

1 **Title:** Spectral Scanning and Fluorescence Lifetime Imaging Microscopy (FLIM) Enable
2 Separation and Characterization of *C. elegans* Autofluorescence in the Cuticle and Gut

3
4 **Running title:** *C.elegans* autofluorescence analysis

5
6 **Authors:** Heino J. Hulsey-Vincent, Elizabeth A. Cameron, Caroline L. Dahlberg, Domenico F.
7 Galati

8
9 **Key words:** *C. elegans*, autofluorescence, GFP, FLIM, spectral, gut granules

10
11 **Abstract:**

12
13 *C. elegans* gut and cuticle produce a disruptive amount of autofluorescence during imaging.
14 Although *C. elegans* autofluorescence has been characterized, it has not been characterized at
15 high resolution using both spectral and fluorescence lifetime-based approaches. We performed
16 high resolution spectral scans of whole, living animals to characterize autofluorescence of adult
17 *C. elegans*. By scanning animals at 405 nm, 473 nm, 561 nm, and 647 nm excitations, we
18 produced spectral profiles that confirm the brightest autofluorescence has a clear spectral
19 overlap with the emission of green fluorescent protein (GFP). We then used Fluorescence
20 Lifetime Imaging Microscopy (FLIM) to further characterize autofluorescence in the cuticle and
21 the gut. Using FLIM, we were able to isolate and quantify dim GFP signal within the sensory
22 cilia of a single pair of neurons that is often obscured by cuticle autofluorescence. In the gut, we
23 found distinct spectral populations of autofluorescence that could be excited by 405 nm and 473
24 nm lasers. Further, we found lifetime differences between subregions of this autofluorescence
25 when stimulated at 473 nm. Our results suggest that FLIM can be used to differentiate
26 biochemically unique populations of gut autofluorescence without labeling. Further studies
27 involving *C. elegans* may benefit from combining high resolution spectral and lifetime imaging to
28 isolate fluorescent protein signal that is mixed with background autofluorescence and to perform
29 useful characterization of subcellular structures in a label-free manner.

30
31 **Introduction:**

32
33 The model organism, *Caenorhabditis elegans* (*C. elegans*), is a transparent nematode that is
34 amenable to microscopy and study through live imaging. *C. elegans* imaging often uses
35 fluorescence to analyze promoter reporters, fusion proteins or dyes that label subcellular

36 structures (Corsi et al., 2015; El Mouridi et al., 2022; Mendoza et al., 2024; Yemini et al., 2021).
37 Fluorescence imaging of *C. elegans* is central to diverse research questions from
38 developmental biology to behavioral neurobiology (Bao et al., 2006; Chung et al., 2013; Tian et
39 al., 2009). However, fluorescence imaging in *C. elegans* must contend with autofluorescence
40 emitted from tissues and materials, such as a protective cuticle and intestinal lysosome-related
41 organelles (gut granules) (Hermann et al., 2005; Pincus et al., 2016; A. C. Teuscher & Ewald,
42 2018). This was observed as early as the first account of *C. elegans* expressing GFP, where
43 autofluorescence was noted to obscure the GFP signal (Chalfie et al., 1994). Methods that
44 overcome autofluorescence in *C. elegans* will remove barriers to fluorescence imaging in live
45 animals. This is especially true in areas and tissues where autofluorescence is particularly
46 strong, such as the gut and cuticle (Heppert et al., 2016; Komura et al., 2021a; Pincus et al.,
47 2016).

48

49 Spectral approaches are a common way to overcome *C. elegans* autofluorescence. For
50 example, carefully chosen bandpass filters can partially separate autofluorescence emission
51 from GFP emission in the gut (Morris et al., 2018), intensity-based autofluorescence correction
52 can improve the GFP signal to noise ratio in the developing embryo (Rodrigues et al., 2022),
53 and spectral unmixing can separate fluorescent protein emission from autofluorescence (Jones
54 & Ashrafi, 2009). Alternatively, one can rationally choose fluorescent proteins that have minimal
55 spectral overlap with autofluorescence (Heppert et al., 2016; Thomas et al., 2019) or use non-
56 genetically encoded fluorescent probes that emit in the infra-red range (Hendler-Neumark et al.,
57 2021; Rashtchian et al., 2021). Finally, studies have used the genetic power of *C. elegans* to
58 remove the source of autofluorescence by performing experiments in backgrounds that do not
59 produce autofluorescent gut granules (Eichel et al., 2022).

60

61 An additional parameter that can differentiate spectrally similar fluorophores is fluorescence
62 lifetime, which is the temporal delay between the arrival of an excitation photon and the
63 generation of an emission photon. Each fluorophore has a unique fluorescence lifetime that
64 depends upon the chemical structure of the fluorophore and the environment (i.e., solvent) that
65 surrounds the fluorophore (as reviewed in Datta et al., 2020). Fluorescence lifetime can be
66 imaged with Fluorescence Lifetime Imaging Microscopy (FLIM) and quantified through curve
67 fitting or phasor analysis (Phasor-FLIM). Although curve fitting is widely accepted, this approach
68 requires pre-existing knowledge about the decay parameters of the fluorophores that are being
69 analyzed. In contrast, Phasor-FLIM analysis does not make any assumptions about the

70 underlying decay parameters of fluorophores (as reviewed in Malacrida et al., 2021). Phasor-
71 FLIM has been used to quantify NADH/NAD(P)H and FAD/FADH₂ ratios in metabolic studies
72 (Bhattacharjee et al., 2017; Ma et al., 2016), separate spectrally similar fluorophores (Gonzalez
73 Pisfil et al., 2022), distinguish known fluorophores from autofluorescence (Szmacinski et al.,
74 2014), and quantify fluorescence resonance energy transfer (FRET) efficiency of fluorescent
75 proteins (Lou et al., 2019). In *C. elegans*, FLIM has been used to investigate protein-protein
76 interactions (Gallrein et al., 2021; Laine et al., 2019; Llères et al., 2017) and environmental
77 effects on metabolic dyes (W.-W. Chen et al., 2023). However, these studies do not address
78 native autofluorescence in *C. elegans*, which has both biological relevance and a long history of
79 complicating fluorescent protein quantification.

80
81 In this study, we performed a systematic analysis of the spectral and lifetime properties of *C.*
82 *elegans* autofluorescence relative to the emission profiles of conventional fluorophores, such as
83 GFP and mCherry. We show that dim GFP fluorescence can be reliably separated from bright
84 cuticle autofluorescence using Phasor-FLIM. We also demonstrate that spectrally similar gut
85 autofluorescence can be characterized in a label-free manner by capitalizing on heterogeneous
86 lifetimes.

87
88 **Results and Discussion:**
89
90 To determine the autofluorescence spectrum of live *C. elegans*, young adult animals were
91 stimulated with four common excitation lines (405 nm (BFP/DAPI), 473 nm (GFP), 561 nm
92 (mCherry), and 647 nm (emiRFP670/Alexa 647)) and non-overlapping 30 nm emission bins
93 were collected across the entire visible and near infrared spectrum (Figure 1A and B,
94 Supplemental Figure 1). To quantify the spectral data, the mean pixel intensity for each
95 emission bin was calculated across the entire animal and plotted as a spectral profile (Figure 1C
96 and D). In agreement with other findings (Heppert et al., 2016; Hermann et al., 2005), this
97 approach revealed that 405 nm and 473 nm excitation stimulate autofluorescence with strong
98 emission in the 450-600 nm range (Figure 1B and 1D). Conversely, 561 nm excitation
99 stimulates autofluorescence with weak emission in the 570-720 nm range, and 647 nm
100 excitation produces little to no emission (Figure 1B and 1D). To assess the variability of the
101 spectral profiles, we collected data from 5 separate animals. We found that 405 nm and 473 nm
102 excitation consistently stimulate strong emission (Supplemental Figure 2A-E), while 561 nm
103 excitation produced weak and variable emission that ranged from barely detectable

104 (Supplemental Figure 2A-C) to undetectable (Supplemental Figure 2D and E). Anatomically, the
105 strongest autofluorescence was observed in the gut (Figure 1B asterisk) and cuticle (Figure 1B
106 box and arrowhead). These results demonstrate that *C. elegans* produce a wide spectrum of
107 autofluorescence that is distributed throughout the body of the animal, and the most intense
108 emission overlaps with commonly used green fluorescent proteins and dyes.

109
110 Our spectral analysis agrees with the well-documented interference from autofluorescence in
111 the *C. elegans* gut and the cuticle, which can make it difficult to quantify weak GFP signals
112 (Chalfie et al., 1994; Hermann et al., 2005; Monici, 2005; Morris et al., 2018; Pincus et al., 2016;
113 A. C. Teuscher & Ewald, 2018). Although the GFP and autofluorescence spectra overlap, we
114 hypothesized that their lifetimes could be resolved, which would allow GFP intensity to be
115 measured even in the presence of background autofluorescence. To test this possibility, we
116 imaged animals expressing *Podr-10::ODR-10::GFP*, which is an odorant receptor protein that
117 localizes to ciliated sensory neurons at the anterior end of the animal (Ryan et al., 2014;
118 Sengupta et al., 1996). Regardless of the presence of the fluorescent transgene, we found that
119 excitation using the 473 nm laser led to cuticle autofluorescence (Figure 2A, magenta
120 arrowhead). In animals with high levels of ODR-10::GFP expression, the GFP signal could be
121 discerned over the cuticle autofluorescence (Figure 2A, top row, yellow arrowhead). In animals
122 whose ODR-10::GFP levels were relatively low, the cuticle autofluorescence obscured the GFP
123 fluorescence (Figure 2A, middle row, yellow arrowhead). No GFP fluorescence was seen in
124 animals lacking the ODR-10::GFP transgene (Figure 2A, bottom row).

125
126 To differentiate between cuticle autofluorescence and GFP fluorescence, we characterized each
127 using Fast-FLIM (i.e., average photon arrival time, Figure 2B). Regardless of expression level,
128 the average photon arrival time of ODR-10::GFP was approximately 2.5 ns (Figure 2B, top and
129 middle rows), and the average photon arrival time of cuticle autofluorescence was
130 approximately 1.3 ns (Figure 2B, all rows). This suggested that FLIM could be used to separate
131 these spectrally similar signals. However, Fast-FLIM has limited utility because it does not
132 distinguish heterogeneous lifetimes within a single pixel. To more fully characterize cuticle and
133 ODR-10::GFP fluorescence, we used Phasor-FLIM (Figure 2C). On phasor plots, the ODR-
134 10::GFP signal is located near the unit semi-circle at approximately 2.5 ns (based upon the 80
135 mHz repetition rate of our laser), which is indicative of a single, well-defined lifetime (Figure 2C,
136 yellow circle; Digman et al., 2008). In contrast, the cuticle signal is located in the interior of the
137 unit semi-circle as a right shifted, tight cluster, which is indicative of shorter, heterogeneous

138 lifetimes (Figure 2C, magenta circle). These results suggest that cuticle autofluorescence arises
139 from green fluorophores with complex decay profiles that can be spatially resolved in phasor
140 space from the single component ODR-10::GFP. Indeed, when phasor masking is applied to
141 these images, both bright and dim ODR-10::GFP signal can be faithfully “extracted” from cuticle
142 autofluorescence in live animals (Figure 2D-F, top and middle rows). To demonstrate the
143 biological usefulness of phasor masking, we used this process to characterize how the genetic
144 mutation of the putative E2 ubiquitin ligase, *ubc-6*, affects ODR-10::GFP abundance. *ubc-6* is a
145 highly conserved eukaryotic gene that participates in ER-associated degradation (Christianson
146 & Carvalho, 2022; Weber et al., 2016), but no previous studies have implicated it in olfactory
147 receptor maintenance. We found that a deletion in the *ubc-6* gene results in a 2.7-fold increase
148 in the ciliary accumulation of ODR-10::GFP (average total photon counts for wildtype = 6075,
149 *ubc-6* mutant = 16657, student’s t-test p-value <0.001; Figure 2G-H).

