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Abstract. Wildfire is a critical ecological disturbance in
terrestrial ecosystems. Australia, in particular, has experi-
enced increasingly large and severe wildfires over the past 2
decades, while globally fire risk is expected to increase sig-
nificantly due to projected increases in extreme weather and
drought conditions. Therefore, understanding and predicting
fire severity is critical for evaluating current and future im-
pacts of wildfires on ecosystems. Here, we first introduce a
vegetation-type-specific fire severity classification applied to
satellite imagery, which is further used to predict fire sever-
ity during the fire season (November to March) using an-
tecedent drought conditions, fire weather (i.e. wind speed,
air temperature, and atmospheric humidity), and topogra-
phy. Compared to fire severity maps from the fire extent and
severity mapping (FESM) dataset, we find that fire severity
prediction results using the vegetation-type-specific thresh-
olds show good performance in extreme- and high-severity
classification, with accuracies of 0.64 and 0.76, respectively.
Based on a “leave-one-out” cross-validation experiment, we
demonstrate high accuracy for both the fire severity classifi-
cation and the regression using a suite of performance met-
rics: the determination coefficient (R2), mean absolute er-
ror (MAE), and root-mean-square error (RMSE), which are
0.89, 0.05, and 0.07, respectively. Our results also show that
the fire severity prediction results using the vegetation-type-
specific thresholds could better capture the spatial patterns of
fire severity and have the potential to be applicable for sea-

sonal fire severity forecasts due to the availability of seasonal
forecasts of the predictor variables.

1 Introduction

Fire is recognized as a critical disturbance in ecosystems,
which shapes vegetation across several continents (Archibald
et al., 2013; Gill, 1975; Giglio et al., 2010; Gómez et
al., 2015). In recent decades, wildfires have affected exten-
sive areas in forests and woodlands across the globe, includ-
ing those in Australia where over 10×106 ha were burned in
the 2019–2020 fire season (from November to March; Gal-
lagher et al., 2021). These fires are considered unprecedented
in contemporary Australian fire history (Nolan et al., 2020;
Shine, 2020), and more severe fires are expected in the fu-
ture due to the impacts of climate change on fire weather
and dynamics (Hennessy et al., 2005). Changes in fire condi-
tions are also anticipated globally (Abatzoglou et al., 2019).
Therefore, predicting fire characteristics – such as severity –
will be essential for evaluating the current and future impact
of wildfires on ecosystems worldwide.

Fire severity, defined here as the magnitude of change
in vegetation associated with fire, is routinely used to de-
scribe the impact of wildfires on vegetation, soil, and wildlife
(Lentile et al., 2006; Keeley, 2009). Field-survey- and
remote-sensing-based evaluations of burn severity are com-
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monly used by fire scientists and managers. Field-survey-
based evaluations involve assessing the amount of biomass
consumed (Keeley, 2009) and measuring the changes in veg-
etation height (Wang and Glenn, 2009) or surface fuel con-
sumption (Boby et al., 2010; Hudak et al., 2013). By con-
trast, remotely sensed evaluations of burn severity use satel-
lite imagery to quantify the magnitude of vegetation changes
between pre-fire and post-fire conditions in terms of the
changes in surface reflectance (Holden et al., 2009; Miller
et al., 2009; Soverel et al., 2010; e.g. the difference between
the pre- and post-fire normalized burn ratio, dNBR, Keeley,
2009).

Statistical approaches, which incorporate factors such as
topography, weather, and water availability, provide insight
into possible drivers of fire severity (Morgan et al., 2014).
For instance, Bradstock et al. (2010) investigated the effects
of weather, fuel, and terrain on fire severity in south-eastern
Australia. They found that weather was the predominant in-
fluence on fire severity, while the influence of terrain was
stronger under moderate conditions. Similarly, a study by
Collins et al. (2013) examined the relationships between en-
vironmental variables (i.e. fire weather, topography, and fuel
age) and fire severity in south-eastern Australia and whether
they can be modified by increasing mean annual precipita-
tion. They concluded that the relationships between crown
fire and weather, topography, and fuel age were largely unal-
tered across the precipitation gradient. Collins et al. (2019)
also examined the relative effect of fire weather, drought
severity, and landscape features (i.e. topography, fuel age,
and vegetation type) on the occurrence of fire refugia in
south-eastern Australia. They found that fire weather and
drought severity were the primary drivers of the occurrence
of fire refugia, moderating the effect of landscape attributes.
Furthermore, Clarke et al. (2014) investigated fire severity
control factors including landscape/vegetation or weather,
providing evidence that even though strong weather controls,
fire history, terrain, and vegetation shape the immediate ef-
fect. In addition, Bowman et al. (2021) demonstrated the
overwhelming dominance of fire weather in driving complete
scorch or consumption of forest canopies in natural and plan-
tation forests in the 2019–2020 megafires.

Despite the emerging evidence that statistical modelling
with multiple biophysical and environmental predictor vari-
ables can provide high-accuracy estimates of fire severity,
this technique has not been widely adopted in major ar-
eas of known fire risk. One such region is the south-east
coast of Australia, which is subject to annual fire seasons
(from November to March; Collins et al., 2022) that vary
in extent and severity, and has a high richness of endemic
plant species adapted to particular fire regimes (Gallagher et
al., 2021). Besides, an accurate representation of fire severity
levels is important for managing and mitigating the effects
of wildfires, in terms of both emergency response and long-
term ecological recovery. Existing fire severity classification
schemes rely on the in situ measurements of the composite

burn index (CBI; Key and Benson, 2006; Lutes et al., 2006)
and/or aerial photograph identification (Collins et al., 2018;
Dixon et al., 2022), which are available for certain regions
and for limited vegetation types under certain climate con-
ditions (Eidenshink et al., 2007; Keeley et al., 2009; Tran et
al., 2018). However, obtaining the CBI and interpreting aerial
photographs are labour-intensive and time-consuming, espe-
cially over large areas, while inferring fire severity levels di-
rectly from satellite-derived dNBR can be more efficient for
large-scale applications.

