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Abstract:

C. elegans gut and cuticle produce a disruptive amount of autofluorescence during imaging.
Although C. elegans autofluorescence has been characterized, it has not been characterized at
high resolution using both spectral and fluorescence lifetime-based approaches. We performed
high resolution spectral scans of whole, living animals to characterize autofluorescence of adult
C. elegans. By scanning animals at 405 nm, 473 nm, 561 nm, and 647 nm excitations, we
produced spectral profiles that confirm the brightest autofluorescence has a clear spectral
overlap with the emission of green fluorescent protein (GFP). We then used Fluorescence
Lifetime Imaging Microscopy (FLIM) to further characterize autofluorescence in the cuticle and
the gut. Using FLIM, we were able to isolate and quantify dim GFP signal within the sensory
cilia of a single pair of neurons that is often obscured by cuticle autofluorescence. In the gut, we
found distinct spectral populations of autofluorescence that could be excited by 405 nm and 473
nm lasers. Further, we found lifetime differences between subregions of this autofluorescence
when stimulated at 473 nm. Our results suggest that FLIM can be used to differentiate
biochemically unique populations of gut autofluorescence without labeling. Further studies
involving C. elegans may benefit from combining high resolution spectral and lifetime imaging to
isolate fluorescent protein signal that is mixed with background autofluorescence and to perform

useful characterization of subcellular structures in a label-free manner.

Introduction:

The model organism, Caenorhabditis elegans (C. elegans), is a transparent nematode that is
amenable to microscopy and study through live imaging. C. elegans imaging often uses

fluorescence to analyze promoter reporters, fusion proteins or dyes that label subcellular
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structures (Corsi et al., 2015; El Mouridi et al., 2022; Mendoza et al., 2024; Yemini et al., 2021).
Fluorescence imaging of C. elegans is central to diverse research questions from
developmental biology to behavioral neurobiology (Bao et al., 2006; Chung et al., 2013; Tian et
al., 2009). However, fluorescence imaging in C. elegans must contend with autofluorescence
emitted from tissues and materials, such as a protective cuticle and intestinal lysosome-related
organelles (gut granules) (Hermann et al., 2005; Pincus et al., 2016; A. C. Teuscher & Ewald,
2018). This was observed as early as the first account of C. elegans expressing GFP, where
autofluorescence was noted to obscure the GFP signal (Chalfie et al., 1994). Methods that
overcome autofluorescence in C. elegans will remove barriers to fluorescence imaging in live
animals. This is especially true in areas and tissues where autofluorescence is particularly
strong, such as the gut and cuticle (Heppert et al., 2016; Komura et al., 2021a; Pincus et al.,
2016).

Spectral approaches are a common way to overcome C. elegans autofluorescence. For
example, carefully chosen bandpass filters can partially separate autofluorescence emission
from GFP emission in the gut (Morris et al., 2018), intensity-based autofluorescence correction
can improve the GFP signal to noise ratio in the developing embryo (Rodrigues et al., 2022),
and spectral unmixing can separate fluorescent protein emission from autofluorescence (Jones
& Ashrafi, 2009). Alternatively, one can rationally choose fluorescent proteins that have minimal
spectral overlap with autofluorescence (Heppert et al., 2016; Thomas et al., 2019) or use non-
genetically encoded fluorescent probes that emit in the infra-red range (Hendler-Neumark et al.,
2021; Rashtchian et al., 2021). Finally, studies have used the genetic power of C. elegans to
remove the source of autofluorescence by performing experiments in backgrounds that do not

produce autofluorescent gut granules (Eichel et al., 2022).

An additional parameter that can differentiate spectrally similar fluorophores is fluorescence
lifetime, which is the temporal delay between the arrival of an excitation photon and the
generation of an emission photon. Each fluorophore has a unique fluorescence lifetime that
depends upon the chemical structure of the fluorophore and the environment (i.e., solvent) that
surrounds the fluorophore (as reviewed in Datta et al., 2020). Fluorescence lifetime can be
imaged with Fluorescence Lifetime Imaging Microscopy (FLIM) and quantified through curve
fitting or phasor analysis (Phasor-FLIM). Although curve fitting is widely accepted, this approach
requires pre-existing knowledge about the decay parameters of the fluorophores that are being

