
  

  

Abstract— Affective brain-computer interfaces are a fast-
growing area of research. Accurate estimation of emotional 
states from physiological signals is of great interest to the fields 
of psychology and human-computer interaction. The DEAP 
dataset is one of the most popular datasets for emotional 
classification. In this study we generated heat maps from 
spectral data within the neurological signals found in the DEAP 
dataset. To account for the class imbalance within this dataset, 
we then discarded images belonging to the larger class. We used 
these images to fine-tune several Big Transfer neural networks 
for binary classification of arousal, valence, and dominance 
affective states. Our best classifier was able to achieve greater 
than 98% accuracy and 99% balanced accuracy in all three 
classification tasks. We also investigated the effects of this 
balancing method on our classifiers. 

I. INTRODUCTION 

Emotion classification is a growing area of research. 
Researchers have traditionally approached the classification of 
emotions by using one of two fundamental models: discrete 
and dimensional. This work will focus on the dimensional 
model which provides ways to express a wide range of 
emotional states. The affective states are expressed in a multi-
dimensional space with each feature as a dimension. Common 
features include arousal, valence, and dominance [1]. In 
psychological research, the most common method of emotion 
classification is self-report. Self-reporting can have many 
issues such as dependence on external factors including the 
wording of the question [2]. Classification of emotion using 
physiological signals would lessen these effects and thus 
increase the consistency of responses. Additionally, the direct 
estimation of a user’s affective state is of much interest to the 
field of affective computing [3]. 

There are several publicly available datasets that could be 
used for emotional classification from biological signals, 
however the Database for Emotion Analysis (DEAP) is the 
most heavily investigated [4]. Many groups have managed to 
achieve high accuracy using this dataset. However, the issue 
of class imbalance in the DEAP is often overlooked, which can 
cause misleading accuracy values [5].   

Deep neural networks perform well in various computer 
vision tasks, including image classification. Many studies have 
applied these classifiers to a variety of medical imaging tasks 
[6]. Neural networks have shown success in a variety of 
common Brain-Computer Interface (BCI) tasks including 
P300 classification, robotic arm control, cursor control, 
classification of epileptic states, and emotion classification [7-
11]. In particular, convolutional neural networks (CNNs) have 
been shown to produce better predictions in emotional 
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classification compared to classifiers that use a shallower 
network [12]. However, one problem with using neural 
networks is that they often require  lengthy training times [13]. 
One way to lessen the training time is to take advantage of 
transfer learning. In transfer learning a neural network is first 
trained on a large dataset comprised of many different tasks. 
Then this neural network is fine-tuned for the specific task of 
interest.  

Big Transfer (BiT) is a family of convolutional neural 
networks (CNN), based on residual neural network (ResNet) 
architectures. These models were pre-trained on various sizes 
of popular computer vision datasets. The BiT-S models are 
pre-trained on the ILSVRC-2012 dataset, the BiT-M on the 
ImageNet-21k dataset, and the BiT-L on the JFT-300M 
dataset. When tested on other computer vision datasets these 
models achieved high performance. Interestingly, these 
models performed quite well even when only given a single 
example in each class for training [14]. 

The main objective of this study was to detect the affective 
state of an individual using electroencephalography (EEG) 
signals. To accomplish this task, we transformed the EEG 
signals from the DEAP dataset into images. This allows us to 
take advantage of the publicly available BiT family of 
classifiers. 

II. METHODS 

A. DEAP dataset 
The DEAP is a publicly available dataset consisting of 32-

channel EEG along with other physiological signals. To elicit 
emotion, each participant viewed 40 one-minute music videos. 
Following the video, participants were asked to rate the video 
on a 9-point scale in valence, arousal, and dominance. The 
signals were collected from 16 male and 16 female 
participants, with an average age of 24.9 years. This study only 
uses the EEG channels from the preprocessed version of this 
dataset. This preprocessing consisted of the following: down 
sampling to 128 Hz, electrooculogram (EOG) artifacts 
removal, bandpass filtering from 4 to 45 Hz, common average 
referencing, and segmentation into 60 second trials with a 3 
second baseline [4]. 

B. Class Balancing 
The goal of this study was to build a binary classifier on all 

three emotional axes that the DEAP dataset includes. On all 
three axes we chose any video rated greater than or equal to 6 
to belong to the high class and any rating equal to or below 3 
to belong to the low class. Videos rated between 3 and 6 were 
discarded. One issue here is that using this method of labeling 
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causes more than 70% of all the videos used to belong to the 
high class on all three axes. To prevent label biasing issues, we 
first determined how many trials were in the smaller of the two 
classes (N). Then we selected the N highest or lowest rated 
trials for the remaining class and discarded the rest. This 
method forces both the classes to have the same number trials 
within them. Participant and emotional axis combinations that 
had less than 5 trials in the smaller class were not included in 
the final results. Two neural networks were also trained 
without balancing for comparison. In this case, results from 
any classifier that did not have at least one trial from each class 
in the training data were discarded. 

