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Interactions between climate change  
and urbanization will shape the future  
of biodiversity

Mark C. Urban    1  , Marina Alberti2, Luc De Meester    3,4,5, Yuyu Zhou    6, 
Brian C. Verrelli    7, Marta Szulkin    8, Chloé Schmidt9, Amy M. Savage10, 
Patrick Roberts    11, L. Ruth Rivkin    12,13,14, Eric P. Palkovacs    15, 
Jason Munshi-South    16, Anna N. Malesis    2, Nyeema C. Harris    17, 
Kiyoko M. Gotanda    18,19,20, Colin J. Garroway    12, Sarah E. Diamond    21, 
Simone Des Roches    22, Anne Charmantier    23 & Kristien I. Brans    24,25

Climate change and urbanization are two of the most prominent global 
drivers of biodiversity and ecosystem change. Fully understanding, 
predicting and mitigating the biological impacts of climate change and 
urbanization are not possible in isolation, especially given their growing 
importance in shaping human society. Here we develop an integrated 
framework for understanding and predicting the joint effects of climate 
change and urbanization on ecology, evolution and their eco-evolutionary 
interactions. We review five examples of interactions and then present five 
hypotheses that offer opportunities for predicting biodiversity and its 
interaction with human social and cultural systems under future scenarios. 
We also discuss research opportunities and ways to design resilient 
landscapes that address both biological and societal concerns.

Climate change and urbanization are two of the most important human 
impacts on the planet1,2. The global climate has warmed 1.2 °C dur-
ing the past 120 years and could warm another 4 °C by 21001. Besides 
warming, climate change is also altering precipitation, surface 

hydrology and sea levels1. Concurrently, people increasingly live in 
cities3, with 68% expected to be urban dwellers by 20502. Urbaniza-
tion, defined here as encompassing both demographic and associated 
physical changes4, is rapidly altering natural landscapes. Developing 
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climatic gradients. Cities are often connected by transportation net-
works into linear, interconnected nodes, which can run parallel (for 
example, north-to-south coastal North American cities) or orthogonal 
(for example, west-to-east Mediterranean cities) to climate gradients. 
This alignment can determine whether cities facilitate or impede dis-
persal or gene flow along latitudinal or elevational clines35.

Interactions between climate change and multiple urban stressors 
can often explain variable responses in cities. For example, the phe-
nology of plants in cities depends on both climate-induced warming 
and light pollution36. Also, cities are highly heterogeneous and vary 
along multiple human dimensions, including population density, 
history, socioeconomics, and racial and cultural composition. These 
differences can affect the distribution of organisms, responses to 
urbanization and impacts on people. For instance, past discrimina-
tory lending policies in the United States known as redlining deterred 
home ownership and investment in minority neighbourhoods37. These 
practices led to fewer parks, shade-providing trees and other natural 
amenities31 that affect not just local ecosystems but also people’s vul-
nerability to climate change.

The growing evidence that ecology and evolution meaningfully 
interact across similar temporal and spatial scales23,38 necessitates 
integrating their joint and potentially non-additive (hereafter, interac-
tive) responses9,16,27. Moreover, we recognize the need to incorporate 
humans into this framework because social dynamics reflect a rapidly 
changing reality, driving unexplored socioeco-evolutionary dynamics 
and affecting human well-being in tangible ways9,31.

Joint climate change and urbanization effects
We highlight five well-understood examples of how climate change 
and urbanization jointly influence ecological and evolutionary pro-
cesses. Although these examples do not represent all ways in which 
climate change and urbanization interact, they collectively demon-
strate that such interactions influence a diversity of organisms and 
eco-evolutionary processes. An emerging conclusion from these exam-
ples is that although both climate change and urbanization often act 
in parallel on environments, ecology and evolution, their effects are 
not purely additive but often act antagonistically.

Temperature
The greenhouse gas accumulation that underlies climate change has 
warmed the world by 1.2 °C in the past century, while the heat island 
effect from urban land cover change has warmed cities by 2 °C, on 
average39. These heat island effects are experienced globally, with 
different patterns depending on latitude, climate and biome as well 
as city-specific characteristics such as population density, impervious 
surface and canopy cover39,40 (Fig. 2). However, the rising tempera-
tures from climate change and urban heat islands are non-additive. 
Due to differences in evapotranspiration, rural regions are warming 
more quickly than cities, thereby reducing future heat island effects 
by 24%24,41. Irrigation in urban environments in arid regions also can 
reduce temperatures relative to rural regions, thus countering the 
local effects of climate-induced warming42.

