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Abstract 
A numerical inverse method called FlowPaths is presented to solve for the hydraulic conductivity 
field of an isotropic heterogeneous porous medium from a known specific discharge field (and 
constant-head boundary conditions). This method makes possible a new approach to reactive 
transport experiments, aimed at understanding the dynamic spatial and temporal evolution of 
hydraulic conductivity, which simultaneously record the evolving reaction and the evolving flow 
geometry. This inverse method assumes steady, two-dimensional flow through a square matrix of 
grid blocks. A graph-theoretical approach is used to find a set of flow paths through the porous 
medium using the known components of the specific discharge, where every vertex is traversed 
by at least one path from the upstream high-head boundary to the downstream low-head 
boundary. Darcy’s law is used to create an equation for the unknown head drop across each edge. 
Summation of these edge equations along each path through the network generates a set of 
linearly independent head-drop equations that is solved directly for the hydraulic conductivity 
field. FlowPaths is verified by generating 12,740 hydraulic conductivity fields of varying size 
and heterogeneity, calculating the corresponding specific discharge field for each, and then using 
that specific discharge field to estimate the underlying hydraulic conductivity field. When 
estimates from FlowPaths are compared to the simulated hydraulic conductivity fields, the 
inverse method is demonstrated to be accurate and numerically stable. Accordingly, within 
certain limitations, FlowPaths can be used in field or laboratory applications to find hydraulic 
conductivity from a known velocity field. 
 
Article Highlights: 

 The two-dimensional groundwater inverse problem is solved for the heterogeneous 
hydraulic conductivity given a known velocity field. 

 Graph theory is used to find down-gradient continuous paths through the porous media. 
 The paths are transformed into a system of equations, based on Darcy’s law, that is solved 

for the hydraulic conductivity field. 
 
Keywords: Inverse problem, Groundwater, Velocity field, Graph theory 
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1. IntroductionEquation Chapter 1 Section 1 
Modeling flow through porous media supports numerous applications including seepage through 
dams (e.g., Lyu et al., 2019), subsurface transport of nuclear waste (e.g., Tsang et al., 2015), and 
groundwater remediation (e.g., Zhao et al., 2024). According to Darcy’s law, specific discharge 𝑞⃗ 
is linearly proportional to the hydraulic head gradient ∇h and to the hydraulic conductivity K, a 
spatially and temporally variable tensor field that reflects the physical properties of water and the 
geometric intricacies of the porous media. Those geometric intricacies are encapsulated by the 
permeability k, while the specific discharge 𝑞⃗ is the product of the local porosity ε and the local 
pore velocity 𝑣⃗. Except in idealized cases, such as filter beds packed with monodisperse 
spherical grains, it is difficult-to-impossible to predict hydraulic conductivity a priori (Baveye et 
al., 1998); this difficulty is amplified in the context of groundwater remediation, where a host of 
mechanisms such as clay dispersion, mineral precipitation, biofilm growth, or bubble formation 
can trigger spatial and temporal changes in hydraulic conductivity (Manga et al., 2012). 
 Because it cannot be measured a priori, hydraulic conductivity is determined through 
inverse modeling (e.g., Sun, 1999): One measures the other terms in a known relationship, such 
as Darcy’s law, then solves for the unknown hydraulic conductivity. Indeed, this paradigm is 
illustrated in Darcy’s (1856) original work, in which the discharge through and the head loss 
across a sand-packed column of known cross-sectional area were measured; those measurements 
allowed Darcy to calculate the hydraulic conductivity, as an inverse solution, using the equation 
that now bears his name (Freeze & Cherry, 1979, p. 15). In traditional groundwater engineering, 
hydraulic conductivity can be determined by pumping tests (Theis, 1935), slug tests (Cooper et 
al., 1967), or extracting samples for laboratory testing (Fitts, 2002, pp. 67-93). When more than a 
point measurement of hydraulic conductivity is required, as in most groundwater modeling 
applications, the hydraulic conductivity field is generally inverted from measured heads, which 
permits identification of the hydraulic conductivity field (Neuman, 1973). Using measured 
heads, inverse models have been developed to determine the hydraulic conductivity field (K) 
using stochastic techniques (Chang & Yeh, 2010; Liu et al., 2006; Lu & Zhang, 2002); 
parametrization (Jiao & Zhang, 2015); or Adomian decomposition (Panawalage et al., 2018). 
However, to our knowledge no inverse model is available to determine heterogeneous hydraulic 
conductivity fields from measured velocity fields, which is the gap this work seeks to partially 
fill. 
 Why determine heterogeneous K from the velocity field? Because it makes possible a 
new approach to reactive transport experiments aimed at understanding the dynamic spatial and 
temporal evolution of hydraulic conductivity. To envision such experiments, consider the 
following motivational example: We assume a quasi-2D flow through heterogeneous porous 
media observed with particle image velocimetry (PIV). Knowing the constant head boundaries 
and the PIV at time 1 (Figure 1a), we apply FlowPaths to infer the corresponding distribution of 
hydraulic conductivity (Figure 1b). Then we postulate that some process reduces the hydraulic 
conductivity in certain cells. That process could include any or all of the mechanisms articulated 
above (Manga et al., 2012); for concreteness, we assume that mineral precipitation reduces the 
hydraulic conductivity in the five cells highlighted in Figure 1d, with light shading for a 10-fold 
decrease and dark shading for a 100-fold decrease. Thus, reaction has altered the hydraulic 
conductivity, which will in turn alter the flow field. At time 2, we repeat the PIV measurement 
(Figure 1c) and reapply FlowPaths to find the new distribution of hydraulic conductivity (Figure 
1d). The motivation for FlowPaths is that it is essential for such an experiment. 
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Figure 1: Hypothetical experiment where (a) the specific discharge field at time 1 determines (b) 
the hydraulic conductivity field at time 1, and the subsequently measured (c) specific discharge 
field at time 2 determines (d) the hydraulic conductivity at time 2. The dynamic evolution of 
hydraulic conductivity, averaged over grid blocks, is shown by light gray shading for 90% 
clogging and by dark gray shading for 99% clogging. 
 
