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Increasing flood risk due to urbanization and climate change poses a significant challenge to societies at global
scale. Hydrologic information that is required for understanding flood processes and for developing effective
warning procedures is currently lacking in most parts of the world. Procedures that can combine global climate
dataset from satellite and reanalysis with fast and low computational cost prediction systems, are attractive
solutions for addressing flood predictions in ungauged areas. This work develops and tests a prediction frame-
work that relies on two fundamental components. First, meteorological data from global datasets IMERG and
ERA5-Land) provide key input variables and second, ML models trained in the data-rich contiguous US, are
applied in climatically similar regions in other parts of the world. Catchments in Australia, Brazil, Chile,
Switzerland, and Great Britain were used as pseudo-ungauged regions for testing. Results indicate acceptable
performance for both IMERG and ERA5-Land forced models with relative difference in flood peak prediction
within 30 % and similar overall performance to locally trained ML models. Specific climate regions for which ML
models have revealed good performance include Mediterranean climates like the US West Coast, subtropical
areas like the Southern Atlantic Gulf, and mild temperate regions like the Mid-Atlantic Basin. This work high-
lights the potential of combining global precipitation dataset with pre-trained ML models in data-rich areas, for
flood prediction in ungauged areas with similar climate.

1. Introduction

Rising riverine flood risk, due to increased exposure of populations
(Tellmann et al., 2021; Andreadis et al., 2022) and precipitation ex-
tremes (Papalexiou and Montanari, 2019), poses a major socioeconomic
threat at global scale. Climate projections highlight an increase in the
frequency and intensity of climate extremes (Emmanouil et al., 2022;
Jong et al., 2023; IPCC 2021; Wang et al., 2022; Winsemius et al., 2016)
that will exacerbate flood risk in the future. Assessing flood risk,
developing adaptation strategies, and leading communities to become
more climate resilient are all extremely important tasks on the global
climate task force agenda (WMO, 2022). Unfortunately, the commu-
nities most vulnerable to flood hazards, are the ones who struggle with a
lack of data and an appropriate warning system that impedes even the
first step of simply knowing the potential magnitude of a flood event
they should expect and prepare for.

Flood peak prediction, or more generically, stream flow prediction in
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ungauged basins has been a major hydrological issue the community has
grappled with for decades. While not an unprecedented issue, it is one
however that has become more urgent to overcome as flood changes in
magnitude, frequency, and timing in various locations around the world
have been observed (Bertola et al., 2023; Tarouilly et al., 2021; Huang
et al., 2022). The general lack of gauged data for flood prone regions
globally has been established (Bloschl et al., 2013; Bertola et al., 2023).
By the same token, there are locations around the globe with a long
enough historical record of hydrologic data that allows for relevant
research and strategic decision-making. These said locations encapsu-
late a wide range of hydroclimatic regions; one such location is the
contiguous United States (CONUS).

Hydrologic models of varying complexity have traditionally been
applied in these data-rich regions; one example being the US National
Water Model (Cosgrove et al., 2024). Such models, while advanced in
the ability to simulate observed and forecast streamflow along with
related output, the operation of these models require vast computational

Received 12 March 2024; Received in revised form 8 July 2024; Accepted 30 July 2024

Available online 3 August 2024

0309-1708/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:efthymios.nikolopoulos@rutgers.edu
www.sciencedirect.com/science/journal/03091708
https://www.elsevier.com/locate/advwatres
https://doi.org/10.1016/j.advwatres.2024.104781
https://doi.org/10.1016/j.advwatres.2024.104781
https://doi.org/10.1016/j.advwatres.2024.104781
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2024.104781&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Rasheed et al.

resources, especially at large basin scales (Solomatine et al., 2011). The
operational configuration and needs of these complex models subse-
quently challenge transference to data-scarce regions. Strides have been
made to optimize approaches for hydrologic models (Ming et al., 2020;
see Zhang et al., 2014 on limitations of optimization resources), but,
steadily growing as a competitive alternative to traditional hydrologic
models, are the application of machine learning (ML) models or
data-driven approaches that use ML techniques (Hu et al., 2019; Kratzert
et al., 2019; Ma et al., 2021; Mosavi et al., 2018; Rasheed et al., 2022;
Sanjay Potdar et al., 2021). Recent advances in global precipitation datasets
together with state-of-the-art flood prediction procedures relying on ML ap-
proaches, open new horizons for flood prediction at global scale.

Studies relying solely on ML models have successfully been used for
predicting daily streamflow timeseries in pseudo-ungauged basins
located in the model-trained regions including United States (Kratzert
et al., 2019; Sanjay Potdar et al., 2021; Rasheed et al., 2022), South
Korea (Choi et al., 2022) and Brazil (Nogueira Filho et al., 2022). A
data-driven sparse sampling technique (Zhang et al., 2023) that in-
corporates remotely-sensed data to supplement ground observations in
the feature space was used to reconstruct daily streamflow timeseries in
poorly-gauged locations across the contiguous U.S. In the above cases, the
trained model is typically trained and validated over the same domain or
contains data related to the tested region. Nevertheless, the ML models, if
trained with adequate data (which include features that describe basin
physiography, climate and precipitation), learn about general regional
attributes and are able to predict in ungauged locations based on hy-
drological similarity. Ma et al. (2021) has used an LSTM pre-trained over
data-rich CONUS and with appropriate transfer learning (TL) tech-
niques, used the model to learn about and predict over pseudo data-rich
and data-scarce regions in Great Britain, Chile and China using local
meteorological and basin attribute data published for each region.