Where climate change and urbanization jointly increase tempera-
tures in cities, their aggregate effects can alter the biology of urban 
organisms24,43, which can in turn modify urban microclimates. For 
instance, climate change increases urban tree growth and survival in 
cool climates but decreases tree survival in warm climates44,45. Hence, 
climate change might promote tree shading in cooler climates while 
reducing shading in hotter climates, with impacts on both wildlife 
and people.

Joint warming might also induce phenotypic changes in urban 
organisms46,47. Both climate change and urbanization induce later 
cessation of flowering in summer-blooming woody plants48. How-
ever, an observed slowing of temperature-driven responses in urban 
plants might eventually reduce phenological responses to extreme 

sustainable cities will therefore be necessary to maintain links between 
people and biodiversity5–7.

Both climate change and urbanization threaten global biodiversity 
and ecosystems5,8,9. Climate change is expected to increase extinction 
rates, alter biodiversity patterns, degrade natural ecosystem pro-
cesses and reduce their benefits to humans8,10. Some organisms have 
responded to climate change by shifting their ranges8 or modifying 
their traits via phenotypic plasticity11. Concurrently, some populations 
have genetically adapted to warmer temperatures12, altered precipita-
tion13, storms14 and ocean acidification15. Although cities occupy a small 
proportion of the global land surface, most people experience biodi-
versity there9, and biodiversity’s effects extend far beyond the city16–21. 
Urbanization affects population connectivity, community diversity 
and composition, and ecosystem properties9,19,22. Urbanization also 
can elicit both adaptive and non-adaptive evolutionary processes5,17, 
which can alter ecological interactions, ecosystem properties and 
ecological resilience16,23, ultimately reshaping the links between nature 
and society9.

Despite the coincident challenges that climate change and 
urbanization pose, their biological effects are usually considered sepa-
rately24–27. Research on the biological impacts of climate change often 
ignores how cities affect climate change responses10,28, and research 
on the biological impacts of urbanization often ignores the effects of 
changing climates9,17. Yet the joint effects of climate change and urbani-
zation might often depend on their reciprocal interactions. Moreover, 
the socioeconomic factors driving climate change also shape urbaniza-
tion patterns, including the people most vulnerable to their outcomes, 
and their joint escalation often depends on the same policies and tech-
nological changes. We plot five possible socioeconomic pathways that 
assume different levels of urbanization and climate change29,30 in Fig. 1. 
Urbanization and climate change usually coincide, but urbanization 
can also occur without substantial climate change in a sustainability 
scenario assuming rapid technological innovation.

Here we develop a framework for understanding the interactive 
effects of climate change and urbanization on the ecology and evolu-
tion of species living in and near cities. We review five examples of these 
interactions and identify five general testable hypotheses. We then 
suggest several ways to improve the understanding of these joint dis-
turbances and how to design landscapes that address both natural and 
societal concerns in a warmer and more urbanized world. We acknowl-
edge the complex human elements of urbanization, including the role 
of cities in shaping economic and social inequality, which contribute to 
how climate change, urbanization and biodiversity interact. However, 
we focus on the biological impacts of urbanization and climate change 
on non-humans, as socioeconomic responses to urban expansion and 
climate change have been dealt with elsewhere31.

Integrating joint effects of climate change and 
urbanization
Throughout, we refer to climate change and urbanization as anthropo-
genic drivers that modify environments. Climate change and urbaniza-
tion sometimes alter the same environmental conditions (hereafter, 
shared impacts), such as by jointly increasing temperatures. The joint 
effects of climate change and urbanization might be additive or interact 
synergistically or antagonistically. Alternatively, these impacts might 
be unique to each driver rather than being shared. Even when impacts 
are unique, biological responses might still interact non-additively, 
such as when adaptation to urban pollution constrains adaptation to 
climate change32.

Although urbanization affects climates at more local scales than 
global climate change24,33, their joint impacts often extend well beyond 
the immediate cityscape16–21, including interactions with species and 
ecosystems in surrounding regions and the long-distance tele-coupling 
of socioeconomic impacts34. Particularly relevant to understanding 
their interaction is whether urban development patterns align with 
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temperatures, with greater reductions expected in cities in cold cli-
mates47. Moreover, such responses might differ among species or 
between urban and rural populations, potentially creating pheno-
logical mismatches that affect trophic interactions, pollination and 
mating49–51. These phenotypic changes are also sometimes attributed 
to genetic adaptations to warming from urbanization and climate 
change12,52,53. In such cases, adaptive responses to heat extremes from 
one driver might be co-opted for the other, assuming shared impacts. 
Alternatively, the extreme heat from both drivers might reduce popula-
tion sizes, cause extirpations or decrease genetic variation for upper 
thermal limits54, thus reducing overall adaptive capacity.