 The dependence of hydraulic conductivity on the complex distribution of porosity 
continues to be an area of ongoing research (e.g., Ghosh et al., 2020). Here we pose the next 
question: How do these complex relationships evolve over time? At the heart of these dynamics  
is a feedback process (Singurindy & Berkowitz, 2003). Reactive processes in groundwater 
remediation depend on fluid flow; those reactive processes often change the hydraulic 
conductivity; the changed hydraulic conductivity changes the fluid flow; and the changed fluid 
flow alters the reactive processes. This feedback process has been recognized for some time but 
has yet to be studied in detail. Thullner et al. (2002) studied the feedback between biofilm 
growth and flow; El Mountassir (2014) studied reaction-flow feedback with microbially-
mediated mineral precipitation; and Yoon et al. (2019) studied reaction-flow feedback from 
precipitation of calcium carbonate. Bastidas Olivares et al. (2021) presented a numerical 
approach to model reaction-flow feedback for a generalized mineral precipitation-dissolution 
process, and Kelm et al. (2022) extended this approach to include two minerals. In the specific 
context of groundwater remediation, awareness of reaction-flow feedback has also been reflected 
in at least one modeling study (Li et al., 2008) and at least one field study (Englert et al., 2009) , 
and similar observations have been reported at commercial groundwater remediation sites (Kent 
Sorenson, CDM Smith, personal communication, 2017). In all these cases, hydraulic 
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conductivity evolves dynamically, and that evolution is both the cause and effect—a feedback 
process—of reactive transport. Understanding this feedback process calls for a new approach to 
reactive transport experiments that simultaneously gather evidence for reaction, such as biofilm 
growth or mineral precipitation, and evidence for the flow geometry, such as the velocity field. 
Such work, building on prior reactive transport experiments described below, would require an 
inverse method to determine hydraulic conductivity from velocity. 
 There are several examples where reaction-flow feedback is relevant. One is clogging 
near wells during aquifer storage and recovery (Mays, 2013). Another example, relevant to 
groundwater remediation, is clogging in permeable reactive barriers (Zolla et al., 2009). A 
particularly illustrative example of reaction-flow feedback is the model reaction where an 
aqueous plume of calcium chloride is co-injected with an aqueous plume of sodium carbonate. 
Upon mixing, these plumes precipitate calcium carbonate that has been shown to inhibit 
dispersive mixing (Tartakovsky et al., 2008) and to separate plumes across interfaces between 
porous media (Katz et al., 2011). These experiments demonstrate reaction-flow feedback, albeit 
with a relatively straightforward evolution from a clean-bed system that mixes relatively more to 
a post-reaction system that mixes relatively less. More sophisticated experiments would mimic 
reactive transport processes characteristic of groundwater remediation, where reactions 
determine and alter flow and transport; these experiments would provide both observable 
reactions and observable velocity fields. In laboratory settings, velocity fields within porous 
media can be measured by particle image velocimetry (PIV), using micromodels (Yoon et al., 
2019), thin two-dimensional flow cells (Larsson et al., 2018), or three-dimensional flow cells 
filled with refractive index matched porous media (Arthur et al., 2009). The goal of the present 
study is to show how the velocity field provides a rich set of data that may be used to calculate 
the hydraulic conductivity field. 
 In order to formulate a well-posed problem that can be solved by direct matrix inversion, 
we require an approach to identify unique flow paths, taking advantage of the vector properties 
of the velocity field. A natural choice is to use graph theory to identify paths by linking the 
velocity vectors from adjacent grid blocks (henceforth cells), starting at one boundary, and 
ending at the other. Several previous investigators have applied graph theory to inverse problems 
in hydrogeology: Eikemo et al. (2009) used graph theory to develop a fast solver for advective 
transport in fractured media using topological sorting of the discrete fluxes; Rizzo and de Barros 
(2017) used graph theory to develop a numerical approach to find arrival times of solute plumes 
via the paths of least resistance through heterogeneous porous media; and Godefroy et al. (2019) 
used graph theory to analyze the structural interpretation of faults. Complementing these works, 
there is a body of literature addressing pore-network models in which pore spaces, modeled as 
vertices, are connected by pore throats, modeled as edges (Berkowitz and Ewing, 1998; Yang et 
al., 2016). A particular focus of this literature is percolation theory, which describes the fractal 
paths providing flow and transport in heterogeneous porous media, and which can be used to 
predict solute transport (Hunt and Ghanbarian, 2016) and hydraulic conductivity (Hunt and 
Sahimi, 2017). A similar approach has been developed to model transport in fractured rock using 
discrete fracture networks (Viswanathan et al., 2018). Distinct from these pore- and fracture-
network models, but still within the framework of graph theory, are recent works adopting 
convolutional neural networks (CNNs) to predict macroscopic variables, including hydraulic 
conductivity, from pore-scale measurements of geometry using machine learning (Santos et al., 
2020; Elmorsy et al., 2022; Gärttner et al., 2023). However, to our knowledge, no previous 
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research has used graph theory—or any other method—to uniquely determine the Darcy-scale 
hydraulic conductivity field from a measured field of velocity vectors. 
 This paper is structured as follows. In Section 2 we present an inverse model called 
FlowPaths that uses graph theory to generate the system of equations needed to determine the 
hydraulic conductivity field from a known specific discharge field. In Section 3 we present 
results for one proof-of-concept example and summarize results from model verification using 
12,740 simulations, and in Section 4 we discuss these results in light of the literature while 
suggesting directions for future research. Conclusions are presented in Section 5. 
 