However, to the best of our knowledge, ML models trained over
specific climatic regions with global precipitation datasets have never
been applied to data-scarce regions outside of the training dataset sim-
ply based on climatic similarity. This study therefore serves as a vital
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IMERG-Early Run) is investigated. By considering precipitation products
at global scales, the result of our study will inform on if and where it is
applicable to integrate such products with ML models for flood pre-
dictions in ungauged regions.

The remainder of the paper is organized as follows: Section 2 de-
scribes the study domains and data; Section 3 follows with the frame-
work for training and testing ML models to predict peak flows in
ungauged regions; Section 4 provides the results and discusses the same
with respect to shared regional, hydroclimatic characteristics and Sec-
tion 5 closes with a recapitulation of the main takeaways.

2. Study area and data

The study domains encompass catchments, ranging from 2 to 36,400
square kilometers in area, from six regions across the globe: the
contiguous United States (CONUS), Australia (AUS), Brazil (BR), Chile
(CL), Great Britain (UK) and Switzerland (CH). Fig. 1 and Table 1
identify the study domains, also noting the number of catchments and
climate classes, per study domain. Climate classes were based on the
Koppen Classification (Chen and Chen, 2013).

All data in this study may be separated according to two main
sources: the Catchment Attributes and MEteorology for Large-sample
Studies (CAMELS) datasets and global precipitation datasets.

2.1. The [Local] CAMELS datasets (L-CAM)

The domains of interest were selected given the availability of the
CAMELS datasets which contain for each catchment: (1) time series
records of locally observed (and simulated in some cases) meteorolog-
ical and streamflow data, and (2) key climatic, hydrologic, soil,

Table 1
Study domains, number of catchments and climatic regions and approximate
range of catchment area.

. o . epe . Domain [Abbrev] Number of Number of Area
assessment of the apphc‘ab‘lhty of climate-specific, trained ML models Catchments Climatic Regions (km2)
towards flood peak prediction at the catchment scale and across global

. . . . . . Australia [AUS] 207 3 7-8650
extents (i.e. a diversity of hydroclimatic zones) given the use of global Brazil (BR] 648 5 119850
precipitation datasets. Towards that end, in this work, we investigate (a) Switzerland  [CH] 395 4 2-36.400
the performance of ML flood prediction models integrated with global Chile [CL] 406 3 18-9920
hydrometeorological dataset and (b) the applicability of ML models United [CONUS] 463 10 6-14,270
trained in data-rich regions for flood prediction in ungauged regions. States
. . - Great [UK] 659 3 2-9930
Precipitation is arguably the major driver for flood hazards and thus the Britain
performance of two global precipitation datasets (ERA5-Land and
UK
COMUS
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Fig. 1. Study domains [10 regions represented for contiguous US (CONUS); 2 regions represented for Brazil (BR); 3 regions represented for Chile (CL); 4 regions
represented for Switzerland (CH); 3 regions represented for Australia (AUS) and 3 regions represented for Great Britain (UK)].
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vegetative and topographic variables (useful for supplying lumped,
static attributes per catchment to models). Table 2 lists the CAMELS
datasets used. The details of each compiled CAMELS dataset may be
further learned from the references included in Table 2.

2.2. Global precipitation and temperature datasets

Two dynamic, meteorological variables were important for this
study: precipitation and temperature. To facilitate an investigation on
the sensitivity of results to precipitation input, we selected two globally
available and widely-used precipitation products. The first is the IMERG
Early Run V6B (Huffman et al., 2019), hereafter IMERG-ER, which is a
satellite-based product with low latency (~4h). Our choice to consider
the version of the “early run” instead of the “late” and “final” version of
IMERG was precisely because of the low latency of this product which
presents an opportunity to be used for near real-time flood predictions.
The second product is the ERA5-Land Reanalysis (Munoz-Sabater et al.,
2021), hereafter ERA5-L. For temperature we used only as single input
the ERA5-L 2m temperature. Both IMERG-ER and ERA5-L are gridded
datasets available at 0.1deg spatial and hourly temporal scales.

To be consistent with the resolution of the local reference datasets
(CAMELS), the IMERG-ER and ERA5-L datasets underwent two key
preprocessing steps. First, the temporal resolution was aggregated to the
daily scale and second, all grids were clipped to the boundary of each
catchment in each region and thereafter a catchment-averaged value
was calculated per timestep. There was an intermediate step which
resampled (using the bilinear approach) the original precipitation grids
to a finer scale to (a) address smaller-sized catchments, and (b) better
clip to the irregular shapes of the basins. The temporal extent of the
meteorological datasets considered starts on June 1, 2000, given that
this is the earliest timestep available as part of the IMERG-ER product.
The end date varies by region based on the end date of the respective
local datasets, with the latest being December 31, 2018. Table 2 lists and
summarizes the temporal and spatial resolution of the local and global
datasets used.

2.3. The flood peak database (FPD)

The key responding variable and therefore the predictand of this
study is flood peak magnitude. Following the work of Rasheed et al.
(2022), our flood prediction framework focuses on predicting flood
peaks, instead of the entire streamflow hydrograph, which we consider a
very important first step for developing early warning procedures. Flood
peak identification for all catchments and domains are those events
whose magnitudes are greater than or equal to the 90th quantile
observed streamflow magnitude for each catchment. This thresholding

Table 2
Datasets employed noting resolution and sources.

Variables Dataset Resolution Refs.