Understanding the current fire situation and predicting fu-
ture fire severity in eastern Australia is critical for evaluat-
ing the potential for increased extinction risk due to recurrent
high-severity fires (Enright et al., 2015) and is important for
supporting ecologically informed fire management (Clarke et
al., 2019). Therefore, the predictor variables involved in the
fire severity model should be accessible for both historical
events and projected future events (e.g. seasonal or climate
events).

In this study, we propose a new vegetation-specific fire
severity classification scheme for predicting fire severity and
demonstrate its performance across the Australian state of
New South Wales (NSW). Using drought conditions, vegeta-
tion type, and fire weather conditions during the fire season
as input, our modelling approach applies the random forest
(RF) classification method to predict the dNBR – an indicator
of burn severity derived from Landsat imagery. We demon-
strate model performance based on 20 years of wildfire data
from NSW through a leave-1-year-out cross-validation ex-
periment.

2 Study area

New South Wales (NSW) in south-eastern Australia (Fig. 1)
occupies a subtropical–temperate climate region with rela-
tively mild weather and distinctive seasons (e.g. hot sum-
mers and cold winters; Speer et al., 2009). Mean annual
and extreme temperatures are highest in the north-west of
the state, whereas average maximum temperatures in coastal
areas range from 26 to 16 °C, while the average minimum
temperature falls between 19 and 7 °C. There is a strong pre-
cipitation gradient from east to west across the state, with
annual precipitation on the eastern coast ranging between
600 and 1200 mm yr−1, decreasing to generally less than
180 mm yr−1 in the north-west of the state. Vegetation across
the study region is predominantly wet and dry sclerophyll
forests, although this is interspersed with areas of rainforest,
woodlands, and coastal heath (Keith, 2004).
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Figure 1. Locations of study wildfires over New South Wales (NSW), Australia. The burnt area is from the NSW National Parks and Wildlife
Service (NPWS) Fire History – Wildfires and Prescribed Burns dataset.

3 Data and methods

3.1 Model input and output

3.1.1 Fire extent

The spatial extent of annual fires between 2000 and
2019 is accessed from the NSW National Parks and
Wildlife Service (NPWS) Fire History – Wildfires and
Prescribed Burns dataset (https://datasets.seed.nsw.gov.au/
dataset/1d05e145-80cb-4275-af9b-327a1536798d, last ac-
cess: 8 June 2022), produced by the Department of Plan-
ning, Industry, and Environment. The NPWS Fire History
is a spatial polygon layer, with each polygon recording the
boundary, start date, end date, and burnt area. We use the
NPWS polygons whose burnt areas are greater than 1 km2 as
the mask to include only the fire-impacted areas. While this
dataset is unlikely to be a complete record of all fire events,
it represents the largest single repository of fire extent data in
NSW.

3.1.2 Fire severity

As a widely used fire severity index, the dNBR is calculated
by subtracting the post-fire normalized burn ratio (NBR)
raster from the pre-fire NBR raster as in Eq. (1; Keeley,
2009):

dNBR= prefireNBR− postfireNBR. (1)

The formula of NBR is similar to the normalized difference
vegetation index (NDVI), except that it uses near-infrared
(NIR) and shortwave infrared (SWIR) bands, as written in
Eq. (2; García and Caselles, 1991; Key and Benson, 2006).
NBR can be computed by the Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) sensors on using
band 7 as the shortwave infrared (SWIR) and band 4 from
Landsat 4-7 and band 5 from Landsat 8 as the near-infrared
(NIR) reflectances. While in Sentinel-2 data, SWIR and NIR
are represented by band 8 and band 12, respectively.

NBR=
NIR−SWIR
NIR+SWIR

(2)

We calculate the dNBR within the fire boundaries from Land-
sat and Sentinel archive imagery, using the start date and
end date to determine the pre-fire and post-fire dates. In this
study, the pre-fire NBR (preNBR) is used as a proxy for the
initial condition of vegetation. The calculation of a dNBR-
image is described as follows: (1) determine an individual
fire from the NPWS Fire History; (2) collect the most re-
cent Landsat images based on the tags demarcating the start
and end times of each individual fire; (3) apply a cloud-
and snow-masking algorithm to remove snow, clouds, and
their shadows from all imagery based on each sensor’s pixel
quality assessment band; (4) use the auxiliary satellite im-
ages (e.g. Sentinel-2) to fill in the blank pixels in the cloud-
free images from step (3) to obtain the pre- and post-NBR
composites; and (5) subtract pre- and post-NBR images to
create a dNBR composite with the smallest-possible cloud
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and shadow extent. The dNBR typically ranges from −2 to
+2, with high positive values indicating severe burn damage
where the vegetation has been completely consumed. Values
around zero suggest either unburnt areas or areas where the
fire had a very low impact. Negative values can indicate an
increase in vegetation, which might be due to vegetation re-
covery over time or errors in the analysis.

3.1.3 Vegetation

Vegetation composition and structure are expected to in-
fluence fire propagation and severity (Collins et al., 2007),
and the vegetation type is also used as a proxy for veg-
etation structure (Hammill et al., 2006). The dominant
vegetation over NSW is wet and dry sclerophyll forests
(Keith, 2004). Wet sclerophyll forests can be divided
into two subgroups (the shrubby sub-formation and the
grassy sub-formation), which have tall canopies dominated
by Eucalyptus and a monophyllous understorey (https:
//www.environment.nsw.gov.au/threatenedSpeciesApp/
VegFormation.aspx?formationName=Wet+sclerophyll+
forests+_(grassy+sub-formation), last access: 6 February
2023). Two sub-formations of dry sclerophyll forests also
occur: shrub/grass and shrubby. This study focuses on
burn severity for the dominant sclerophyll forests (Fig. 1).
We intersect the vegetation map with NPWS polygons to
identify the areas where sclerophyll forests have previously
burned.

Hammill, K. A. and Bradstock, R. A.: Remote sensing
of fire severity in the Blue Mountains: Influence of vegeta-
tion type and inferring fire intensity, Int. J. Wildland Fire, 15,
213–226, https://doi.org/10.1071/WF05051, 2006.