2. MethodsEquation Section (Next) 
In creating FlowPaths, our intent was to provide a fast solver for the inverse problem that did not 
rely on iterative methods or additional observations, so that it could be adapted to predict the 
effects of transport under unsteady conditions in near-real time. Three concepts guide our 
approach to identifying hydraulic conductivity from specific discharge. First, using Darcy’s law 
to write the head-drop equations on the paths in any tree (the set of paths originating at a single 
source) from a source to the set of sink vertices (henceforth called target vertices) produces a 
positive matrix of coefficients. Such a matrix must lead to the solution vector, K, being positive, 
per Farkas’ lemma (Matoušek & Gärtner, 2007, pp. 81-105), which limits the solution to the 
physically plausible condition where each member, Ki, of the solution vector, K, is strictly 
positive. Second, expressing the groundwater flow equation in terms of graph theory produces a 
convex planar mesh (Tutte, 1960), where every vertex in the flow domain is at least 3-connected, 
and every line drawn between two vertices must be inside the flow domain. The matrix of head-
drop coefficients produces a Hessian matrix which is positive-definite, also implying that the 
coefficient matrix is a convex set. Strictly convex functions have a global minimum (Rockafellar, 
1970), leading to a unique result. And third, the system is solved using a non-iterative method, 
and its stability is confirmed with a recursive error test. 
 In Section 2.1 we present a graph-theoretic model for the inverse solution, develop head-
drop equations using Darcy’s law, find a spanning set of linearly independent equations, and then 
solve directly for the unknown hydraulic conductivities. We conclude with methods for model 
verification and error estimation. 
 
2.1 Problem Formulation 
In the finite-difference methods used in groundwater modeling software such as MODFLOW 
(USGS, 2022), cells represent areas where the aquifer properties (i.e., hydraulic conductivity) are 
constant. As shown in Figure 2, the closed system model is divided into the source region, S, the 
flow domain, Ωo, and the target region, T. Together, they form the closure of the model domain, 
Ωഥ (Trench, 2003). The goal of the analysis is to calculate the hydraulic conductivities 𝐊 ൌ 𝐾௜,௝ 
for all cells, where i is the row and j is the column. The cells in regions S and T are known head 
regions. Ωo is the region of unknown head, which is calculated after determining K. The specific 
discharge vectors are known everywhere in Ωഥ. 
 The numerical model is reformulated in the framework of graph theory, which 
conceptualizes the system as a network of nodes and links, where nodes are called vertices, links 
are called edges, and together they constitute a graph with symbol G. Further definitions may be 
found in the Supporting Information (Section S1). Using block-centered vertices, as shown in 
Figure 3a, the specific discharge vectors are assigned to the geometric center of each cell. These 
vectors are broken into components, as shown in Figure 3b, and then these block-centered 
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Figure 2. The closed-system model domain is composed of known, constant head grid-blocks (S 
and T) and a region of unknown head cells Ωo. No flow occurs across the perimeter of Ωഥ or 
between the constant-head cells. The specific discharge components qL, qR, qB, and qT are known 
for all cell faces, while the hydraulic conductivity K is unknown for all cells. 
 
components are combined into specific discharges passing through the faces of the cells, as 
shown in Figure 3c. The final step in the reformulation is Figure 3d, which shows a directed 
graph, where the same flow goes through the edges between vertices as through the faces of the 
cells. 
 FlowPaths has been constructed to meet the criteria of a well-posed inverse problem. In 
the sense of Tikhonov, well-posedness requires that (1) a solution exists, (2) the solution is 
unique, and (3) the solution is stable (Tikhonov, 1977). Existence is shown by the fact that for 
every unknown hydraulic conductivity K(x,y), there exists a data source, q(x,y), that occupies a 
one-to-one relationship. Uniqueness is guaranteed because the minimum number of paths needed 
for a unique solution is equal to the number of linearly independent paths as detailed in Section 
2.3 below. And finally, stability is demonstrated through the recursive error test showing that the 
cumulative residuals are bounded as detailed in Section 2.4 below. Additional details on the well-
posedness of the method are available in the Supporting Information (Section S2). 
 
2.2 Head-Drop Equations 
We conceptualize the flow as a set of paths, each of which generates a first-order polynomial 
equation for hydraulic conductivity using Darcy’s law through the faces of the cells (Figure 3c). 
We define the head drop between the predecessor and successor vertices (Figure 3d) a and b as: 
 
Δha,b = ha – hb. (1) 
 
In graph terms, with a,b denoting the edge between vertex a and vertex b, Darcy’s law is then: 
 

𝑞௔,௕ ൌ െ𝐾௔,௕
௛್ି௛ೌ
௅ೌ,್

,  (2) 
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Figure 3. Problem formulation with (a) cell-centered specific discharge vectors, (b) orthogonal 
components of specific discharge vectors, (c) face-centered specific discharges, and (d) directed 
graph with edge weights given by the face-centered specific discharges shown in (c). The set S 
contains the source vertices {1, 2, 3, 4} and the set T contains the target vertices {21, 22, 23, 24}. 
Note the vertical scale in (b) and (c) has been chosen to exaggerate the vertical component of 
specific discharge. Results in (d) may not sum to zero at each vertex due to rounding. 
 
where Ka,b is the effective hydraulic conductivity over a,b and La,b is the length of a,b. The single 
head-drop equation through one edge is then: 
 
∆ℎ௔,௕ ൌ

௤ೌ,್

௄ೌ,್
𝐿௔,௕.  (3) 

 
The sum of a series of individual head drops along n vertices in a path can be arranged as 
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∆ℎ௧௢௧௔௟ ൌ ሺℎଵ െ ℎଶሻ ൅  ሺℎଶ െ ℎଷሻ ൅ ⋯൅ ሺℎ௡ିଶ െ ℎ௡ିଵሻ ൅ ሺℎ௡ିଵ െ ℎ௡ሻ ൌ ∑ ሺℎ௞ െ ℎ௞ାଵሻ
௞ୀ௡ିଵ
௞ୀଵ .

