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Abstract— Affective brain-computer interfaces are a fast-
growing area of research. Accurate estimation of emotional
states from physiological signals is of great interest to the fields
of psychology and human-computer interaction. The DEAP
dataset is one of the most popular datasets for emotional
classification. In this study we generated heat maps from
spectral data within the neurological signals found in the DEAP
dataset. To account for the class imbalance within this dataset,
we then discarded images belonging to the larger class. We used
these images to fine-tune several Big Transfer neural networks
for binary classification of arousal, valence, and dominance
affective states. Our best classifier was able to achieve greater
than 98% accuracy and 99% balanced accuracy in all three
classification tasks. We also investigated the effects of this
balancing method on our classifiers.

I. INTRODUCTION

Emotion classification is a growing area of research.
Researchers have traditionally approached the classification of
emotions by using one of two fundamental models: discrete
and dimensional. This work will focus on the dimensional
model which provides ways to express a wide range of
emotional states. The affective states are expressed in a multi-
dimensional space with each feature as a dimension. Common
features include arousal, valence, and dominance [1]. In
psychological research, the most common method of emotion
classification is self-report. Self-reporting can have many
issues such as dependence on external factors including the
wording of the question [2]. Classification of emotion using
physiological signals would lessen these effects and thus
increase the consistency of responses. Additionally, the direct
estimation of a user’s affective state is of much interest to the
field of affective computing [3].

There are several publicly available datasets that could be
used for emotional classification from biological signals,
however the Database for Emotion Analysis (DEAP) is the
most heavily investigated [4]. Many groups have managed to
achieve high accuracy using this dataset. However, the issue
of class imbalance in the DEAP is often overlooked, which can
cause misleading accuracy values [5].

Deep neural networks perform well in various computer
vision tasks, including image classification. Many studies have
applied these classifiers to a variety of medical imaging tasks
[6]. Neural networks have shown success in a variety of
common Brain-Computer Interface (BCI) tasks including
P300 classification, robotic arm control, cursor control,
classification of epileptic states, and emotion classification [7-
11]. In particular, convolutional neural networks (CNNs) have
been shown to produce better predictions in emotional
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classification compared to classifiers that use a shallower
network [12]. However, one problem with using neural
networks is that they often require lengthy training times [13].
One way to lessen the training time is to take advantage of
transfer learning. In transfer learning a neural network is first
trained on a large dataset comprised of many different tasks.
Then this neural network is fine-tuned for the specific task of
interest.

Big Transfer (BiT) is a family of convolutional neural
networks (CNN), based on residual neural network (ResNet)
architectures. These models were pre-trained on various sizes
of popular computer vision datasets. The BiT-S models are
pre-trained on the ILSVRC-2012 dataset, the BiT-M on the
ImageNet-21k dataset, and the BiT-L on the JFT-300M
dataset. When tested on other computer vision datasets these
models achieved high performance. Interestingly, these
models performed quite well even when only given a single
example in each class for training [14].

The main objective of this study was to detect the affective
state of an individual using electroencephalography (EEG)
signals. To accomplish this task, we transformed the EEG
signals from the DEAP dataset into images. This allows us to
take advantage of the publicly available BiT family of
classifiers.

II. METHODS

A. DEAP dataset

The DEARP is a publicly available dataset consisting of 32-
channel EEG along with other physiological signals. To elicit
emotion, each participant viewed 40 one-minute music videos.
Following the video, participants were asked to rate the video
on a 9-point scale in valence, arousal, and dominance. The
signals were collected from 16 male and 16 female
participants, with an average age of 24.9 years. This study only
uses the EEG channels from the preprocessed version of this
dataset. This preprocessing consisted of the following: down
sampling to 128 Hz, electrooculogram (EOQG) artifacts
removal, bandpass filtering from 4 to 45 Hz, common average
referencing, and segmentation into 60 second trials with a 3
second baseline [4].

B. Class Balancing

The goal of this study was to build a binary classifier on all
three emotional axes that the DEAP dataset includes. On all
three axes we chose any video rated greater than or equal to 6
to belong to the high class and any rating equal to or below 3
to belong to the low class. Videos rated between 3 and 6 were
discarded. One issue here is that using this method of labeling
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causes more than 70% of all the videos used to belong to the
high class on all three axes. To prevent label biasing issues, we
first determined how many trials were in the smaller of the two
classes (N). Then we selected the N highest or lowest rated
trials for the remaining class and discarded the rest. This
method forces both the classes to have the same number trials
within them. Participant and emotional axis combinations that
had less than 5 trials in the smaller class were not included in
the final results. Two neural networks were also trained
without balancing for comparison. In this case, results from
any classifier that did not have at least one trial from each class
in the training data were discarded.