Streamflow; static CAMELS- Spatial: Addor et al. (2017);
catchment CONUS; Catchment- Newman et al.
attributes CAMELS-BR; averaged; (2015);

CAMELS- Temporal: daily; Chagas et al. (2020);
AUS; 2000 - 2018 Fowler et al. (2021);
CAMELS-UK; Coxon et al. (2020);
CAMELS-CL; Alvarez-Garreton
CAMELS-CH (2018);

Hoge et al. (2023)

Precipitation IMERG Early 0.1 deg Huffman et al.

Run v6 2000 - 2018, (2019)
daily
ERA5Land 0.1 deg Munoz-Sabater
2000 - 2018, (2021)
daily
Temperature ERA5Land 0.1 deg Munoz-Sabater
2000 - 2018, (2021)

daily
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approach permits focus on the prediction of truly high flowing events.
Further selection of flood peaks from the streamflow time series was
needed to ensure independence of the flood events. This was done
following the approach established by Hu et al. (2020) where flood
peaks separated by a minimum distance in time satisfies the condition
for independence of the flood events identified in a catchment. This
parameter, time separation (0) is a function of catchment area, A (km?):

0 >5 days+2.59 x log (A) @

Dynamic Characteristics of Triggering Storms: The attribution of
the storm that triggered each identified flood peak follows Rasheed et al.
(2022), (see specifically Section 2.1 for details). In summary, a trig-
gering storm event for each flood peak is the closest storm in time that
(1) has a storm start date earlier than the start time of the rising limb of
the flood peak’s hydrograph, (2) is greater than 1 mm in precipitation
magnitude, and (3) has an end time that is no longer than the time of the
observed flood peak (any precipitation after the flood peak is ignored if
any longer). For each identified triggering storm event, a mean and
maximum triggering precipitation value is computed as two dynamic
characteristics describing the corresponding flood peak. Once the start
and end time of the triggering storm event is identified, an average of the
maximum temperature series for this duration is calculated forming
another dynamic descriptor for the flood peak called mean of maximum
temperature. Additionally, an Antecedent Precipitation Index (API) for
each flood peak is calculated as another dynamic variable for repre-
senting the antecedent wetness condition of the soil in a catchment just
before the start of the triggering storm. The API (Kohler and Linsley,
1951; see also “retained rainfall” model by Singh, 1988) is defined in Eq.
(2) and was constructed across the 30-day period prior to the start of the
triggering storm (i.e. 30 antecedent days were considered).

APL="" Pk ©)

where i = total number of antecedent days; j = lag or antecedent time of
interest (days), P; the precipitation recorded on day t and k = decay
constant which ranges from 0.8 to 0.98 (Viessman and Lewis, 1995) with
0.9 used as the estimate for this study.

Constructing the FPDs: For the catchments in each domain, all flood
peaks and corresponding triggering storm characteristics were compiled
(to form a FPD) following the above summarized pre-processing steps
for the three precipitation sources: L-CAM, IMERG-ER and for ERA5-L.
Therefore, for any given domain, three FPDs were constructed (for
example for CONUS there was a L-CAM FPD, an IMERG-ER FPD and an
ERAS5-L FPD). In each FPD, the flood peak magnitude has been
normalized by the area of the catchment with resulting units of mm/day,
i.e. specific discharge.

3. Methodology
3.1. General framework

Flood peak prediction using ML models and based on hydrometeo-
rological data and catchment attributes have demonstrated good per-
formance when trained and tested over catchments within a basin
sharing hydroclimatic features (in essence regional models; Rasheed
et al., 2022; Kratzert et al., 2019; Razavi and Coulibaly, 2013). Fig. 2
illustrates the general methodology for flood peak prediction in unga-
uged catchments using global hydrometeorological input. This work
connects the use of machine-learning for flood peak prediction in
ungauged basins with global precipitation datasets. Models are trained
in a data-rich region, CONUS, and applied to pseudo-designated unga-
uged regions across the globe, namely in Australia, Brazil, Chile,
Switzerland, and Great Britain.
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Fig. 2. Methodology for flood peak prediction in ungauged catchments using global precipitation (GP) input; [a] Schematic of the train-test scenarios for both the
data-rich CONUS domain and pseudo-ungauged domains. The number of unique regions for which FPPMs are developed per precipitation dataset is shown in
parentheses of the box for each study domain. The bold black line indicates “applied only scenarios” from CONUS to any other study domain. The dashed blue line is
the baseline case for Experiment #1. The dashed red line represents the baseline cases for Experiments #2 and #3 that use global precipitation input. [b] Resultant

baseline cases for the three experiments for example domain, Switzerland.

3.2. Input variables and hydroclimatic zoning

Enhancement of the flood peak prediction models (to be deliberated
in Section 3.3) shows a list of seven predictors. These are the: (1)
maximum precipitation, (2) mean precipitation, (3) mean of the
maximum daily temperatures - for the triggering storm period, (4)
antecedent precipitation index over a 30-day period before the start of
the triggering storm period, (5) fraction of forest cover as a land cover
predictor, (6) mean annual potential evapotranspiration and (7) aridity.
The last three variables are static attributes provided as a catchment-
averaged value from respective L-CAM datasets. Expectedly, the first
four variables are dynamic predictors that will change not only per flood
peak identified in each catchment, but also, for each hydrometeoro-
logical dataset sourced IMERG-ER, ERA5-L and L-CAM). Consequently,
the relative importance of each predictor varies given the latitude and
longitudinal spread of the domains under study; in which case there are
likely (static) predictors not included in our models that may be more
important — or by the same token — a predictor to be excluded (for more
on predictor importance of flows see Massari et al., 2023 and Rasheed
et al., 2022). However, notwithstanding the sound rationale for these
variables from a hydrologic perspective, we strived to maintain
simplicity in data dimensionality in our models. Additional intentions of
doing so were to (1) maintain easy reproducibility of model structure

across domains and (2) ensure that these static variables (just as their
dynamic counterparts) could be sourced from remotely-sensed datasets
if one’s objective is to apply to a “non-CAMELS” documented domain (in
other words a true external or ungauged region).