Water availability
In many dry climates, climate change is causing precipitation to 
decrease or become more variable1. Climate change threatens many 
species that rely on predictable rainfall55, but supplemental watering 
and irrigation of vegetation could help them. As climates dry, people in 
cities might water more to maintain desirable species, ecosystems and 
human benefits. To illustrate, annual primary productivity is usually 
higher in Phoenix, United States, than in the surrounding desert due 
to watering56. City dwellers also create artificial ponds and lakes: water 
bodies increased 33-fold over 70 years in Phoenix and subsequently 
affected regional nitrogen cycling57. Hence, cities might provide oases 

Range of possible scenarios

Distinct climate change outcomes
Climate forcings could range from 1.9 to 8.5 W m–2 in
the year 2100. Temperature could increase by less than
1.5 °C or more than 5 °C, and CO2 concentrations could
increase to as high as 1,100 ppm or decrease to as low
as 400 ppm.

Regional Rivalry
Policies focus on meeting local food, energy 
and security needs without regard for larger
consequences, resulting in intense resource use.

Inequality
Consumptive habits continue, and there is little capacity 
to adapt to substantial environmental change. Areas in the 
Global South, where populations are booming, become 
incredibly vulnerable to climate impacts.

Sustainability
Cities transition to respect 
environmental boundaries, 
using blue and green 
infrastructure to mitigate 
minor shifts in climate. 

ssp2

ssp4

Middle of the Road
A continuation of current trends results in slow 
but intermediate progress towards sustainable 
development goals.

Fossil-Fuelled Development
Society uses grey infrastrucure
and engineering to adapt 
but does not address the root 
causes of change. Keeping 
climate impacts at bay will 
take increasing amounts of 
e�ort over time.
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Distinct urbanization outcomes
By 2100, as few as 60% or as many as 90% of the global
population may live in urban areas, with the total
final energy demand ranging from 400 EJ to 1,200 EJ.
Forest land could decrease by nearly 600 million ha
or increase by up to 300 million ha. 

Range of development styles, population sizes
and economic strategies

Synergize

Fig. 1 | Future scenarios for global urbanization and climate change. 
Different future scenarios for global urbanization and climate change as 
envisioned by the Shared Socioeconomic Pathways developed by the global 
climate change research community29,30. The five scenarios depict the world 
in 2100, when 60–90% of the global population could live in cities and global 
temperatures could rise by 1.5 °C to 5 °C. These developmental and economic 
strategies often influence (and are influenced by) the land use and greenhouse 
gas emissions policies that jointly drive urbanization and climate change. 
However, alternative futures are possible. Although urbanization and climate 
change might occur jointly as depicted in the Fossil-Fuelled Development 

scenario, a highly urbanized world with limited climate change is also possible 
assuming sufficient technological innovation as depicted in the Sustainability 
scenario. The difference between the two scenarios is that technology is applied 
in the Sustainability scenario to address the root causes of climate change. In 
addition, the Sustainability scenario assumes that the environmental effects of 
future cities are mediated by green design, and their compact design reduces 
impacts on surrounding natural areas. Note that these scenarios represent the 
main narratives that have been accepted by the global climate change research 
community to indicate divergent climate change projections, but many other 
scenarios are possible.
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for species as climate change dries surrounding areas. However, sup-
plying that water often means denying water to other people or organ-
isms, and therefore irrigation in cities might stop abruptly during water 
shortages, threatening water-dependent species.

Globally, variable precipitation often drives spatial patterns of 
selection and adaptation58. Plants have adapted to irrigated agricultural 
areas59 and to climate-induced drought13, suggesting the potential for 
fitness trade-offs to shape how urban and rural species differentially 
persist through drought. Adaptations to irrigated cityscapes could 
thus increase or decrease fitness, depending on how regional precipita-
tion changes. These adaptations could provide services (for example, 
shade) or disservices (for example, vector-borne diseases) to humans60.

Stream hydrology
Climate change and urbanization can also jointly alter streamflow, with 
the magnitude and direction of effects depending on regional climate 
and urban infrastructure25,61,62. Climate change can cause extreme pre-
cipitation events in and downwind of cities63, which produce larger 
stormflows61,64. Impervious surfaces, reduced interception by veg-
etation, channelization and microclimatic alterations in the city can 
increase stormflow variability and magnitude and trigger flooding62,65. 
In other regions, climate change reduces precipitation and river flows. 
High evaporative potential in urban environments can exacerbate 
drying effects on streams, whereas urban channelization can increase 
base and storm-related streamflow57,66.

These joint impacts on streamflow can affect species through 
divergent interactive effects. For example, urbanization and the greater 
flow intermittency expected with climate change synergistically 
decreased stream macroinvertebrate richness by 80% in one study67. 
However, the joint predicted responses of fish communities to urbani-
zation and climate change were mostly antagonistic in another study25.

