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Consistency between the exchange-correlation (XC) functional used during pseudopotential construction and
planewave-based electronic structure calculations is important for an accurate and reliable description of the
structure and properties of condensed-phase systems. In this work, we present a general scheme for constructing
pseudopotentials with range-separated hybrid (RSH) XC functionals based on the solution of the all-electron
radial integro-differential equation for a spherically symmetrized reference atomic configuration. As a proof of
principle, we demonstrate pseudopotential construction with the Perdew-Burke-Ernzerhof (PBE), hybrid PBE
(PBE0), Heyd-Scuseria-Ernzerhof RSH (HSE06), and screened RSH (SRSH, based on the long-range corrected
LC-ωPBE0 RSH) XC functionals for a select set of atoms and then investigate the importance of pseudopotential
consistency when computing band gaps, equilibrium lattice parameters, bulk moduli, and atomization energies
of several solid-state systems. In doing so, we find that pseudopotential consistency errors tend to be systematic
and can be as large as 0.1 eV (or 1.4%) when computing band gaps.
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I. INTRODUCTION

Density functional theory (DFT) [1,2] has long been the
computational workhorse of first-principles calculations in the
fields of physics, chemistry, and materials science [3–8]. DFT
is an exact theory in principle, but as it requires an exchange-
correlation (XC) functional that is generally unknown, it is
almost always approximate in practice. A very large number
of approximate XC functionals have been suggested to date,
many of which can be categorized by classes of increasing
accuracy and complexity using Perdew’s five-rung “Jacob’s
ladder” scheme [9]. On the two lower rungs of this ladder lie
the local density approximation (LDA) and generalized gradi-
ent approximation (GGA) (e.g., the Perdew-Burke-Ernzerhof
(PBE) functional [10]), in which the XC term is an ex-
plicit functional of the density alone or the density and its
gradient, respectively. The three higher rungs add orbital-
dependent ingredients [11] of increasing sophistication, with
third-rung functionals (i.e., meta-GGAs) also depending on
the kinetic energy density and/or Laplacian of the density,
fourth-rung functionals (e.g., hybrids) generally depending on
the occupied orbitals, and fifth-rung functionals incorporating
virtual/unoccupied orbital information.

Hybrid XC functionals, which employ a fraction of Fock
exchange (or exact exchange) as one of their ingredients
[12,13] (e.g., the hybrid PBE (PBE0) functional [14,15]), are
among the most popular fourth-rung functionals, as they often
offer an excellent balance between accuracy and computa-
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tional cost [11]. Range-separated hybrids (RSHs) [16,17] are
a special case of hybrid functionals, in which different frac-
tions of Fock exchange are employed in different interelectron
interaction ranges, thereby allowing for a finer balance be-
tween exchange and correlation components. Popular RSH
functionals may include Fock exchange only in the short
range (e.g., the Heyd-Scuseria-Ernzerhof (HSE06) functional
[18], which will be referred to as HSE throughout this work),
only in the long range (e.g., the long-range corrected PBE
(LC-ωPBE) functional [19] and the Baer-Neuhauser-Livshits
(BNL) functional [20]), or in both ranges (e.g., the long-range
corrected PBE0 (LC-ωPBE0) functional [21], the Cambridge-
adapted Becke-3-Lee-Yang-Parr (CAM-B3LYP) functional
[22], and the Chai-Head-Gordon RSH functional based on
Becke exchange (ωB97X) [23]). RSH functionals in which the
parameters are chosen by optimal tuning, i.e., by a per-system
selection of parameters that satisfy physical criteria, have also
been shown to be of particular use for electronic and optical
spectroscopy in both molecules [24] and solids [25].