Within each study domain (CONUS, CH, BR, CL, BR, AUS, GB) dis-
played in Fig. 1, we separated the catchments into regions distinguished
as larger basins, each having unique climatology and hydrologic char-
acteristics. In most cases, this is already provided as an attribute in the
CAMELS datasets. Specifically, in CONUS, separation is based on the
HUC-02 level water regions stipulated by the United States Geological
Service. For the AUS, BR, CH and CL domains, the respective CAMELS
datasets similarly provided as a feature the drainage basin name or
monitored water region to which each catchment belonged. For the GB
catchments, we took a hydroclimate approach and grouped the catch-
ments according to localized terrain and precipitation regimes. Fig. 4
may also be referenced for a spatial attribution of the unique regions in
each domain used for this study. The ML models were then developed
per unique climatic region. Table 1 and Fig. 2 outline the resultant
number of unique regions in each study domain.

3.3. ML flood peak prediction model (FPPM) experiments

Building upon the previous work of Rasheed et al. (2022), we carry
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out a series of experiments to investigate the potential applicability of
ML models, trained within CONUS, for flood prediction in other clima-
tologically similar regions of the world.

While similar performance between the two datasets is not antici-
pated for flood peak prediction from one hydroclimate to another, this
investigation highlighted regions across latitudes where performance
was best for each product and conversely, where each product had the
most difficulty being applied. The training, validation (for hyper-
parameter tuning) and (withheld) test ratios for dataset splitting are 50
%, 30 % and 20 %, respectively.

3.3.1. The HGBR model

Histogram Gradient Boosting Regressor (HGBR; Friedman, 2001; Ke
etal., 2017) is a type of gradient boosting learning algorithm that learns
incrementally as it improves on the previous weak learner. It continu-
ously improves since each subsequent model’s prediction is weighted so
that the ensemble’s prediction is rendered more accurate. The addition
of models to the ensemble will have predictions that are maximally
correlated to the negative gradient of the ensemble’s overall loss func-
tion. Though there is great difficulty with rule extraction from this type
of model (see Cormen et al., 2001), these ensemble-based learning
models allow for some sense of interpretability through permutation
feature importance estimates. These estimates contributed to our
interpretation of the trained models insofar as understanding the
interaction of peak flow event drivers and the relative significance of the
said drivers across various hydroclimatic regions. From flood alert sys-
tems for forecasting flood stages (Jarajapu et al., 2022) or streamflow
(Ni et al., 2020) to flood susceptibility assessments (Mirzaei et al., 2021)
and design flood estimates (Xu et al., 2023), Extreme Gradient Boosting
models have been proven useful in the hydrological field. Moreover, a
hybrid approach that uses a Light Gradient Boosting Model in tandem
with a traditional hydrologic model to detect urban floods (Sanders
et al., 2022) serves as a good example for alleviating the computational
strain of using only traditional hydrologic models.

The loss function selected was the Mean Square Error (MSE); an
applicable objective function to compare the performance of models in
each region given that all input variables were continuous. The hyper-
parameters of the HGBR model were tuned using Optuna, a python li-
brary for hyper-parameter optimization. More specifically, we used the
Tree-structured Parzen Estimator (Bergstra et al., 2011) which is a
Bayesian optimization method that explores the search space via a tree
structured approach. We used the HGBR implementation provided by
scikit-learn (Pedregosa et al., 2011), a Python library for machine
learning tasks. Hyperparameters were tuned for each regional model
and the standard method for the splitting criteria which opts for the split
that minimizes the residual sum of squares was used. The hyper-
parameters tuned included the number of estimators (ranged from 10 to
300), the maximum number of leaves per learner (ranged from 3 to 60),
the £2 regularization parameter (ranged from 0 to 2000) for the learned
weights, and the learning rate (ranged from 1le > to 5e 1.

3.3.2. Trained models — “Data-Rich” region, CONUS and pseudo-ungauged
regions

CONUS is considered our reference or data-rich domain, for which
the ML models are trained. There are 10 climatic regions and therefore
10 trained models for each of the three given precipitation data input
(see Fig. 2). The contiguous US boasts, in fact, 18 unique hydroclimatic
zones (HUC-02; Kratzert et al., 2019; Rasheed et al., 2022) albeit for this
paper the results of only 10 are presented. ML models were established
for all 18 regions but with the goal of maintaining model simplicity in
both structure and predictors (flood peak drivers), the performance in 8
regions did not measure up to our range of acceptable results when using
the global precipitation data as input (IMERG-ER and ERA5-L). Notably,
these 8 regions constitute the central US. While it is difficult to pinpoint
exactly the weight or reasoning for the poor performance in these 8
regions, a few common observations follow. First, these
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poor-performing regions were mostly water-limited, specifically having
arid-steppe, [cold] semi-arid and desert climatology. Building a large
enough flood peak dataset was a challenge and the reduced number of
gauges for which data was available with a long enough record made
this more difficult.

Similar to the unsatisfactory performance with the L-CAM dataset,
the 8 excluded regions from data-rich CONUS performed poorly when
trained also with the IMERG-ER and ERA5-L data as input. This obser-
vation was also noticed for any models trained in the external domains
that were climatically classed as arid-steppe or desert-like regions. For
example, the northern regions of Chile, or central and southern regions
of Australia. Since models trained and tested in the same region could
not perform, i.e. as baseline test cases, these arid-steppe or desert-like
regions were altogether excluded from the study. It would not be wise
to consider applying CONUS-trained models to external domains that
could not perform even in CONUS. Fig. 3 depicts the 10 climatic regions
in “data-rich” CONUS retained for this study. Fig. 3 depicts the 10 cli-
matic regions in “data-rich” CONUS retained for this study.