C. Image Generation 
We started with the preprocessed DEAP data described in 

Section II.A. First, the 3 second baseline and 60 second trials 
were separated. For each trial, the Fourier transform was 
applied to the signal and the baseline. To reduce the 
dimensionality and convert the baseline and signal to the same 
size, we summed the frequency coefficients over 0.5 Hz 
intervals ranging from 4 to 45 Hz. The final feature set was the 
decibel ratio between signal and baseline power. This process 
was repeated for each channel and all decibel outputs were 
concatenated. This array was then plotted as a heat map which 
had dimensions of channel by frequency as shown in Fig. 1. 
Finally, each image was saved as a portable network graphics 
file, with a size of 875x656 pixels  

Figure 1.  Example heat map produced by the image generation step. Axis 
labels and scales here are for display purposes only and were not included on 
the images used in classification.  

D. Emotion Classification 
A separate classifier was built for each participant and 
emotional dimension combination. To match the input 
requirements of the BiT models, the heat map images 
that were generated for each trial were resized to 512 by 512 
pixels and the color values were divided by 255 so that they 
would range from 0 to 1. The images were randomly sorted 
into train and tests with 70% of the images going into the train 
set. The images and labels were then used to fine-tune one of 
the following publicly available neural networks: BiT-S 
R50x1, BiT-S R101x1, BiT-M R50x1, or BiT-M R101x1. The 
fine-tuning step took place over 30 epochs, with 10 steps per 
epoch.  The neural network  was set to use  a  stochastic  
gradient descent optimizer and a sparse categorical cross-
entropy loss function. To illustrate the effect of pre-balancing 
the labels we included results from the BiT-S R50x1 and BiT-
M R101x1 models when the pre-balancing is forgone. Kansas 
State University’s  high-performance computing cluster, 

Beocat, was used to decrease the overall training time and 
allow the training of many classifiers simultaneously. 

III. RESULTS 

Table I. shows the average accuracy and balanced accuracy 
values for each neural network used. Balanced accuracy is 
defined as the mean of true positive rate and the true negative 
rate. This is metric is more suitable for imbalanced datasets 
such as the DEAP [5]. The BiT-M R101x1 model had the best 
performance except in balanced accuracy on the arousal 
dimension and accuracy in the valence dimension, in both 
cases the BiT-M R50x1 had the best performance. Overall, our 
best classifier was the balanced BiT-M R101x1 model which 
had over 98% accuracy and balanced accuracy in all 
classification tasks. Fig. 2 displays the accuracy ratings for 
each neural network on the balanced dataset. The BiT-M 
models achieved significantly higher average accuracies than 
the corresponding BiT-S models in arousal and valence, but no 
significant difference was observed in dominance. No 
significant difference in accuracy was observed between the 
R101x1 models and their corresponding R50x1 models.  
Figure 2.  Classifier accuracies on the balanced DEAP dataset with 95% 

confidence intervals.  

In Table I, we can see that classifiers that were trained on 
unbalanced datasets achieved similar accuracies in all 
categories compared to their balanced counterparts. The 
unbalanced BiT-S R50x1 model achieved higher accuracy in 
arousal and valence than the corresponding balanced classifier. 
The unbalanced BiT-M R101x1 model however achieved 
lower accuracy in all three tasks compared to its counterpart. 
Additionally, the balanced classifiers did achieve higher 
average balanced accuracy in comparison to the corresponding 
unbalanced classifiers in all tasks. In Fig. 3, we compare the 
balanced accuracy results of our classifiers on the balanced and 
unbalanced datasets. Here we can see the only significant 
difference is the difference in balanced accuracy between the 
balanced and unbalanced classification on the dominance task 
using the BiT-S R50x1 model. 

 

 

 

 

 

 



  

IV. DISCUSSION 
Table I. demonstrates that the classification strategy 

provided in this work was able to achieve high accuracy and 
balanced accuracy. Generally, models based on the ResNet 
101x1 architecture achieved higher average accuracy and 
balanced accuracy than their counterparts using the smaller 
ResNet 50x1 architecture. Also, the BiT-M models 
outperformed the corresponding BiT-S models. These 
observations mostly agree with the results reported by [14]. 

TABLE I.  CLASSIFIER RESULTS 

Balanced Classifiers Accuracy (%) Balanced 
Accuracy (%) 

BiT-S R50x1 
81.00 (Arousal)  
77.31 (Valence) 
88.18 (Dominance) 

83.16 (Arousal)  
78.84 (Valence) 
89.11 (Dominance) 

BiT-S R101x1 
84.54 (Arousal)  
88.12 (Valence) 
87.91 (Dominance) 

86.14 (Arousal)  
88.86 (Valence) 
88.39 (Dominance) 

BiT-M R50x1 
99.00 (Arousal)  
99.16 (Valence) 
97.27 (Dominance) 

99.29 (Arousal)  
99.23 (Valence) 
97.46 (Dominance) 

BiT-M R101x1 
99.00  (Arousal)  
99.11 (Valence) 
98.18 (Dominance) 

99.14 (Arousal)  
99.23 (Valence) 
98.27 (Dominance) 

Unbalanced Classifiers     

BiT-S R50x1 
83.47 (Arousal)  
80.66 (Valence) 
83.47 (Dominance) 