analyzed. In contrast, Phasor-FLIM analysis does not make any assumptions about the
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underlying decay parameters of fluorophores (as reviewed in Malacrida et al., 2021). Phasor-
FLIM has been used to quantify NADH/NAD(P)H and FAD/FADH: ratios in metabolic studies
(Bhattacharjee et al., 2017; Ma et al., 2016), separate spectrally similar fluorophores (Gonzalez
Pisfil et al., 2022), distinguish known fluorophores from autofluorescence (Szmacinski et al.,
2014), and quantify fluorescence resonance energy transfer (FRET) efficiency of fluorescent
proteins (Lou et al., 2019). In C. elegans, FLIM has been used to investigate protein-protein
interactions (Gallrein et al., 2021; Laine et al., 2019; Lléres et al., 2017) and environmental
effects on metabolic dyes (W.-W. Chen et al., 2023). However, these studies do not address
native autofluorescence in C. elegans, which has both biological relevance and a long history of

complicating fluorescent protein quantification.

In this study, we performed a systematic analysis of the spectral and lifetime properties of C.
elegans autofluorescence relative to the emission profiles of conventional fluorophores, such as
GFP and mCherry. We show that dim GFP fluorescence can be reliably separated from bright
cuticle autofluorescence using Phasor-FLIM. We also demonstrate that spectrally similar gut
autofluorescence can be characterized in a label-free manner by capitalizing on heterogeneous

lifetimes.

Results and Discussion:

To determine the autofluorescence spectrum of live C. elegans, young adult animals were
stimulated with four common excitation lines (405 nm (BFP/DAPI), 473 nm (GFP), 561 nm
(mCherry), and 647 nm (emiRFP670/AIexa 647)) and non-overlapping 30 nm emission bins
were collected across the entire visible and near infrared spectrum (Figure 1A and B,
Supplemental Figure 1). To quantify the spectral data, the mean pixel intensity for each
emission bin was calculated across the entire animal and plotted as a spectral profile (Figure 1C
and D). In agreement with other findings (Heppert et al., 2016; Hermann et al., 2005), this
approach revealed that 405 nm and 473 nm excitation stimulate autofluorescence with strong
emission in the 450-600 nm range (Figure 1B and 1D). Conversely, 561 nm excitation
stimulates autofluorescence with weak emission in the 570-720 nm range, and 647 nm
excitation produces little to no emission (Figure 1B and 1D). To assess the variability of the
spectral profiles, we collected data from 5 separate animals. We found that 405 nm and 473 nm
excitation consistently stimulate strong emission (Supplemental Figure 2A-E), while 561 nm

excitation produced weak and variable emission that ranged from barely detectable
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(Supplemental Figure 2A-C) to undetectable (Supplemental Figure 2D and E). Anatomically, the
strongest autofluorescence was observed in the gut (Figure 1B asterisk) and cuticle (Figure 1B
box and arrowhead). These results demonstrate that C. elegans produce a wide spectrum of
autofluorescence that is distributed throughout the body of the animal, and the most intense

emission overlaps with commonly used green fluorescent proteins and dyes.

Our spectral analysis agrees with the well-documented interference from autofluorescence in
the C. elegans gut and the cuticle, which can make it difficult to quantify weak GFP signals
(Chalfie et al., 1994; Hermann et al., 2005; Monici, 2005; Morris et al., 2018; Pincus et al., 2016;
A. C. Teuscher & Ewald, 2018). Although the GFP and autofluorescence spectra overlap, we
hypothesized that their lifetimes could be resolved, which would allow GFP intensity to be
measured even in the presence of background autofluorescence. To test this possibility, we
imaged animals expressing Podr-10::0DR-10::GFP, which is an odorant receptor protein that
localizes to ciliated sensory neurons at the anterior end of the animal (Ryan et al., 2014;
Sengupta et al., 1996). Regardless of the presence of the fluorescent transgene, we found that
excitation using the 473 nm laser led to cuticle autofluorescence (Figure 2A, magenta
arrowhead). In animals with high levels of ODR-10::GFP expression, the GFP signal could be
discerned over the cuticle autofluorescence (Figure 2A, top row, yellow arrowhead). In animals
whose ODR-10::GFP levels were relatively low, the cuticle autofluorescence obscured the GFP
fluorescence (Figure 2A, middle row, yellow arrowhead). No GFP fluorescence was seen in

animals lacking the ODR-10::GFP transgene (Figure 2A, bottom row).