 (4) 
 
In this equation, the total head drop, Δhtotal, is equal to the sum of the individual head drops. The 
effective hydraulic conductivity, Ka,b, is then defined for each head drop. Following Harbaugh 
(2005, p. 135), since the flow is perpendicular to the cell faces, Ka,b is defined as the harmonic 
mean of the hydraulic conductivity of the adjacent vertices: 
 

𝐾௔,௕ ൌ
ଶ

భ
಼ೌ

ା భ
಼್

 , (5) 

 
which can be derived by analogy to electrical resistors in series. The specific discharge through 
an edge connecting adjacent vertices a and b can be expressed using Darcy’s law as 
 
௛ೌି௛್
௅ೌ,್

ൌ
௤ೌ,್

௄ೌ,್
. (6) 

 
We assume square cells, so by construction, l = La,b for all adjacent vertices a and b. Then we 
substitute the individual head drop expression into the total head drop equation for n consecutive 
vertices along any simple path (i.e., without repeated vertices) between the source head hS and 
the target head hT. The result is a series head loss equation: 
 
௛ೄି௛೅

௟
ൌ

௤భ,మ

௄భ,మ
൅

௤మ,య

௄మ,య
൅ ⋯൅

௤೙షమ,೙షభ

௄೙షమ,೙షభ
൅

௤೙షభ,೙

௄೙షభ,೙
ൌ ∑ ௤೔,೔శభ

௄೔,೔శభ

௡ିଵ
௜ୀଵ . (7) 

 
We now express Ka,b as the hydraulic resistance R of the edge, where R = K-1, so that 
 

𝐾௔,௕ ൌ
ଶ

ோೌା ோ್
. (8) 

 
Now Eq. 7 can be expressed in terms of the resistances of each vertex and the specific discharges 
of each edge as 
 
௛ೄି௛೅

௟
ൌ

௤భ,మ
మ

ೃభశ ೃమ

൅
௤మ,య
మ

ೃమశ ೃయ

൅ ⋯൅
௤೙షమ,೙షభ

మ
ೃ೙షమశ ೃ೙షభ

൅
௤೙షభ,೙

మ
ೃ೙షభశ ೃ೙

ൌ ∑ ௤೔,೔శభ
మ

ೃ೔శೃ೔శభ

௡ିଵ
௜ୀଵ . (9) 

 
Inverting the denominators, distributing, and gathering like terms yields 
 
௛ೄି௛೅

௟
ൌ 𝑅ଵ ቀ

௤భ,మ

ଶ
ቁ ൅ 𝑅ଶ ቀ

௤భ,మା௤మ,య

ଶ
ቁ ൅ 𝑅ଷ ቀ

௤మ,యା௤య,ర

ଶ
ቁ ൅ ⋯  

 ൅𝑅௡ିଶ ቀ
௤೙షయ,೙షమା௤೙షమ,೙షభ

ଶ
ቁ ൅  𝑅௡ିଵ ቀ

௤೙షమ,೙షభା௤೙షభ,೙

ଶ
ቁ ൅ 𝑅௡ ቀ

௤೙షభ,೙

ଶ
ቁ. (10) 

 
We assume that the hydraulic conductivity of the boundary cells matches that of their 
neighboring active cells, so their resistances will be equal as well, giving R1 = R2 and Rn-1 = Rn. 
Using only the active matrix (i.e., non-boundary grid cells) produces the final head drop equation 
with combinations of the specific discharges on each vertex for any path: 
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௛ೄି௛೅
௟

ൌ 𝑅ଶ ቀ
ଶ௤భ,మା௤మ,య

ଶ
ቁ ൅ 𝑅ଷ ቀ

௤మ,యା௤య,ర

ଶ
ቁ ൅ ⋯൅ 𝑅௡ିଶ ቀ

௤೙షయ,೙షమା௤೙షభ,೙షభ

ଶ
ቁ ൅ 𝑅௡ିଵ ቀ

௤೙షమ,೙షభାଶ௤೙షభ,೙

ଶ
ቁ  

 (11) 
 
To simplify the notation, the parenthetical term following each R is re-defined as the variable 𝑞௞

∗  
for each vertex of every path starting with the second vertex (k = 2) and ending with the 
penultimate vertex (k = n-1), using the value of the specific discharges through the edges on the 
path that are incident to the vertex: 
 

𝑞௞
∗ ൌ

⎩
⎪
⎨

⎪
⎧ 𝑞ଵ,ଶ ൅

௤మ,య

ଶ
𝑘 ൌ 2

௤ೖషభ,ౡ

ଶ
൅ 𝑞௞,௞ାଵ 𝑘 ൌ 𝑛 െ 1

௤ೖషభ,ೖା௤ೖ,ೖశభ

ଶ
2 ൏ 𝑘 ൏ 𝑛 െ 1

,  (12) 

 
where n is the number of vertices on each path. Replacing each specific discharge coefficient 
with the 𝑞௞

∗  term produces the first-order polynomial equation used for each path: 
 
௛ೄି௛೅

௟
ൌ 𝑅ଶሺ𝑞ଶ

∗ሻ ൅ 𝑅ଷሺ𝑞ଷ
∗ሻ ൅ ⋯൅ 𝑅௡ିଶሺ𝑞௡ିଶ

∗ ሻ ൅ 𝑅௡ିଵሺ𝑞௡ିଵ
∗ ሻ.  (13) 

 
The cells corresponding to Eq. 13 are shown in Figure 4. Any valid specific discharge field will 
be constrained by continuity, so assuming steady flow, it follows that the net flow into (or out of) 
any vertex v ≠ s,t is zero; by analogy to electrical circuits, continuity ensures that Kirchhoff’s 
rules are obeyed. 
 
