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Abstract—In the rapidly advancing age of cybersecurity,
detecting and mitigating advanced cyber threats is a critical
challenge. This work-in-progress paper (WIPP) explores the use
of low-level system log auditing for effective threat detection, fo-
cusing on the innovative use of provenance-based techniques. We
focus our attention on three advanced systems —ShadeWatcher,
SPADE, and UNICORN, which leverage data provenance to
enhance cyber-threat detection capabilities. By analyzing their
methods and integrating their strengths, we propose a delay-
sensitive audit tracking system suitable for critical infrastructure
networks. Our system aims to detect anomalous activities with
high precision and reduce false alarms within a guaranteed time
bound, thus providing robust protection against cyber threats.

Index Terms—Industrial control systems; operational technol-
ogy; provenance; cyber-threat detection;

I. INTRODUCTION

In the field of critical infrastructures, such as power grids,
water supply systems, and transportation networks, maintain-
ing the security and reliability of control systems is essential.
These systems, which form the basis of modern societies,
are increasingly susceptible to cyber threats. The growing
complexity of cyber threats necessitates advanced techniques
for threat detection and response. Traditional approaches of-
ten fall short due to the high false alarm rates and the
need for extensive expertise. In the case of power grids,
for instance, the inability of traditional Intrusion Detection
Systems (IDS) to accurately filter out benign from malicious
activities often results in a deluge of false positives. This not
only overwhelms the monitoring teams but also diminishes
their ability to respond to actual threats swiftly. Such high
false alarm rates are indicative of a fundamental limitation
in traditional systems: they are often rule-based and lack the
sophistication to adapt to the nuanced and dynamic nature
of cyber threats, leading to potential delays in identifying
and addressing real security breaches. Moreover, the 2015
cyberattack on Ukraine’s power grid [1] starkly illustrates
how the absence of specialized knowledge can cripple the
effectiveness of conventional security methods. Advanced cy-
ber threats often manifest through subtle, complex patterns
that require a deep understanding of both cybersecurity and
the operational specifics of the targeted systems. However,
the scarcity of personnel with such dual expertise means that
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critical indicators of attacks can go unnoticed until irreparable
damage occurs. This reliance on specialized knowledge creates
a bottleneck in the timely and effective response to threats.
This underscores the pressing need for more automated, adapt-
able, and context-aware security solutions, such as provenance-
based methods [2], [3], which can enhance threat detection and
mitigation capabilities without the prohibitive requirement for
extensive human expertise.

In critical infrastructure networks, provenance plays a vital
role in threat mitigation by providing a granular and contextual
view of system activities [4]. By examining the lineage of
data flows and system operations, security systems can more
accurately pinpoint the source and nature of anomalies, dis-
tinguishing between benign operational variances and actual
malicious activities. This capability allows for a more proac-
tive approach to threat detection, as potential issues can be
identified and addressed before they escalate into significant
breaches. However, implementing provenance-based methods
in critical infrastructure networks is challenging due to the
sheer scale and complexity of these systems [5]. The vast
amounts of data generated, coupled with the intricate and often
proprietary nature of control systems, make comprehensive
provenance tracking and analysis a daunting task. Additionally,
ensuring that provenance data itself is secure and tamper-proof
adds another layer of complexity to the deployment of these
methods in critical infrastructures.

Current practices in logging and auditing within industrial
networks often involve collecting system logs and event data
to monitor and analyze activities across the network [6],
[7]. These practices are essential for understanding system
behavior, diagnosing problems, and responding to incidents.
However, traditional logging and auditing techniques typically
focus on capturing snapshots of system states or sequences
of events without fully contextualizing the relationships and
causality between them. This can lead to delayed or in-
complete threat detection, as crucial context and the inter-
connectedness of events are missing. Delay-sensitive prove-
nance addresses this need by ensuring that comprehensive
and context-rich data is available even in environments where
immediate or continuous data transmission is not feasible. In
industrial networks, where real-time data processing might
be constrained due to bandwidth, computational, or opera-
tional limitations, delay-sensitive provenance allows for the
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collection and analysis of detailed event histories at a later
time. This approach enhances the ability to understand and
respond to security threats effectively, providing a critical
advantage in maintaining the integrity and reliability of critical
infrastructure systems. This paper explores the implementa-
tion of delay-sensitive provenance-based methods for low-
level system log auditing to enhance threat detection and
mitigation in operational technology networks within critical
infrastructure systems.