3.1.4 Topography

Prior studies report that topography strongly controls burn
severity by influencing fire behaviour, fuel moisture, and
water balances (Fang et al., 2018; Harris and Taylor,
2015; Holden et al., 2009). Therefore, we include three
topographic measurements from the Shuttle Radar Topog-
raphy Mission (SRTM, https://www.jpl.nasa.gov/missions/
shuttle-radar-topography-mission-srtm, last access: 4 Febru-
ary 2022): digital elevation models (DEM), slope (slope),
and topographic position index (TPI). TPI helps in identi-
fying landform features such as ridges, valleys, slopes, and
plateaus (Weiss, 2001). Positive TPI values indicate locations
that are higher than the average of their surroundings (e.g.
hilltops or ridges), while negative TPI values indicate loca-
tions that are lower than their surroundings (e.g. valleys or
depressions). Values close to zero may represent flat areas or
slopes.

3.1.5 Weather

In addition to fuel and terrain, weather is another impor-
tant factor in wildfires. The McArthur Forest Fire Danger

Index (FFDI; McArthur, 1967) is an empirical relationship
comprising the short-term meteorological conditions and the
long-term drought factor (Dowdy et al., 2009). The FFDI is
currently used operationally by the Australian Bureau of Me-
teorology (BoM) to produce fire weather warnings for au-
thorities and is defined as

FFDI= 2× e(−0.45+0.897lnDF−0.0345RH+0.038T+0.0234V ), (3)

where DF is the drought factor and RH, T , and
V represent the relative humidity, surface air temper-
ature, and wind velocity, respectively. In this study,
we extract daily temperature, relative humidity, and
wind speed data from the ERA5-Land global dataset
over the burnt areas (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-land?tab=form, last access:
24 February 2022).

The DF is estimated using the Keetch–Byram drought in-
dex (KBDI; Keetch and Byram, 1968). KBDI is a continuous
reference scale describing the dryness of the soil and duff
layers. The index increases for each day without rain and de-
creases when it rains. KBDI is used worldwide for drought
monitoring for national weather forecasts and wildfire pre-
vention. KBDI over burnt areas can be accessed in Takeuchi
et al. (2015). The daily FFDI and KBDI values for the day
prior to the start of the wildfires are used as the predictors
of burn severity, owing to the strong correlation in time be-
tween extreme values of the FFDI and the start of the wild-
fires (Dowdy et al., 2009). Using the most potentially ex-
treme FFDI that indicates extreme weather conditions in the
period leading up to a wildfire could address the impact of
weather on wildfire risk.

3.2 Method

We propose a new and alternative way to determine the op-
timal thresholds for fire severity classification for different
vegetation types. The dNBR of all burnt pixels for each veg-
etation type are collected and a set of dNBR values are gen-
erated, with the quantile from 5 % to 35 % representing the
threshold for low-severity classification; the quantile from
35 % to 65 % representing the threshold for moderate sever-
ity classification, and the quantile from 65 % to 95 % repre-
senting the threshold for high-severity classification. For ex-
ample, a classified burn severity sample can be obtained us-
ing the thresholds for high, moderate, and low severity at the
85th quantile, 55th quantile and 25th quantile, respectively.
Secondly, a fire severity prediction model is developed for
each severity category based on the fire severity classifica-
tion results, to provide the numeric prediction of dNBR.

3.2.1 Fire severity classification by RF

Random forest is developed as an extension of the classifi-
cation and regression tree (CART) to improve the accuracy
and stability of the CART model (Breiman, 2001). The steps
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of the RF algorithm are briefly summarized as (i) randomly
generate ntree bootstrap samples from the original data. The
elements not selected are referred to as out-of-bag (OOB)
samples. (ii) For each split, randomly select m_try predic-
tors from the original predictors and choose the best predic-
tor among the m_try predictors to partition the data. (iii) Pre-
dict new data (OOB elements) by averaging predictions of
the ntree trees and (iv) use the OOB samples to estimate the
prediction error. The RF can also provide a measurement of
variable importance. One of the approaches is to look at the
increase in the OOB estimate error when the specific predic-
tor variable is randomly permuted and other predictors are
constant. The more the error increases, the more important
the variable is. These variable importance values are used to
rank the predictors in terms of their relative contribution to
the model. The RF model was generated using the package
randomforest in R (https://cran.r-project.org/web/packages/
randomForest/, last access: 25 February 2022).

3.2.2 Fire severity prediction by XGBoost

For the regression model, we implement the extreme gradi-
ent boosting (XGBoost) algorithm, one of the most popular
supervised machine learning algorithms proposed by Chen
et al. (2015). XGBoost employs a gradient boosting frame-
work that iteratively trains a sequence of weak prediction
models and combines them into a strong model. In addition
to gradient boosting, XGBoost implements several advanced
features including regularization techniques to prevent over-
fitting, parallel processing to speed up training, and built-in
support for missing data (Chen and Guestrin, 2016). In the
XGBoost algorithm, complex interactions are modelled, and
other complexities such as missing values in the predictors
are managed almost without any loss of information. Selec-
tion of features is performed by a combination of parameters
(e.g. number of iterations and learning rate) and the unique
combinations of each attribute in the training dataset. The
XGBoost model is generated using the package xgboost in
R (https://cran.r-project.org/web/packages/xgboost/, last ac-
cess: 27 February 2024).

3.2.3 Calibration and validation

The fire severity classification maps from the fire extent
and severity mapping dataset (FESM, https://datasets.seed.
nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm,
last access: 27 February 2024) in the period from 2016 to
2019 are used as the independent source to validate the fire
severity classification results based on the proposed method.
To evaluate the model’s performance, we also use leave-one-
group-out for training and validation. The fire samples from
2000 to 2019 are first divided into 20 subsets depending
on the year the fire occurred, and this holdout method is
repeated 20 times. Each subset represents the samples from
the wildfire with the largest burnt area in the corresponding

year. Second, at each time one of the 20 subsets is used as
the testing set, and the remaining 19 subsets are put together
to form the training set. Third, the average error across all
20 trials is computed. The advantage of this cross-validation
method is that it gives us an indication of how well the
model would do when making new predictions for data it
has not already seen.