C. Image Generation

We started with the preprocessed DEAP data described in
Section II.A. First, the 3 second baseline and 60 second trials
were separated. For each trial, the Fourier transform was
applied to the signal and the baseline. To reduce the
dimensionality and convert the baseline and signal to the same
size, we summed the frequency coefficients over 0.5 Hz
intervals ranging from 4 to 45 Hz. The final feature set was the
decibel ratio between signal and baseline power. This process
was repeated for each channel and all decibel outputs were
concatenated. This array was then plotted as a heat map which
had dimensions of channel by frequency as shown in Fig. 1.
Finally, each image was saved as a portable network graphics
file, with a size of 875x656 pixels
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Figure 1.  Example heat map produced by the image generation step. Axis
labels and scales here are for display purposes only and were not included on
the images used in classification.

D. Emotion Classification

A separate classifier was built for each participant and
emotional dimension combination. To match the input
requirements of the BiT models, the heat map images
that were generated for each trial were resized to 512 by 512
pixels and the color values were divided by 255 so that they
would range from 0 to 1. The images were randomly sorted
into train and tests with 70% of the images going into the train
set. The images and labels were then used to fine-tune one of
the following publicly available neural networks: BiT-S
R50x1, BiT-S R101x1, BiT-M R50x1, or BiT-M R101x1. The
fine-tuning step took place over 30 epochs, with 10 steps per
epoch. The neural network was set to use a stochastic
gradient descent optimizer and a sparse categorical cross-
entropy loss function. To illustrate the effect of pre-balancing
the labels we included results from the BiT-S R50x1 and BiT-
M R101x1 models when the pre-balancing is forgone. Kansas
State University’s high-performance computing cluster,

Beocat, was used to decrease the overall training time and
allow the training of many classifiers simultaneously.

III. RESULTS

Table I. shows the average accuracy and balanced accuracy
values for each neural network used. Balanced accuracy is
defined as the mean of true positive rate and the true negative
rate. This is metric is more suitable for imbalanced datasets
such as the DEAP [5]. The BiT-M R101x1 model had the best
performance except in balanced accuracy on the arousal
dimension and accuracy in the valence dimension, in both
cases the BiT-M R50x1 had the best performance. Overall, our
best classifier was the balanced BiT-M R101x1 model which
had over 98% accuracy and balanced accuracy in all
classification tasks. Fig. 2 displays the accuracy ratings for
each neural network on the balanced dataset. The BiT-M
models achieved significantly higher average accuracies than
the corresponding BiT-S models in arousal and valence, but no
significant difference was observed in dominance. No
significant difference in accuracy was observed between the
R101x1 models and their corresponding R50x1 models.

Figure 2.  Classifier accuracies on the balanced DEAP dataset with 95%
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In Table I, we can see that classifiers that were trained on
unbalanced datasets achieved similar accuracies in all
categories compared to their balanced counterparts. The
unbalanced BiT-S R50x1 model achieved higher accuracy in
arousal and valence than the corresponding balanced classifier.
The unbalanced BiT-M R101x1 model however achieved
lower accuracy in all three tasks compared to its counterpart.
Additionally, the balanced classifiers did achieve higher
average balanced accuracy in comparison to the corresponding
unbalanced classifiers in all tasks. In Fig. 3, we compare the
balanced accuracy results of our classifiers on the balanced and
unbalanced datasets. Here we can see the only significant
difference is the difference in balanced accuracy between the
balanced and unbalanced classification on the dominance task
using the BiT-S R50x1 model.



IV. DISCUSSION

Table 1. demonstrates that the classification strategy
provided in this work was able to achieve high accuracy and
balanced accuracy. Generally, models based on the ResNet
101x1 architecture achieved higher average accuracy and
balanced accuracy than their counterparts using the smaller
ResNet 50x1 architecture. Also, the BiT-M models
outperformed the corresponding BiT-S models. These
observations mostly agree with the results reported by [14].

TABLE L. CLASSIFIER RESULTS
. Balanced
0,
Balanced Classifiers Accuracy (%) Accuracy (%)

BiT-S R50x1

81.00 (Arousal)
77.31 (Valence)
88.18 (Dominance)

83.16 (Arousal)
78.84 (Valence)
89.11 (Dominance)

BiT-S R101x1

84.54 (Arousal)
88.12 (Valence)
87.91 (Dominance)

86.14 (Arousal)
88.86 (Valence)
88.39 (Dominance)

BiT-M R50x1

99.00 (Arousal)
99.16 (Valence)
97.27 (Dominance)

99.29 (Arousal)
99.23 (Valence)
97.46 (Dominance)

BiT-M R101x1

99.00 (Arousal)
99.11 (Valence)
98.18 (Dominance)

99.14 (Arousal)
99.23 (Valence)
98.27 (Dominance)

Unbalanced Classifiers

98.73 (Dominance)