2.3 FlowPaths Inverse Model 
The essential function of the FlowPaths inverse model is to identify a set of pathways, consistent 
with the known specific discharge field, that will generate the system of equations for the 
hydraulic conductivity as described above. The flowchart in Figure 5 and Figure 6 summarizes 
the steps needed to identify the paths and therefore to create the system of equations for the 
unknown hydraulic conductivity field. The flowchart starts with the full grid-cell domain, Ωഥ, the 
known specific discharge, qo, and the total head drop Δhtotal. The steps in the flowchart are 
explained in detail in the Supporting Information (Section S3). 
 To solve the system of equations for hydraulic conductivity, we require a set of linearly 
independent (LI) paths, similar to basis path sets described by Zhu et al. (2021). We define this 
set as PLI. The LI paths can be identified by finding all possible paths between the vertices in S 
and T and discarding those that are redundant, but such an approach would be computationally 
expensive (Gosnell & Broecheler, 2020). Instead, we subdivide the model domain into directed 
subgraphs Hst for each (s,t) pair and construct the LI paths for each directed subgraph by using 
the method outlined by Zwick (2013). The maximum number of LI paths in each directed 
subgraph is related to the cyclomatic number (Berge, 1973, p. 15), as described in the Supporting 
Information (Section S4). Then we combine the LI paths from each directed subgraph to create a 
set of paths PLI, which has the property that every edge in H belongs to some path in P, implying 
that every vertex in H also belongs to some path in P (Sloane, 1972). 
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Figure 4. Head drops defined by vertex set {1, 2, 3, 4, 5} or by edge set {A, B, C, D}. The first 
step goes from the first vertex (1) to the center of the first edge after the second vertex (B). The 
final step goes from the center of the next-to-last edge (in this example, C) to the last vertex (in 
this example: 5). 
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Figure 5. Schematic of the FlowPaths algorithm (Section 1). Inputs include the flow domain 
dimensions (Ωഥ), the given specific discharges (𝐪଴) and the boundary head difference (Δ𝐻). 
Inputs also include the given hydraulic conductivity (K0) and head distribution h0 used for the 
stability analysis shown in Figure 6. (a) Convert cells in the flow domain Ωഥ  to graph G using 
adjacency matrix A(G). (b) Create directed graph D from the known 𝒒଴. (c) Start nested loops 
si ∈ S and tj ∈ T. (d) Find the intersection of out-trees rooted at source si and in-trees rooted at 
target tj, which form the envelope of the minimum directed spanning tree (MDST). Find the set 
of linearly independent (LI) paths for each subgraph. If at least one path exists from si to tj, add 
the set of paths P(s,t) to the edge path matrix. Continue to Section 2 (Figure 6).  
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Figure 6. Schematic of the FlowPaths algorithm (Section 2), comprising the following steps: (e) 
Convert the edge path matrix to the q* matrix, representing head drop equations for all 
independent paths. (f) Reduce the overdetermined q* matrix to a square m×m matrix. (j) Solve 
for R1. (g) Is the result unique and full rank? If so, proceed to (h). If not, return an error. (h) 
Calculate K1 = R1

-1. (i) Calculate the fractional mean symmetric error (FMSE) between K1 and 
Ko. Continue to recursive error test? If so, proceed to (j). If not, end FlowPaths. (k) Call the 
forward solver, using K1 as input, then return to Section 1 (Figure 5) and use q1 as input. 
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 Having identified the LI paths for each (s,t) pair, we now combine them into a multi-
source multi-sink (MSMS) system. The number of paths is also the number of equations to be 
solved. Gopalan and Ramasubramanian (2014) show that the maximum number of independent 
paths, or maximum rank, Rmax, in an MSMS directed graph is equal to the number of edges, m, 
minus the number of vertices, n, plus M : 
 
Rmax = m – n + M , (14) 
 
where M is the total number of measurement vertices (the total number of source vertices and 
target vertices where the head is known). For example, the directed graph of Figure 3d has 
m = 32 edges, n = 24 vertices, and M = 8 (4 sources plus 4 targets) giving Rmax = 32-24+8 = 16, 
which is the same as the number of vertices in the interior of the square flow matrix Ωo (Figure 
2). Those 16 paths will generate 16 linearly independent equations to be solved for the 16 
unknown values of hydraulic conductivity. If the flow matrix has more columns than rows the 
inverse problem will be underdetermined. 
 Knowing the number of required independent paths, our next task is to list the vertices (or 
equivalently the edges) in each of those independent paths. This task requires us to define the 
minimum directed spanning tree (MDST). According to Sedgewick & Wayne (2014, p. 604), a 
minimum spanning tree (MST) is a connected subgraph H of a graph G with no cycles that 
includes all the vertices in G, with the total weight of its edges no more than any other spanning 
tree. The minimum directed spanning tree is the MST directed from source s to target t, which 
defines an (s,t) pair. Following the method of Zwick (2013), the MDST is identified by 
performing a sweep through all the vertices in H to find the smallest-weighted edges directed 
towards each vertex, which become the branches of the MDST of the subgraph Hst. 
For example, the directed subgraph for (s,t) = (3,22) is shown in Figure 7, with the MDST 
outlined in red. The total number of directed paths from vertex 3 to vertex 22 is 14, as 
enumerated in Table 1 using a breadth–first algorithm, such as the one presented by Korte and 
Vygen (2012, p. 26).  
 When all the 𝑞௞

∗  coefficients (Eq. 12) have been sorted into the proper elements for every 
path, the resulting linear system of equations is solved directly using the Matlab function 
mldivide (which is informally called backslash) (MathWorks, 2024). The cell-by-cell reciprocal 
of the resistance field R produces the hydraulic conductivity field K, as shown in steps h-l of 
Figure 6. The FlowPaths inverse model has been implemented in Matlab, and the relevant codes 
are available through the findable, accessible, interoperable, and reusable (FAIR) online 
repository HydroShare (see Section 6.5). 
 We note that the two-dimensional (2D) grid structure of the input is beneficial to obtain a 
low number of linearly independent paths, as determined by equation (14), which provide a 
unique solution that can be solved directly. Our path enumeration method is readily generalized 
to 3D, however, the computational burden would grow by at least an order of magnitude. 
 