Low-level system log auditing [8] involves the thorough
collection and analysis of log data generated by various con-
trol systems within a critical infrastructure’s network. These
logs provide an overview of system activities, including user
actions, system events, and interactions between different
system components. By analyzing these interactions, we can
identify anomalous behaviors indicative of cyber threats. The
primary objective of utilizing a provenance-based approach is
to improve the accuracy and granularity of threat detection.
Unlike traditional methods that utilize predefined signatures
or rules, provenance analysis explores the relationships and
interactions within the system to detect anomalies, providing a
dynamic and adaptable defense mechanism. By understanding
the provenance of each data point or action, security measures
can more accurately identify and respond to anomalies that
may indicate a threat. This approach is particularly beneficial
in control systems, where the integrity and traceability of data
are crucial.

In the context of critical infrastructure, where the re-
liability and security of industrial control systems are
paramount [9], [10], incorporating low-level system audit logs
and provenance-based approaches into the security framework
of control systems is essential for bolstering their resilience
against cyber threats. These methods enhance the ability to
detect and respond to anomalous activities, traceability, and
accountability, and ensure compliance with security regula-
tions. As cyber threats continue to evolve, the integration of
these advanced techniques will be crucial in safeguarding the
critical systems that support modern society.

In this paper, we aim to create a flexible provenance plat-
form that is adaptable in operational technology (OT) networks
for tracking and analyzing low-level network activities from
supervisory servers. By establishing a network of nodes that
audit low-level system calls and transmitting this data to a col-
lection/analysis server, we can visualize and examine the data
in detail. Leveraging insights from prior works [11], [12], [13],
we propose a delay-sensitive tracking system that analyzes
logs from each control system within the network to detect
anomalous activities in a time threshold. By continuously up-
dating and refining our analysis, we can provide accurate and
reliable threat assessments even in limited time bounds. Our
system’s objective is to integrate dynamic threat detection with
high-precision anomaly identification and to establish metrics
that provide timely responses. This will enable operators to act
swiftly and confidently in mitigating threats, thus maintaining
the integrity and resilience of critical infrastructure networks.
While still under development, our work-in-progress paper

(WIPP) promises significant advancements in both online and
offline threat detection and the overall security of vital OT
environment.

The paper is organized as follows. We provide some
background on three important provenance frameworks from
past literature in Section II. The Section III provides a high
level design on the delay aware provenance system for OT
environment with the help of different tools for log analysis
and visualization. In Section IV, we present some preliminary
results to validate the provenance data collection process of
different network activities. Finally, the Section V and VI
provide concluding remarks and future research directions to
be taken to further this work.

II. BACKGROUND

To contextualize our proposed architecture, we provide
background on three advanced systems that leverage prove-
nance for threat detection: ShadeWatcher [11], SPADE [12],
and UNICORN [13]. Each system offers unique insights and
methodologies that inform our proposed solution.

A. ShadeWatcher: Recommendation Guided Cyber Threat
Analysis

This work utilizes recommendation systems to improve
cyber threat analysis by establishing a mapping between
the concepts of threat detection in cybersecurity and Deep
recommendation in information retrieval. The system treats
system entity interactions as user-item interactions in a rec-
ommendation context [11]. By doing so, It can predict the
preferences of a system entity on its interactive entities,
thereby identifying cyber threats with high precision and recall
rates. It employs a recommendation model built upon graph
neural networks (GNNs) to exploit high-order connectivity by
recursively propagating information from neighboring entities.
This allows the system to capture both first-order and high-
order information from audit records, which is crucial for
understanding the semantics of system entity relationships and
detecting threats effectively.

Furthermore, it dynamically updates its models with ana-
lyst’s feedback on detection signals, integrating false recom-
mendations as additional supervision to improve its detection
capabilities. This semi-supervised approach enables the system
to learn from both unlabeled benign system entity interactions
and labeled analyst feedback on false alarms, enhancing its
generalization, and reducing false alarm rates. Its innovative
use of recommendation systems provides an end-to-end solu-
tion for detecting threats without prior knowledge of attacks
and produces fine-grained detection signals that highlight key
indicators of an attack. The system’s effectiveness and effi-
ciency are demonstrated through systematic evaluation against
both real-life and simulated cyber-attack scenarios, showing
high accuracy and low false alarm rates.