To differentiate between cuticle autofluorescence and GFP fluorescence, we characterized each
using Fast-FLIM (i.e., average photon arrival time, Figure 2B). Regardless of expression level,
the average photon arrival time of ODR-10::GFP was approximately 2.5 ns (Figure 2B, top and
middle rows), and the average photon arrival time of cuticle autofluorescence was
approximately 1.3 ns (Figure 2B, all rows). This suggested that FLIM could be used to separate
these spectrally similar signals. However, Fast-FLIM has limited utility because it does not
distinguish heterogeneous lifetimes within a single pixel. To more fully characterize cuticle and
ODR-10::GFP fluorescence, we used Phasor-FLIM (Figure 2C). On phasor plots, the ODR-
10::GFP signal is located near the unit semi-circle at approximately 2.5 ns (based upon the 80
mHz repetition rate of our laser), which is indicative of a single, well-defined lifetime (Figure 2C,
yellow circle; Digman et al., 2008). In contrast, the cuticle signal is located in the interior of the

unit semi-circle as a right shifted, tight cluster, which is indicative of shorter, heterogeneous
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lifetimes (Figure 2C, magenta circle). These results suggest that cuticle autofluorescence arises
from green fluorophores with complex decay profiles that can be spatially resolved in phasor
space from the single component ODR-10::GFP. Indeed, when phasor masking is applied to
these images, both bright and dim ODR-10::GFP signal can be faithfully “extracted” from cuticle
autofluorescence in live animals (Figure 2D-F, top and middle rows). To demonstrate the
biological usefulness of phasor masking, we used this process to characterize how the genetic
mutation of the putative E2 ubiquitin ligase, ubc-6, affects ODR-10::GFP abundance. ubc-6 is a
highly conserved eukaryotic gene that participates in ER-associated degradation (Christianson
& Carvalho, 2022; Weber et al., 2016), but no previous studies have implicated it in olfactory
receptor maintenance. We found that a deletion in the ubc-6 gene results in a 2.7-fold increase
in the ciliary accumulation of ODR-10::GFP (average total photon counts for wildtype = 6075,
ubc-6 mutant = 16657, student’s t-test p-value <0.001; Figure 2G-H).

Our results establish that Phasor-FLIM can separate problematic cuticle autofluorescence from
GFP fluorescence in dim ciliated neurons located in the head of the animal. Next, we
investigated whether spectral emission scanning and FLIM could be combined to differentiate
between populations of gut autofluorescence in the anterior of the animal (Figure 3A), which is
known to result from a heterogeneous collection of subcellular lysosome-related gut granules
(Hermann et al., 2005; Morris et al., 2018). Similar to our lower resolution spectral analysis
(Figure 1), the anterior gut produced heterogeneous emission spectra from individual granules
that was most strongly stimulated with the 405 nm and 473 nm laser lines (Figure 3B and 3C).
To more fully characterize the heterogeneity, we applied K means clustering to spectral profiles
of individual granules produced by 405 nm excitation. Specifically, we used the summed mean
emission intensity across all wavelengths (i.e., brightness) as one component and the intensity
weighted center of the emission peak (i.e., center of mass) as the second component. The
clustering analysis revealed four robust populations (Figure 3D and 3E, Supplemental Figure 3).
The brightest population had a center of mass at approximately 525 nm (Figure 3D and 3E,
magenta) and included both isolated granules and granules that overlap with a larger, dimmer
population (Figure 3F and 3G, yellow). There were two additional relatively dim populations with
centers of mass at approximately 495 nm and 510 nm (Figure 3D-G, cyan and grey,
respectively). These results demonstrate that high spatial resolution emission scanning can be