Urbanization- and climate-driven changes in precipitation also can 
shape adaptive evolution. For example, climate-induced reductions in 
streamflow and saltwater exchange in Californian estuaries produced 
lotic habitats, which drove the evolution of reduced bony plates in stick-
leback fish66. However, estuarine channelization, dredging and ocean 
breaching selected for more bony plates, highlighting how human 
modifications can act antagonistically on phenotypic evolution66. 
More generally, a review of multiple stressors on aquatic biodiversity68 
suggests that they often act antagonistically, such that populations 
are resilient to multiple stressors due to existing co-adaptations to 
environmental heterogeneity.

Habitat connectivity
Many species must disperse to track their climatic niches as they shift 
across the landscape69. Dispersal-limited species that cannot track shift-
ing climates might undergo range retraction and experience increasing 
fragmentation70. Urbanization also fragments habitats and therefore 
can enhance climate-mediated extinction risks by preventing species 
from tracking their moving climatic niche71. For example, expanding 
Californian cities have isolated mountain lion populations, threaten-
ing them with extirpation72. Species that would normally track climate 
change now face an increasingly inhospitable matrix due to urbaniza-
tion35,73, creating potential negative synergies between the two drivers.

Environments fragmented by urbanization can also select for spe-
cies with different dispersal abilities relative to natural environments. 
For instance, insect assemblages in cities included better-dispersing 
species than those in rural areas74,75. These changes in dispersal abil-
ity could also affect gene flow, adaptations to new disturbances, and 
recovery from inbreeding and genetic drift76. For example, gene flow 
among poorly dispersing mice was limited in the city, whereas gene 
flow in free-flying bats remained high77. Although urbanization reduces 
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Fig. 2 | Global variation in urban heat island effects through time for selected 
global cities. The urban heat island effect is calculated as the annual land surface 
temperature in urban areas minus that in surrounding rural areas during the day 
(red) and night (blue) for 2003–2020 (for detailed methods, see Supplementary 
Information). Urban heat island effects range from −1 °C to 6 °C, and their relative 
magnitudes and temporal trends depend on regional climate and the interaction 
between temperature and humidity in urban and rural areas. Note that land 

surface temperatures provide a different view than analyses based on air 
temperatures, by generally indicating a stronger urban heat island effect (larger 
temperature differences) at night than during the day40. The base map depicts 
the mean annual surface temperature change (in °C) in 2081–2100 for the SSP2-
4.5 scenario based on 34 models from the IPCC WGI Interactive Atlas131. Data from 
refs. 132,133. Figure reproduced with permission from ref. 131 under a Creative 
Commons license CC BY 4.0.
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gene flow for many species77,78, it can also enhance connectivity relative 
to rural areas for others79, such as black widow spiders and pepper-
weed80,81. Improved urban connectivity for these species could thus 
counteract encroaching fragmentation from climate change.

Fragmentation from climate change and urbanization could also 
select for the evolution of either reduced or enhanced dispersal ability, 
depending on the mode and relative benefits of dispersal. Urban frag-
mentation selected for 5% fewer dispersing seeds of holy hawksbeard 
plants82 but was associated with 12% longer flights in urban damsel-
flies83. Climate-tracking species also might evolve increased dispersal 
at their range edge to colonize newly suitable, low-competition habi-
tats69,84. Hence, the evolution of dispersal in response to fragmentation 
from one driver could constrain or enhance the effects of fragmenta-
tion from the other driver.

Aquatic pollution
Urban water bodies are often polluted with excess nutrients85, and 
climate-induced changes in precipitation can increase nutrient run-off 
in temperate regions and concentrate nutrients in arid regions86. 
Increasing phosphorus, in particular, facilitates opportunistic phy-
toplankton such as cyanobacteria, which can produce a positive 
feedback that shades other species, promoting more cyanobacteria 
growth under warmer conditions87. Simultaneously, climate change 
and urbanization raise water-body temperatures, jointly facilitating 
cyanobacteria growth87.

Cyanobacteria can decrease lake species diversity, alter trophic 
dynamics, kill fish, degrade freshwater supplies and sicken people86,88. 
Urbanization and climate change can synergistically shift water bodies 
towards dominance by toxic cyanobacteria, which threatens water 
quality and human health. Some grazers such as the water flea, however, 
adapt to consume toxic cyanobacteria, which reduces cyanobacteria 
and improves water quality89,90. Adaptive shifts of consumer commu-
nities or populations towards resistant species or genotypes could 
therefore mediate these effects.