2.4 Model Verification 
Model verification was performed with 13×98×10 = 12,740 proof-of-concept simulations where 
the hydraulic conductivity field Ko and the corresponding specific discharge field qo are both 
known. There are 13 model sizes from 4×4 to 16×16; for each model size, there are 98 levels of 
heterogeneity quantified by a reservoir heterogeneity index, Vdp, from 0.01 to 0.98. The reservoir  
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Figure 7. Directed subgraph 𝐻ଷ,ଶଶ connecting source vertex 3 to target vertex 22 in the directed 
graph shown in Figure 3d. The MDST of 𝐻ଷ,ଶଶ is shown with thick red edges. 
 
 
Table 1. The 14 possible directed paths from vertex 3 to vertex 22 in subgraph 𝐻ଷ,ଶଶ shown in 
Figure 7. The eight independent paths, determined using the MDST, are in italics. The trunk line, 
a part of the MDST, is in bold. 
 
 Path Vertices Edges 
1 [3,7,6,5,9,13,14,18,22] [a,c,b,e,l,p,t,v] 
2 [3,7,6,5,9,13,17,18,22] [a,c,b,e,l,s,u,v] 
3 [3,7,6,10,9,13,14,18,22] [a,c,f,i,l,p,t,v] 
4 [3,7,6,10,9,13,17,18,22] [a,c,f,i,l,s,u,v] 
5 [3,7,6,10,14,18,22] [a,c,f,m,t,v] 
6 [3,7,8,12,11,10,9,13,14,18,22] [a,d,h,k,j,i,l,p,t,v] 
7 [3,7,8,12,11,10,9,13,17,18,22] [a,d,h,k,j,i,l,s,u,v] 
8 [3,7,8,12,11,10,14,18,22] [a,d,h,k,j,m,t,v] 
9 [3,7,8,12,11,15,14,18,22] [a,d,h,k,n,q,t,v] 
10 [3,7,8,12,16,15,14,18,22] [a,d,h,o,r,q,t,v] 
11 [3,7,11,10,9,13,14,18,22] [a,g,j,i,l,p,t,v] 
12 [3,7,11,10,9,13,17,18,22] [a,g,j,i,l,s,u,v] 
13 [3,7,11,10,14,18,22] [a,g,j,m,t,v] 
14 [3,7,11,15,14,18,22] [a,g,n,q,t,v] 
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heterogeneity index is calculated from the standard deviation of the log-hydraulic conductivity, 
𝑠̂, as follows (Jensen et al., 2020, p. 153): 
 
𝑉dp ൌ 1 െ expሺെ𝑠̂ሻ. (15) 
 
For example, when Vdp = 0.01, then 𝑠̂ = 0.01; when Vdp = 0.98, then 𝑠̂ = 3.9. For each level of 
heterogeneity, there are 10 realizations of a spatially correlated stochastic model for hydraulic 
conductivity, with lognormal univariate statistics and an isotropic Gaussian covariance structure, 
following the algorithm of Eftekhari (2018), implemented using Matlab code by Bergström 
(2010). The correlation length scale was chosen to be 1/200 of the cell size, rendering an 
essentially uncorrelated hydraulic conductivity field. This creates a worst case scenario that tests 
the ability of FlowPaths to find the hydraulic conductivity for uncorrelated fields with strong 
cell-to-cell contrast. To quantify the range of order of magnitudes (ROM) of the hydraulic 
conductivity in each realization, we calculate the ROM as follows: 
 

ROM ൌ logଵ଴ ቀ
௄೘ೌೣ

௄೘೔೙
ቁ, (16) 

 
where Kmax and Kmin are the maximum and minimum values of hydraulic conductivity, 
respectively, for each realization of Ko. 
 For each realization of Ko the discrete cellular head field, Ho and the specific discharge 
field qo are determined by solving the forward problem using an alternating direction implicit 
(ADI) scheme developed by Esfandiari (2017). The ADI forward solution algorithm is 
unconditionally stable (Peaceman & Rachford, 1955), and has the advantage of using any 
stopping criteria for convergence. The ADI scheme, implemented using the Matlab function 
lsqminnorm (MathWorks, 2020), is executed until the changes in H0 between iterations are less 
than 1 ൈ 10ିଵଶ cm; an additional stopping criterion limits the scheme to 1×109 iterations. The 
precision of the simulated data (Ho and qo) is on the order of 10 significant digits. Finally we use 
the simulated qo (but not the simulated Ho) as an input to the FlowPaths inverse model to 
estimate the underlying hydraulic conductivity field K1. In principle, the estimated field K1 
should match the simulated field Ko. 
 To quantify the error for each realization, we use an unbiased estimator of error, ζ , which 
measures the logarithmic differences between all estimated values y ∈ K1 and simulated values 
x ∈ Ko. This estimator, based on the median symmetric accuracy defined by Morley et al. (2016), 
is the fractional mean symmetric error (FMSE): 
 

ζ ൌ exp ቄ𝜇 ቂቚln ቀ௬
௫
ቁቚቃቅ െ 1, (17) 

 
where μ() computes the mean. Perfect accuracy would be denoted as 𝜁 = 0, and y and x are 
interchangeable because FMSE is symmetric. In addition, for each realization, we record the 
maximum log-difference, ζmax 
 

max, max ln  .i
k

i k

y

x


  
        (18) 
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We measure the robustness of the inverse solution using a recursive error test (Freebairn, 1978; 
Galpin & Hawkins, 1984; Pugachev, 1984). The estimated hydraulic conductivity field K1 is fed 
into the forward solver, producing q2, which in turn is fed into the FlowPaths inverse model, 
producing K2. The FMSE is calculated for each iteration, and the cumulative FMSE is calculated 
as follows: 
 
𝐶௥ ൌ ∑ ζ௜

௜ୀ௥
௜ୀଵ . (19) 

 
If the cumulative FMSE remains bounded over r recursions, this rules out fundamental error in 
the model (mis-specification). The recursive error test is implemented with the MATLAB 
function cusumtest (MathWorks, 2022), and additional information on the forward-inverse 
problem cycle (Figure 5 and Figure 6) is available in the Supporting Information (Section S5). 
 