combined with unbiased clustering approaches to phenotype spectrally distinct granules.
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Because GFP fluorescence could be separated from spectrally similar cuticle autofluorescence
using FLIM (Figure 2), we were curious whether FLIM could also reveal different subpopulations
of gut granules. To test this, we analyzed fluorescence lifetime in several anterior and posterior
regions of the gut using a 473 nm excitation laser (Figure 4A). The photon count (i.e., intensity)
images revealed granules with a range of intensities. These included both homogenous
granules with uniform intensity and granules that appeared to have multiple compartments
(Figure 4B and 4D, left column; Supplemental Figure 4). Intriguingly, some of these granules
could be visually distinguished via Fast-FLIM (Figure 4B and 4D, middle column; Supplemental
Figure 4). We analyzed phasor plots to further understand the nature of the different fluorescent
lifetime populations. Phasor analysis revealed 3 distinct subpopulations of multi-component
autofluorescence (i.e., located in the interior of the phasor plot) that originated from spatially
distinct gut particles (Figure 4B, right column; magenta, a; yellow, b; and cyan, ¢). Generally, the
magenta phasor population (Figure 4C, a) was composed of relatively large, low intensity
granules that were sparsely distributed across the gut. In contrast, the yellow and cyan
populations included both well-defined granules and diffuse regions of autofluorescence that
lacked clear boundaries (Figure 4C, b and c¢). In addition, we also observed individual granules
that could be separated into spatially distinct areas of the phasor plot (Figure 4D, right column).
Specifically, within a mixed population, some — but not all — granules could be separated into
more than one lifetime (compare Figure 4E, a-c, magenta, a; magenta and cyan, b; and cyan
only, c). Collectively, these results demonstrate that spatially distinct gut granule
autofluorescence can be more fully characterized in a label free manner through a combination

of high resolution spectral and Phasor-FLIM analysis.

FLIM is advancing as a useful tool to overcome challenging microscopy problems (Datta et al.,
2020) that include label-free analysis of autofluorescent cell structures and molecules (Blacker
et al., 2014; Ouyang et al., 2021), biochemical characterization of the solvent surrounding
known fluorophores (Lléres et al., 2017), and distinguishing spectrally similar fluorophores
(Scipioni et al., 2021). Here, we used FLIM to facilitate traditionally problematic quantification of
dim GFP signal within sub-micron scale cell structures (i.e., sensory cilia) that are obscured by
the green component of cuticle autofluorescence (Figure 2 and as seen in (Sepulveda et al.,
2023; Wang et al., 2015)). Compared to prior techniques, our FLIM method has the major
benefit of not requiring the re-engineering of strains with different fluorescent reporters (Heppert
et al., 2016) or purchasing an extensive array of overlapping bandpass filters (Morris et al.,
2018). Although FLIM setups themselves can be costly and technically complex, as commercial

systems become more common it is expected that using FLIM to isolate and quantify GFP
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signal will become more accessible. Moreover, because cuticle autofluorescence (Figure 2) and
gut autofluorescence (Figure 4) exhibit complex decay profiles (i.e., they map to the interior of
the phasor plot), the autofluorescence elimination approach described in this manuscript should
be able to distinguish autofluorescence from any fluorescent protein that exhibits mono-

exponential decay.

In addition, we have used FLIM to reveal sub-populations of autofluorescent lysosome-related
organelles (gut granules) that can be separated based upon lifetime differences alone. This
complements recent analytical approaches that combine Nile Red staining with two-photon
FLIM to differentiate gut granules with distinct lipid populations (W.-W. Chen et al., 2023). We
have also used excitation/emission scanning to identify spectrally distinct subpopulations of gut
granules that are uniquely excited at 405 nm. In the future, it will be important to identify how
these spectrally distinct gut granules relate to those that can be distinguished via FLIM alone.
However, this will require a pulsed UV laser to simultaneously excite the spectrally distinct
population and perform time-correlated single photon counting, which is not presently available

on commercial FLIM instruments.

C. elegans gut granules are an established model for understanding nutrient trafficking and
metabolism. While many studies have focused on the endocytic pathways that underlie gut
granule maturation, it is becoming clear that age and nutritional states can affect the physical,
biochemical, and visual properties of gut granules (A.J. Chen et al., 2018; W.-W. Chen et al.,
2023; Hermann et al., 2005; Roh et al., 2012). For example, when animals are reared in excess
zinc, gut granules form with a bilobed morphology (Mendoza et al., 2024; Roh et al., 2012).
Because only one of the lobes consistently contains high concentrations of zinc, these granules
are physiologically and spatially asymmetric (Mendoza et al., 2024). Our observation of some
gut granules that contain fluorescence with more than one lifetime species is particularly
reminiscent of these bilobed granules (Mendoza et al., 2024; Roh et al., 2012), though we did

not rear animals on artificially high zinc concentrations.