B. SPADE: Open-Source Provenance Management

SPADE (Support for Provenance Auditing in Distributed
Environments) [12] represents a robust open-source infras-
tructure tailored for comprehensive management, querying,
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and auditing of data provenance in distributed computing
settings. Rooted in a graph-based data model aligned with
the Open Provenance Model, SPADE captures provenance
metadata through vertices and directed edges, facilitating the
representation of data lineage and dependencies across dis-
tributed systems. At its core lies a versatile provenance kernel
designed to manage the storage, querying, and distribution of
provenance data, supporting a spectrum of query operations
essential for auditing and verifying data integrity. Data prove-
nance collection in distributed environments presents numer-
ous challenges, all of which the SPADE system endeavors
to tackle comprehensively. Chief among these challenges is
the sheer volume of data generated and processed within dis-
tributed systems, necessitating efficient methods for collecting
and managing extensive provenance information. Additionally,
ensuring the security and privacy of provenance data [14] be-
comes paramount, given its potential sensitivity regarding data
sources, processes, and user information traversing multiple
trust domains.

Moreover, the complexity of relationships between data
elements, processes, and agents across diverse locations and
administrative domains poses a significant hurdle, requiring
nuanced approaches to accurately capture and represent these
intricate dependencies. Another critical issue is the heterogene-
ity inherent in distributed systems, where varying technologies,
protocols, and data formats further complicate the uniform
collection of provenance data. This diversity not only affects
data collection but also impacts the system’s performance, in-
troducing potential latency and overhead concerns, particularly
under heavy operational loads.

The SPADE addresses these multifaceted challenges by
employing a robust, graph-based data model designed to
manage provenance information flexibly and effectively. This
model supports complex relationships and dependencies, ad-
heres to the Open Provenance Model (OPM) [15], and decou-
ples provenance collection, storage, and querying processes.
SPADE’s architecture accommodates various query operators
and storage backends, enhancing flexibility and scalability.
Moreover, the system incorporates a filtering mechanism to
optimize metadata management and improve query precision,
ensuring efficient handling of large volumes of provenance
data over time. These features collectively empower SPADE to
serve as a powerful tool for tracking, managing, and querying
data lineage in distributed environments, thereby facilitating
informed decision-making and analysis across diverse appli-
cation domains.

C. UNICORN: Anomaly-Based APT Detection

The main goal of UNICORN [13] is to effectively detect
Advanced Persistent Threats (APTs) by leveraging data prove-
nance analysis. It is designed to identify stealthy anomalous
activities within a system without relying on pre-defined attack
signatures. It achieves this by efficiently analyzing provenance
graphs over time and space, focusing on the entire span of
system operations. The system learns and adapts to typical
changes in normal system behavior, allowing it to distinguish

these from anomalies caused by attackers. It employs a
graph sketching technique to summarize long-running system
activities, making it adept at detecting slow-acting attacks.
Key components include a real-time updating streaming graph
histogram, a fixed-size graph sketch for preserving histogram
similarities, and an evolutionary model that captures normal
system behavior changes.

D. Limitations of Existing Systems

Despite their strengths, these systems fall short in addressing
a critical need for delay-sensitive threat detection, which is
essential for rapid response in dynamic and critical environ-
ments.

ShadeWatcher: ShadeWatcher’s design is centered around
achieving high accuracy and fine-grained detection signals
without a specific focus on the rapid identification and re-
sponse to emerging threats. This lack of emphasis on timeli-
ness is a notable gap, especially in scenarios where immediate
detection and response are critical.

SPADE: Despite its robust management capabilities, it
is primarily designed for detailed provenance auditing and
querying rather than the prompt detection of threats. The
system’s architecture can handle large volumes of data, but
this capability comes at the expense of potential latency. This
makes SPADE less effective for scenarios requiring immediate
threat identification and mitigation.

UNICORN: While UNICORN excels in identifying sophis-
ticated, prolonged anomalies, its emphasis on long-term be-
havior analysis may delay the detection of threats that require
swift response times. This approach may not be sufficient for
environments where rapid detection and immediate action are
crucial to maintaining system security and integrity.

Addressing the Gap with Delay-Sensitive Provenance:
These systems highlight important advancements in threat
detection through provenance analysis, yet they do not fully
address the need for rapid and precise threat detection within
short time frames. Our delay-sensitive provenance system ad-
dresses this gap by focusing on swift analysis and response to
threats. By prioritizing timely detection, our approach enables
immediate identification of anomalous activities, allowing for
quick and decisive actions to mitigate potential threats. This
capability is crucial for enhancing the security and resilience
of critical infrastructure networks against imminent attacks,
an aspect that is currently underrepresented in systems like
ShadeWatcher, SPADE, and UNICORN.