For performance evaluation of multiclass event classifica-
tion, accuracy is expressed as the proportion of correctly pre-
dicted events over all predicted events, which is calculated as
Eq. (4):

accuracy=
number of correct predictions

number of all predictions
. (4)

Precision is expressed as the proportion of events correctly
predicted as label X (low, moderate, or high) over all events
predicted as label X (Eq. 5).

precision=
true positive

true positive+ false positive
, (5)

in which true positive represents the situation where both the
observation and prediction are labelled X, and false positive
represents the situation where the observation is not labelled
X, but the prediction is labelled X.

Recall is calculated as

recall=
true positive

true positive+ false negative
, (6)

in which false negative represents the situation where the ob-
servation is labelled X but the prediction is not labelled X.

Combining the metrics of precision and recall, the F1 score
is the harmonic mean of precision and recall. The F1 score
gives equal weight to precision and recall. A maximized F1
score can create a balanced classification model and is calcu-
lated as follows

F1 score= 2 ·
precision · recall

precision+ recall
. (7)

The coefficient of determination (R2) is used to measure how
well the prediction agrees with the actual values. The formula
of R2 is described as

R2
=

1
n

∑n

i=1

(
oi −

∑n
i=1oi

n

)(
pi −

∑n
i=1pi

n

)2

oipi

, (8)

where oi and pi represent the actual and predicted values for
sample i and n is the total number of samples. A higher R2

indicates a better fit of the model predictions to the actual
values, with the best value being 1.

The mean absolute error (MAE) is used to measure the
average magnitude of the errors in a model’s predictions. A
lower MAE indicates better model accuracy.

MAE=
∑n

i=1|pi − oi |

n
(9)
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Figure 2. Annual burnt area [km2] across New South Wales in
south-eastern Australia.

The root-mean-square error (RMSE) is used to quantify the
random component of the error. Lower RMSE indicates bet-
ter model performance.

RMSE=

√∑n
i=1(pi − oi)

2

n
(10)

4 Results

4.1 Fire severity of burnt vegetation

Over the past 20 years, wildfire history databases man-
aged by government agencies indicate that approximately
112 590 km2 of land has been recorded as affected by fires in
NSW, of which almost 53 830 km2 burned during the 2019–
2020 megafires (Fig. 2). This dataset indicates that the annual
burnt area is typically below 5000 km2, but in exceptional
years such as 2002 and 2003, the area affected can reach
more than 10 000 km2. The area affected in the 2019–2020
fires is approximately 10 times larger than that in other years
from 2004 to 2018.

The fractions of vegetation types in the burnt area are
shown in Fig. 3a. Dry sclerophyll forests (shrubby sub-
formation) accounted for the largest proportion of the burnt
area (32.1 %), followed by dry sclerophyll forests (shrub/-
grass sub-formation) that accounted for 16 %. Wet sclero-
phyll forests (grassy sub-formation) occupy 14.2 % of the
burnt area, while for wet sclerophyll forests (shrubby sub-
formation), the proportion is 11 %. Specifically, the cleared
area accounted for 11.3 % of the burnt area, approximately
equal to that of the wet sclerophyll forests (shrubby sub-
formation). Other vegetation types largely affected by the
wildfires are grassy woodlands, rainforest and heathlands,
the burned proportions of which are 6.7 %, 2.5 %, and 2 %,
respectively. The distribution of fire severity indicated by
dNBR for each vegetation type is displayed as Fig. 3b. These
boxplots in Fig. 3b show that the fire severity varies signifi-
cantly with vegetation type, demonstrating that vegetation-

specific thresholds should be applied in fire severity clas-
sification. For example, the fire severity of cleared areas is
overall the smallest while the fire severity of heathland is the
largest overall. The fire severity varies even for the major
vegetation types with different subgroups; for instance, the
fire severity of dry sclerophyll forests with the shrubby sub-
formation is larger than the fire severity of dry sclerophyll
forests with the shrub/grass sub-formation.

4.2 Threshold determination for fire severity
classification

Given the variability shown in Fig. 3b, we propose an alter-
native way to determine the optimal thresholds in fire sever-
ity classification for different vegetation types. To determine
these thresholds, the dNBR of all burnt pixels for the vege-
tation type were collected and a set of dNBR values at the
quantiles from 0.05 to 0.95 are used as the candidates for
thresholds for the fire severity classification. The classified
samples using the threshold of dNBR at the quantiles are im-
ported as the training set in RF models, and the OOB estimate
of error rate is recorded for the training samples. Figure 4a–d
shows that variations in the OOB estimate of the error rate
changes with thresholds of dNBR at the quantiles varying
from 5 % to 35 % (low-severity threshold) or from 35 % to
65 % (moderate severity threshold) when the high-severity
threshold is set to the dNBR values at the 65th, 75th, 85th,
and 95th quantiles. The optimal thresholds are determined
when the lowest OOB estimate of error rate is found. For ex-
ample, for dry sclerophyll forests (shrubby sub-formation),
the thresholds for high-, moderate-, and low-severity classi-
fication are 0.55 (85th quantile), 0.38 (55th), and 0.20 (25th),
respectively. It is important to be aware that the classification
step is merely used to improve the consecutive regression
accuracy rather than improve the final severity categoriza-
tion result. The choice of threshold in this step therefore will
not affect severity categorization. The categorization will be
solely based on predicted severity value, using user-defined
thresholds.

The thresholds of dNBR for fire severity classification for
different vegetation types are determined by the proposed
method, and the results are presented in Table 1. It is shown
that the thresholds vary significantly with vegetation type.
For example, for rainforests when dNBR of the burnt area
is around 0.20, this area should be classified as high sever-
ity. However, the burnt area with the same dNBR (0.20)
would be classified as moderate severity when wildfire burns
over other vegetation types. This difference is also found
in the major vegetation types within different subgroups.
A burnt area with a dNBR around 0.53 is classified as ex-
tremely high severity when fire burns over wet sclerophyll
forests (grassy sub-formation), while this burnt area is clas-
sified as high severity when fire burns over wet sclerophyll
forests (shrubby sub-formation). The differences in classi-
fication thresholds are more significant between dry scle-
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Figure 3. (a) The proportion of the burnt area and (b) the distribution of fire severity grouped by vegetation type over NSW from 2000 to
2019.