Joint hypotheses about climate change and 
urbanization
Given that the interaction of climate change and urbanization remains 
understudied, we next provide five testable hypotheses for how climate 
change and urbanization might interact to influence eco-evolutionary 
processes to spur research and fruitful debate (Fig. 3). These hypoth-
eses are arranged to highlight potential advantages of city organisms 
over rural organisms, then potential advantages of rural organisms 
over city organisms, followed by changes in phenotypic synchrony 
and movement.

Out-of-the-city hypothesis
We predict that species and genotypes that thrive in cities, which are 
often characterized by broad, generalist niches19, will already possess 
traits that enable higher fitness under climate change, thus facilitating 
invasions into surrounding, less-developed regions26,53,91,92. Species 
adapted to both urbanization and climate change can spread through 
multi-city networks, especially if urbanization and climate change 
gradients align and cities have similar characteristics. For example, 
urban ant communities are dominated by species better adapted to 
warmer and drier regions than nearby forest communities93. These 
species might dominate further through human facilitation, includ-
ing many introduced or cultivated species. As an example of this, 
many garden plants are already tracking climate change through 
cultivation and assisted migration by humans94. If climate change 
has similar, city-like effects on environments in nearby undeveloped 
areas, these species might expand into the countryside and replace 
native species. For example, species that thrive in urban heat islands 
might readily colonize nearby rural areas that are warming through  
climate change.

Urban-adapted genotypes might also dominate during climate 
change. Urban acorn ants, water fleas and lizards have adapted to urban 
heat islands52,95,96 and thus might eventually spread into surrounding 
regions that are warming, promoting evolutionary rescue of those 
populations from climate change97. If urban fragmentation causes or 
selects for better dispersal98, these urban genotypes might spread even 
faster. Such dynamics can ultimately produce a race between migration 
from lower-latitude or lower-elevation rural populations as they track 
climate change and the expansion of local species or genotypes with 
traits adapted to cities that also match changing climate conditions70,99. 
Given the geographic distance required for rural organisms to track 
climate change relative to urban genotypes, the adjacent urban organ-
isms might win out. For instance, New York City daily temperatures are 
2 °C warmer, on average, than those in nearby regions, which matches 
the same average temperatures in rural climates 220 km to the south.

These expanding urban species and genotypes might enhance 
the resilience of rural ecosystems by maintaining functional traits, 
but they could also threaten rare or threatened native species and 
spread human-aided species or genotypes. These urban species might 
disrupt ecosystems and human well-being if cities facilitate invasive 
species or disease agents that then spread outwards80,91,100. Such joint 
dynamics could lead to the ‘urbanization’ of regional communities and 
population genetics, an analogue of ‘community thermophilization,’ 
whereby communities become dominated by warm-adapted species 
during climate change74.

Urban organisms might also adapt to city-specific conditions 
that, through trade-offs, maladapt them to unique rural features. For 
instance, the water flea’s adaptations to pesticides also increase their 
susceptibility to natural parasites101. Thus, even if urban organisms 
adapt to shared conditions from urbanization and climate change, 
their adaptations to unique local conditions might limit their expan-
sion into surrounding rural regions. Alternatively, impacts from urban 
organisms might be restricted to a small zone around cities, leaving 
larger-scale range shifts unaffected. Transplant experiments between 
cities and surrounding areas and experimental manipulations simulat-
ing future climate conditions provide important ways to test predic-
tions from this hypothesis and each of the subsequent ones (Box 1 
and Fig. 3)

City-to-city transfer hypothesis
We predict that cities arranged along climate gradients and linked 
via transportation corridors will promote the colonization of cities 
by urban-adapted species and genotypes, including under changed 
climates, thereby enhancing overall biotic homogenization across 
urban environments along climate gradients19,92. Invasive species are 
often moved along urban transportation networks or intentionally 
introduced102, and plants cultivated beyond their normal range sup-
port more rapid range expansions in response to climate change94. 
By maintaining native and exotic plants, urban green space can also 
supplement resources that facilitate climate tracking103.

Urban corridors might also facilitate gene flow along climate 
gradients. One third of studies indicate that urbanization facilitates 
gene flow79, and therefore cities already promote the movement 
of human-associated species, which can help them track climate 
change. Evidence for convergent adaptations across cities suggests 
that strong gene flow can homogenize urban genotypes and pheno-
types80,81,104. During climate change, this extensive gene flow could 
facilitate the expansion of genotypes already adapted to warming 
conditions into historically cooler regions, thus adapting populations 
to changing climates94. Urban biodiversity could therefore be main-
tained regionally despite warming in a manner similar to that proposed 
for well-connected natural systems. Although such dynamics could 
maintain some species facing urbanization and climate change, they 
might also spread pests, human pathogens and invasive species across 
human-dominated landscapes as climates warm105.
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The city-to-city transfer hypothesis will be more likely for species 
associated with humans. This hypothesis also assumes that cities are 
similar enough that adaptations to one city are adaptive in other cities. 
Nearby cities connected by transportation corridors might be relatively 
similar but could still differ substantially in important characteristics 
such as socioeconomics, infrastructure and development patterns.