Solid-state DFT calculations often employ the pseudopo-
tential (PS) method (for an overview, see, e.g., Refs. [26–29]
and references therein), which replaces the core electrons
by an effective potential that describes their effect on the
valence electrons. By removing the Coulomb singularity of
the nuclear-electronic potential and eliminating the core elec-
trons from explicit consideration, the PS method dramatically
reduces the cost of solid-state DFT calculations. Clearly, a
consistent level of theoretical treatment requires that the PS be
generated using the same XC functional that is employed for
the DFT calculation. However, virtually all PSs in everyday
use are generated using the two lowest rungs of Jacob’s ladder,
namely, LDA and GGA. Given that the use of an inconsistent
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PS has been shown to introduce uncontrolled PS consistency
errors (PSCEs) even between LDA and GGA [30], this is
a potentially serious issue that needs to be addressed when
performing more computationally intensive (and higher ac-
curacy) DFT calculations with higher-rung XC functionals.
Only recently have schemes for constructing PSs for third-
and fourth-rung functionals (i.e., meta-GGAs and hybrids)
been reported in the literature along with an evaluation of the
associated PSCEs [31–33]. To the best of our knowledge, PS
schemes for generating fourth-rung RSH functionals have not
been developed or studied to date.

In this work, we remedy this situation. We present the
general process and basic equations for the construction of
RSH-type PSs. Specifically, we derive the all-electron RSH
radial integro-differential equation by utilizing the Slater
configuration-averaging scheme [32,34,35] in conjunction
with a multipole expansion of the short-range Coulomb re-
pulsion kernel [36]. We then show how RSH-type PSs are
constructed from the all-electron orbitals and potentials. To
make the entire process clear, we also show how this ap-
proach is implemented in practice (within the OPIUM code
[37]). Finally, we illustrate the importance of these PSs by
critically assessing the PSCEs when computing band gaps,
equilibrium lattice parameters, bulk moduli, and atomization
energies of several solid-state systems. In doing so, we find
that PSCEs tend to be systematic and can be as large as 1.4%
when computing these properties using fourth-rung RSH XC
functionals.

II. THEORY

A. Overview of RSH functionals

The exchange (x) energy of an RSH XC functional is split
into long-range (LR) and short-range (SR) terms [17], often
using the error function [22] with a range-separation parame-
ter μ. The XC energy, ERSH

xc = ERSH
x,μ + EDFA

c , is then written
as

ERSH
xc = αEFock

SR,μ + (1 − α)EDFA
SR,μ + (α + β )EFock

LR,μ

+ (1 − α − β )EDFA
LR,μ + EDFA

c , (1)

where DFA denotes the employed density functional approx-
imation (e.g., PBE). In the general RSH scheme, α, β, and μ

are free parameters (various choices of which are discussed
below), and the SR- and LR-Fock terms are given by

EFock
SR,μ = −

∑

i j

∫
dr dr

′ψ∗
i (r)ψ j (r)

×
erfc(μ|r − r

′|)

|r − r
′|

ψ∗
j (r′)ψi(r

′) (2)

and

EFock
LR,μ = −

∑

i j

∫
dr dr

′ψ∗
i (r)ψ j (r)

×
erf(μ|r − r

′|)

|r − r
′|

ψ∗
j (r′)ψi(r

′), (3)

where ψi and ψ j are the occupied wave functions (orbitals).
Note that for simplicity here and throughout, we consider only

closed-shell systems; hence, a factor of 1/2 is not included in
Eqs. (2) and (3).

Like all hybrids, RSH functionals are almost invariably
employed within the generalized Kohn-Sham (GKS) scheme
[38], i.e., using a nonmultiplicative exchange potential re-
lated to the Fock operator. The corresponding XC potential,
V̂ RSH

xc = V̂x + V DFA
c (ρ(r)), is then

V̂ RSH
xc = αV̂ Fock

SR,μ + (1 − α)V DFA
SR,μ(ρ(r)) + (α + β )V̂ Fock

LR,μ

+ (1 − α − β )V DFA
LR,μ(ρ(r)) + V DFA

c (ρ(r)), (4)

where the hat signifies a nonmultiplicative operator and ρ(r)
is the electron density. As an example, if we choose PBE
for the DFA (i.e., the use of the PBE correlation func-
tional in conjunction with the SR and LR versions of PBE
exchange [39,40]), then setting α = 0.25, β = −0.25, and
μ = 0.11 bohr−1 leads to the HSE functional [18].