III. TOWARDS A DELAY-AWARE PROVENANCE SYSTEM
FOR OT NETWORKS

In this Section, we outline an overview of our environment
setup for the system in Figure 1. The architecture of the
proposed audit tracking system is designed to ensure robust
monitoring and detection of potentially malicious activities
within critical infrastructure networks. The system utilizes
elements of the ELK stack, comprising of Elasticsearch,
Logstash, and Kibana, integrated with Auditbeat to collect,
analyze, and visualize system-level logs.

Authorized licensed use limited to: The University of Texas at El Paso (UTEP). Downloaded on April 25,2025 at 21:41:19 UTC from IEEE Xplore. Restrictions apply.



Critical Infrastructure Network

Configuration
Control System Flle
1
o |
Flow
1
[
Y —
-— —
Orchestration

Server

Control System

Control System

Fig. 1. Overview of Provenance Environment for OT

A. Preliminary Testing Environment

In Figure 1, we have established the foundation for our
preliminary provenance collection environment consisting of
three supervisory control systems servers, a collection/analysis
server, and an orchestration server. Our control systems
perform critical functions within the critical infrastructure
network. All the control systems are connected and can
communicate with one another within the network, but each
operates independently and is able to audit low-level system
data logs. As the auditing process occurs, each control system
sends these low-level system data logs to an off-location
collection/analysis server. There the server can provide log
aggregation and custom fine-grained analysis.

We have included an orchestration server whose primary
purpose is to provide information on the auditing configuration
for the network. This configuration file will be sent to the or-
chestration server, and it will distribute this configuration to the
appropriate control systems in the network. The configuration
files on each node define security rules and tracking markers
tailored to the specific functionalities of the control systems.
These rules establish baselines for “normal” system behavior.
Deviations from these baselines generate flags that are tagged
in the logs with keywords identifying potentially malicious
activities.

B. Network Setup and Node Configuration

In the preliminary setup, we have three Virtual Machines
(VMs) running Ubuntu 20.04 that have been deployed. These
VMs act as our control systems that would be in critical infras-
tructure networks. One of these VMs acts as both a control
system and the collection/analysis server in this preliminary
setup. The VMs have been configured to reside on the same
LAN network, allowing seamless communication and data
transmission between nodes. In our setup, we have it acting
as if it were connected to the LAN network. In the future we
aim for our collection/analysis server to not be connected via
LAN and act as an off-location entity that the control systems
can still interact with.
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Fig. 2. 30 Minute Event Capture For Preliminary Testing Environment

Each VM has the Elasticsearch and Kibana services avail-
able from the ELK Stack. These services assist in facilitating
the collection and analysis of system logs on the collec-
tion/analysis server. Additionally, the Auditbeat service is
utilized on each server to interact with Linux’s Auditd frame-
work. This built in Linux auditing service enables the collec-
tion of system-level logs based on predefined specifications.
Auditbeat’s integration ensures that logs are systematically
collected and sent to Elasticsearch on the collection/analysis
server for further analysis.

C. Log Analysis and Visualization

The collection/analysis server, equipped with the ELK stack,
serves as the foundation for log analysis and visualization
processes. Our current focus is on time-bound log monitoring,
where logs are reviewed during specific periods rather than
continuously. This approach is particularly crucial for critical
infrastructure systems, where timely detection and response to
cyber threats are essential.

Using Kibana, we can perform granular searches within the
logs, filtering data by system identifiers such as name or IP
address, or by keywords tagged in the logs. We can also cus-
tomize Kibana’s dashboard views to get better visualizations
of the activity on the network. These capabilities allow for
efficient sifting through log data to prioritize and investigate
potentially malicious activities. Although we have not yet
implemented a detection model, our system is designed to
support future enhancements that incorporate advanced threat
detection and mitigation techniques.

IV. TESTING AND EVALUATION

Our system is capable of monitoring a distributed network
of nodes over specified temporal intervals, effectively auditing
both standard operational activities and potential malicious
behaviors. The infrastructure supports sophisticated querying
of accumulated log data using diverse field names and specific
tags, facilitating a nuanced and hierarchical analysis of security
events.
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A. Kibana Discover/Dashboard Capabilities

As illustrated in Figure 2, a preliminary simulation is
conducted within our test environment to demonstrate the
functionality of our system. Figure 2 showcases a screenshot
of the Kibana Discover dashboard, which displays the com-
prehensive low-level system logs collected from the network
nodes. In this simulation, we executed a query utilizing the
agent.hostname field within our system logs, targeting specific
nodes across the network. By querying each node based on its
system hostname, we successfully retrieved all relevant logs
for those nodes. This capability is particularly beneficial in
scenarios where the system is busy with voluminous logs, yet
a focused analysis on a single node is required. This system
not only streamlines the process of log management and threat
detection but also enhances our ability to perform targeted
audits on individual network components, thereby significantly
improving the efficiency and accuracy of cybersecurity oper-
ations.