Figure 4. Variations in OOB estimates of error rate changes with thresholds of dNBR at the quantiles varying from 5 % to 35 % (low-severity
threshold) and 35 % to 65 % (moderate-severity threshold) when the high-severity threshold is set to the dNBR values at the (a) 65th, (b) 75th,
(c) 85th, and (d) 95th quantiles.
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Figure 5. Relative importance of variables in RF models based
on samples classified by (a) vegetation-specific thresholds and
(b) fixed thresholds.

rophyll forests with the shrub/grass sub-formation and with
the shrubby sub-formation. The thresholds for high-severity
classification are 0.44 and 0.55 for burnt area over dry sclero-
phyll forests (shrub/grass sub-formation) and over dry scle-
rophyll forests (shrubby sub-formation), respectively. These
results indicate that using the vegetation-specific thresholds
results in more reasonable fire severity classification results,
while a lot of misclassifications are found when applying
fixed thresholds in fire severity classification without consid-
ering the variations in vegetation cover.

4.3 Fire severity prediction results

The performance of vegetation-specific thresholds and the
importance of vegetation type are validated by cross-
validation in the RF model. Figure 5a and b shows the rel-
ative importance of variables in the RF based on samples
classified by vegetation-specific thresholds and fixed thresh-
olds, respectively. The error bar represents the standard devi-
ation (SD) of relative importance in RF models in the cross-
validation experiments. PreNBR is the most influential vari-
able, with relative importance around 28 % and SD around
7 %. FFDI also plays an important role in the model, with
relative importance and SD of 21 % and 6 %. KBDI shows
close relative importance to that of FFDI, the values of mean
relative importance and SD are 19 % and 5 %. For vegetation
type, the relative importance (13 %) is higher than that of the
topographic variables when the vegetation-specific thresh-
olds are applied. The SD of vegetation type is the largest
(9 %), owing to the differences in vegetation diversity in the
training samples.

The confusion matrix of the fire severity classification re-
sults is shown in Table 2. More samples are classified as
extremely high severity when applying vegetation-specific
thresholds than when using fixed thresholds. Similarly, more
samples are classified as low severity while implementing
fixed thresholds than when using vegetation-specific thresh-
olds. This indicates that using fixed thresholds without con-
sidering the vegetation type tends to underestimate the fire
severity levels. For the performance of fire severity predic-

tion, most events of extremely high severity are correctly
identified by the RF model trained on samples classified
by vegetation-specific thresholds, while more misclassified
extremely high severity and high-severity events are pre-
dicted by the RF model trained on samples classified by fixed
thresholds.

The overall classification accuracies calculated by Eq. (4)
are 0.75 and 0.69 for RF models trained on samples classified
by vegetation-specific and on fixed thresholds, respectively.
Figure 6a–c shows the precision, recall, and F1 score of event
severity classification results for each class label calculated
by Eqs. (5)–(7). Accuracy, precision, and recall results and
an F1 score close to 1 indicate accurate classification results.
For the classification metrics of each class label, the high-
severity event class exhibits the best precision (0.85) relative
to the moderate- (0.76) and extremely high severity event
classes (0.68), while the recall and F1 score for the high-
severity event class are 0.64 and 0.73. The extremely high
severity event class exhibits the best recall (0.89) relative to
the other two classes, and the precision and F1 score are 0.68
and 0.77. The performance of fire severity classification is
worse for the RF model trained on samples classified by the
fixed thresholds, with lower precision, recall, and F1 score.

Figure 7 displays the fire severity maps for the 2016, 2017,
2018, and 2019 wildfires in NSW from FESM, along with
fire severity predictions based on vegetation-specific and
fixed thresholds. For the wildfire in 2016, predictions based
on vegetation-specific thresholds show similar spatial pat-
terns of fire severity to those from FESM, while predictions
based on fixed thresholds significantly underestimate the fire
severity in the high and extreme fire severity areas of the
FESM. Similarly for the wildfire in 2018, predictions based
on fixed thresholds significantly underestimate high and ex-
treme severity compared to the FESM map, while predic-
tions based on vegetation-specific thresholds slightly under-
estimate extreme severity. For the wildfire in 2017, both the
FESM and predictions display similar spatial distributions of
the fire severity level, with predictions based on fixed thresh-
olds presenting lower severity compared to the FESM map.
For the wildfire in 2019, however, predictions based on fixed
thresholds tend to overestimate the fire severity, categorizing
it as extreme in regions that were found to be high severity
on the FESM map, while predictions based on vegetation-
specific thresholds agreed better with the FESM map.

Table 3 shows the confusion matrix for fire severity classi-
fication between FESM and predictions based on vegetation-
specific and fixed thresholds. It is noted that predictions
based on vegetation-specific thresholds are able to better
classify extreme and high severity, with accuracies of 0.64
and 0.76, while the classification accuracies for extreme and
high severity based on fixed thresholds are 0.21 and 0.39.
Predictions based on vegetation-specific thresholds are also
able to better classify moderate severity, with a value of
0.62 compared to those based on fixed thresholds that had a
value of 0.47. Predictions based on both vegetation-specific
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Table 1. Thresholds of dNBR for fire severity classification by vegetation type.

Vegetation Low Moderate High Extreme

Rainforests < 0.05 (25 %) 0.05–0.18 (25 %–45 %) 0.18–0.41 (45 %–75 %) > 0.41 (75 %)
Wet sclerophyll forests (shrubby sub-formation) < 0.15 (35 %) 0.15–0.34 (35 %–55 %) 0.34–0.56 (55 %–85 %) > 0.56 (85 %)
Wet sclerophyll forests (grassy sub-formation) < 0.17 (35 %) 0.17–0.34 (35 %–55 %) 0.34–0.52 (55 %–85 %) > 0.52 (85 %)
Grassy woodlands < 0.15 (35 %) 0.15–0.36 (35 %–55 %) 0.36–0.55 (55 %–85 %) > 0.55 (85 %)
Dry sclerophyll forests (shrub/grass sub-formation) < 0.12 (15 %) 0.12–0.26 (15 %–45 %) 0.26–0.44 (45 %–75 %) > 0.44 (75 %)
Dry sclerophyll forests (shrubby sub-formation) < 0.20 (25 %) 0.20–0.38 (25 %–55 %) 0.38–0.55 (55 %–85 %) > 0.55 (85 %)
Heathlands < 0.26 (35 %) 0.26–0.40 (35 %–55 %) 0.40–0.57 (55 %–75 %) > 0.57 (75 %)

Table 2. Confusion matrix of prediction results based on the RF model trained by samples classified by vegetation-specific and fixed thresh-
olds.