150
151 Our results establish that Phasor-FLIM can separate problematic cuticle autofluorescence from
152 GFP fluorescence in dim ciliated neurons located in the head of the animal. Next, we
153 investigated whether spectral emission scanning and FLIM could be combined to differentiate
154 between populations of gut autofluorescence in the anterior of the animal (Figure 3A), which is
155 known to result from a heterogeneous collection of subcellular lysosome-related gut granules
156 (Hermann et al., 2005; Morris et al., 2018). Similar to our lower resolution spectral analysis
157 (Figure 1), the anterior gut produced heterogeneous emission spectra from individual granules
158 that was most strongly stimulated with the 405 nm and 473 nm laser lines (Figure 3B and 3C).
159 To more fully characterize the heterogeneity, we applied K means clustering to spectral profiles
160 of individual granules produced by 405 nm excitation. Specifically, we used the summed mean
161 emission intensity across all wavelengths (i.e., brightness) as one component and the intensity
162 weighted center of the emission peak (i.e., center of mass) as the second component. The
163 clustering analysis revealed four robust populations (Figure 3D and 3E, Supplemental Figure 3).
164 The brightest population had a center of mass at approximately 525 nm (Figure 3D and 3E,
165 magenta) and included both isolated granules and granules that overlap with a larger, dimmer
166 population (Figure 3F and 3G, yellow). There were two additional relatively dim populations with
167 centers of mass at approximately 495 nm and 510 nm (Figure 3D-G, cyan and grey,
168 respectively). These results demonstrate that high spatial resolution emission scanning can be
169 combined with unbiased clustering approaches to phenotype spectrally distinct granules.

170

171 Because GFP fluorescence could be separated from spectrally similar cuticle autofluorescence
172 using FLIM (Figure 2), we were curious whether FLIM could also reveal different subpopulations
173 of gut granules. To test this, we analyzed fluorescence lifetime in several anterior and posterior
174 regions of the gut using a 473 nm excitation laser (Figure 4A). The photon count (i.e., intensity)
175 images revealed granules with a range of intensities. These included both homogenous
176 granules with uniform intensity and granules that appeared to have multiple compartments
177 (Figure 4B and 4D, left column; Supplemental Figure 4). Intriguingly, some of these granules
178 could be visually distinguished via Fast-FLIM (Figure 4B and 4D, middle column; Supplemental
179 Figure 4). We analyzed phasor plots to further understand the nature of the different fluorescent
180 lifetime populations. Phasor analysis revealed 3 distinct subpopulations of multi-component
181 autofluorescence (i.e., located in the interior of the phasor plot) that originated from spatially
182 distinct gut particles (Figure 4B, right column; magenta, *a*; yellow, *b*; and cyan, *c*). Generally, the
183 magenta phasor population (Figure 4C, *a*) was composed of relatively large, low intensity
184 granules that were sparsely distributed across the gut. In contrast, the yellow and cyan
185 populations included both well-defined granules and diffuse regions of autofluorescence that
186 lacked clear boundaries (Figure 4C, *b* and *c*). In addition, we also observed individual granules
187 that could be separated into spatially distinct areas of the phasor plot (Figure 4D, right column).
188 Specifically, within a mixed population, some – but not all – granules could be separated into
189 more than one lifetime (compare Figure 4E, *a-c*, magenta, *a*; magenta and cyan, *b*; and cyan
190 only, *c*). Collectively, these results demonstrate that spatially distinct gut granule
191 autofluorescence can be more fully characterized in a label free manner through a combination
192 of high resolution spectral and Phasor-FLIM analysis.

193 FLIM is advancing as a useful tool to overcome challenging microscopy problems (Datta et al.,
194 2020) that include label-free analysis of autofluorescent cell structures and molecules (Blacker
195 et al., 2014; Ouyang et al., 2021), biochemical characterization of the solvent surrounding
196 known fluorophores (Llères et al., 2017), and distinguishing spectrally similar fluorophores
197 (Scipioni et al., 2021). Here, we used FLIM to facilitate traditionally problematic quantification of
198 dim GFP signal within sub-micron scale cell structures (i.e., sensory cilia) that are obscured by
199 the green component of cuticle autofluorescence (Figure 2 and as seen in (Sepulveda et al.,
200 2023; Wang et al., 2015)). Compared to prior techniques, our FLIM method has the major
201 benefit of not requiring the re-engineering of strains with different fluorescent reporters (Heppert
202 et al., 2016) or purchasing an extensive array of overlapping bandpass filters (Morris et al.,
203 2018). Although FLIM setups themselves can be costly and technically complex, as commercial
204 systems become more common it is expected that using FLIM to isolate and quantify GFP

205 signal will become more accessible. Moreover, because cuticle autofluorescence (Figure 2) and
206 gut autofluorescence (Figure 4) exhibit complex decay profiles (i.e., they map to the interior of
207 the phasor plot), the autofluorescence elimination approach described in this manuscript should
208 be able to distinguish autofluorescence from any fluorescent protein that exhibits mono-
209 exponential decay.

210
211 In addition, we have used FLIM to reveal sub-populations of autofluorescent lysosome-related
212 organelles (gut granules) that can be separated based upon lifetime differences alone. This
213 complements recent analytical approaches that combine Nile Red staining with two-photon
214 FLIM to differentiate gut granules with distinct lipid populations (W.-W. Chen et al., 2023). We
215 have also used excitation/emission scanning to identify spectrally distinct subpopulations of gut
216 granules that are uniquely excited at 405 nm. In the future, it will be important to identify how
217 these spectrally distinct gut granules relate to those that can be distinguished via FLIM alone.
218 However, this will require a pulsed UV laser to simultaneously excite the spectrally distinct
219 population and perform time-correlated single photon counting, which is not presently available
220 on commercial FLIM instruments.

221
222 *C. elegans* gut granules are an established model for understanding nutrient trafficking and
223 metabolism. While many studies have focused on the endocytic pathways that underlie gut
224 granule maturation, it is becoming clear that age and nutritional states can affect the physical,
225 biochemical, and visual properties of gut granules (A.J. Chen et al., 2018; W.-W. Chen et al.,
226 2023; Hermann et al., 2005; Roh et al., 2012). For example, when animals are reared in excess
227 zinc, gut granules form with a bilobed morphology (Mendoza et al., 2024; Roh et al., 2012).
228 Because only one of the lobes consistently contains high concentrations of zinc, these granules
229 are physiologically and spatially asymmetric (Mendoza et al., 2024). Our observation of some
230 gut granules that contain fluorescence with more than one lifetime species is particularly
231 reminiscent of these bilobed granules (Mendoza et al., 2024; Roh et al., 2012), though we did
232 not rear animals on artificially high zinc concentrations.

233
234 The gut granules that we describe in this manuscript appear to represent spectrally defined
235 categories, but they are not homogeneous with respect to representation and localization
236 (Figures 3 and 4, Supplemental Figures 3 and 4). This heterogeneity could arise from several
237 aspects of *C. elegans* biology. First, because our samples were intentionally unlabeled, we did
238 not attempt to identify different classifications of organelles. That is, it is possible that some of

239 the granules that appear in our images represent lysosomes, endosomes, or other
240 compartments derived from the endomembrane system. In addition, lysosome related
241 organelles (LROs) undergo changes within developing and aging *C. elegans*. For example,
242 protein markers for LROs can be detected during late embryonic and early larval stages
243 (Hermann et al., 2005), but changes in lipid accumulation in LROs continue later, as the animals
244 reach reproductive maturity and yolk proteins and lipids are transferred to maturing oocytes
245 (Komura et al., 2021; Schroeder et al., 2007). Birefringence in LROs also increases as animals
246 age (Komura et al., 2021). While we imaged animals after their final molt (from L4 larvae to
247 adult animals), it is possible that our imaging captured granules that were in different stages of
248 maturity. Finally, LROs are increasingly recognized as centers of metabolic regulation and
249 metabolite storage. In particular, LROs can accumulate zinc (Roh et al., 2012), copper (Chun et
250 al., 2017), and anthranilic acid glucosyl ester (downstream of kynurenine pathway, reviewed in
251 (Coburn & Gems, 2013)). Importantly, even in animals experiencing a high metabolic input (for
252 example, high levels of zinc), changes in gut granules labeling, size, and shape are
253 heterogeneous (Roh et al., 2012). In our own analysis, we found some heterogeneity in spectral
254 and FLIM profiles depending on where images were located (Supplemental Figure 3 and
255 Supplemental Figure 4). Overall, our data may be capturing the existing heterogeneity in the gut
256 granule populations. Future experiments in animals lacking LROs, for example *glo-1* mutants
257 (Hermann et al., 2005; Rabbits et al., 2008), could be used to parse the precise identity of the
258 granules we have described. In addition, monitoring and/or intentionally modifying metabolic
259 inputs could drive gut granules to more heterogeneous spectral profiles.

260

261 Our imaging data show that autofluorescence can be masked to remove signal that may
262 interfere with fluorescence imaging. With respect to understanding the biology of
263 endomembrane trafficking in the gut, this is important because gut granule autofluorescence
264 complicates the imaging and analysis of particles as they mature (Rabbits et al., 2008; Voss et
265 al., 2020). Previously, researchers depended on specific filter sets and protocols to try to
266 remove background autofluorescence (Teuscher & Ewald, 2018). Alternatively, lipophilic or
267 metal-binding dyes have been effective at boosting the signal of organelles of interest (Mendoza
268 et al., 2024; Sepulveda et al., 2023). Recently, gut granule stores of heme have been assessed
269 in a dye-free assay using transient absorption microscopy, but this relies specifically on the
270 chemical signature of heme (A. J. Chen et al., 2018). Our FLIM data suggest that biochemical
271 differences within subpopulations, and even individual gut granules, could be differentiated
272 without the need for labeling or knowledge of precise chemical differences. Collectively, our

273 results demonstrate that high spatial resolution spectral scanning combined with Phasor-FLIM is
274 a useful tool to overcome challenging live imaging problems in *C. elegans* biology.