Figures 3, 4, and 5 illustrate the versatile capabilities of the
Kibana Dashboards in providing detailed insights into network
host information. These dashboards can be customized to
create targeted visualizations that address specific auditing
and monitoring needs within the network. Figure 3 offers a
comprehensive overview, including:
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o The total number of hosts within the network.

o The average uptime for each host.

o The distribution of different operating systems used
across the network.

o A time series visualization representing host-related doc-
uments over a given interval.

These detailed breakdowns offer a robust understanding of
the types of nodes within the network and their operational
activity. This comprehensive view is crucial for evaluating
network health and performance and identifying patterns that
may suggest either normal or abnormal behaviors. Figure 4
presents a detailed table listing all nodes within the network.
This table serves as a tabular representation of the visualiza-
tions shown in Figure 3, offering a comprehensive view of
the complete data for each host. In contrast, Figure 5 delves
deeper by providing a focused log of host-related events for
each node. This detailed log analysis is essential for refining
our detection models. The raw data from these logs enable us
to extract critical metrics and uncover patterns that are crucial
for improving our threat detection and response strategies.
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B. Auditbeat Rules Capabilities

In our experimental setup, we evaluated the capability to
incorporate predefined rules within the Auditbeat configura-
tion file to monitor potentially malicious events. Below, we
delineate the specific rules integrated for this testing phase:

RULE SET FOR MALICIOUS EVENT MONITORING

« Execution Events:
- —a always,exit -F arch=b64 -S
execve, execveat -k exec
« Identity Modifications:
- -w /etc/group -p wa -k identity
- -w /etc/passwd -p wa -k identity
« Unauthorized Access Attempts:
- —a always,exit -F arch=b64 -S
open, creat, truncate, ftruncate, openat,
open_by_handle_at -F exit=-EACCES -k
access
- —a always,exit -F arch=b64 -5
open, creat, truncate, ftruncate, openat,
open_by_handle_at -F exit=-EPERM -k
access
« Network Events:

- —a always,exit -F arch=b64 -S socket
-k socket_event

- —a always,exit -F arch=b64 -S bind -k
bind_event

- —a always,exit -F arch=b64 -S connect
-k connect_event

- —a always,exit -F arch=b64 -S listen
-k listen_event

- —a always,exit -F arch=b64 -S accept
-k accept_event

- —a always,exit -F arch=b64 -S sendto
-k sendto_event

- —a always,exit —-F arch=b64 -S
recvfrom -k recvfrom_event

- —a always,exit -F arch=b64 -S sendmsg
-k sendmsg_event

- —a always,exit -F arch=b64 -S recvmsg

-k recvmsg_event

These rules were implemented to facilitate the monitoring
of security threats within each network node. Subsequently,
we executed testing scripts on each node to simulate a variety
of malicious activities over a 30-minute duration. During this
interval, we utilized the central Kibana interface to observe
the logged malicious events. This was achieved by querying
specific hosts and keywords defined in the aforementioned
rules.

In Kibana, to effectively locate the keywords associated
with the implemented rules, it was necessary to specify the
tags field. Figures 6, and 7 illustrate that each network node
successfully captured the events as per the rules, accurately
tagged them, and transmitted the logs to the central Kibana

host, designated as TRUCYBER in this study. This demon-
strated our system’s capability to perform fine-grained analysis
and enable targeted detection of malicious activities across the
network.

Limitations. The current implementation of our delay-
sensitive provenance framework for OT networks has some
limitations in reporting system performance, particularly re-
garding delay and detection sensitivity. While our prelimi-
nary results demonstrate the feasibility of provenance data
collection, we acknowledge the need for more comprehensive
performance metrics. Future work will focus on developing
and implementing precise measurements for system latency
and detection accuracy. We plan to conduct extensive testing
to quantify the delay between the occurrence of an anomalous
event and its detection by our system. Additionally, we will
establish sensitivity thresholds to optimize the balance between
threat detection and false alarm rates. To address the delay
problem, we are exploring several strategies, including opti-
mizing our data processing algorithms, implementing parallel
processing techniques, and investigating the integration of
machine learning models to enhance our detection processes.
Machine learning approaches could potentially improve the
system’s ability to identify patterns and anomalies more
quickly and accurately, thereby reducing overall detection
time. These enhancements will be crucial in ensuring that our
framework can provide timely and accurate threat detection in
critical OT environments where rapid response is essential.