Vegetation-specific Fixed

Extreme High Moderate Low Extreme High Moderate Low

Extreme 52 680 22 782 813 9 36 573 24 573 1755 30
High 4749 94 899 17 265 171 3930 64 740 21 498 471
Moderate 501 20 487 103 536 3948 852 19 794 94 857 8739
Low 147 1422 22 239 36 897 357 2754 31 299 70 347

and fixed thresholds show poor performance in classifying
low severity, with accuracies of 0.24 and 0.26, respectively.
The overall classification accuracy for predictions based on
vegetation-specific thresholds is 0.57, which is better than
predictions based on fixed specific thresholds (with accuracy
of 0.36).

To evaluate the model’s performance in fire severity
prediction, we apply the leave-1-year-out cross-validation
method. We validate the fire severity predictions against
the observed burn severity derived from Landsat images
and compare the predictions based on the RF model with
(and without) the severity classification method. Figure 8a–
c displays the scatterplots of fire severity prediction ver-
sus fire severity observations based on the RF model with-
out severity classification, with severity classification us-
ing the fixed threshold, and with classification using the
vegetation-specific threshold. Arguably, the predictions with-
out severity classifications show a strong underestimation
of high-fire-severity events and overestimation of low-burn-
severity events, with an R2 value of 0.62, RMSE of 0.14 and
MAE of 0.11. The distributions of predictions with sever-
ity classifications using the fixed threshold do not agree well
with observations, although they show higher R2 (0.79) and
lower RMSE (0.11) and MAE (0.08) values. Predictions with
severity classifications using the vegetation-specific thresh-
old exhibit better fire severity prediction results for high-
, moderate-, and low-severity events, with improved R2,
RMSE, and MAE, which are 0.89, 0.07, and 0.05, respec-
tively.

We also evaluate the model’s ability to capture the fire
severity dynamics and magnitude in terms of mean fire sever-
ity for the selected wildfires. Figure 9a displays the dynam-

ics of predicted fire severity based on the RF model with and
without severity classification, while Fig. 9b–d shows the dy-
namics of associated performance of R2, RMSE, and MAE.
The predictions without severity classifications are unable to
capture the dynamics of mean fire severity, having the low-
est R2 and highest RMSE and MAE values. The dynamics of
the predicted fire severity with severity classification have a
better correlation with the observed ones compared to those
without severity classification, especially the results with
severity classifications using the vegetation-specific thresh-
old, which exhibit the best performance in predicting fire
severity magnitude, with the largest R2 and lowest RMSE
and MAE values. These results indicate that severity classi-
fication is an important process to improve the performance
of fire severity prediction models.

Figure 10 depicts a summary plot of estimated Shapley ad-
ditive explanation (SHAP) values coloured according to the
feature values, ranked from top to bottom by their impor-
tance. It is shown that preNBR is the most important fea-
ture in the model, followed by FFDI. KBDI is also crucial
in the model. The topographic factors also contribute to the
model. We found that having a high preNBR is associated
with high and positive model output values, indicating that
the larger preNBR is the prerequisite for more severe wild-
fire. Similar to the effect of preNBR on the model output, a
high FFDI is always associated with high and positive SHAP
values, which means that more-severe fire weather could lead
to more destructive wildfires. Although some high KBDIs
are found to be associated with negative SHAP values, the
KBDI still shows a strong positive effect on the model out-
put, reflecting the fact that the dry conditions could favour
fire behaviour. Regarding the topography, large slopes and
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Figure 6. Results of precision for predictions based on (a) vegetation-specific thresholds and (b) fixed thresholds. The results of recall
for predictions based on (c) vegetation-specific thresholds and (d) fixed thresholds. The results of the F1 score for predictions based on
(e) vegetation-specific thresholds and (f) fixed thresholds.

Table 3. Confusion matrix for fire severity classification between FESM and predictions based on vegetation-specific and fixed thresholds.

Vegetation-specific Fixed

Extreme High Moderate Low Extreme High Moderate Low

Extreme 4345 2378 6 3 1448 2822 2027 435
High 1490 6947 605 1 1430 3561 3358 694
Moderate 3 5702 9338 5 998 4633 7084 2333
Low 0 172 7125 2372 161 1722 5264 2522
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Figure 7. Fire severity classification maps from FESM and predictions based on vegetation-specific and fixed thresholds for wildfires from
2016 to 2019 in NSW.

TPIs tend to have positive SHAP values, meaning the more
severe fires tend to occur in steeper and higher positions.

Figure 11 displays the partial-dependence plot (PDP) for
each feature in the model. From Fig. 11, it can be seen that
preNBR has a strong positive association with dNBR, imply-
ing that dNBR increases rapidly with preNBR. FFDI shows
a non-monotonic relationship with dNBR, with a decreasing
trend observed when it is less than 30, a steadily increasing
trend between 30 to 65, and a significant increasing trend af-
ter it exceeds 65, suggesting that the fire weather dependence
is more complex. The weak correlation between KBDI and
dNBR within the range of KBDI lower than 400 indicates
that KBDI has nearly no influence when it is below 400.
The positive correlation between KBDI and dNBR within the
range of 400 to 600 suggests that dry conditions would inten-
sify the fire severity. However, a declining trend in KBDI is
found when it exceeds 600, meaning that the impact of KBDI
on dNBR becomes weaker. Regarding the slope, a negative
association with dNBR is observed when it is below 3, while
a positive relationship is found when it exceeds 3. TPI shows
an overall positive association with dNBR. These findings

demonstrate that fire severity tends to be higher on steeper
slopes and on hilltops.

5 Discussion

This study shows that the proposed predictive technique is
capable of providing robust fire severity prediction informa-
tion, which can be used for forecasting seasonal fire severity
and, subsequently, the impacts on biodiversity and ecosys-
tems under projected future climate conditions.