275

276 **Methods:**

277

278 **C. elegans strains used in this study:** N2 (Bristol), *kyIs53* (*Podr-10::ODR-10::GFP*), *kyIs53*;
279 *ubc-7* (*gk857464*), *kyIs53*; *ubc-6* (*gk3799 gk5313[loxP]*). *C. elegans* were maintained according
280 to accepted protocols (Brenner, 1974; Meneely et al., 2019).

281

282 **Preparing slides:** Animals were grown at 21.5 °C on nematode growth media (NGM) spotted
283 with OP-50 *E. coli*. Animals were age synchronized by dissolving gravid animals and allowing
284 the remaining eggs to hatch on NGM plates (Porta-de-la-Riva et al., 2012). Age synchronized
285 young adult animals were paralyzed in an 8 µL droplet of 30 mg/mL 2,3-butanedione monoxime
286 on a glass coverslip for 10 minutes. A 2% agarose pad was used to hold the fully immobilized
287 animals for imaging.

288

289 **Microscope description:** All imaging was performed on a Leica Stellaris 8 equipped with an 80
290 mHz pulsed white light laser that is tunable in 1 nm increments from 440-790 nm, a 405 nm
291 diode (non-pulsed) laser, and five HyD detectors with dispersion-based spectral scanning from
292 410-850 nm. The microscope is equipped with a 63X 1.4 NA oil objective, a 63X 1.2 NA water
293 objective, a 40X 1.4 NA oil objective, 25X 0.95 NA water objective, 20X 0.75 NA dry objective,
294 10X 0.4 NA dry objective. The microscope is controlled by LasX software that includes the
295 Falcon FLIM module (including phasor analysis), Lightning deconvolution, and TauSense. For
296 all imaging experiments, the 405 diode and white light laser were both turned on 45 minutes
297 before data was collected to allow them to warm up. All laser intensities reported in this
298 manuscript are relative – laser power at the sample was not determined.

299

300 **Spectral Scans of entire C. elegans:** To capture emission profiles of the entire animal, the
301 20x/0.75 objective lens was used with a digital zoom of 4.44 to create a tile scan of the animal
302 with a 256.19 nm pixel size. To capture emission profiles of gut granules, the 63X/1.4 oil
303 objective lens was used with a digital zoom of 5.26 to create single images with a pixel size of
304 68.65 nm. The focal plane for the emission scanning was approximately midway through the
305 animal. Four commonly used excitation wavelengths (405 nm, 473 nm, 561 nm, and 647 nm)
306 were used to create emission profiles in 30 nm increments from 420-780 nm (405 nm

307 excitation), 480-780 nm (473 nm excitation), 570-780 nm (561 nm excitation), and 660-780 nm
308 (647 nm excitation). The spectral scan information is stored in image stacks where each slice
309 contains the intensity information for a 30 nm band of the emission profile (see Supplemental
310 Figure 1B-D for an example of spectral image stack).

311

312 **Colorized Spectral Images and Spectral Plots:** To create spectral plots of the entire animal
313 (Figure 1D) or of individual gut regions (Figure 3C) the average intensity per unit area was
314 calculated for regions of interest and plotted against the center of the respective emission band.
315 To colorize the spectral image data, the slice corresponding to each emission band was
316 converted to an RGB color corresponding to the average wavelength for that emission band
317 (e.g., 435 nm (blue) for the 420-450 nm band and 645 nm (red) for the 630-660 nm band).
318 These RGB images were then summed to produce a fully colorized image. For example, if a
319 region of interest had strong emission in the blue, green, and red bands, the summed colorized
320 image would appear white, but if there was strong emission in green and red bands, the
321 summed colorized image would appear yellow. The same steps were followed for “brightened
322 colorized” images, except the contrast was adjusted to saturate <= 0.125% of pixels before
323 making the figure. To characterize gut granule emission, the R program Kmeans++ was used to
324 cluster individual gut granules based upon the summed mean intensity (i.e., brightness) and the
325 center of mass (i.e., color) of their spectral profiles (Figure 3D-G and Supplemental Figure 3).
326 The gut granules were manually outlined in FIJI prior to Kmeans++ clustering.

327

328 **General Procedure for Separating Cuticle Autofluorescence from GFP Fluorescence:**
329 Images were acquired as Z-stacks with a 1 μ m step size using a 63x/1.40 oil objective, a zoom
330 of 4, and a resolution of 512x512 pixels, which leads to a 90 nm pixel size. The scan speed was
331 set to 600 Hz with four-line repetitions and the 488 nm laser set to 100% power. The acquisition
332 was conducted using LasX FALCON/FLIM, which sets the emission detector to single photon
333 counting mode and synchronizes the electronics to operate as a time-correlated single photon
334 counter. Photon Count images represent the total number of photons collected at each pixel
335 (i.e., intensity). Fast-FLIM images represent the average photon arrival time at each pixel.
336 Phasor analysis was performed with the following settings: Pixel Binning: 1, Harmonic: 1,
337 Threshold: 15 photons, Median Filter Radius: 11 pixels. After identifying the phasor space that
338 contained the GFP signal and the autofluorescence signal, a circular phasor mask was created
339 to encapsulate the appropriate area. After a region of the phasor plot was selected in LasX, the
340 corresponding image pixels were exported as a mask. To mask GFP, a 50-pixel circle centered

341 at 2.561 ns was used. To mask cuticle autofluorescence, a 30-pixel circle centered at 1.017 ns
342 was used. The mask images were imported into ImageJ where all pixels outside of the mask
343 were set to 0.

344

345 **Quantification of ODR-10::GFP accumulation in AWA cilia:** Images of wild-type and *ubc-6*
346 mutant animals were obtained with the following settings: Objective: 63x/1.40 oil, resolution:
347 512x512, zoom: 4, pixel size: 90 nm, step size: 1 μ m, scan speed: 600 Hz, line repetitions: 4,
348 laser: 488nm excitation with 50% intensity. FLIM characterization was performed with the
349 following settings: Pixel Binning: 1, Harmonic: 1, Threshold: 7 photons, Median Filter Radius:
350 19. GFP signal was extracted as described above. The resulting GFP images were processed
351 using a FIJI macro found here: [https://github.com/heinohv/Dahlberg-
352 Lab/blob/main/photon_measure.ijm](https://github.com/heinohv/Dahlberg-Lab/blob/main/photon_measure.ijm).

353

354 **FLIM analysis of Gut Granules:** The images were captured with the following settings:
355 Objective: 63x/1.40 oil, resolution: 512x512, zoom: 5.26, pixel size: 69 nm, scan speed: 600 Hz,
356 line repetitions: 8, laser: 473 nm excitation with 10% intensity. FLIM characterization and export
357 was performing with the following settings: Pixel binning: 2, Harmonic: 1, Threshold 20-100
358 photons, Median Filter Radius: 11. To characterize different granules based on fluorescent
359 lifetime, phasor plots were manually scanned to identify gut granules, or parts of gut granules,
360 whose autofluorescence could be mapped back to discrete regions of phasor space.

361

362 **Acknowledgements:**

363 *ubc-6* and *ubc-7* mutant strains were originally a kind gift from the Moerman Laboratory,
364 University of British Columbia and are now publicly available at the CGC.

365

366 **Competing Interests:**

367 No competing interests declared.

368

369 **Funding:**

370 Some *C. elegans* strains were provided by the CGC, which is funded by National Institute of
371 Health (NIH) Office of Research Infrastructure Programs (P40 OD010440). The Leica Stellaris 8
372 FALCON/FLIM microscope was purchased and maintained with support from a National
373 Science Foundation (NSF) Major Research Instrumentation grant (NSF DBI 2019228).
374 Additional microscopy support was provided by the WWU Scientific Technical Services Optical

375 Microscopy Core Facility. FLIM research in the Galati Lab is supported by WWU startup funds
376 and an NSF CAREER grant (NSF BIO 2146516).

377

378 **Data and resource availability:**

379 All relevant data and resources can be found within the article and its supplementary
380 information.

381 **Figure Legends:**

382 **Figure 1: *C. elegans* autofluorescence is most prominent at shorter wavelengths.** A) An
383 image of a 3-day old *C. elegans* acquired using differential interference contrast (DIC). B)
384 Colorized spectral images of a single plane in the same animal in (A) showing autofluorescence
385 emission after excitation with the following laser lines: 405 nm (emission 420-780 nm), 473 nm
386 (emission 480-780 nm), 561 nm (emission 570-780 nm), and 647 nm (emission 660-780 nm).
387 **Relative laser power is reported as a percentage.** Regions of gut (asterisk) and cuticle (box and
388 arrowhead) autofluorescence are distinguished in the 473 nm excitation image. C) A mock
389 spectral profile of *C. elegans*. The excitation wavelength is represented by a vertical bar (purple).
390 The emission was collected in 30 nm bins and plotted as mean arbitrary fluorescence units (AFU)
391 per μm^2 . D) The spectral profiles for each colorized spectral image in panel (B). See Materials
392 and Methods and Supplemental Figure 1 for detailed explanation of how images were colorized
393 and converted to spectral profiles. Similar spectral profiles were generated for five additional
394 independent animals during two imaging sessions (presented in Supplemental Figure 2).

395 **Figure 2: Phasor-FLIM masking to isolate GFP fluorescence from autofluorescence.**

396 Column A) Maximum intensity projections of *C. elegans* head showing high, low, or no GFP
397 fluorescence in the AWA neuron excited with a 473 nm laser line. The cuticle and neuron are
398 indicated with magenta and yellow arrows, respectively. Images are scaled to avoid saturation
399 of the GFP signal. Genotypes imaged were *ubc-7* (*gk857464*); *kyIs53* (top), *kyIs53* (middle), N2
400 (bottom). Column B) Fast-FLIM images displayed with a time-coded lookup table (LUT) showing
401 longer lifetime GFP fluorescence (green/yellow) and shorter lifetime autofluorescence (cyan).
402 Column C) Phasor plots that correspond to the Fast-FLIM images in column (B). The yellow
403 circle encapsulates the phasor space corresponding to GFP fluorescence. The magenta circle
404 encapsulates the phasor space corresponding to cuticle autofluorescence. **The horizontal axis**
405 **of the phasor plot represents the *g* component, while the vertical axis represents the *s***
406 **component. The single exponential lifetime for pixels that fall on the universal semi-circle are**
407 **between 0 and 12 ns, which is based upon the laser repetition rate of 80 mHz.** Column D) False
408 colored images showing the GFP (yellow) and cuticle autofluorescence (magenta) regions of
409 the phasor plots shown in column C. Columns E and F) Maximum intensity projections of the
410 GFP pixels (column E) and cuticle autofluorescence pixels (column F) as defined in column D.
411 **These results were generated from three independent animals imaged in a single imaging**
412 **session.** G) Representative images of Phasor-FLIM masking applied to *kyIs53* worms in a wild-
413 type and *ubc-6* mutant background. H) GFP signal quantified and compared between the wild-

414 type and *ubc-6* mutant background. 36 wild-type animals were imaged over six imaging
415 sessions; 15 *ubc-6* mutant animals were imaged over three imaging sessions. Normality of each
416 group was checked using a Shapiro-Wilk test (Wild-type: $p=0.18$, *ubc-6*: $p=0.61$). Groups were
417 then compared using a two-tailed Student's t-test, which indicated a significant difference ($p <$
418 0.001).