The gut granules that we describe in this manuscript appear to represent spectrally defined
categories, but they are not homogeneous with respect to representation and localization
(Figures 3 and 4, Supplemental Figures 3 and 4). This heterogeneity could arise from several
aspects of C. elegans biology. First, because our samples were intentionally unlabeled, we did

not attempt to identify different classifications of organelles. That is, it is possible that some of
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the granules that appear in our images represent lysosomes, endosomes, or other
compartments derived from the endomembrane system. In addition, lysosome related
organelles (LROs) undergo changes within developing and aging C. elegans. For example,
protein markers for LROs can be detected during late embryonic and early larval stages
(Hermann et al., 2005), but changes in lipid accumulation in LROs continue later, as the animals
reach reproductive maturity and yolk proteins and lipids are transferred to maturing oocytes
(Komura et al., 2021; Schroeder et al., 2007). Birefringence in LROs also increases as animals
age (Komura et al., 2021). While we imaged animals after their final molt (from L4 larvae to
adult animals), it is possible that our imaging captured granules that were in different stages of
maturity. Finally, LROs are increasingly recognized as centers of metabolic regulation and
metabolite storage. In particular, LROs can accumulate zinc (Roh et al., 2012), copper (Chun et
al., 2017), and anthranilic acid glucosyl ester (downstream of kynurenine pathway, reviewed in
(Coburn & Gems, 2013)). Importantly, even in animals experiencing a high metabolic input (for
example, high levels of zinc), changes in gut granules labeling, size, and shape are
heterogeneous (Roh et al., 2012). In our own analysis, we found some heterogeneity in spectral
and FLIM profiles depending on where images were located (Supplemental Figure 3 and
Supplemental Figure 4). Overall, our data may be capturing the existing heterogeneity in the gut
granule populations. Future experiments in animals lacking LROs, for example glo-71 mutants
(Hermann et al., 2005; Rabbitts et al., 2008), could be used to parse the precise identity of the
granules we have described. In addition, monitoring and/or intentionally modifying metabolic

inputs could drive gut granules to more heterogeneous spectral profiles.

Our imaging data show that autofluorescence can be masked to remove signal that may
interfere with fluorescence imaging. With respect to understanding the biology of
endomembrane trafficking in the gut, this is important because gut granule autofluorescence
complicates the imaging and analysis of particles as they mature (Rabbitts et al., 2008; Voss et
al., 2020). Previously, researchers depended on specific filter sets and protocols to try to
remove background autofluorescence (Teuscher & Ewald, 2018). Alternatively, lipophilic or
metal-binding dyes have been effective at boosting the signal of organelles of interest (Mendoza
et al., 2024; Sepulveda et al., 2023). Recently, gut granule stores of heme have been assessed
in a dye-free assay using transient absorption microscopy, but this relies specifically on the
chemical signature of heme (A. J. Chen et al., 2018). Our FLIM data suggest that biochemical
differences within subpopulations, and even individual gut granules, could be differentiated

without the need for labeling or knowledge of precise chemical differences. Collectively, our
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results demonstrate that high spatial resolution spectral scanning combined with Phasor-FLIM is

a useful tool to overcome challenging live imaging problems in C. elegans biology.

Methods:

C. elegans strains used in this study: N2 (Bristol), kyls53 (Podr-10::ODR-10:.GFP), kyls53;
ubc-7 (gk857464), kyls53; ubc-6 (gk3799 gk5313[loxP]). C. elegans were maintained according
to accepted protocols (Brenner, 1974; Meneely et al., 2019).

Preparing slides: Animals were grown at 21.5 °C on nematode growth media (NGM) spotted
with OP-50 E. coli. Animals were age synchronized by dissolving gravid animals and allowing
the remaining eggs to hatch on NGM plates (Porta-de-la-Riva et al., 2012). Age synchronized
young adult animals were paralyzed in an 8 uL droplet of 30 mg/mL 2,3-butanedione monoxime
on a glass coverslip for 10 minutes. A 2% agarose pad was used to hold the fully immobilized

animals for imaging.

Microscope description: All imaging was performed on a Leica Stellaris 8 equipped with an 80
mHz pulsed white light laser that is tunable in 1 nm increments from 440-790 nm, a 405 nm
diode (non-pulsed) laser, and five HyD detectors with dispersion-based spectral scanning from
410-850 nm. The microscope is equipped with a 63X 1.4 NA oil objective, a 63X 1.2 NA water
objective, a 40X 1.4 NA oil objective, 25X 0.95 NA water objective, 20X 0.75 NA dry objective,
10X 0.4 NA dry objective. The microscope is controlled by LasX software that includes the
Falcon FLIM module (including phasor analysis), Lightning deconvolution, and TauSense. For
all imaging experiments, the 405 diode and white light laser were both turned on 45 minutes
before data was collected to allow them to warm up. All laser intensities reported in this

manuscript are relative — laser power at the sample was not determined.