For evaluating performance of the CONUS FPPMs, there were three
key experiments. In the first experiment (#1), the FPPMs were trained
and tested in CONUS using L-CAM (locally observed meteorological
input from the CAMELS dataset) as input. The result was 10 CONUS, L-
CAM FPPMs that set the threshold for accepting the performance of
FPPMs over CONUS when trained instead with the global precipitation
input (see Section 2.2). This brings us to the second and third experi-
ments (#2 and #3) which entailed models trained and tested over
CONUS, but with IMERG-ER and ERAS5-L global precipitation data.
Respectively, this results in 10 CONUS, IMERG-ER FPPMs and 10
CONUS ERA5-L FPPMs. If the results of experiments #2 and #3 are
comparable to the results of experiment #1, then we will be able to
confirm the first objective of this study: global precipitation data products
are viable inputs for predicting flood peaks with a trained ML model in a given
region.

We repeat the three experiments for all other study domains listed in
Table 1. The L-CAM datasets used for the respective domains are listed in
Table 2. In Fig. 2b, the dash blue line is the baseline case for Experiment
#1. The dash red line represents the baseline cases for Experiments #2
and #3 that use global precipitation (GP) input; IMERG-ER and ERAS5-L.
Resultantly, for example for the pseudo-ungauged Switzerland region,
there are CH L-CAM, CH IMERG-ER and CH ERA5-L models. Schemat-
ically, these reference scenarios of training and validating in the same
region are reflected in Fig. 2a. Fig. 2b shows the resulting models (from
the three experiments) for the baseline cases, for Switzerland.

Importantly, the static variables required by models during training
when supplying the global meteorological input use the same static
variables as provided in the CAMELS datasets which are also used during
training of the LOCAL-based (L-CAM) models.

3.3.3. Applying the “Data-Rich” CONUS models to “pseudo-ungauged”
regions

We go through a climatic zone matching exercise to determine the
trained CONUS, IMERG-ER and ERA5-L FPPMs, to apply in each of the
pseudo-ungauged regions per study domain. We mainly utilize the
Koppen Climate Classification (according to Chen and Chen 2013) as a
guide.

Detailed hydrological or geomorphological characteristics local to
each pseudo-ungauged region that are not expressed at the coarse-
climate designations of the Koppen Classification system constitute the
other part for selecting the appropriate (i.e., regionally similar) CONUS
IMERG-ER and ERA5-L FPPMs to apply. Fig. 4 illustrates each CONUS
FPPM being applied to regions within each pseudo-ungauged study
domain. The details that led up to the matched regions in Fig. 4 follows.

The Mediterranean-like US West Coast FPPM: The western coast of
the US has a Mediterranean climate, with very hot summers where most
of the precipitation (convective storms) over the region occurs in the
winter-early spring seasons. The Pacific Northwest has more of a cool
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Fig. 3. The ten CONUS regions for which trained FPPMs are available for application to similar climatic regions. The CONUS FPPMs were trained with, and prepared

to test input from, either ERA5Land or IMERG hydrometeorological data.
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Fig. 4. CONUS FPPMs (shaded blue basins in US Map, center) being applied to external, pseudo-ungauged regions (triangles identify with all catchments of each
external domain and the blue triangles indicate the specific test catchments used in the application of the line-matched CONUS FPPM). For example, the CONUS
California FPPM was applied to the Southern and Austral Zones of Chile. CONUS FPPMs applied are the same for models trained with ERA5-L and IMERG-ER global

precipitation datasets.

and wet climate compared to the dryer California region. To the south,
south-east of the Pacific Northwest region and east of the California
region is the mountainous Great Basin region that contribute to
orographic precipitation events occurring over the two mentioned US
West regions. Catchments south of the Swiss Alpine Mountains share a
similar geography as the Pacific Northwest region and the said catch-
ments together with the South-East Coast and Tasmania regions of
Australia are impacted by a similar Mediterranean-like climate. The
Southern and Austral Zones of Chile are yet another location that expe-
riences weather and climate like the US West. While the latitudinal

coverage of these Chilean Zones theoretically implies colder tempera-
tures, in actuality, there is a general cool temperature throughout the
region all year round, with precipitation occurrences much like the
California region (south of the US West Coast).

The Mild-Temperate, Mid-Atlantic FPPM: A region with cold win-
ters and warm summers and varying physical geography from coastal
plains to the east, the piedmont at the foothills of the Appalachian range
follows inwards then a mix of ranges and valleys and rolling hills and
plains to the northwest of the region. Land cover for the region is mostly
forests and predominantly agricultural activities ensue. The varying
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elevation with the presence of mountains, the general geography, the
influence of the Atlantic Ocean, and the latitudinal location of the region
are all shared by the North-East Highlands of the United Kingdom.

The Subtropical, South-Eastern Regions: Three regions (and therefore
three FPPMs) within CONUS, share a general subtropical climate type:
the South Atlantic Gulf, Tennessee and Lower Mississippi regions (see
Fig. 3). Being fully humid regions, precipitation does not vary signifi-
cantly from one season to the next. Therefore, flood triggering events
(using precipitation as the key driver and all other variables held con-
stant) are possible all year round. In terms of temperatures, from south
to north, the summer season varies from hot to warm, respectively.