419 **Figure 3: Autofluorescent granules have spectrally distinct populations and regions.** A) A
420 schematic representation of a 3-day old *C. elegans* and a region of the upper intestine captured
421 at 63X magnification (inset) using DIC. B) Images of a single plane in the intestine region (A,
422 inset) showing autofluorescence emission after excitation with the following laser lines: 405 nm
423 (emission 420-780 nm), 473 nm (emission 480-780 nm), 561 nm (emission 570-780 nm), and
424 647 nm (emission 660-780 nm). The left column shows total photon count as a greyscale image
425 with the excitation wavelength and relative laser power is reported as a percentage. The middle
426 column shows colorized spectral images. The right column shows brightened colorized spectral
427 images. C) The spectral profiles for each colorized spectral image in panel B. D) Colorized
428 spectral images of granules stimulated with the 405 nm laser line. Outlines indicate regions of
429 interest that were quantified across the entire emission spectrum. E) Left, the average emission
430 of 187 granules across 6 images from 6 different animals outlined within the field of view, as
431 shown in D (line color refers to the outline and the shading around the central line shows
432 standard deviation from the average). Right, Kmeans++ clustering identifies four clusters of
433 granules based on their spectral center of mass and summed mean intensity. F) Colorized
434 spectral images of granules from panels (A) and (B) that were stimulated with the 405 nm laser
435 line. G) Kmeans++ analysis showing that granules and sub-regions of granules are distributed
436 across three of the four clusters identified in (E).

437 **Figure 4: Sub-populations of gut granules have distinct multi-exponential lifetimes and**
438 **regions with distinct fluorescent lifetimes.** A) A schematic representation of a 3-day old *C.*
439 *elegans*. Four gut regions were imaged with high spatial resolution FLIM (white boxes, regions
440 1-4). B) Photon count images (left column), time-coded Fast-FLIM images (middle column), and
441 photon count images with phasor overlay (phasor mask, right column) of a single plane in
442 regions 1 and 2. The color scale for lifetime value is located above the column of Fast-FLIM
443 images. C) Zoomed images of granules with distinct multi-exponential lifetimes identified at the
444 regions indicated in the phasor plot below (a, magenta; b, yellow; c, cyan). D) Photon count
445 images (left column), time-coded Fast-FLIM images (middle column), and photon count images
446 with phasor overlay (phasor mask, right column) of a single plane in regions 3 and 4. The color

447 scale for lifetime value is located above the column of Fast-FLIM images. E) Zoomed images of
448 granules composed of a single lifetime (a, magenta only and c, cyan only) and two examples of
449 granules composed of two lifetimes (b, magenta and cyan). These results are representative of
450 similar results that were replicated in four different animals across four different imaging
451 sessions on four separate days.

452 **Supplemental Figure 1. Generation of colorized images based on spectral scanning.** A)
453 Image of the animal shown in Figure 1. The white box indicates the portion of the animal used
454 for this colorization example. B) XY Lambda (emission) stacks were split into 12 individual
455 emission bins. C) Each emission bin was colorized based on the center of the emission bin. For
456 example, for the 420-450 nm emission bin, the blue color LUT corresponds to different
457 intensities of 435 nm light. D) Images from B are displayed with a narrow intensity range to
458 make the dim signal more apparent. E) A generic spectral profile plot showing how each
459 emission bin image corresponds to an emission bin average in the spectral profile plot.

460 **Supplemental Figure 2. Variable emission is stimulated by the 561 nm laser line.** 3-day old
461 *C. elegans* acquired using differential interference contrast (DIC) and the same spectral
462 scanning approach described in Figure 1. A-E) show consistent strong emission stimulated by
463 the 405 nm and 473 nm laser lines. A-C) show weak but observable emission stimulated by the
464 561 nm laser line. D and E) show barely detectable emission stimulated by the 561 nm laser
465 line. These results were generated from five independent animals imaged across two separate
466 imaging sessions on two separate days.

467 **Supplemental Figure 3. Individual spectral profiles for spectrally distinct gut granules**
468 **separated via Kmeans++ clustering.** The individual spectral profiles for all 187 gut granules
469 acquired from 6 separate animals that were analyzed in this study. The color coding of the
470 spectral profiles was determined via Kmeans++ clustering. The average and standard deviation
471 for each class of spectral profile is shown in Figure 3E.

472 **Supplemental Figure 4. Additional examples of autofluorescence with spatial**
473 **heterogeneity in fluorescence lifetime throughout the gut of *C. elegans*.** A) A schematic
474 representation of a 3-day old *C. elegans*. As in Figure 4, single planes in four gut regions were
475 imaged with high spatial resolution FLIM (white boxes, regions 1-4). B) Photon count images
476 (left column), time-coded Fast-FLIM images (middle column), and photon count images with
477 phasor overlay (phasor mask, right column) of regions 1 and 2. The color scale for lifetime value
478 is located above the column of Fast-FLIM images. C) Zoomed images of granules with distinct

479 multi-exponential lifetimes identified at the regions indicated in the phasor plot below (a,
480 magenta; b, yellow; c, cyan). D) Photon count images (left column), time-coded Fast-FLIM
481 images (middle column), and photon count images with phasor overlay (phasor mask, right
482 column) of regions 3 and 4. The color scale for lifetime value is located above the column of
483 Fast-FLIM images. E) Zoomed images of granules composed of a single lifetime (a, magenta
484 only and c, cyan only) and two examples of granules composed of two lifetimes (b, magenta
485 and cyan). These results are representative of similar results that were replicated in four
486 different animals across four different imaging sessions on four separate days.

487 Bibliography

488 Bao, Z., Murray, J. I., Boyle, T., Ooi, S. L., Sandel, M. J., & Waterston, R. H. (2006). Automated cell lineage
489 tracing in *Caenorhabditis elegans*. *Proceedings of the National Academy of Sciences*, 103(8),
490 2707–2712. <https://doi.org/10.1073/pnas.0511111103>

491 Bhattacharjee, A., Datta, R., Gratton, E., & Hochbaum, A. I. (2017). Metabolic fingerprinting of bacteria
492 by fluorescence lifetime imaging microscopy. *Scientific Reports*, 7(1), 3743.
493 <https://doi.org/10.1038/s41598-017-04032-w>

494 Blacker, T. S., Mann, Z. F., Gale, J. E., Ziegler, M., Bain, A. J., Szabadkai, G., & Duchen, M. R. (2014).
495 Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. *Nature
496 Communications*, 5(1), 1–9. <https://doi.org/10.1038/ncomms4936>

497 Brenner, S. (1974). THE GENETICS OF *CAENORHABDITIS ELEGANS*. *Genetics*, 77(1), 71–94.
498 <https://doi.org/10.1093/genetics/77.1.71>

499 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994a). Green Fluorescent Protein as a
500 Marker for Gene Expression. *Science*, 263(5148), 802–805.
501 <https://doi.org/10.1126/science.8303295>

502 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994b). Green fluorescent protein as a
503 marker for gene expression. *Science (New York, N.Y.)*, 263(5148), Article 5148.

504 Chen, A. J., Yuan, X., Li, J., Dong, P., Hamza, I., & Cheng, J.-X. (2018). Label-Free Imaging of Heme
505 Dynamics in Living Organisms by Transient Absorption Microscopy. *Analytical Chemistry*, 90(5),
506 3395–3401. <https://doi.org/10.1021/acs.analchem.7b05046>

507 Chen, W.-W., Tang, W., Hamerton, E. K., Kuo, P. X., Lemieux, G. A., Ashrafi, K., & Cicerone, M. T. (2023).
508 Identifying lipid particle sub-types in live *Caenorhabditis elegans* with two-photon fluorescence
509 lifetime imaging. *Frontiers in Chemistry*, 11.
510 <https://www.frontiersin.org/articles/10.3389/fchem.2023.1161775>

511 Christianson, J. C., & Carvalho, P. (2022). Order through destruction: How ER-associated protein
512 degradation contributes to organelle homeostasis. *The EMBO Journal*, 41(6), e109845.
513 <https://doi.org/10.15252/embj.2021109845>

514 Chun, H., Sharma, A. K., Lee, J., Chan, J., Jia, S., & Kim, B.-E. (2017). The Intestinal Copper Exporter CUA-1
515 Is Required for Systemic Copper Homeostasis in *Caenorhabditis elegans**♦. *Journal of Biological
516 Chemistry*, 292(1), 1–14. <https://doi.org/10.1074/jbc.M116.760876>

517 Chung, S. H., Sun, L., & Gabel, C. V. (2013). In vivo Neuronal Calcium Imaging in *C. elegans*. *JoVE (Journal
518 of Visualized Experiments)*, 74, e50357. <https://doi.org/10.3791/50357>

519 Coburn, C., & Gems, D. (2013). The mysterious case of the *C. elegans* gut granule: Death fluorescence,
520 anthranilic acid and the kynurenine pathway. *Frontiers in Genetics*, 4, 151.
521 <https://doi.org/10.3389/fgene.2013.00151>

522 Corsi, A. K., Wightman, B., & Chalfie, M. (2015). A Transparent Window into Biology: A Primer on
523 *Caenorhabditis elegans*. *Genetics*, 200(2), 387–407.
524 <https://doi.org/10.1534/genetics.115.176099>

525 Datta, R., Heaster, T. M., Sharick, J. T., Gillette, A. A., & Skala, M. C. (2020). Fluorescence lifetime imaging
526 microscopy: Fundamentals and advances in instrumentation, analysis, and applications. *Journal
527 of Biomedical Optics*, 25(7), 071203. <https://doi.org/10.1117/1.JBO.25.7.071203>

528 Digman, M. A., Caiolfa, V. R., Zamai, M., & Gratton, E. (2008). The Phasor Approach to Fluorescence
529 Lifetime Imaging Analysis. *Biophysical Journal*, 94(2), L14–L16.
530 <https://doi.org/10.1529/biophysj.107.120154>

531 Eichel, K., Uenaka, T., Belapurkar, V., Lu, R., Cheng, S., Pak, J. S., Taylor, C. A., Südhof, T. C., Malenka, R.,
532 Wernig, M., Özkan, E., Perrais, D., & Shen, K. (2022). Endocytosis in the axon initial segment
533 maintains neuronal polarity. *Nature*, 609(7925), Article 7925. [https://doi.org/10.1038/s41586-022-05074-5](https://doi.org/10.1038/s41586-
534 022-05074-5)

