numerical simulations to decouple the effects of inertia (Re) from viscous and hydrostatic
effects (Ca/Bo). The simulation results show a decrease in Q with Ca/Bo for small Re,
but as Re is increased, Q transitions to increasing with Ca/Bo, suggesting the potential
mixed effects of Ca/Bo and Re. To further delve into these mixed effects, we derive the
analytical expressions of Q and the free surface shape h2, by expanding them in the limit
of asymptotically small deformations. The resultant analytical expression of Q yields a
critical value of Ca/Bocr above which Q decreases with Ca/Bo. Specifically, Ca/Bocr
increases with Re, demonstrating that inertia tends to enhance Q and delays the dominance
of the viscous effects over hydrostatics that reduce Q. We also obtain the connection
between the free surface shapes h2 and Q by analysing the analytical expressions of h2.
Finally, by setting dQ/dVw = 0, we demonstrate how the choice of the working fluid
directly influences the dependence of Q on Vw.

Overall, our two-dimensional mathematical model successfully captures the dynamics
of free surface flows with an undulating surface. However, the model incorporates a
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number of major assumptions that could be improved upon in the future studies. For
example, as Re is further increased, our preliminary experiments have demonstrated the
generation of free surface waves that are not dictated by that of the undulating surface.
Understanding this new flow regime will require bringing in the time dependence into our
model, which we plan to develop in the future. In addition, due to the size of the undulator
and corresponding large Bo, our current analysis shows negligible surface tension effects
in determining the pumping rate. We hypothesise that surface tension will come to play
a dominant role in the limit of small Bo, which we are interested in exploring with
a miniaturised undulator. Finally, our future experimental studies may include adding
particles on the undulator-driven free surface and exploring the effects of inertia on their
trajectories (Leal 1980).
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Appendix A. Numerical scheme
We first set an initial guess for the flux q = 0.8 (step (i)) and start the simulation with
Vw = 0.01 m s−1. Since the free surface deformation should be minor for small Vw, we
set a flat free surface (h2 = 1) as the initial guess for h2 and use the MATLAB routine
‘bvp4c’ to compute h2, subject to the periodic boundary conditions (step (ii)). Next, we
check whether or not the total fluid area Ai for the converged solution of h2 is conserved, or
Ai = 1 (step (iii)). If Ai /= 1, we incrementally change the value of q and repeat the process
until Ai = 1 (step (iv)). Note that we reduce q if Ai > 1, whereas we increase q if Ai < 1.
In addition, to ensure that the simulation is stable, we apply the continuation method and
use the previous solution of h2 as the initial guess, as we systematically increase Vw.

For generating the solutions as a function of Ca/Bo and Re (§ 4.2), we follow the same
numerical scheme as described above. Specifically, to simultaneously obtain the flux and
free surface shape for varying Ca/Bo, we first set the value of Re and start the simulation
with Ca/Bo = 0.01 with a flat free surface (h2 = 1) as the initial guess. Then, following
the same steps as above, we obtain h2 and q for systematically increasing Ca/Bo. For
varying Re, we first fix the value of Ca/Bo and start the simulation with Re = 0.01.
However, the initial profile of h2 is not set to be flat for large Ca/Bo. Instead, we replace
h2 = 1 with (h2, h′

2, h′′
2, h′′′

2 , h′′′′
2 , h′′′′′

2 ) = (1, 0.1, 0, 0, 0) and change the last three guesses
with small adjustments (e.g. 0.01), to obtain the converged solution of h2 via ‘bvp4c’ if
necessary.

Appendix B. Asymptotic expansions of q
Expanding q via the asymptotic expansion of h2 yields the following expressions for q0,
q1, q2 and q3:

q0 = −1, (B1)

q1 = −f1 + ( sin(2πx) − 1
3Ca/Bo

f ′
1, (B2)
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q2 = −f2 − 1
Ca/Bo

f1f ′
1 + (

Ca/Bo
sin(2πx)f ′

1 + 1
3Ca/Bo

f ′
2 − R̃e

15Ca/Bo
f ′′
1 , (B3)

q3 = −f3 + π(R̃e
3Ca/Bo

cos(2πx)f ′
1 − 1

Ca/Bo
f ′
1( f 2

1 − f2) + 2(

Ca/Bo
sin(2πx)f1f ′′

1

− (2

Ca/Bo
sin2(2πx)f1

5R̃e
48Ca/Bo

f ′2
1 − 1

Ca/Bo
f1f ′

2 + (

Ca/Bo
sin(2πx)f ′

2 − 1
3Ca/Bo

f ′
3

− R̃e
3Ca/Bo

f1f ′′
1 + R̃e(

3Ca/Bo
sin(2πx)f ′′

1 − 37R̃e(
1680(Ca/Bo)2 f ′

1f ′′
1 − R̃e

15Ca/Bo
f ′′
2

− 1
40Ca/Bo

f ′′′
1 − 17R̃e2

1260Ca/Bo
f ′′′
1 . (B4)

We note that q0 = −1 as a consequence of being in the wave frame.
Next, we simultaneously solve for q and f at each order via the ‘DSolve’ function

in Mathematica, by imposing the periodic boundary conditions and the conservation
of fluid area. Note that

∫ 1
0 (h2 − h1) dx = 1 can be simplified to

∫ 1
0 h2 dx = 1, since

h1 = (a sin(2πx). Also, the first term in the expansion of h2 is 1, which automatically
satisfies the total fluid area. Hence, the conservation of fluid area for the remaining terms
in the expansion becomes

∫ 1
0 fn dx = 0 for n = 1, 2, 3. The resultant analytical solutions

for q1, q2 and q3 correspond to

q1 = 0, (B5)

q2 = 6π2(2

9(Ca/Bo)2 + 4π2 , (B6)

q3 = 9R̃e(45π2(Ca/Bo)3 + 148π4(Ca/Bo))

40(9(Ca/Bo)2 + 4π2)2 . (B7)
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