We find that the RF is effective in classifying fire events
into different levels of fire severity, and XGBoost is a useful
method to characterize the relationships between fire severity
and explanatory variables (e.g. preNBR, FFDI, KBDI, slope,
and TPI). Fire severity is a complex function of explanatory
variable gradients, and these relationships may vary in dif-
ferent vegetation type and severity levels. PreNBR, an ap-
proximation of the pre-fire vegetation conditions, plays an
important role in classification and prediction, as the change
in NBR pre- and post-fire, i.e. dNBR, will be dependent on
both the condition of the vegetation before the fire and the
degree of change to vegetation after the fire. PreNBR, in-
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Figure 8. Scatterplots of fire severity prediction versus observations based on the XGBoost model (a) without severity classification, (b) with
severity classification using the fixed threshold, and (c) with severity classification using the vegetation-specific threshold.

dicating the pre-fire vegetation condition, might be related
to the pre-fire drought. For example, drought reduces the
water content of foliage (Choat et al., 2018), thus reducing
preNBR, so the maximum absolute change in NBR (dNBR)
possible might be smaller during a drought year than a non-
drought year. FFDI was found to be important in fire severity
classification and prediction. Meteorological conditions were
proven to be the most influential predictors in determining
the magnitude of fire severity (Clarke et al., 2014; Bowman
et al., 2021). FFDI is the index of fire weather severity during
the fire season, thus it is workable in determining the poten-
tial burn severity level. KBDI is another important variable in
fire severity classification. It is known that drought can cre-
ate conditions that favour severe fires (Abram et al., 2021)
and that the combined effects of fire and drought can con-

tribute to plant population decline (Gallagher et al., 2022;
Nolan et al., 2021) and ecosystem transformation (Keith et
al., 2022). Severe drought conditions also directly contribute
to forest flammability (Nolan et al., 2020). More importantly,
the frequency, intensity, and duration of drought conditions
are projected to shift under future climate changes (Ukkola
et al., 2020). These changes in drought regimes will likely be
associated with increases in the size, frequency, and sever-
ity of fires (Abram et al., 2021). TPI and slope, as important
topographic factors, also have considerable influence on low
fire severity. For example, Bradstock et al. (2010) found that
burn severity is lower in valleys, probably due to the effects
of wind protection and higher fuel moisture in moderating
fire behaviour. Barker et al. (2018) found that the probabil-
ity of low severity increased with slope. In this study, we
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Figure 9. Time series of (a) mean fire severity, (b) R2, (c) MAE, and (d) RMSE from 2000 to 2019 based on XGBoost models without
severity classification and with severity classification using the fixed and vegetation-specific thresholds.

Figure 10. The SHAP values for variables predicting fire severity based on the XGBoost model.

find that fire severity tends to be higher on steeper slopes
and with higher positions; this might be because steep slopes
can intensify fire behaviour by creating a chimney effect that
draws in air and accelerates the fire (Jolly et al., 2015). Be-
sides, higher elevations generally have lower air pressure and
reduced humidity, which help fire burn more intensely (Abat-
zoglou and Kolden, 2011; Holden et al., 2018). Additionally,
vegetation on steep slopes can be thicker and more conti-

nuous, providing more fuel for the fire (Collins et al., 2009;
Pausas and Fernández-Muñoz, 2012).

One limitation of this study is that it does not consider the
vegetation vertical-structure parameters in the fire severity
model, which have been shown to influence fire behaviour.
Agee (1996) showed that manipulating forest structure can
help to reduce the severity of fire events, e.g. by reducing
crown bulk density, the high-severity fire would be effec-
tively limited. Fang et al. (2015) evaluated the influences and
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Figure 11. The variation in SHAP values as variables change.

relative importance of fire weather, topography, and vege-
tation structure on fire size and fire severity, which showed
that fire weather was the dominant driving factor of fire size,
while vegetation structure exerted a stronger influence on
fire severity. The study by Fernández-Guisuraga et al. (2021)
indicated that severe ecosystem damage was mainly driven
by vegetation structure rather than topography; for example,
high canopy density was the main driver of high burn sever-
ity. Detailed and accurate vegetation structure data require
extensive field inventories and thus are mostly regionally re-
stricted. With the development of Global Ecosystem Dynam-
ics Investigation (GEDI) project, it is possible to derive reli-
able forest vertical-structure parameters from satellite images
with relatively high spatial resolution and global coverage
(Dubayah et al., 2020). An extension of this study should in-
corporate data from GEDI into the fire severity model, which
would represent an advancement in understanding and pre-
dicting the impact of wildfires. Besides, topographic data
derived from SRTM present its limits, especially in vege-
tated areas and terrain with pronounced slopes or certain as-
pects (Gorokhovich and Voustianiouk, 2006; Shortridge and
Messina, 2011). The advances in DEM technology, as ev-
idenced by the improvements in the SRTM data such as
SRTM-derived 1 s and 3 s digital elevation models version
1.0 for Australia, and the introduction of global COPDEM30
and TanDEM-X data (Hawker et al., 2022) offer opportu-
nities for refining fire–topography relationship analyses and
potentially providing more precise fire severity prediction re-
sults. The introduction of vegetation-specific thresholds has
proven to be beneficial for fire severity classification. The

range of dNBR varies significantly with vegetation types,
and thus applying a fixed threshold in dNBR would lead to
a large number of misclassifications in fire severity levels.
This kind of misclassification error is mitigated by the use
of vegetation-specific thresholds in dNBR. The vegetation
type also plays an important role in the RF model. The rel-
ative influence of vegetation type is larger than that of the
topographic factors, while the standard deviation in vegeta-
tion type is the largest in the meantime. The relative influ-
ence of vegetation type and the deviation change with the
number of vegetation types and its fractions in the fire event.
For example, five vegetation types were affected in the 2002
wildfire, and the fractions of vegetation types are dry scle-
rophyll forests (shrubby sub-formation, 30 %), grassy wood-
lands (31 %), wet sclerophyll forests (grassy sub-formation,
23 %), dry sclerophyll forests (shrub/grass sub-formation,
14 %) and grasslands (2 %). In the 2019 wildfire, seven
vegetation types were affected, but dry sclerophyll forests
(shrubby sub-formation) account for 92 % of the burnt area.
The relative influence of vegetation type in the 2002 wild-
fire is around 10 %, while it is only 5 % in the 2019 wildfire.
This could also explain why no significant differences are
found between fire severity maps using vegetation-specific
thresholds and fixed thresholds in the 2019 wildfire. Since
more than 90 % of the burnt area in the 2019 wildfire is cov-
ered by dry sclerophyll forests (shrubby sub-formation) and
the fixed thresholds are adopted from the thresholds of dry
sclerophyll forests (shrubby sub-formation), the fire sever-
ity classification for the 2019 wildfire is almost equal to the
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fire severity classification for dry sclerophyll forests (shrubby
sub-formation).