3. Results Equation Section (Next) 
Results are presented first for a 4×4 proof-of-concept example (Figure 3, Figure 7, Table 1) and 
then empirical error bounds are reported for the 12,740 model verification simulations. Complete 
results, with associated metadata, are available through HydroShare (see Section 6.5). 
 
3.1 4×4 Example 
The 4×4 example, whose specific discharge field is shown in Figure 4, is based on the particular 
realization of Ko shown in Table 2a. For this realization, the average hydraulic conductivity is 
10.2 cm/day, the reservoir heterogeneity index is Vdp = 0.5, and the range of order of magnitudes 
of the hydraulic conductivities is ROM = 0.82. This average hydraulic conductivity is typical of 
fractured oil reservoir rock or silty sand (Freeze & Cherry, 1979, p. 29). Using cubic grid blocks 
of size (1 cm)3, the forward solution produced specific discharge fluxes through the cell faces, 
with a maximum cell balance error of 1.55×10-15 cm3. 
 
Table 2: Results from the 4×4 example (Figure 2 and Figure 7) in units of [m/d]. 
 

a. 0.146 0.146 0.041 0.041 b. 0.146 0.146 0.041 0.041 

  0.213 0.119 0.042 0.075   0.213 0.119 0.042 0.075 

  0.226 0.115 0.034 0.067   0.226 0.115 0.034 0.067 

  0.155 0.142 0.034 0.037   0.155 0.142 0.034 0.037 

                    

c. 4.441×10-16 5.274×10-16 -3.469×10-17 -4.857×10-17 d. 3.109×10-15 3.553×10-15 -8.882×10-16 -8.882×10-16 

  5.551×10-16 4.996×10-16 -4.163×10-17 -9.714×10-17   2.665×10-15 3.997×10-15 -8.882×10-16 -1.332×10-15 

  4.441×10-16 7.355×10-16 -4.857×10-17 -6.939×10-17   1.998×10-15 6.217×10-15 -1.776×10-15 -8.882×10-16 

  1.665×10-16 1.277×10-16 -2.776×10-17 -4.857×10-17   1.110×10-15 9.104×10-15 -8.882×10-16 -1.332×10-15 

 
a Simulated hydraulic conductivity field Ko. 
b Estimated hydraulic conductivity field K1. 
c Cell-by-cell model error K1 - Ko. 
d Cell-by-cell log error, where the FMSE for the trial is 1.776×10-15 m/d and the maximum 
absolute error is 9.104×10-15 m/d. 
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 Using the specific discharge field from the forward model as an input, the FlowPaths 
inverse model produced K1 shown in Table 2b. The cell-by-cell error K1 – Ko is shown in Table 
2c. These results have FMSE = 2.22×10-15 cm/sec and a maximum log-difference error of 
9.10×10-15 compared to the simulated hydraulic conductivity parameter, Ko. The recursive error 
test for the 4x4 example is shown in Figure 8. Tables of the specific discharges for the 4×4 
example are available in the Supporting Information (Section S6). 
 
3.2 Empirical Error Bounds 

For each of the 13 model sizes from 4×4 to 16×16, the one realization (out of 980) with the 
largest FMSE, calculated with equation (17), is reported on Table 3. For each of these worst-case 
realizations, we report the reservoir heterogeneity index Vdp, the ROM, and FMSE, and the 
maximum log-difference. Accordingly, Table 3 provides empirical error bounds for the 
FlowPaths inverse model. 
 For the 11×11 matrix in Table 3, the FMSE is three orders of magnitude larger than the 
next largest FMSE. It is the only result out of the 12,740 trials that had a log-difference error for 
any cell greater than five parts per thousand. The recursive error test for this trial (similar to 
Figure 8) showed no instability over one million iterations, suggesting that this apparently 
isolated error resulted from a random grouping of cells with a strong contrast in hydraulic 
conductivity between adjacent cells that prevented the forward model from producing a correct 
set of specific discharges. 
 