535 El Mouridi, S., Alkhaldi, F., & Frøkjær-Jensen, C. (2022). Modular safe-harbor transgene insertion for
536 targeted single-copy and extrachromosomal array integration in *Caenorhabditis elegans*. *G3
537 Genes/Genomes/Genetics*, 12(9), jkac184. <https://doi.org/10.1093/g3journal/jkac184>

538 Gallrein, C., Iburg, M., Michelberger, T., Koçak, A., Puchkov, D., Liu, F., Ayala Mariscal, S. M., Nayak, T.,
539 Kaminski Schierle, G. S., & Kirstein, J. (2021). Novel amyloid-beta pathology *C. elegans* model
540 reveals distinct neurons as seeds of pathogenicity. *Progress in Neurobiology*, 198, 101907.
541 <https://doi.org/10.1016/j.pneurobio.2020.101907>

542 Gonzalez Pisfil, M., Nadelson, I., Bergner, B., Rottmeier, S., Thomae, A. W., & Dietzel, S. (2022).
543 Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes
544 and fluorescence lifetime phasor separation. *Scientific Reports*, 12(1), 14027.
545 <https://doi.org/10.1038/s41598-022-17825-5>

546 Hendl-Naumark, A., Wulf, V., & Bisker, G. (2021). In vivo imaging of fluorescent single-walled carbon
547 nanotubes within *C. elegans* nematodes in the near-infrared window. *Materials Today Bio*, 12,
548 100175. <https://doi.org/10.1016/j.mtbiol.2021.100175>

549 Heppert, J. K., Dickinson, D. J., Pani, A. M., Higgins, C. D., Steward, A., Ahringer, J., Kuhn, J. R., &
550 Goldstein, B. (2016). Comparative assessment of fluorescent proteins for in vivo imaging in an
551 animal model system. *Molecular Biology of the Cell*, 27(22), 3385–3394.
552 <https://doi.org/10.1091/mbc.E16-01-0063>

553 Hermann, G. J., Schroeder, L. K., Hieb, C. A., Kershner, A. M., Rabbitts, B. M., Fonarev, P., Grant, B. D., &
554 Priess, J. R. (2005a). Genetic Analysis of Lysosomal Trafficking in *Caenorhabditis elegans*.
555 *Molecular Biology of the Cell*, 16(7), 3273–3288. <https://doi.org/10.1091/mbc.E05-01-0060>

556 Hermann, G. J., Schroeder, L. K., Hieb, C. A., Kershner, A. M., Rabbitts, B. M., Fonarev, P., Grant, B. D., &
557 Priess, J. R. (2005b). Genetic analysis of lysosomal trafficking in *Caenorhabditis elegans*.
558 *Molecular Biology of the Cell*, 16(7), 3273–3288. <https://doi.org/10.1091/mbc.e05-01-0060>

559 Jones, K. T., & Ashrafi, K. (2009). *Caenorhabditis elegans* as an emerging model for studying the basic
560 biology of obesity. *Disease Models & Mechanisms*, 2(5–6), 224–229.
561 <https://doi.org/10.1242/dmm.001933>

562 Komura, T., Yamanaka, M., Nishimura, K., Hara, K., & Nishikawa, Y. (2021a). Autofluorescence as a
563 noninvasive biomarker of senescence and advanced glycation end products in *Caenorhabditis*
564 *elegans*. *Npj Aging and Mechanisms of Disease*, 7(1), Article 1. <https://doi.org/10.1038/s41514-021-00061-y>

566 Komura, T., Yamanaka, M., Nishimura, K., Hara, K., & Nishikawa, Y. (2021b). Autofluorescence as a
567 noninvasive biomarker of senescence and advanced glycation end products in *Caenorhabditis*
568 *elegans*. *Npj Aging and Mechanisms of Disease*, 7(1), 1–11. <https://doi.org/10.1038/s41514-021-00061-y>

570 Laine, R. F., Sinnige, T., Ma, K. Y., Haack, A. J., Poudel, C., Gaida, P., Curry, N., Perni, M., Nollen, E. A. A.,
571 Dobson, C. M., Vendruscolo, M., Kaminski Schierle, G. S., & Kaminski, C. F. (2019). Fast
572 Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α -Synuclein and

573 Polyglutamine in Aging *Caenorhabditis elegans*. *ACS Chemical Biology*, 14(7), 1628–1636.
574 <https://doi.org/10.1021/acschembio.9b00354>

575 Llères, D., Bailly, A. P., Perrin, A., Norman, D. G., Xirodimas, D. P., & Feil, R. (2017). Quantitative FLIM-
576 FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles
577 of Condensin Complexes. *Cell Reports*, 18(7), 1791–1803.
578 <https://doi.org/10.1016/j.celrep.2017.01.043>

579 Lou, J., Scipioni, L., Wright, B. K., Bartolec, T. K., Zhang, J., Masamsetti, V. P., Gaus, K., Gratton, E.,
580 Cesare, A. J., & Hinde, E. (2019). Phasor histone FLIM-FRET microscopy quantifies
581 spatiotemporal rearrangement of chromatin architecture during the DNA damage response.
582 *Proceedings of the National Academy of Sciences*, 116(15), 7323–7332.
583 <https://doi.org/10.1073/pnas.1814965116>

584 Ma, N., Digman, M. A., Malacrida, L., & Gratton, E. (2016). Measurements of absolute concentrations of
585 NADH in cells using the phasor FLIM method. *Biomedical Optics Express*, 7(7), 2441–2452.
586 <https://doi.org/10.1364/BOE.7.002441>

587 Malacrida, L., Ranjit, S., Jameson, D. M., & Gratton, E. (2021). The Phasor Plot: A Universal Circle to
588 Advance Fluorescence Lifetime Analysis and Interpretation. *Annual Review of Biophysics*, 50(1),
589 575–593. <https://doi.org/10.1146/annurev-biophys-062920-063631>

590 Mendoza, A. D., Dietrich, N., Tan, C.-H., Herrera, D., Kasiah, J., Payne, Z., Cubillas, C., Schneider, D. L., &
591 Kornfeld, K. (2024). Lysosome-related organelles contain an expansion compartment that
592 mediates delivery of zinc transporters to promote homeostasis. *Proceedings of the National
593 Academy of Sciences*, 121(7), e2307143121. <https://doi.org/10.1073/pnas.2307143121>

594 Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with Worms: *Caenorhabditis elegans* as a
595 Model Organism. *Current Protocols Essential Laboratory Techniques*, 19(1), e35.
596 <https://doi.org/10.1002/cpet.35>

597 Monici, M. (2005). Cell and tissue autofluorescence research and diagnostic applications. *Biotechnology
598 Annual Review*, 11, 227–256. [https://doi.org/10.1016/S1387-2656\(05\)11007-2](https://doi.org/10.1016/S1387-2656(05)11007-2)

599 Morris, C., Foster, O. K., Handa, S., Peloza, K., Voss, L., Somhegyi, H., Jian, Y., Vo, M. V., Harp, M., Rambo,
600 F. M., Yang, C., & Hermann, G. J. (2018). Function and regulation of the *Caenorhabditis elegans*
601 Rab32 family member GLO-1 in lysosome-related organelle biogenesis. *PLOS Genetics*, 14(11),
602 e1007772. <https://doi.org/10.1371/journal.pgen.1007772>

603 Ouyang, Y., Liu, Y., Wang, Z. M., Liu, Z., & Wu, M. (2021). FLIM as a Promising Tool for Cancer Diagnosis
604 and Treatment Monitoring. *Nano-Micro Letters*, 13(1), 133. <https://doi.org/10.1007/s40820-021-00653-z>

605

606 Pincus, Z., Mazer, T. C., & Slack, F. J. (2016). Autofluorescence as a measure of senescence in *C. elegans*:
607 Look to red, not blue or green. *Aging (Albany NY)*, 8(5), 889–898.
608 <https://doi.org/10.18632/aging.100936>

609 Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A., & Cerón, J. (2012). Basic *Caenorhabditis elegans*
610 Methods: Synchronization and Observation. *Journal of Visualized Experiments*, 64, 4019.
611 <https://doi.org/10.3791/4019>

612 Rabbitts, B. M., Ciotti, M. K., Miller, N. E., Kramer, M., Lawrenson, A. L., Levitte, S., Kremer, S., Kwan, E.,
613 Weis, A. M., & Hermann, G. J. (2008a). *Glo-3*, a Novel *Caenorhabditis elegans* Gene, Is Required
614 for Lysosome-Related Organelle Biogenesis. *Genetics*, 180(2), 857–871.
615 <https://doi.org/10.1534/genetics.108.093534>

616 Rabbitts, B. M., Ciotti, M. K., Miller, N. E., Kramer, M., Lawrenson, A. L., Levitte, S., Kremer, S., Kwan, E.,
617 Weis, A. M., & Hermann, G. J. (2008b). *Glo-3*, a novel *Caenorhabditis elegans* gene, is required
618 for lysosome-related organelle biogenesis. *Genetics*, 180(2), 857–871.
619 <https://doi.org/10.1534/genetics.108.093534>

620 Rashtchian, S., Youssef, K., Rezai, P., & Tabatabaei, N. (2021). High-speed label-free confocal microscopy
621 of *Caenorhabditis elegans* with near infrared spectrally encoded confocal microscopy.
622 *Biomedical Optics Express*, 12(6), 3607–3618. <https://doi.org/10.1364/BOE.427685>

623 Rodrigues, N. T. L., Bland, T., Borrego-Pinto, J., Ng, K., Hirani, N., Gu, Y., Foo, S., & Goehring, N. W.
624 (2022). SAIBR: A simple, platform-independent method for spectral autofluorescence correction.
625 *Development*, 149(14), dev200545. <https://doi.org/10.1242/dev.200545>

626 Roh, H. C., Collier, S., Guthrie, J., Robertson, J. D., & Kornfeld, K. (2012a). Lysosome-Related Organelles
627 in Intestinal Cells Are a Zinc Storage Site in *C. elegans*. *Cell Metabolism*, 15(1), 88–99.
628 <https://doi.org/10.1016/j.cmet.2011.12.003>

629 Roh, H. C., Collier, S., Guthrie, J., Robertson, J. D., & Kornfeld, K. (2012b). Lysosome-related organelles in
630 intestinal cells are a zinc storage site in *C. elegans*. *Cell Metabolism*, 15(1), 88–99.
631 <https://doi.org/10.1016/j.cmet.2011.12.003>

632 Ryan, D. A., Miller, R. M., Lee, K., Neal, S. J., Fagan, K. A., Sengupta, P., & Portman, D. S. (2014). Sex, age,
633 and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor
634 expression. *Current Biology: CB*, 24(21), 2509–2517. <https://doi.org/10.1016/j.cub.2014.09.032>

635 Schroeder, L. K., Kremer, S., Kramer, M. J., Currie, E., Kwan, E., Watts, J. L., Lawrenson, A. L., & Hermann,
636 G. J. (2007). Function of the *Caenorhabditis elegans* ABC Transporter PGP-2 in the Biogenesis of
637 a Lysosome-related Fat Storage Organelle. *Molecular Biology of the Cell*, 18(3), 995–1008.
638 <https://doi.org/10.1091/mbc.e06-08-0685>