This study develops a predictive technique that is capa-
ble of providing robust fire severity classification and predic-
tion information for historical events, which also has the po-
tential to forecast seasonal fire severity. The input variables
for the model could be obtained from other forecast mod-
els: fire-weather-related variables can be extracted from the
Weather Research and Forecasting (WRF) model. The NBR
images are derived from Landsat 5, 7, and 8 in this study,
while it is also applicable to other image sources based on
the reflectance information from NIR and SWIR, such as
the newly launched Landsat 9 and Sentinel-2 (Mallinis et
al., 2018; Howe et al., 2022). Owing to the seasonality char-
acteristics of preNBR, we can infer the preNBR in the fire
season based on the historical preNBR time series derived
from the image sources. The vegetation type and topographic
factors are static variables, while the variables for calculating
FFDI and KBDI, e.g. wind speed, relative humidity, precipi-
tation, and air temperature, are available from WRF outputs.
A quick assessment of fire severity of wildfires is accessible
based on the proposed predictive technique, once the burnt
area has been derived from the burnt area prediction models
(Alkhatib, 2014; Castelli et al., 2015) or monitoring products
(e.g. the MODIS MCD64A1 Burned Area data product).

With the rapid development of new technologies such as li-
dar and uncrewed aerial vehicles (UAVs), integration of data
from these platforms can represent a promising avenue to en-
hance our understanding and management of wildfires. Lidar
technology, with its ability to produce high-resolution vege-
tation structural and topography information could facilitate
the accurate modelling of fire severity (Hudak et al., 2012).
On the other hand, the agility and precision of UAVs in
data collection enable real-time monitoring of fire spreading,
which significantly enhances our ability to map burnt areas
in real time (Zheng et al., 2019).

6 Conclusions

This study introduces the vegetation-specific thresholds in
fire severity classification for wildfires over NSW, Australia.
We use the pre-fire-season drought conditions and topogra-
phy and the fire season meteorological conditions as inputs to
build the predictive model, and the performance is validated
by extreme gradient boosting (XGBoost) to predict the fire
severity, proxied by dNBR.

Using the vegetation-specific thresholds, we were able
to improve the classification accuracy in fire severity lev-
els. Specifically, compared to the fire severity classifications
from FESM over NSW, we found that fire severity classifica-
tion results using vegetation-specific thresholds show good
agreement with those from FESM, with accuracies of 0.64
and 0.76 in extreme- and high-severity classifications. Us-
ing a leave-one-out cross-validation, the severity classifica-

tion results showed an improved classification accuracy of
0.75 based on the proposed vegetation-specific thresholds
compared to those based on fixed thresholds (0.69). The pre-
dictive performance of the XGBoost model is improved as
well based on the classification results, with the determina-
tion coefficient (R2) and mean absolute error (MAE) and root
mean square error (RMSE) values of 0.89, 0.05, and 0.07, re-
spectively. We show that preNBR is the most important vari-
able in fire severity classification and prediction, followed
by FFDI and KBDI. The PDP of FFDI and KBDI indicates
that the likelihood of high severity increases when weather
and drought conditions become more severe. From the re-
sponses of dNBR to topographic factors, the probability of
high severity increases with slope and elevation. The role of
vegetation type in fire severity prediction becomes more im-
portant for large fires where more diverse vegetation is af-
fected.

The results demonstrate that the prediction technique per-
forms well, predicting fire severity of historic fires (2000–
2019) in the Australian state of NSW, while it also shows
the potential to be applicable for seasonal fire severity fore-
casts, owing to the availability of the predictor variables in
seasonal forecasting outputs. With the expected increase in
wind speed, temperature, and drought conditions exhibited
in future climate projections, this prediction technique can
also be used to evaluate the variation in fire severity under
climate change. Future challenges of this study include in-
corporating different variables, such as refined topography
as well as weather and vegetation structure, from various
data sources to improve the accuracy of fire severity predic-
tion and to scale up the application of the developed model
globally. In addition, the sensitivity analysis of the selected
time window to define the fire event and obtain the associated
weather conditions is promoted to improve our understand-
ing of the relationship between weather conditions and fire
occurrence. By adjusting the time window and possibly in-
tegrating more precise burn date data, we can work towards
a more accurate and physically meaningful analysis of fire
events and their contributing factors.

Code availability. The R software library is available at https://doi.
org/10.1007/978-0-387-75936-4 (Chambers, 2008).

The RandomForest package is available at https://doi.org/10.
1023/A:1010933404324 (Breiman, 2001).

The XGBoost package is available at https://doi.org/10.1145/
2939672.29397 (Chen et al., 2016).

The codes for modeling and analyzing are available from the cor-
responding author upon reasonable request.

Data availability. The NSW National Parks and Wildlife Ser-
vice (NPWS) Fire History – Wildfires and Prescribed Burns
dataset is available at https://datasets.seed.nsw.gov.au/dataset/
1d05e145-80cb-4275-af9b-327a1536798d (NSW Department of
Climate Change, Energy, the Environment and Water, 2010).
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The detailed vegetation distribution map over New South Wales,
Australia is available from the corresponding author upon reason-
able request.

The Topography data is available at https://doi.org/10.1029/
2005RG000183 (Farr et al., 2007).

The weather data is available at https://doi.org/10.24381/cds.
e2161bac (Muñoz Sabater, 2019).
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