Spectral Scans of entire C. elegans: To capture emission profiles of the entire animal, the
20x/0.75 objective lens was used with a digital zoom of 4.44 to create a tile scan of the animal
with a 256.19 nm pixel size. To capture emission profiles of gut granules, the 63X/1.4 oil
objective lens was used with a digital zoom of 5.26 to create single images with a pixel size of
68.65 nm. The focal plane for the emission scanning was approximately midway through the
animal. Four commonly used excitation wavelengths (405 nm, 473 nm, 561 nm, and 647 nm)

were used to create emission profiles in 30 nm increments from 420-780 nm (405 nm
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excitation), 480-780 nm (473 nm excitation), 570-780 nm (561 nm excitation), and 660-780 nm
(647 nm excitation). The spectral scan information is stored in image stacks where each slice
contains the intensity information for a 30 nm band of the emission profile (see Supplemental

Figure 1B-D for an example of spectral image stack).

Colorized Spectral Images and Spectral Plots: To create spectral plots of the entire animal
(Figure 1D) or of individual gut regions (Figure 3C) the average intensity per unit area was
calculated for regions of interest and plotted against the center of the respective emission band.
To colorize the spectral image data, the slice corresponding to each emission band was
converted to an RGB color corresponding to the average wavelength for that emission band
(e.g., 435 nm (blue) for the 420-450 nm band and 645 nm (red) for the 630-660 nm band).
These RGB images were then summed to produce a fully colorized image. For example, if a
region of interest had strong emission in the blue, green, and red bands, the summed colorized
image would appear white, but if there was strong emission in green and red bands, the
summed colorized image would appear yellow. The same steps were followed for “brightened
colorized” images, except the contrast was adjusted to saturate <= 0.125% of pixels before
making the figure. To characterize gut granule emission, the R program Kmeans++ was used to
cluster individual gut granules based upon the summed mean intensity (i.e., brightness) and the
center of mass (i.e., color) of their spectral profiles (Figure 3D-G and Supplemental Figure 3).

The gut granules were manually outlined in FIJI prior to Kmeans++ clustering.

General Procedure for Separating Cuticle Autofluorescence from GFP Fluorescence:
Images were acquired as Z-stacks with a 1 um step size using a 63x/1.40 oil objective, a zoom
of 4, and a resolution of 512x512 pixels, which leads to a 90 nm pixel size. The scan speed was
set to 600 Hz with four-line repetitions and the 488 nm laser set to 100% power. The acquisition
was conducted using LasX FALCON/FLIM, which sets the emission detector to single photon
counting mode and synchronizes the electronics to operate as a time-correlated single photon
counter. Photon Count images represent the total number of photons collected at each pixel
(i.e., intensity). Fast-FLIM images represent the average photon arrival time at each pixel.
Phasor analysis was performed with the following settings: Pixel Binning: 1, Harmonic: 1,
Threshold: 15 photons, Median Filter Radius: 11 pixels. After identifying the phasor space that
contained the GFP signal and the autofluorescence signal, a circular phasor mask was created
to encapsulate the appropriate area. After a region of the phasor plot was selected in LasX, the

corresponding image pixels were exported as a mask. To mask GFP, a 50-pixel circle centered
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at 2.561 ns was used. To mask cuticle autofluorescence, a 30-pixel circle centered at 1.017 ns
was used. The mask images were imported into ImageJ where all pixels outside of the mask

were set to 0.

Quantification of ODR-10::GFP accumulation in AWA cilia: Images of wild-type and ubc-6
mutant animals were obtained with the following settings: Objective: 63x/1.40 oil, resolution:
512x512, zoom: 4, pixel size: 90 nm, step size: 1 um, scan speed: 600 Hz, line repetitions: 4,
laser: 488nm excitation with 50% intensity. FLIM characterization was performed with the
following settings: Pixel Binning: 1, Harmonic: 1, Threshold: 7 photons, Median Filter Radius:
19. GFP signal was extracted as described above. The resulting GFP images were processed

using a FIJI macro found here: https://github.com/heinohv/Dahlberg-

Lab/blob/main/photon measure.ijm.