639 Scipioni, L., Rossetta, A., Tedeschi, G., & Gratton, E. (2021). Phasor S-FLIM: A new paradigm for fast and
640 robust spectral fluorescence lifetime imaging. *Nature Methods*, 18(5), 542–550.
641 <https://doi.org/10.1038/s41592-021-01108-4>

642 Sengupta, P., Chou, J. H., & Bargmann, C. I. (1996). Odr-10 encodes a seven transmembrane domain
643 olfactory receptor required for responses to the odorant diacetyl. *Cell*, 84(6), 899–909.
644 <http://www.ncbi.nlm.nih.gov/pubmed/8601313>

645 Sepulveda, N. B., Chen, D., & Petrella, L. N. (2023). Moderate heat stress-induced sterility is due to
646 motility defects and reduced mating drive in *Caenorhabditis elegans* males. *Journal of*
647 *Experimental Biology*, 226(20), jeb245546. <https://doi.org/10.1242/jeb.245546>

648 Szmacinski, H., Toshchakov, V., & Lakowicz, J. R. (2014). Application of phasor plot and autofluorescence
649 correction for study of heterogeneous cell population. *Journal of Biomedical Optics*, 19(4),
650 046017. <https://doi.org/10.1117/1.JBO.19.4.046017>

651 Teuscher, A. C., & Ewald, C. Y. (2018). Overcoming Autofluorescence to Assess GFP Expression During
652 Normal Physiology and Aging in *Caenorhabditis elegans*. *Bio-Protocol*, 8(14), e2940.
653 <https://doi.org/10.21769/BioProtoc.2940>

654 Teuscher, A., & Ewald, C. (2018). Overcoming Autofluorescence to Assess GFP Expression During Normal
655 Physiology and Aging in *Caenorhabditis elegans*. *BIO-PROTOCOL*, 8(14).
656 <https://doi.org/10.21769/BioProtoc.2940>

657 Thomas, B. J., Wight, I. E., Chou, W. Y. Y., Moreno, M., Dawson, Z., Homayouni, A., Huang, H., Kim, H.,
658 Jia, H., Buland, J. R., Wambach, J. A., Cole, F. S., Pak, S. C., Silverman, G. A., & Luke, C. J. (2019).
659 CemOrange2 fusions facilitate multifluorophore subcellular imaging in *C. elegans*. *PLOS ONE*,
660 14(3), e0214257. <https://doi.org/10.1371/journal.pone.0214257>

661 Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., Petreanu, L., Akerboom, J.,
662 McKinney, S. A., Schreiter, E. R., Bargmann, C. I., Jayaraman, V., Svoboda, K., & Looger, L. L.
663 (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium
664 indicators. *Nature Methods*, 6(12), 875–881. <https://doi.org/10.1038/nmeth.1398>

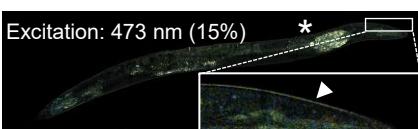
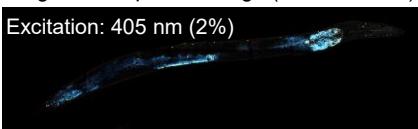
665 Voss, L., Foster, O. K., Harper, L., Morris, C., Lavoy, S., Brandt, J. N., Peloza, K., Handa, S., Maxfield, A.,
666 Harp, M., King, B., Eichten, V., Rambo, F. M., & Hermann, G. J. (2020). An ABCG Transporter

667 Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in *Caenorhabditis*
668 *elegans*. *Genetics*, 214(2), 419–445. <https://doi.org/10.1534/genetics.119.302900>

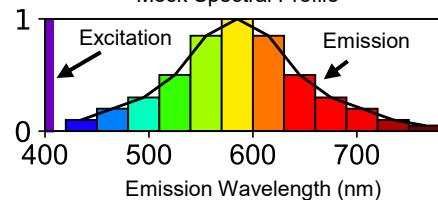
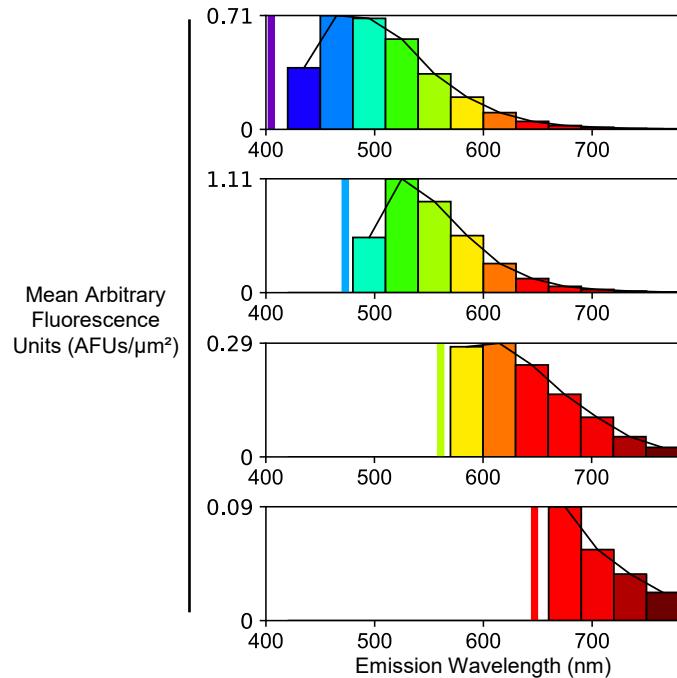
669 Wang, J., Kaletsky, R., Silva, M., Williams, A., Haas, L. A., Androwski, R. J., Landis, J. N., Patrick, C., Rashid,
670 A., Santiago-Martinez, D., Gravato-Nobre, M., Hodgkin, J., Hall, D. H., Murphy, C. T., & Barr, M.
671 M. (2015). Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators
672 of Behavior and Extracellular Vesicle Biogenesis. *Current Biology*, 25(24), 3232–3238.
673 <https://doi.org/10.1016/j.cub.2015.10.057>

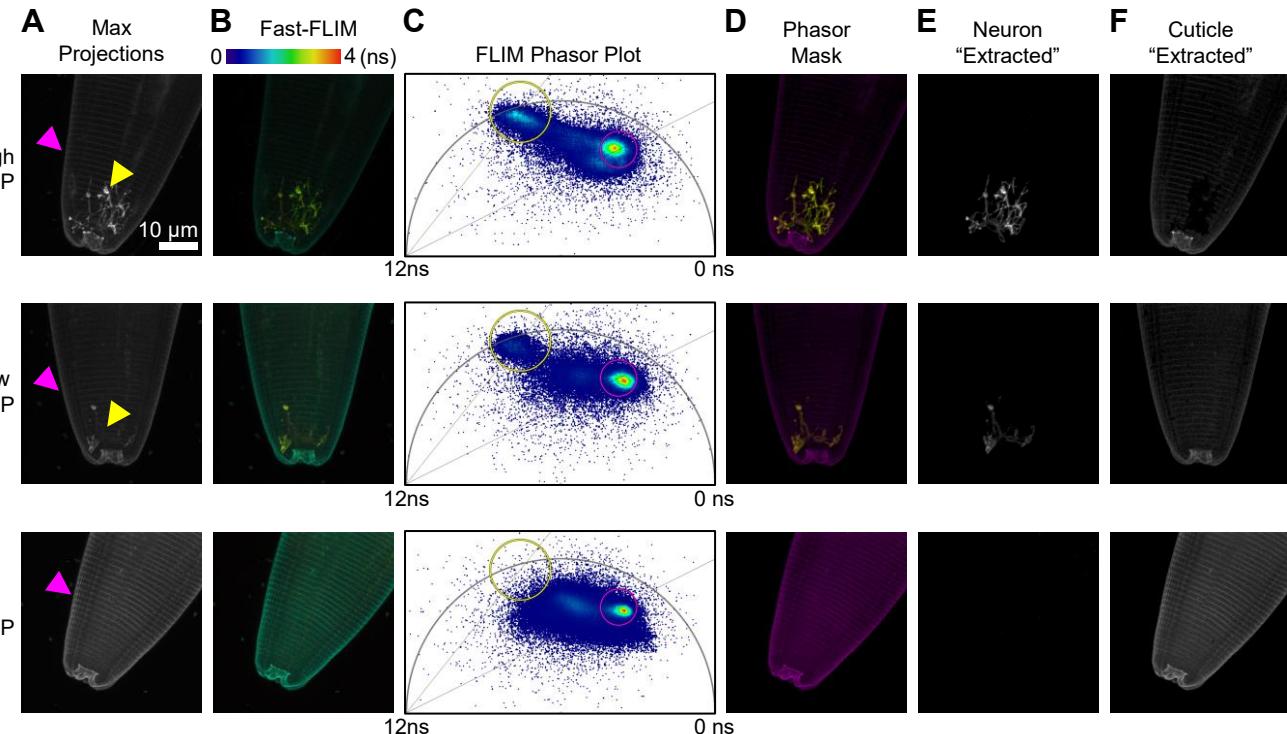
674 Weber, A., Cohen, I., Popp, O., Dittmar, G., Reiss, Y., Sommer, T., Ravid, T., & Jarosch, E. (2016).
675 Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a
676 Quality Control Ubiquitin Ligase. *Molecular Cell*, 63(5), 827–839.
677 <https://doi.org/10.1016/j.molcel.2016.07.020>

678 Yemini, E., Lin, A., Nejatbakhsh, A., Varol, E., Sun, R., Mena, G. E., Samuel, A. D. T., Paninski, L.,
679 Venkatachalam, V., & Hobert, O. (2021). NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal
680 Identification in *C. elegans*. *Cell*, 184(1), 272-288.e11. <https://doi.org/10.1016/j.cell.2020.12.012>

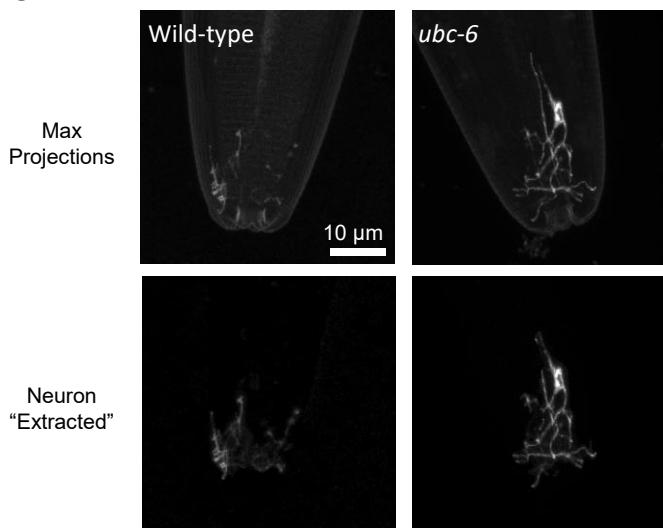



681

A

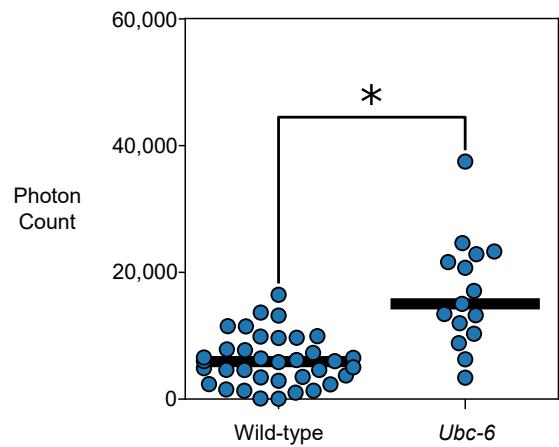


Full Worm (20x Tile scan)