City gates hypotheses
We predict that urban organisms could exclude genotypes and spe-
cies from rural areas expanding their ranges to track climate change 
if the spatial configuration of cities blocks their passage (closed city 
gates hypothesis). Urban species might possess traits that suit them 
to both urban and climate change conditions, thereby producing an 
ecological priority effect over other species tracking climatic changes26. 
Such priority effects might occur through both more fit species and 

better adapted genotypes, with the latter signalling an eco-evolutionary 
priority effect, whereby resident species adapt to local conditions and 
decrease the establishment of late-colonizing species or genotypes99. 
Such dynamics have been observed in experiments106 and across natural 
islands107 but remain untested in cities. Furthermore, adaptation to the 
urban environment and potential expansion to nearby regions during 
climate change (see ‘Out-of-the-city hypothesis’) could prevent other 
species and genotypes from tracking climate change across regional 
landscapes, thereby increasing extinction risks and promoting adapted 
urban species over native species.

The city gate hypothesis depends on how well city genotypes and 
communities resist invasions, which, in turn, will depend on the species 
or genotypic characteristics that confer fitness advantages to both 
shared and unique conditions in cities and to climate change. Although 
scientists usually envision invasion dynamics as being dominated by 

A common experimental design for testing hypotheses
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competition, trophic or mutualistic interactions might also play impor-
tant roles99. Climate-expanding, generalist and superior competitors 
might overcome the ‘city gates’, while specialists and poor competitors 
might face higher thresholds, further homogenizing species assem-
blages and population genetics. However, if cities decrease popula-
tion sizes and lower species and genetic diversity, then the opposite 
effect might occur by creating niches for climate-expanding species 
to invade, thus opening the city gates (open city gates hypothesis).

Urban biotic attrition hypothesis
We predict that cities could undergo ‘urban biotic attrition’, whereby 
cities lose species faster than surrounding regions, as adapted from 
the lowland biotic attrition hypothesis postulated for lowland tropi-
cal regions108. Applying the same idea to cities, we propose that urban 
species diversity will decline during climate change because no species 
exist in the surrounding region that can survive novel urban climates 
and therefore colonize and replace the declining resident species. This 
effect would be more likely when cities are isolated and differ strongly 
from each other. For instance, cities might become the hottest places in 

a region, and if interconnections with other cities are limited or those 
cities differ in attributes, then species extirpations might occur with-
out replacement71. This lost diversity might reduce ecosystem stabil-
ity and function and increasingly affect people, such as by increasing 
vector-borne disease105 and exacerbating climate extremes by reducing 
urban trees and their cooling effect.

Urban biotic attrition might also affect genetic diversity by 
decreasing population sizes, increasing drift and eliminating 
adaptive variation. Similar to species, genotypes adapted to these 
no-analogue climates are unlikely to exist in neighbouring regions 
and provide a source of adaptive gene flow. In situ adaptation to 
no-analogue conditions might therefore be the only mechanism 
that maintains populations in these regions109, but the loss of genetic 
diversity and maladaptive gene flow could reduce this potential for 
evolutionary rescue97.

Spatial asynchrony in species interactions hypothesis
Both climate change and urbanization can affect the timing of life his-
tory events (phenology) such as green-up, migration and offspring 
production47,110,111. When interacting species modify their phenologies 
at different rates in altered environments, the resulting phenological 
mismatch can alter interaction strengths and fitness51. As urbaniza-
tion proceeds, phenological responses might diverge between urban 
and rural regions, which can exaggerate or diminish climate change 
effects110. Given these joint effects, we predict altered interactions for 
highly dispersive species that forage across urban-to-rural gradients. 
To illustrate, if a predator forages in both the city and the country-
side, they might compensate for mismatches with their resources in 
one habitat by foraging more in the other habitat. For instance, fruit 
bats near Tel Aviv roost in rural areas but preferentially forage in the 
city, where they have adopted more exploratory and diverse diets112. In 
addition, phenological delays between the two regions might provide 
a more continuous supply of resources for species that can track asyn-
chronous peaks in resources through movement. For instance, urban 
regions often provide longer and more continuous floral resources for 
pollinators113,114. Concurrently, climate change is expected to create 
phenological mismatches between plants and pollinators115, potentially 
allowing urban plantings to rescue some pollinators and their benefits 
to humans. Urbanization thus might buffer the effects of climate change 
on dispersive consumers and pollinators, assuming strong interactions 
and generalist species that span the urban-to-rural gradient through 
extensive movement patterns.