B. All-electron calculation

The first step in constructing a PS is to solve the all-
electron (AE) GKS equation for a spherically symmetrized
reference atomic configuration, from which central angular-
momentum-dependent PSs can be generated. Specifically, we
solve

[
− 1

2∇2 + Vion + VH + V̂xc
]
ψnlm(r) = εnlmψnlm(r), (5)

where the terms in the square brackets are the electron kinetic
energy operator, the nuclear-electron attraction potential, the
classical electron-electron repulsion (Hartree) potential, and
the XC potential, respectively. In this expression, ψnlm(r) and
εnlm are the wave function and eigenvalue associated with the
nlm quantum numbers, respectively.

The atomic wave functions ψnlm(r) can be written as

ψnlm(r) =
φnl (r)

r
Ylm(θ, ϕ), (6)

where φnl (r)/r is the (normalized) radial part of the wave
function and Ylm(θ, ϕ) is a spherical harmonic, with the aim
of simplifying Eq. (5) into a one-dimensional ordinary dif-
ferential equation for the radial function φnl (r). However, the
presence of Fock exchange in V̂xc complicates this radial trans-
formation, as the evaluation of this contribution depends on
the magnetic quantum number m, which reintroduces an angu-
lar dependence. To overcome this issue and enforce spherical
symmetry, we use the concept of the “average energy of
configuration” introduced by Slater [34] to remove the angu-
lar dependence. This so-called Slater configuration-averaging
(SCA) scheme, which was used successfully to deal with the
standard/full-range (FR) Fock exchange in the context of con-
structing PSs for global hybrid functionals [32], is explained
in more detail in Secs. I A–I C and II A of the accompanying
Supplemental Material [41].

For a global hybrid, in which V̂xc = V̂x + V DFA
c (ρ(r)) =

αV̂ Fock
FR + (1 − α)V DFA

x (ρ(r)) + V DFA
c (ρ(r)), this procedure

leads to the following radial expression for the (FR-)Fock
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contribution:

V̂ Fock
FR φnl (r) =

1

r

[
2l∑

L=0

AFR
nl,nl,LY L(nl, nl; r)φnl (r)

+
∑

n′l ′ �=nl

l+l ′∑

L=|l−l ′|

BFR
nl,n′l ′,LY L(nl, n′l ′; r)φn′l ′ (r)

⎤
⎦,

(7)

in which

Y L(nl, n′l ′; r) ≡

∫ r

0
dr′

(
r′

r

)L

φ∗
nl (r

′)φn′l ′ (r
′)

+

∫ ∞

r

dr′
( r

r′

)L+1
φ∗

nl (r
′)φn′l ′ (r

′) (8)

and AFR
nl,nl,L and BFR

nl,n′l ′,L are the expansion coefficients corre-
sponding to exchange interactions between equivalent (nl =

n′l ′) and nonequivalent (nl �= n′l ′) electrons, respectively; ex-
plicit expressions for both are given by Eqs. (III.13) and
(III.16) in the Supplemental Material [41]. In this work, we
use the Y L symbol [as defined in Eq. (8)] for consistency
with the notation in Ref. [35], which should not be confused
with the Ylm symbol used to denote the spherical harmonics in
Eq. (6).

To take full advantage of these results for the FR-Fock
operator in the context of RSH functionals, the terms in Eq. (4)
can be rearranged as follows:

V̂ RSH
xc = (α + β )V̂ Fock

FR − βV̂ Fock
SR,μ + βV DFA

SR,μ(ρ(r))

+ (1 − α − β )V DFA
FR (ρ(r)) + V DFA

c (ρ(r)), (9)

such that the only term that needs to be addressed is V̂ Fock
SR,μ , i.e.,

the SR-Fock contribution. Here, we note that Eqs. (7) and (8)
are based on a multipole expansion of the standard 1/|r − r

′|

operator found in FR-Fock exchange [see Eqs. (I.6) and (I.7)
in the Supplemental Material] [41]. To evaluate the V̂ Fock

SR,μ

contribution in Eq. (9), we need to consider the analogous
expansion for the erfc(μ|r − r