76.14 (Arousal)  
69.04 (Valence) 
70.57 (Dominance) 

BiT-M R101x1 
97.11 (Arousal)  
98.35 (Valence) 
98.73 (Dominance) 

95.70 (Arousal)  
97.50 (Valence) 
97.54 (Dominance) 

 
 In Table II five recent publications using the DEAP dataset 

for binary classification on arousal, valence, and dominance 
were selected for comparison. We can see that the average of 
our proposed models achieves comparable performance to 
these recent  works. Our best model, the balanced BiT-M 
R101x1, achieved higher accuracy in all three classifications 
compared to these works. All the publications in Table II 
defined the high and low class differently than our proposed 
method. This limits the ability to make a direct comparison 
between the classifiers, as it is possible that changing the class 
definitions made our classification task less difficult. 
Furthermore, how the high and low classes are defined 
determines how imbalanced the dataset will be, which can 
also affect classifier performance. None of the works included 
in Table II. provided a metric that is less sensitive to class 
imbalance, such as balanced accuracy or an F1 score, which 
would provide more insight into how the class imbalance 
affected their performance. 

 
 

 

 
Figure 3.  Effect of pre-balancing the dataset on balanced accuracy of 
multiple models, error bars correspond to 95% credible intervals.  

 Our proposed balancing strategy largely achieved higher 
average accuracies and balanced accuracies than the 
unbalanced approach. However, only one of these differences 
was significant. There are a few reasons that could limit the 
effectiveness of this balancing step. The first being that the 
balancing strategy reduces the number of trials and 
participants that are available. On average the balanced 
classifiers trained on 12.3 images and tested on 5.3 images. 
These numbers represent less than half of the total images 
provided by the DEAP dataset. Additionally, since the results 
of any participant and emotional dimension with less than 5 
trials in its smallest class were discarded, the number of 
useable participants in each emotional dimension was reduced 
by an average of 38%. Another possible concern is that the 
separation into the train and test sets for the classifier was 
performed randomly. This implies that the balanced datasets 
can become unbalanced due to this separation step. However, 
in the balanced data classifiers, we did not observe any large 
difference between accuracy and balanced accuracy. Similar 
accuracy and balanced accuracy imply that the classifiers are 
not favoring either class, which suggests that the separation 
step did not cause any issues with regards to class balancing. 
The unbalanced classifier using the BiT-M R101x1 also 
performed quite well, so it is possible this balancing step is 
altogether unnecessary. However, the unbalanced dataset 
often yielded a test set with only one class. Such a test set 
could allow a classifier that cannot discriminate between the 
two classes at all to nevertheless show a very high accuracy. 

Future work will first focus on making this study more 
directly comparable to other works, by testing this dataset 
with a different class definition. Additionally, we would use 
a more rigorous classifier validation scheme such as k-fold 
cross validation. This would limit the effect of the one class 
test set issue in the unbalanced dataset. We are also interested 
in exploring other methods to adjust for the class imbalance 
in the DEAP. The trial reduction issue in the balanced datasets 
could be corrected by individually adjusting the thresholds for 
the high and low classes for each participant and emotional 
dimension pair. This would allow the classes to be balanced 

 



  

while keeping more data. Finally, we would like to investigate 
the performance of the BiT family of classifiers on other 
emotional BCI datasets. No attempt was made to optimize the 
various hyperparameters of these classifiers; doing so may 
result in even better performance, thus hyperparameter 
optimization of these classifiers is also of interest. 

TABLE II.  COMPARISON TO RECENT STUDIES 

V. CONCLUSION 
In this work we presented a novel classifier for the DEAP 

data set. To prevent the class imbalance issue that is present 
in this dataset, we first discarded trials belonging to the larger 
class. We then generated an image from the neurological 
signals. This allows us to take advantage of recent advances 
in image processing and transfer learning. Then we used these 
images to fine-tune several BiT models. Our best model 
achieved above 98% accuracy and 99% balanced accuracy in 
the binary classification of arousal, valance, and dominance 
dimensions. 
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Source Classifier 
Class 
Definition Accuracy (%) 

Zhao et al [15] SCC-MPGCN High >5           
Low <5 

97.02 (Arousal)  
96.37 (Valence) 
96.72 (Dominance) 

Ahmed et al [16] AsMap+CNN High >5.5           
Low <5.5 

95.21 (Arousal)  
95.45 (Valence) 

Yang et al [17] GDCSBR High ≥5         
Low <5 

85.84 (Arousal)  
84.91 (Valence) 

Li et al [18] 
BRS with 
similarity 
measure 

High ≥5         
Low <5 

75.66 (Arousal)  
72.86 (Valence) 

Peng et al [19] DW-FBCSP High >5           
Low <5 

84.45 (Arousal)  
81.14 (Valence)  

This work 
(average) 

Various BiT 
Models 

High ≥6          
Low ≤3 

90.69  (Arousal)  
90.45 (Valence)   
92.29 (Dominance) 

This work (best) 
Balanced      
BiT-M 
R101x1 

High ≥6          
Low ≤3 

99.00 (Arousal)   
99.14  (Valence) 
98.18 (Dominance) 