The South Atlantic Gulf FPPM: Bordered and affected by the
weather patterns of the Atlantic to the east and the Gulf of Mexico to the
south and south-west, this region experiences hot and humid summers
where short-duration, high intensity storms are common, often leading
to flash floods. The South-Atlantic region is also prone to tropical cy-
clones which often propagate to flood events with devastating impacts.
On the leeward side of the Swiss Alps (i.e., north, and north-west
Switzerland) we find a transition zone between oceanic and continen-
tal climates along the Swiss Plateau that experience distinct seasons with
temperatures that are not too extreme given the influence of the Atlantic
Ocean. This creates a similar climate like the upper latitudes of the South
Atlantic Gulf region.

More easily analogous in climate as seen in the South Atlantic Gulf
region is the Central Chilean Zone and the Uruguayan basin segment
located in Brazil. These two regions are located within the same latitude
as the South Atlantic Gulf region and share the fully humid, mild
temperate climate with hot summers as seen along the general south-
east quarter of the contiguous US. It is during the summers that the
flood generating storm events are most prevalent in both regions. From a
climatic perspective even the FPPMs for the Tennessee and Lower Mis-
sissippi regions would be applicable for application to the Central Chile
Zone and Southern Brazil (the Uruguay Basin).

The Appalachian-Containing, Tennessee FPPM: Much like the Inn
Basin, that lie in the higher elevations along the Swiss Alps, the drivers
of flood events in the region behave similar to those within the sub-
tropical Tennessee basin. From the foregoing paragraph, we note the
climatology of the Switzerland area, which therefore makes the attri-
bution of the Tennessee FPPMs to the Inn Basin, reasonable.

The Agricultural-Intensive, Lower Mississippi FPPM: Sharing a
similar subtropical and humid climate as the South Atlantic Gulf basin in
contiguous US, the Lower Mississippi basin contains the Mississippi
River which is the largest river in North America - it discharges into the
Gulf of Mexico runoff from not only the Upper Mississippi but also
Missouri and Ohio Basins. The alluvial plains of the Lower Mississippi
are noted for supporting a vast diversity of agriculture in the US given
the conducive temperatures and abundance of precipitation and
streamflow network throughout the latitudinal extents of the basin. As
such we apply this model to the South Atlantic basin of Brazil; a fellow
subtropical basin, and a key developed water region supporting an
abundance of agricultural activity in Brazil.

The Ohio FPPM: The great majority of Ohio to the south is sub-
tropical climate and to the north, a snow climate region as we head into
the Upper Mississippi basin and further north, the Great Lakes region. As
a mid-latitude basin with the absence of mountains both north and south
of the basin, there are varying extremes that catchments within the basin
are exposed to. In the winter, cold air masses from the north (Arctic) and
warm air masses from the south (Gulf of Mexico) during the summer
season. Irrespective of the season, floods are a worrisome hazard
(Frankson et al., 2022; Austin et al., 1998) for residents with floods
induced during the winter season from snow or ice storms, and by
convective rainstorms (and thunderstorms) during the late spring and
summer seasons. Australia’s north-east coast similarly lacks any sort of
mountains or elevated land masses and shares this sub-tropical, fully
humid climate, year-round. The east coast of Australia is generally
wetter than the west coast, and from a strict climate match, the

Advances in Water Resources 192 (2024) 104781
Tennessee and Lower Mississippi FPPMs are also good candidates.

3.3.4. Metrics for evaluation

The root mean square error (RMSE) is one of two metrics used to
evaluate the FPPMs. RMSE is a commonly used metric for assessing
regression-based ML models and follows as a good choice given that the
loss function of the FPPMs is MSE. In addition to an absolute error
metric, we also employ a relative error metric, which is the median value
of the percent relative difference (PRD) as a second metric for inter-
regional comparisons. PRD also provides information on the direction
(overestimation or underestimation) in magnitude of flood peak pre-
dictions.

RMSE = \/E { (Xpredicrion - obseryufi(’”)Z} (3)

X odiction —
PRD (%) = median<[ prediction

abservation}
x 100 @
E {Xobservatiun} )

where X is the series of flood peak magnitudes predicted from FPPMs
(Xprediction) or observed (Xopservation) as reported in the CAMELS dataset
and E{} corresponds to the arithmetic mean operator.

4. Results and discussion
4.1. Comparison of precipitation input in “Data-rich” CONUS

In Fig. 5, we demonstrate the performance of the CONUS models for
precipitation input from three sources: L-CAM, IMERG-ER and ERA5-L.
We considered any CONUS-based, IMERG-ER and ERA5-L model
acceptable for predicting flood peaks if PRD performance is within 30 %
error and therefore measures up to the respective, baseline L-CAM
model trained and validated using the CAMELS-US dataset. Comparative
performance is noted between the IMERG-ER and ERA5-L models and
the baseline L-CAM models in terms of RMSE (Fig. 5a). Relative differ-
ences within 30 % are considered acceptable performance per regional
model. Fig. 5b illustrates that this holds for all regions to a large degree,
with some regions (e.g. New England and Mid-Atlantic) exhibiting
higher variability in performance; a finding consistent for all three
precipitation datasets.

Non-parametric, Wilcoxon Rank tests were conducted for ERA5-L
and IMERG-ER separately against the CONUS L-CAM dataset with the
null hypothesis that they have the same median and are therefore drawn
from the same distribution (i.e. ERA5-L and IMERG-ER FPPMs have
comparative performance with the CONUS L-CAM dataset). For all ten
CONUS regions, and for both ERA5-L and IMERG-ER, the results indi-
cated a failure to reject the null hypothesis at the 5 % significance level.
Overall, another noticeable feature from these results is that from a PRD
perspective, the CONUS FPPMs have a greater tendency to overestimate
peak flows than underestimate (i.e. boxplots are predominantly placed
above zero value in Fig. 5).