V. CONCLUDING REMARKS

In the face of ever-evolving cyber threats, particularly in
critical infrastructure systems, this research delves into the ap-
plication of low-level system log auditing through provenance-
based techniques to enhance threat detection capabilities. Fo-
cusing on three pioneering systems—ShadeWatcher, SPADE,
and UNICORN, we examine their methodologies for leverag-
ing data provenance to identify and mitigate threats with preci-
sion. Our proposed system, inspired by these advanced models,
aims to create a delay-sensitive audit tracking framework
tailored for critical infrastructure networks. By continuously
auditing low-level system logs and analyzing them through
a dynamic, time-bound approach, we enhance our ability to
detect anomalous activities swiftly and accurately. This system
is designed to provide high precision in identifying threats and
minimizing false alarms, thereby ensuring robust protection for
essential services such as power grids, water supply systems,
and transportation networks.

In our preliminary testing environment, we’ve established
a network of nodes capable of auditing system activities and
transmitting logs to a central collection/analysis server. This
setup allows for the granular analysis and visualization of
network activities using tools like Elasticsearch and Kibana.
By integrating proven methodologies from ShadeWatcher,
SPADE, and UNICORN, we aim to not only monitor and
detect potential cyber threats in real-time but also adapt to
evolving threats, thus promising significant advancements in
the security and resilience of critical infrastructure systems.
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VI. FUTURE RESEARCH DIRECTIONS

Our research will continue to advance by integrating more
sophisticated detection models and enhancing the system’s
ability to respond to cyber-attacks in real-time. Several key
areas will be the focus of our future developments:

A. Time-Sensitive Response Mechanisms

Incorporating a delay-sensitive response mechanism is a
priority. We plan to develop a machine learning model capable
of computing a certainty metric, which will help determine
whether an attack has occurred based on audited logs. Our
goal is to guarantee a response to anomalous threats within 5-
10 minutes of detection, providing a preliminary assessment
of the threat’s likelihood. Continuous monitoring beyond this
initial period could enhance the certainty of our assessments,
refining our response strategy over time.

B. Integration of Provenance-Graph Techniques

We aim to incorporate the advanced provenance-graph
techniques demonstrated in ShadeWatcher and UNICORN to
enhance our system’s detection capabilities. These techniques
have proven valuable for tracing the lineage of data and system
activities, providing insights into potential security threats. By
running ShadeWatcher on our virtual machines and utilizing
Auditbeat logs to construct provenance graphs, we have ob-
served significant potential for real-time threat detection. Our
objective is to integrate these models into a delay-sensitive
detection system that leverages machine learning to recognize
and respond to new anomalies in real-time.

C. Utilization of Comprehensive Log Data

Leveraging the extensive log data collected through the
ELK stack (Elasticsearch, Logstash, and Kibana) [16] and
Auditbeat will be critical. These tools have been instrumental
in managing our auditing nodes network and simplifying
the analysis of low-level system logs. They enable detailed,
granular investigations and visualizations of system activities.
Although our focus may shift towards provenance-graph de-
tection for a more sophisticated approach to malicious threat
detection, the ELK stack and Auditbeat will continue to play
supportive roles in our overall system architecture.

D. Scalability and Network Expansion

To achieve scalability, we need to expand our network
capabilities. The SPADE project provides valuable insights
into managing data provenance in distributed environments,
and its findings will be crucial as we add more nodes to our
network. This expansion will ensure that our detection system
remains robust and effective as it scales to handle larger and
more complex environments.

E. Enhancing Machine Learning for Real-Time Analysis

Future work will focus on refining machine learning al-
gorithms to improve their ability to analyze and respond to
threats in real-time. This will involve training models on com-
prehensive datasets and logs, enabling them to identify patterns

and anomalies that indicate potential security breaches. The
ultimate goal is to develop a highly responsive and accurate
detection system that can adapt to evolving threats.

These future directions underscore our commitment to ad-
vancing the field of real-time threat detection and response.
By integrating these sophisticated techniques and expanding
our system’s capabilities, we aim to develop a robust, scalable
solution capable of effectively countering cyber threats in
increasingly complex environments.
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