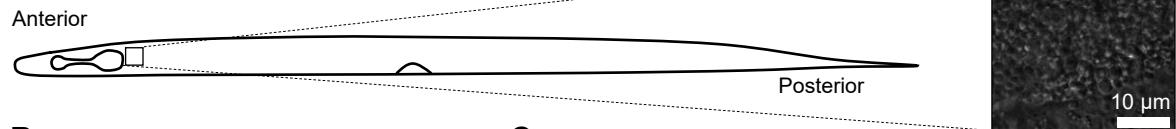
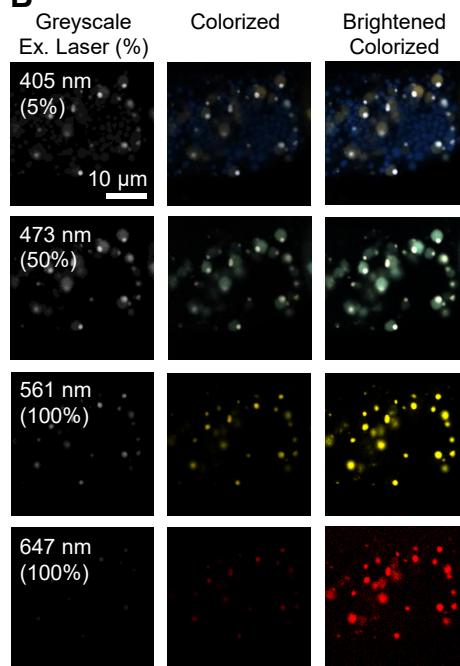
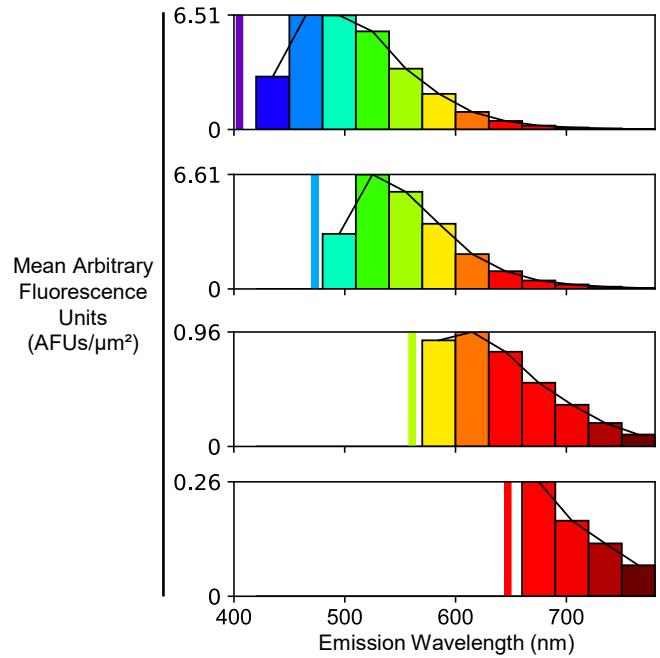
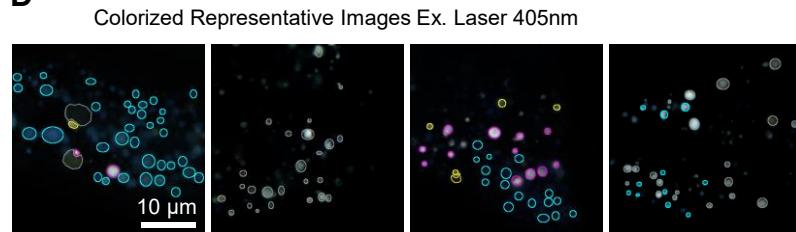
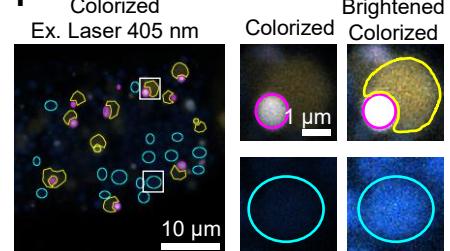
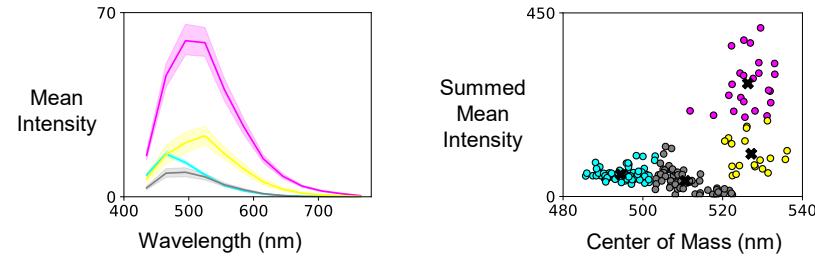
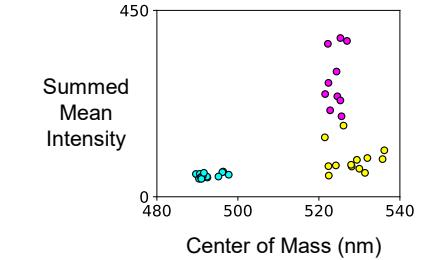

B

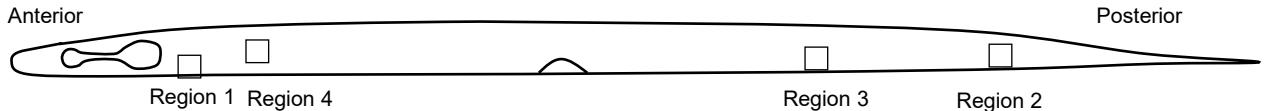
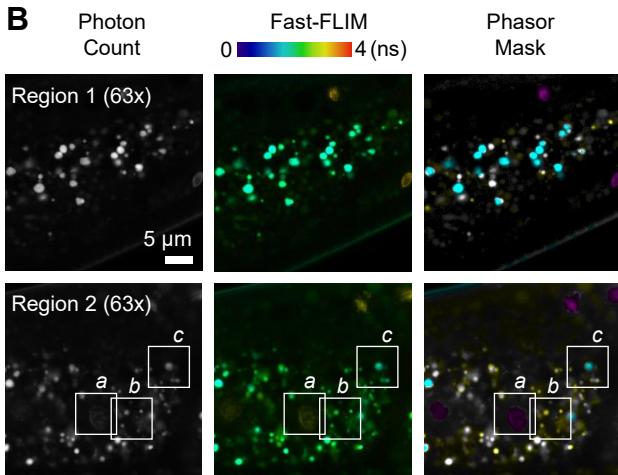
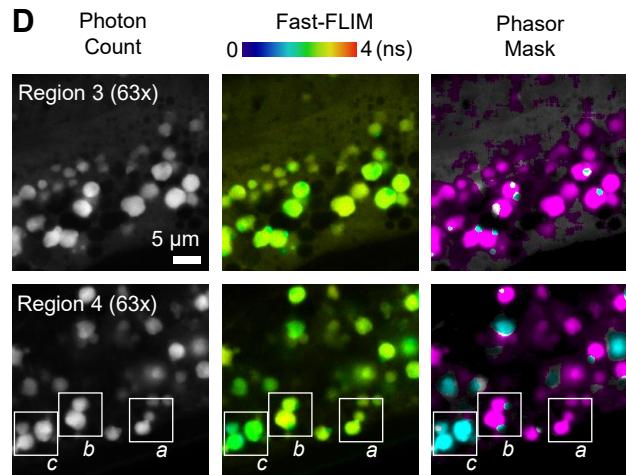
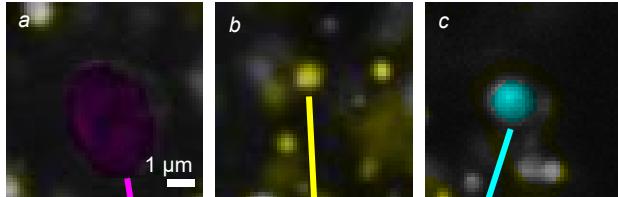
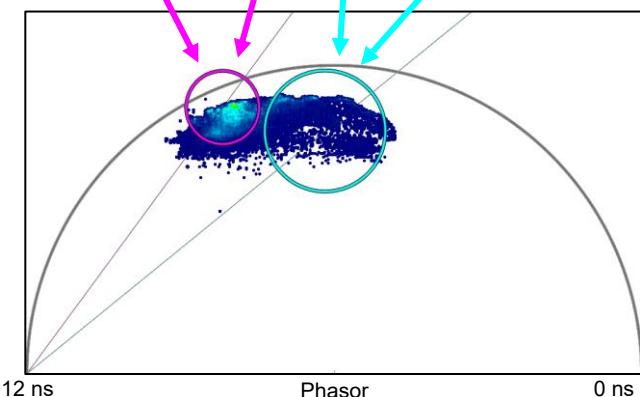
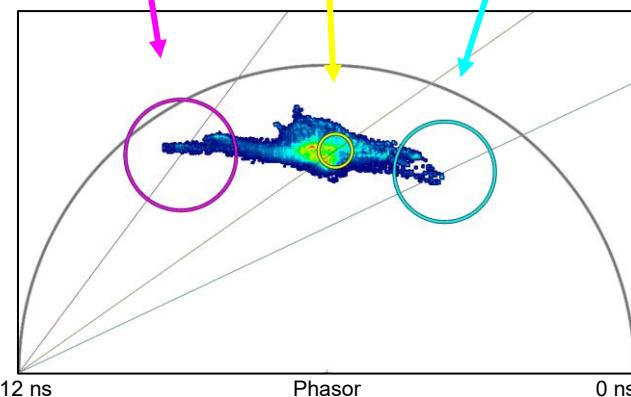
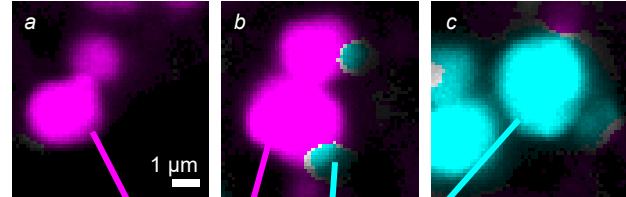
Brightened Spectral Image (20x Tile Scan)