4.2. Application of trained regional models to “similar” external regions

The CONUS FPPMs trained on ERA5-L and IMERG-ER datasets were
applied to the external, pseudo-ungauged regions as summarized in
Fig. 4. The FPPMs were applied following the approach detailed in the
methodology (Section 3.3.3) for matching climatic characteristics. For a
spatial understanding of the CONUS ERAS5-L and IMERG-ER FPPMs
applied to external regions, refer to Fig. 4. The South Atlantic Gulf
FPPMs seems to be the most “versatile” of the list given acceptable test
performance in Switzerland, Brazil, and Chile. The specific basins in
these countries for which the CONUS, South Atlantic Gulf models are
applied do share similar climatology as the CONUS region (i.e. sub-
tropical), and we surmise that a key contributing factor for perfor-
mance is the similar type of flash floods the regions face during the
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Fig. 5. Comparison of model performance [in terms of RMSE [a] and PRD [b]] for the three precipitation datasets for the CONUS domain (considered the “Data

Rich” region).

summer seasons triggered by local, extreme precipitation events.

The median RMSE and PRD performance of each CONUS FPPM when
applied to the pseudo-ungauged regions depicted in Fig. 4, is demon-
strated in Figs. 6 and 7, respectively. Each row reflects the results for a
specific climate region matched in a single external pseudo-ungauged
domain. Evaluation of each applied CONUS FPPM is essential from
three perspectives, shown in Columns B, C and D. A comparison between
ERA5-L and IMERG-ER FPPMs when trained and tested in each CONUS
region is shown in Column B (of Figs. 6 and 7). We observe similar
performance between the two FPPMs for the global precipitation prod-
ucts except for the California (Panel B4, Fig. 6) and Pacific Northwest
(Panel B1, Fig. 6) models where the CONUS, ERA5-L FPPMs perform
slightly better than the IMERG-ER FPPMs. The CONUS, California
IMERG-ER FPPM had a median PRD of +25 %; one of the highest
regional overestimations of flood peaks noted across all FPPMs (see
Panel B4, Fig. 7). Instead, the CONUS, California ERA5-L FPPM reported
the lowest median PRD at just 3 % overestimation in flood peaks across
the region. As accuracy in the global precipitation products have sig-
nificant geographic dependencies (Derin et al., 2019; Pradhan et al.,
2022), we surmise that the ERA5-L may be better at representing flood
inducing storm events over the CONUS West Coast.

Column C of Figs. 6 and 7 report the performance of FPPMs trained
and tested within the pseudo-ungauged regions. The results in Column C
are meant to provide a baseline to compare the results in Column D
where the CONUS FPPMs were applied to the external regions. As
highlighted in Column C, the FPPMs driven by global precipitation data
in the regions performed similarly and, in some cases, slightly better

than the FPPM driven by the L-CAM data for the region (e.g. in Panel C3,
the CH, Inn Basin IMERG-ER FPPM outperforms the said region’s L-CAM
FPPM). This is rather counter-intuitive, given that one would expect the
local data from CAMELS to be associated with best performance. How-
ever, it is worth noting that when considering catchment-averaged
precipitation (which we use as a predictor), it is possible to have cases
of large catchments and/or complex terrain where IMERG-ER and ERA5-
L outperforms station-based averages. This is a plausible speculation but
verifying it is beyond the scope of this work.

All three FPPMs trained and tested over the Southern Zone of Chile
(Panel C4) and the Uruguay Basin in Brazil (Panel C2) showed decreased
performance with respect to the RMSE (Fig. 6). Intermittent streamflow
records, and lack of some catchment attributes dwindled not only the
number of catchments available to train and test but also the number of
flood peaks acquired for the databases in these regions. A closer look at
relative performance, shows acceptable PRD within +10 % for the
Uruguay Basin (Panel C2, Fig. 7), but the model that employs the L-CAM,
Chile dataset (Panel C4) as input, indicates one of the highest errors
(across all experiments) for both the RMSE and PRD metrics. While PRD
results are within acceptable ranges, there is an overall tendency for
models to overestimate flood peaks with no distinct trend towards

ERAS5-L or IMERG-ER data input in the external regions. Geography
may also play a role and we note that not only the global precipitation
datasets incur difficulty with reflecting weather conditions but also the
locally-based meteorological data for the country as is seen in the L-
CAM, Chile dataset (Panel C4, Figs. 6 and 7).

With reference to the baseline performance shown in Columns B and
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Fig. 7. Same as Fig. 6, but for median PRD performance.

C, the results (for all applied cases demonstrated in Column D) validated the reveal a higher likelihood of overestimating flood peaks than do the
application of the trained CONUS, ERA5-L and IMERG-ER FPPMs to IMERG-ER equivalent models. Consistent underestimation of flood
external regions based on climatic similarity. Fig. 7 (and Supplementary peaks is evident for all applied cases of the CONUS-trained, South
Figure S2) attest that median regional peak predictions across all regions Atlantic Gulf, IMERG-ER FPPM (Panel D2, Fig. 7). This includes Chile’s
are within ~20 % relative difference to the observed median flood peak Southern (Panel D4, Fig. 7) and Central Zones (Supplementary Fig. S2)
magnitude (Column D). Overall, the CONUS-trained, ERA5-L. FPPMs and the Rhine and Rhone Basins situated North and North-west of the
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Alps in Switzerland (Fig. S2). However, it is worth noting that in most
cases PRD is well within 20 %.