Climate change could lessen these asynchronies by reducing dif-
ferences between cities and nearby regions. Climate change reduces 
phenological differences via antagonistic effects on conditions (for 
example, temperature and precipitation), biological constraints and 
the local counter-gradient adaptation of phenology. Evidence from 
plant green-up indicates a slowing down of phenological responses at 
high urban temperatures, suggesting that surrounding plant phenolo-
gies will catch up to cities as climate change progresses47. Also, local 
adaptation of traits or plasticity could reduce asynchronies between 
urban and rural areas, as exemplified by the evolution of locally adapted 
flowering times in common ragweed116.

Future directions
We conclude by suggesting future directions that test the above hypoth-
eses, develop additional ones and apply insights to create better cities 
for people and biodiversity.

Modelling joint interactions and impacts
An important next step is to develop better-coupled models of the joint 
impacts of climate change and urbanization that allow interactions 
between the drivers, their environmental impacts and eco-evolutionary 
feedbacks. Such coupled models often reveal unanticipated interac-
tive effects117. These interactive effects will depend on climatic, social, 

Box 1

Designing experiments to test 
hypotheses
We developed a common transplant experiment design to test 
hypotheses (Fig. 3). We envision setting up experiments in paired 
urban and rural habitats along climate gradients (for example, 
latitude/altitude) with an ambient and a future climate manipulation 
(for example, raised temperature). Reciprocal transplants of 
populations would be especially useful to test local adaptation to 
urban/rural habitats and to regional climate, which would inform 
whether species, genotypes or both are manipulated in future 
experiments. If natural transplants are not possible because of 
ethical or practical concerns, then common garden experiments 
that manipulate key environmental factors can be implemented 
instead. Testing individual hypotheses will also require treatments 
with and without interactions between transplanted populations/
species or that allow colonization of species from nearby habitats. 
The predicted outcomes of each hypothesis are:

Out-of-the-city hypothesis: Species or genotypes from the city 
outcompete rural species or genotypes in the rural climate change 
treatment.

City-to-city transfer hypothesis: Species or genotypes will 
easily establish in transplants in cities up the climate gradient and 
in the climate change treatment. This prediction also requires a 
monitoring programme to assess whether movements are greater 
between cities than between rural areas.

City gates hypotheses: Species or genotypes from rural areas 
will establish less (closed gate) or more (open gate) in cities than 
in rural areas along the climate gradient and in the climate change 
treatment.

Urban biotic attrition hypothesis: Species or genotypes from 
the city will decline in the climate change treatment and will not be 
invaded by other species or genotypes from the surrounding habitat 
relative to rural habitats.

Spatial asynchrony in species interactions hypothesis: Species 
with access to both urban and rural climate change experiments 
might have higher or lower fitness, depending on the specific 
interaction type, than those without because of the divergent 
phenologies of the species with which they interact.
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economic and ecological contexts; therefore, exploring how climate–
urban interactions differ in strength or direction across realistic gra-
dients will be critical to gain broader understanding.

Urban observation networks
Long-term, paired monitoring of urban and nearby rural ecosystems 
will play an important role in testing hypotheses (for example, ref. 118). 
Optimally, multiple monitoring sites would also be arranged along 
relevant axes of city characteristics such as age, history and socioeco-
nomics. For example, the age of city infrastructure could influence 
existing genetic variation and whether organisms can adapt to novel 
selection119. Furthermore, researchers should scale from individual 
cities to multi-city networks given the hypothesized importance of city 
networks and connections with surrounding areas. This monitoring 
network could also test whether current urban responses can predict 
future climate responses. Monitoring should include not just species 
abundances but also traits attributed to plasticity and adaptations via 
experiments and adaptive and neutral genetics, with the latter indicat-
ing population sizes, connectivity and inbreeding. Inclusive community 
science, when combined with sufficient controls to facilitate accuracy, 
provides one way to collect these data in the places where people live, 
while involving local people in the scientific process. Long-term moni-
toring takes time to set up and bear results, and therefore it should be 
an immediate priority.

Realistically unnatural experiments
We advocate for experiments, as realistic in size, diversity and com-
plexity as possible, that simulate interacting joint effects of climate 
change and urbanization and estimate the direction, strength and 
interactions of biological responses. Cities are already manipulated 
systems and are commonly touted as analogues of certain climatic 
changes120. They therefore provide opportunities to leverage or design 
divergent urban management actions to facilitate whole-ecosystem 
experiments not normally possible in natural systems120. For example, 
a herbivore’s response to urban heat islands in one study predicted its 
response to global warming in natural habitats121. Towards this end, 
researchers could alter temperature, native vegetation, species com-
positions or genetics in experiments in both urban and rural environ-
ments to simulate impacts on climate change and its disparate effects 
across the urbanization gradient to test five hypotheses (Box 1). One 
could imagine introducing non-invasive species expanding their range 
with climate change (the city gates hypotheses) into some urban parks 
or constructed green habitats, but not others, and then evaluating 
whether and why they can survive and their overall impacts on ecosys-
tems and people. Such introductions would first need to prove their 
safety and gain permission from local communities and authorities 
through an ethical and inclusive process.