FLIM analysis of Gut Granules: The images were captured with the following settings:
Objective: 63x/1.40 oil, resolution: 512x512, zoom: 5.26, pixel size: 69 nm, scan speed: 600 Hz,
line repetitions: 8, laser: 473 nm excitation with 10% intensity. FLIM characterization and export
was performing with the following settings: Pixel binning: 2, Hamonic: 1, Threshold 20-100
photons, Median Filter Radius: 11. To characterize different granules based on fluorescent
lifetime, phasor plots were manually scanned to identify gut granules, or parts of gut granules,

whose autofluorescence could be mapped back to discrete regions of phasor space.
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Figure Legends:

Figure 1: C. elegans autofluorescence is most prominent at shorter wavelengths. A) An
image of a 3-day old C. elegans acquired using differential interference contrast (DIC). B)
Colorized spectral images of a single plane in the same animal in (A) showing autofluorescence
emission after excitation with the following laser lines: 405 nm (emission 420-780 nm), 473 nm
(emission 480-780 nm), 561 nm (emission 570-780 nm), and 647 nm (emission 660-780 nm).
Relative laser power is reported as a percentage. Regions of gut (asterisk) and cuticle (box and
arrowhead) autofluorescence are distinguished in the 473 nm excitation image. C) A mock
spectral profile of C. elegans. The excitation wavelength is represented by a vertical bar (purple).
The emission was collected in 30 nm bins and plotted as mean arbitrary fluorescence units (AFU)
per um?. D) The spectral profiles for each colorized spectral image in panel (B). See Materials
and Methods and Supplemental Figure 1 for detailed explanation of how images were colorized
and converted to spectral profiles. Similar spectral profiles were generated for five additional

independent animals during two imaging sessions (presented in Supplemental Figure 2).

Figure 2: Phasor-FLIM masking to isolate GFP fluorescence from autofluorescence.
Column A) Maximum intensity projections of C. elegans head showing high, low, or no GFP
fluorescence in the AWA neuron excited with a 473 nm laser line. The cuticle and neuron are
indicated with magenta and yellow arrows, respectively. Images are scaled to avoid saturation
of the GFP signal. Genotypes imaged were ubc-7 (gk857464); kyls53 (top), kyls53 (middle), N2
(bottom). Column B) Fast-FLIM images displayed with a time-coded lookup table (LUT) showing
longer lifetime GFP fluorescence (green/yellow) and shorter lifetime autofluorescence (cyan).
Column C) Phasor plots that correspond to the Fast-FLIM images in column (B). The yellow
circle encapsulates the phasor space corresponding to GFP fluorescence. The magenta circle
encapsulates the phasor space corresponding to cuticle autofluorescence. The horizontal axis
of the phasor plot represents the g component, while the vertical axis represents the s
component. The single exponential lifetime for pixels that fall on the universal semi-circle are
between 0 and 12 ns, which is based upon the laser repetition rate of 80 mHz. Column D) False
colored images showing the GFP (yellow) and cuticle autofluorescence (magenta) regions of
the phasor plots shown in column C. Columns E and F) Maximum intensity projections of the
GFP pixels (column E) and cuticle autofluorescence pixels (column F) as defined in column D.
These results were generated from three independent animals imaged in a single imaging
session. G) Representative images of Phasor-FLIM masking applied to kyls53 worms in a wild-

type and ubc-6 mutant background. H) GFP signal quantified and compared between the wild-
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type and ubc-6 mutant background. 36 wild-type animals were imaged over six imaging
sessions; 15 ubc-6 mutant animals were imaged over three imaging sessions. Normality of each
group was checked using a Shapiro-Wilk test (Wild-type: p=0.18, ubc-6: p=0.61). Groups were
then compared using a two-tailed Student's t-test, which indicated a significant difference (p <
0.001).

Figure 3: Autofluorescent granules have spectrally distinct populations and regions. A) A
schematic representation of a 3-day old C. elegans and a region of the upper intestine captured
at 63X magnification (inset) using DIC. B) Images of a single plane in the intestine region (A,
inset) showing autofluorescence emission after excitation with the following laser lines: 405 nm
(emission 420-780 nm), 473 nm (emission 480-780 nm), 561 nm (emission 570-780 nm), and
647 nm (emission 660-780 nm). The left column shows total photon count as a greyscale image
with the excitation wavelength and relative laser power is reported as a percentage. The middle
column shows colorized spectral images. The right column shows brightened colorized spectral
images. C) The spectral profiles for each colorized spectral image in panel B. D) Colorized
spectral images of granules stimulated with the 405 nm laser line. Outlines indicate regions of
interest that were quantified across the entire emission spectrum. E) Left, the average emission
of 187 granules across 6 images from 6 different animals outlined within the field of view, as
shown in D (line color refers to the outline and the shading around the central line shows
standard deviation from the average). Right, Kmeans++ clustering identifies four clusters of
granules based on their spectral center of mass and summed mean intensity. F) Colorized
spectral images of granules from panels (A) and (B) that were stimulated with the 405 nm laser
line. G) Kmeans++ analysis showing that granules and sub-regions of granules are distributed

across three of the four clusters identified in (E).