It is worthy to note some other trends where the trained CONUS
FPPMs applied to external regions show improved performance over the
FPPMs trained and tested in the external regions, and vice versa.
Interesting are the cases where the CONUS FPPM applied to the pseudo-
ungauged region performs better than (1) the FPPMs trained and tested
in the external region itself (i.e. Column D outperforms Column C), and
(2) the performance on the test catchments in the very CONUS region for
which the FPPM was trained (i.e. Column D also outperforms Column B).
One such example, the CONUS Mid-Atlantic FPPM based on IMERG-ER
applied to the North-West region of Great Britain (Panel D5, Fig. 7). We
can infer that the data quantity and quality over data-rich CONUS
afforded a well-trained CONUS Mid-Atlantic FPPM (Panel B5, Fig. 7)
that aided predictive performance when applied over the North-west,
GB region. This performance is better than the GB, IMERG-ER FPPM
tested in its own region (Panel C5, Fig. 7). Similar cases are also noted
for the GB South-west and North-east regions (Supplementary Fig. S2).
Albeit with less significant differences, the trend is also evident for the
ERAS5-L FPPMs when applied to the Uruguay Basin in Brazil (Panel D2,
Fig. 7) and the Inn Basin in Switzerland (Panel D3, Fig. 7).

Advances in Water Resources 192 (2024) 104781

There is no conclusive choice for one global precipitation FPPM
being superior to the other. Although, for the regions where either the
ERA5-L or IMERG-ER FPPMs result in PRD values > 30 %, the equivalent
L-CAM models also indicate similar magnitude errors. For example, in
Supplementary Fig. S2, the North-east Coast of Australia, the North-east
and South-west regions of Great Britain and the Ohio Basin in CONUS,
all posit this finding. The CONUS-trained, IMERG-ER FPPMs have a
slight tendency to underestimate flood peak magnitudes compared to
the ERA5-L FPPMs, particularly for the applied cases of the South
Atlantic Gulf FPPM.

Further analyses of the magnitude of flood peaks predicted when the
CONUS FPPMs were applied to the external regions indicated a general
dependence of prediction performance with drainage area. RMSE and PRD
of the normalized peak flows have opposite trends because of the
inherent scale dependence of these variables (i.e. lower values for higher
drainage areas) and its impact to each metric (e.g. low values in de-
nominator of PRD equation results in higher PRD values and the oppo-
site for RMSE). Beyond that, we expect that global precipitation dataset
will have increased accuracy of catchment-average precipitation for
larger drainage areas (e.g. due to reduction of random error) but it is not
straightforward to attribute such scale dependence (shown in Fig. 8) to
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Fig. 8. Skill in flood peak prediction across drainage areas (binned) using RMSE [a] and PRD [b] as proxies. The error in prediction when the trained CONUS, ERA5-L
and IMERG-ER FPPMs are applied to all the relevant external regions is shown (see Fig. 4 for all applied FPPMs).
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this expectation, simply because there is an interplay with the model’s
performance (irrespective of input) across scales. This potentially
highlights that training and testing ML models for certain ranges of
drainage areas may be an important consideration, but it requires a
sufficiently high number of catchments for each range of drainage areas,
which was not the case here.

5. Conclusion

The main objective of this work was to investigate the potential of
combining global hydrometeorological datasets with ML models, which
have been trained over data-rich regions, for predicting flood peaks in
ungauged regions. The key components of this investigation included
the a) ML models trained over data-rich CONUS, b) the use of global
precipitation datasets, IMERG-ER and ERA5-L and c) identifying and
matching climatic characteristics between the data-rich region used to
train the ML model and the ungauged region to which it was applied.
Within CONUS we were able to assemble and validate flood peak pre-
diction models for 10 unique climatic zones. Given the data limitations,
we were only able to successfully apply 8 CONUS FPPMs to a total of 15
pseudo-ungauged regions in 5 countries: Australia, Brazil, Chile, Great
Britain, and Switzerland. Performance with the applied FPPMs for both
IMERG-ER and ERA5-L, yielded results within 30 % PRD in flood peak
magnitude. We consider this an acceptable performance especially if one
considers that the target is to obtain flood peak estimates in purely
ungauged regions where there is no other source of information.

Results across regions and precipitation datasets exhibited consid-
erable variability, without though highlighting clearly which precipi-
tation dataset should be considered as the one associated with best
overall performance. Something to be highlighted though is the fact that
IMERG-ER is a near real-time precipitation product which opens op-
portunities for operational early warning procedures, while ERA5-L can
be considered more suitable for long-term climatological studies. The
dependencies of prediction performance across climatic regions and
drainage scales provided in this work, offers an initial guide for imple-
mentation of such approaches, and furthermore highlights areas for
improvement. Future work needs to focus on more climatic regions,
which were not covered in this work, such as the typically arid, desert or
steppe-like climates, which are largely ungauged and very challenging
for predicting their hydrologic response. The framework presented in
this work relied, as a first step, only on climate similarity for matching
trained models with ungauged areas. Future work can potentially adopt
more rigorous regional classification methods that are based on
catchment-related predictors (Massari et al., 2023) to refine the method
by which ML models trained in data-rich regions are developed and
applied to ungauged regions

This work highlights the potential of combining global precipitation
dataset with pre-trained ML models in data-rich areas, for flood pre-
diction in ungauged areas with similar climate. It provides a starting
point from which more and improved ML procedures and precipitation
datasets can be integrated to potentially address the PUB (Prediction in
Ungauged Basins) problem at the global scale.
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