4. DiscussionEquation Section (Next) 
FlowPaths opens a new avenue to study the feedback between flow, transport, reaction, and 
clogging in porous media. Essentially any technology conducted in porous media—including but 
not limited to groundwater remediation—carries the risk of clogging, which can result from 
many processes including deposition of suspended colloids, geochemical dispersion of clay 
minerals, precipitation reactions, biofilm growth, air entrapment, or consolidation (Manga et al., 
2012). These processes make clogging a technical challenge in a variety of applications such as 
managed aquifer recharge, groundwater remediation, and oil and gas development. In all of these 
applications, the spatial distribution and temporal evolution of hydraulic conductivity K(x,y,z,t) 
results from a feedback process: It depends on the processes mentioned above, but it also 
controls flow and therefore the transport and reaction that trigger the processes mentioned above. 
Simultaneously being a result and a cause is the essence of a feedback process. Following the 
motivational example presented in the Introduction (Figure 1), for two-dimensional flow 
domains, FlowPaths opens a new avenue to study this feedback process through laboratory 
experiments that measure the spatial distribution and temporal evolution of specific discharge 
q(x,y,t) as an independent variable, for example, using particle image velocimetry (PIV). 
Specifically, FlowPaths provides a mechanism to interpret the measured q(x,y,t) in terms of the 
fundamental K(x,y,t), and through this interpretation, to study dynamic hydraulic conductivity, 
extending the foundational work in this area (Thullner et al. 2002, Li et al. 2008, Englert et al. 
2009, El Mountassir et al. 2014, Yoon et al. 2019). 
 Like any numerical model, computational effort merits a brief discussion. One of the 
drawbacks of finding a solution for an inverse problem is that the demand on computer resources 
tends to escalate with the size of the problem (Neuman, 2006, p. 2). Our approach has a 
comparatively short time complexity due to the use of a fast shortest-path algorithm (Cai et al., 
2000, p. 566). Computational times on a standard laptop, with 16GB of RAM running on a 
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Figure 8. Cumulative sum of the regression residuals, Cr, versus iteration, r, for the 4×4 example. 
The null hypothesis is that small changes in the data (the result of the inversion) do not produce 
large changes in the next inversion. The “Fail to Reject Null Hypothesis” is signified by the 
graphic result that Cr does not exceed the α = ±5% significance levels represented by the dotted 
critical lines at any step of the recursive error checker. 
 
Table 3. Empirical error bounds for the FlowPaths inverse model. For each model size, the 
realization with the maximum fractional mean symmetric error (FMSE) is shown. 
 

Model Size Vdp ROM FMSE Maximum Log-Difference 
4×4 0.01 0.02 5.6×10-11 8.7×10-11 
5×5 0.98 7.33 3.1×10-9 7.4×10-8 
6×6 0.93 5.50 2.4×10-10 9.2×10-10 
7×7 0.97 7.27 4.7×10-8 3.7×10-6 
8×8 0.98 7.57 3.5×10-8 8.8×10-7 
9×9 0.98 9.57 4.3×10-7 1.3×10-5 
10×10 0.98 8.93 1.2×10-7 5.9×10-6 
11×11 0.97 8.08 3.0×10-2 1.8×100 
12×12 0.97 8.15 1.5×10-6 9.6×10-5 
13×13 0.98 8.84 2.9×10-6 3.3×10-4 
14×14 0.98 8.84 3.0×10-6 5.7×10-4 
15×15 0.97 7.46 5.4×10-6 4.2×10-4 
16×16 0.92 6.44 3.0×10-5 4.7×10-3 
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Windows 10 platform scale from about 3 sec for the 4×4 example to about 5600 sec = 1.6 hour 
for the 16×16 example. The subroutine that finds the MDSTs for the directed subgraphs Hst 
accounts for about 50% of the computation time in smaller flow matrices, but increases to about 
90% in larger ones. These computational times stem from the more challenging nature of inverse 
computations compared to forward computations, specifically, a set of inner loops for each 
combination of inflow and outflow vertices to generate the sets of unique paths. Although it is 
beyond the scope of the present work,  parallel implementation of FlowPaths could lead to 
reduced computation times. 
 FlowPaths has been tested against simulations that provided an assumed ground truth. 
What might be the effect of (inevitable) experimental errors in specific discharge measurements? 
Application of FlowPaths requires a specific discharge field that obeys continuity, so the first 
step would be to allocate experimental errors in a way that preserves continuity (e.g., 
Deleersnijder, 2001). In our recursive error tests, such as the one displayed in Figure 8, small 
changes in the inputs (i.e., velocity or equivalently specific discharge) give small changes in the 
outputs (i.e., hydraulic conductivity). We therefore expect that the small velocity measurement 
errors from the envisioned future experiments, on the order of epsilon, are likely to generate 
small errors, some function of epsilon, in the estimated hydraulic conductivity. 
 We conclude this section by posing a more philosophical question: If one knew the 
velocity field, why would one want to know the hydraulic conductivity field? This is not a trivial 
question, and it gets to the heart of the new approach proposed here. If the only goals were to 
predict water supply and contaminant transport in a static system—that is, a system in which 
hydraulic conductivity does not change with time—then there would be no need for FlowPaths. 
Knowing the velocity field, one would know everything there is to know about the flow. But we 
argue that, in many practical applications, the premise of a static system is too limiting, because 
hydraulic conductivity evolves dynamically. If our goal is to understand the nature of that 
evolution, and if we posit that hydraulic conductivity encapsulates the essence of transport in 
porous media, then we need a way to measure its evolution quantitatively. 
 
5. Conclusions 
We show that it is possible to uniquely solve the inverse problem for the hydraulic conductivity 
from observed flow vectors using the FlowPaths algorithm. The method relies on an analysis of 
the possible paths from the higher constant head cells to the lower constant head cells (the source 
vertices to the target vertices) through a square flow matrix. The minimum number of paths 
needed for a unique solution is equal to the number of vertices (cells) in the flow matrix, with the 
necessary condition that the paths be linearly independent of each other. Graph theory is used to 
find the paths between all sources and targets, which are converted to first order linear head-drop 
equations in the variable q*, a combination of the specific discharges entering and leaving a 
vertex following a path. Then matrix algebra is used to solve the problem. The results of the 
inverse method are verified two ways: (1) by comparing the estimated K1 to the known K0, and 
(2) using a recursive error test, which detects very little variation in the inverse solution when the 
results are fed back into the forward solution. Future work is required to extend FlowPaths to 
non-square domains, to three-dimensional domains, and to anisotropic media, but in all these 
cases, the approach outlined here—based on identifying linearly independent paths using graph 
theory—is expected to prove itself useful. 
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6. Statements and Declarations 
 
6.1 Supporting Information 
The online Supporting Information provides additional information on graph theory (Section S1), 
well-posedness (Section S2), details on FlowPaths (Section S3), cyclomatic complexity (Section 
S4), the forward and inverse problem cycle (Section S5), and 4x4 example data tables (Section 
S6). 
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