83.47 (Arousal) 76.14 (Arousal)
BiT-S R50x1 80.66 (Valence) 69.04 (Valence)

83.47 (Dominance) 70.57 (Dominance)

97.11 (Arousal) 95.70 (Arousal)
BiT-M R101x1 98.35 (Valence) 97.50 (Valence)

97.54 (Dominance)

In Table II five recent publications using the DEAP dataset
for binary classification on arousal, valence, and dominance
were selected for comparison. We can see that the average of
our proposed models achieves comparable performance to
these recent works. Our best model, the balanced BiT-M
R101x1, achieved higher accuracy in all three classifications
compared to these works. All the publications in Table II
defined the high and low class differently than our proposed
method. This limits the ability to make a direct comparison
between the classifiers, as it is possible that changing the class
definitions made our classification task less difficult.
Furthermore, how the high and low classes are defined
determines how imbalanced the dataset will be, which can
also affect classifier performance. None of the works included
in Table II. provided a metric that is less sensitive to class
imbalance, such as balanced accuracy or an F1 score, which
would provide more insight into how the class imbalance
affected their performance.
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Figure 3.  Effect of pre-balancing the dataset on balanced accuracy of
multiple models, error bars correspond to 95% credible intervals.

Our proposed balancing strategy largely achieved higher
average accuracies and balanced accuracies than the
unbalanced approach. However, only one of these differences
was significant. There are a few reasons that could limit the
effectiveness of this balancing step. The first being that the
balancing strategy reduces the number of trials and
participants that are available. On average the balanced
classifiers trained on 12.3 images and tested on 5.3 images.
These numbers represent less than half of the total images
provided by the DEAP dataset. Additionally, since the results
of any participant and emotional dimension with less than 5
trials in its smallest class were discarded, the number of
useable participants in each emotional dimension was reduced
by an average of 38%. Another possible concern is that the
separation into the train and test sets for the classifier was
performed randomly. This implies that the balanced datasets
can become unbalanced due to this separation step. However,
in the balanced data classifiers, we did not observe any large
difference between accuracy and balanced accuracy. Similar
accuracy and balanced accuracy imply that the classifiers are
not favoring either class, which suggests that the separation
step did not cause any issues with regards to class balancing.
The unbalanced classifier using the BiT-M R101x1 also
performed quite well, so it is possible this balancing step is
altogether unnecessary. However, the unbalanced dataset
often yielded a test set with only one class. Such a test set
could allow a classifier that cannot discriminate between the
two classes at all to nevertheless show a very high accuracy.

Future work will first focus on making this study more
directly comparable to other works, by testing this dataset
with a different class definition. Additionally, we would use
a more rigorous classifier validation scheme such as k-fold
cross validation. This would limit the effect of the one class
test set issue in the unbalanced dataset. We are also interested
in exploring other methods to adjust for the class imbalance
in the DEAP. The trial reduction issue in the balanced datasets
could be corrected by individually adjusting the thresholds for
the high and low classes for each participant and emotional
dimension pair. This would allow the classes to be balanced



while keeping more data. Finally, we would like to investigate
the performance of the BiT family of classifiers on other
emotional BCI datasets. No attempt was made to optimize the
various hyperparameters of these classifiers; doing so may
result in even better performance, thus hyperparameter
optimization of these classifiers is also of interest.

TABLE II. COMPARISON TO RECENT STUDIES
Class
Source Classifier Definition | Accuracy (%)
. 97.02 (Arousal)
Zhao et al [15] SCC-MPGCN E;%}; <>55 96.37 (Valence)
96.72 (Dominance)
High >5.5 | 95.21 (Arousal)
Ahmed et al [16] | AsMap+CNN Low <5.5 95.45 (Valence)
High >5 85.84 (Arousal)
Yang etal [17] GDCSBR Low <5 84.91 (Valence)
Liecal 18] gifl;‘r’:g‘ High>5 | 75.66 (Arousal)
Low <5 72.86 (Valence)
measure
High >5 84.45 (Arousal)
Peng et al [19] DW-FBCSP Low <5 81.14 (Valence)
This work Various BiT High >6 90.69 (Arousal)
(average) Models Low <3 90.45 (Valence)
- 92.29 (Dominance)
Balanced . 99.00 (Arousal)
This work (best) | BiT-M E(‘)%\];ff 99.14 (Valence)
R101x1 - 98.18 (Dominance)

V. CONCLUSION

In this work we presented a novel classifier for the DEAP
data set. To prevent the class imbalance issue that is present
in this dataset, we first discarded trials belonging to the larger
class. We then generated an image from the neurological
signals. This allows us to take advantage of recent advances
in image processing and transfer learning. Then we used these
images to fine-tune several BiT models. Our best model
achieved above 98% accuracy and 99% balanced accuracy in
the binary classification of arousal, valance, and dominance
dimensions.
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