Socio-ecological dynamics
Current research suggests that social, cultural and economic factors 
are embedded within urban policymaking, built environments and 
ecosystems and their benefits to humans, including important con-
sequences for equality122,123. For instance, research has demonstrated 
that poor neighbourhoods often have lower canopy cover and access 
to green infrastructure, which exacerbates human health risks from 
heat waves124. As scientists test and develop hypotheses about interac-
tions between climate change and urbanization, they should explicitly 
incorporate the socio-ecological dynamics that drive eco-evolutionary 
outcomes. Including social conditions in hypotheses will improve 
predictions for urban–eco-evolutionary dynamics and create more 
effective and equitable climate solutions for all people, especially his-
torically excluded groups.

More systematic attention should be focused on how technology 
transforms the relationship between people and the natural world in 
cities27. For example, the emergence of autonomous systems poses 

both challenges and opportunities to minimize impacts from climate 
change and urbanization125. Another aspect relates to how political 
and belief systems affect urban and climate change resilience. One 
prediction is that cities with strong environmental policies will be more 
resilient to climate change. However, this link might be weakened if 
climate change is not a specific environmental priority or if interac-
tions between urbanization and climate change are not considered. 
Moreover, research should consider which socioeconomic elements 
of a given city are ‘resilient’ in different scenarios and policies. For 
example, research should consider the major beneficiaries and leaders 
of political and economic systems and the large extensions of slums 
or poor neighbourhoods that comprise substantial portions of many 
emerging mega-cities in different parts of the world.

Building climate-resilient cities
Studying the interactive effects of climate change and urbanization 
could also improve the ability to design, renovate and rebuild cities 
damaged by extreme weather, war or other disasters in a way that makes 
them more resilient to climate change126. For example, the design of 
older cities often exacerbates climate change effects, such as by concen-
trating flooding and heat island effects and excluding natural corridors 
or parks. As society envisions cities of the future, nature-based solutions 
can mitigate the joint effects of climate change and urbanization127. Add-
ing natural vegetation and aquatic infrastructure can dampen climate 
change extremes in cities, which could reduce out-of-the-city dispersal 
and urban attrition (two of our hypotheses) while also providing ben-
efits to people, ranging from pollination to improved mental well-being. 
Society can also make better decisions about green infrastructure by 
supporting larger natural areas in cities and creating corridors between 
these areas to promote genetic variability128. Creating climate-resilient 
cities can also begin to address social inequalities in access to nature 
and its benefits. Low-income, marginalized communities often bear 
the brunt of both climate change and intense urban development9,31. 
Situating nature-based solutions preferentially in these neighbour-
hoods could address these historical legacies.

Arranging green infrastructure within and between cities into 
strips parallel to climatic gradients would create corridors to allow 
species to track climate change and thus facilitate, rather than impede, 
movement through cities35. These green-striped cities could spread 
ecosystem benefits throughout more of the city than large, isolated 
parks, which also tend to occur in wealthier, less diverse neighbour-
hoods. Designing this infrastructure will need to account for biological 
and engineering contexts and regulatory constraints, and incorporate 
local and diverse voices to be effective and fair124.

Lastly, cities might be designed to act as refugia for some native 
species because people buffer the impacts of climate change on their 
own habitats, such as by creating irrigated landscapes and artificial 
ponds and planting diverse native vegetation in drying landscapes57,129. 
So-called reconciliation ecology seeks to design habitats that benefit 
both humans and native wildlife130.

Conclusions
Climate change and urbanization interact through their socio-economic 
drivers, impacts on environmental conditions and effects on ecology 
and evolution. Organisms mediate the effects of these impacts through 
demographic, plastic and evolutionary responses. Many responses 
interact in ways that minimize the summed impacts of climate change 
and urbanization. This compensatory effect might originate from 
recent or long-term adaptations to environmental heterogeneity and 
multiple disturbances, which extend resilience from one driver to 
another. We propose five hypotheses about possible interactive effects 
and suggest how they can be tested through long-term observations 
and experiments. As climate change and urbanization increasingly 
dominate the world, society must consider their joint impacts to miti-
gate their interactive effects on biodiversity, ecosystems and people.
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