C

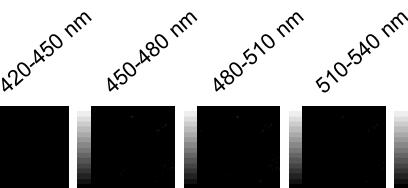
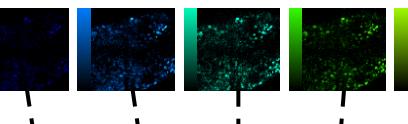
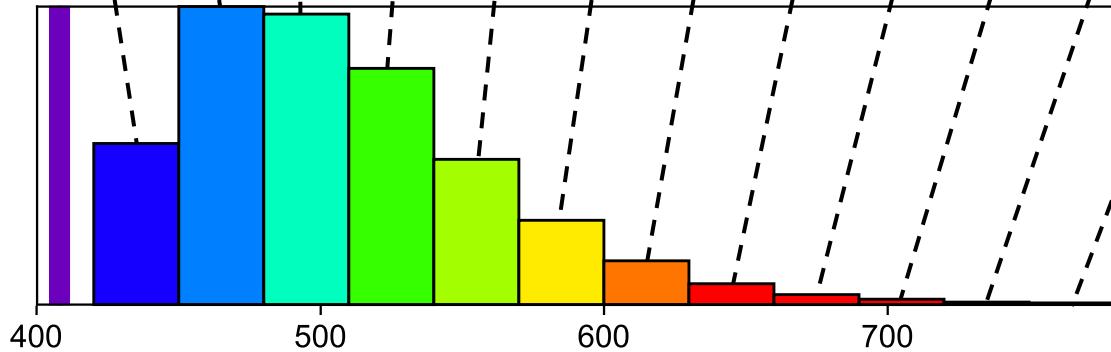
Mock Spectral Profile

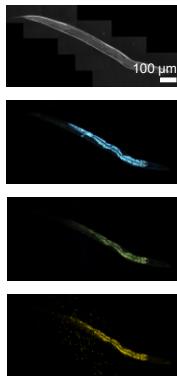
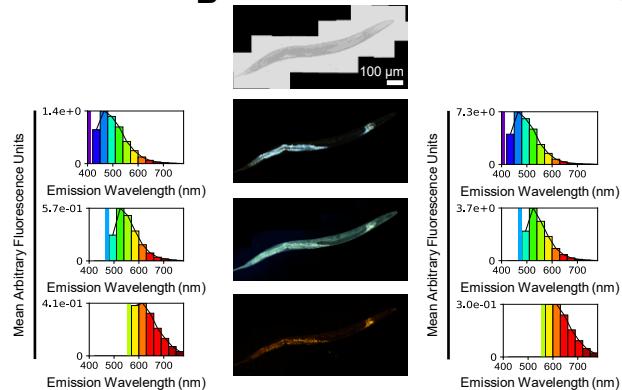
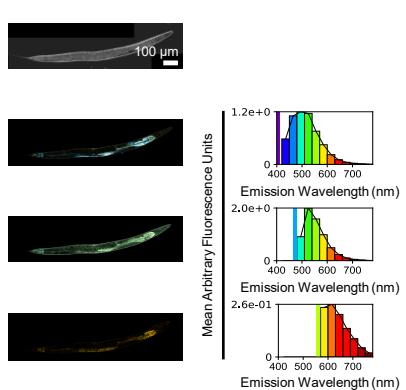
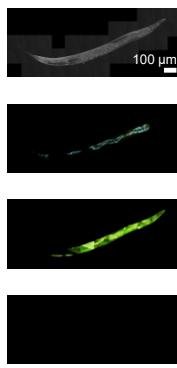
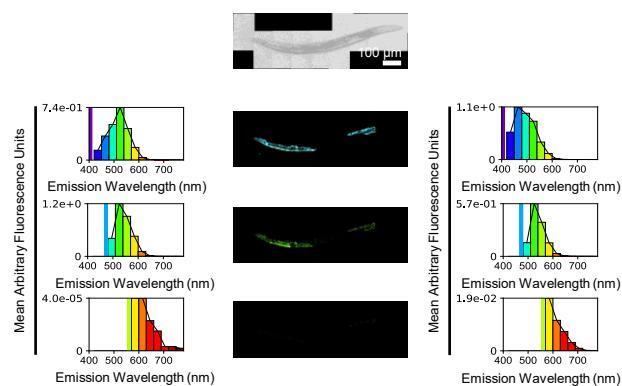

D

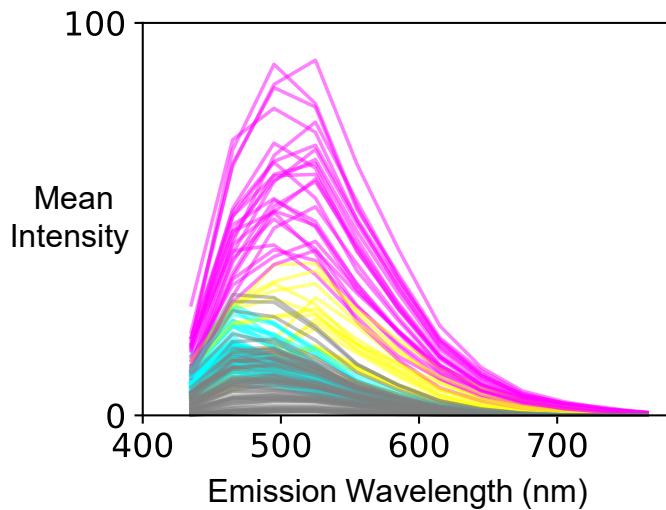








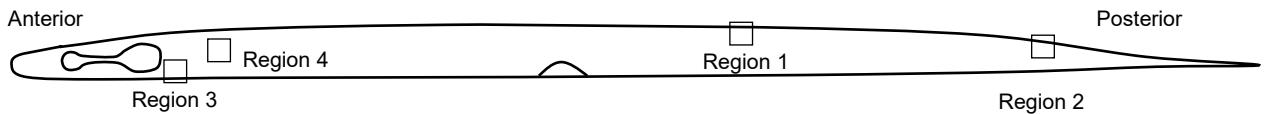
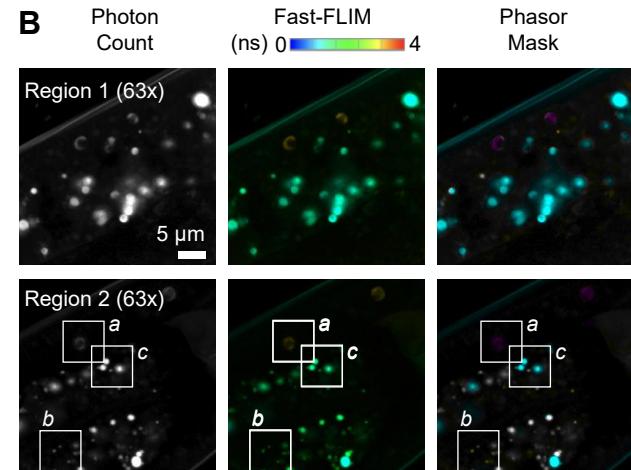
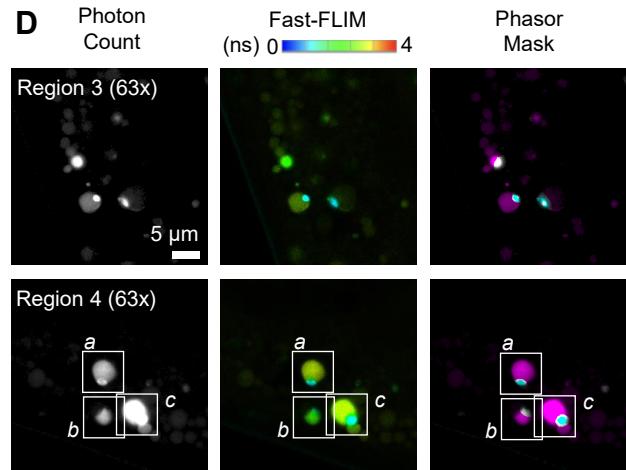
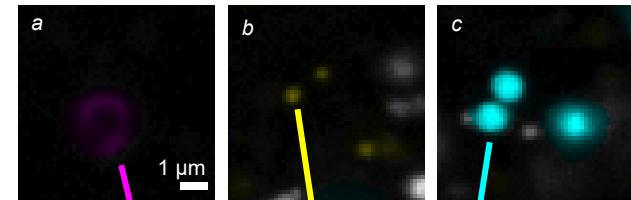
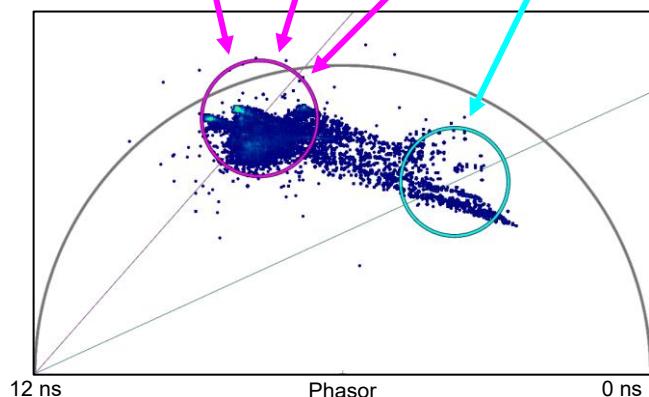
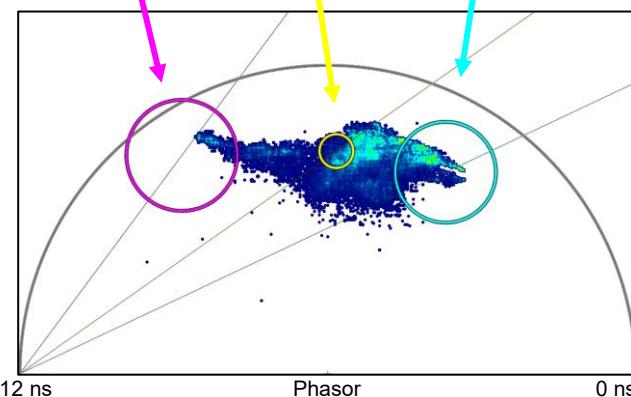
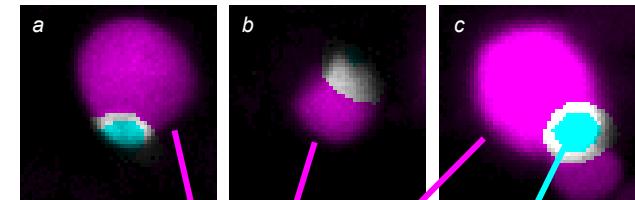







G

H






A**B****C****D****F****E****G**


A**B****D****C****E**








A

Full Worm (20x Tile scan)

Emission band**B****C****D****E**

A**B****C****D****E**

A**B****D****C****E**