Figure 4: Sub-populations of gut granules have distinct multi-exponential lifetimes and
regions with distinct fluorescent lifetimes. A) A schematic representation of a 3-day old C.
elegans. Four gut regions were imaged with high spatial resolution FLIM (white boxes, regions
1-4). B) Photon count images (left column), time-coded Fast-FLIM images (middle column), and
photon count images with phasor overlay (phasor mask, right column) of a single plane in
regions 1 and 2. The color scale for lifetime value is located above the column of Fast-FLIM
images. C) Zoomed images of granules with distinct multi-exponential lifetimes identified at the
regions indicated in the phasor plot below (a, magenta; b, yellow; ¢, cyan). D) Photon count
images (left column), time-coded Fast-FLIM images (middle column), and photon count images

with phasor overlay (phasor mask, right column) of a single plane in regions 3 and 4. The color
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scale for lifetime value is located above the column of Fast-FLIM images. E) Zoomed images of
granules composed of a single lifetime (a, magenta only and ¢, cyan only) and two examples of
granules composed of two lifetimes (b, magenta and cyan). These results are representative of
similar results that were replicated in four different animals across four different imaging

sessions on four separate days.

Supplemental Figure 1. Generation of colorized images based on spectral scanning. A)
Image of the animal shown in Figure 1. The white box indicates the portion of the animal used
for this colorization example. B) XY Lambda (emission) stacks were split into 12 individual
emission bins. C) Each emission bin was colorized based on the center of the emission bin. For
example, for the 420-450 nm emission bin, the blue color LUT corresponds to different
intensities of 435 nm light. D) Images from B are displayed with a narrow intensity range to
make the dim signal more apparent. E) A generic spectral profile plot showing how each

emission bin image corresponds to an emission bin average in the spectral profile plot.

Supplemental Figure 2. Variable emission is stimulated by the 561 nm laser line. 3-day old
C. elegans acquired using differential interference contrast (DIC) and the same spectral
scanning approach described in Figure 1. A-E) show consistent strong emission stimulated by
the 405 nm and 473 nm laser lines. A-C) show weak but observable emission stimulated by the
561 nm laser line. D and E) show barely detectable emission stimulated by the 561 nm laser
line. These results were generated from five independent animals imaged across two separate

imaging sessions on two separate days.

Supplemental Figure 3. Individual spectral profiles for spectrally distinct gut granules
separated via Kmeans++ clustering. The individual spectral profiles for all 187 gut granules
acquired from 6 separate animals that were analyzed in this study. The color coding of the
spectral profiles was determined via Kmeans++ clustering. The average and standard deviation

for each class of spectral profile is shown in Figure 3E.

Supplemental Figure 4. Additional examples of autofluorescence with spatial
heterogeneity in fluorescence lifetime throughout the gut of C. elegans. A) A schematic
representation of a 3-day old C. elegans. As in Figure 4, single planes in four gut regions were
imaged with high spatial resolution FLIM (white boxes, regions 1-4). B) Photon count images
(left column), time-coded Fast-FLIM images (middle column), and photon count images with
phasor overlay (phasor mask, right column) of regions 1 and 2. The color scale for lifetime value

is located above the column of Fast-FLIM images. C) Zoomed images of granules with distinct
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multi-exponential lifetimes identified at the regions indicated in the phasor plot below (a,
magenta; b, yellow; ¢, cyan). D) Photon count images (left column), time-coded Fast-FLIM
images (middle column), and photon count images with phasor overlay (phasor mask, right
column) of regions 3 and 4. The color scale for lifetime value is located above the column of
Fast-FLIM images. E) Zoomed images of granules composed of a single lifetime (a, magenta
only and ¢, cyan only) and two examples of granules composed of two lifetimes (b, magenta
and cyan). These results are representative of similar results that were replicated in four

different animals across four different imaging sessions on four separate days.
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