′|)/|r − r
′| operator found in the

SR-Fock exchange term in Eq. (2). Such an expansion was
studied in detail by Ángyán et al. [36] (and used successfully
by Lehtola [42] to calculate fractionally occupied atoms) and
is given as

erfc(μ|r − r
′|)

|r − r
′|

=

∞∑

L=0

FL(r, r′, μ)PL (cos γ ), (10)

where PL(cos γ ) is an Lth-order Legendre polynomial, γ is the
angle between r and r

′, and FL(r, r′, μ) = μ�L(μr<, μr>)
are radial expansion functions [where r< = min (r, r′) and
r> = max (r, r′)]; see Sec. II B in the Supplemental Material
for more details [41].

With Eq. (10) in hand, one can now apply the SCA proce-
dure to derive the SR analogs of Eqs. (7) and (8); see Sec II B
in the Supplemental Material for a detailed derivation [41]. In
doing so, we obtained the following radial expression for the

SR-Fock contribution:

V̂ Fock
SR,μφnl (r) =

1

r

[
2l∑

L=0

ASR
nl,nl,LZ

L
μ(nl, nl; r)φnl (r)

+
∑

n′l ′ �=nl

l+l ′∑

L=|l−l ′|

BSR
nl,n′l ′,LZ

L
μ(nl, n′l ′; r)φn′l ′ (r)

⎤
⎦

(11)

in which

Z
L
μ(nl, n′l ′; r) ≡ μr

∫ r

0
dr′�L(μr′, μr)φ∗

nl (r
′)φn′l ′ (r

′)

+ μr

∫ ∞

r

dr′�L(μr, μr′)φ∗
nl (r

′)φn′l ′ (r
′)

(12)

and ASR
nl,nl,L and BSR

nl,n′l ′,L are the corresponding SR expansion
coefficients given by Eqs. (III.13) and (III.16) in the Supple-
mental Material [41].

Using these expressions, Eq. (5) can now be transformed
into the following Slater-averaged all-electron RSH radial
integro-differential equation:

d2φnl (r)

dr2
=

2

r

[
l (l + 1)

2r
− Z + Yμ(nl; r)

+ (1 − α − β )rV DFA
FR (r)

+ βrV DFA
SR,μ(r) + rV DFA

c (r)

]
φnl (r)

+
2

r
[(α + β )XFR(nl; r) − βXSR,μ(nl; r)]

+ εnlφnl (r); (13)

see Sec. III A in the Supplemental Material for more de-
tails [41]. In this expression, Yμ(nl; r) contains the Hartree
(H) contribution as well as the equivalent-electron (nl = n′l ′)
exchange contributions in the FR- and SR-Fock terms via
Eqs. (7) and (11), namely,

Yμ(nl; r) ≡
∑

n′l ′

l+l ′∑

L=|l−l ′|

AH
nl,n′l ′,LY L(n′l ′, n′l ′; r)

+ (α + β )
2l∑

L=0

AFR
nl,nl,LY L(nl, nl; r)

− β

2l∑

L=0

ASR
nl,nl,LZ

L
μ(nl, nl; r), (14)

where AH
nl,n′l ′,L are the needed expansion coefficients given

by Eq. (III.12) in the Supplemental Material [41]. In
Eq. (13), XFR(nl; r) and XSR,μ(nl; r) are the correspond-
ing nonequivalent-electron (nl �= n′l ′) exchange contributions
from the FR- and SR-Fock terms in Eqs. (7) and (11), respec-
tively:

XFR(nl; r) ≡
∑

n′l ′ �=nl

l+l ′∑

L=|l−l ′|

BFR
nl,n′l ′,LY L(nl, n′l ′; r)φn′l ′ (r) (15)
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and

XSR,μ(nl; r) ≡
∑

n′l ′ �=nl

l+l ′∑

L=|l−l ′|

BSR
nl,n′l ′,LZ

L
μ(nl, n′l ′; r)φn′l ′ (r).

(16)

Detailed expressions for the remaining FR- and SR-DFA ex-
change potentials in V̂ RSH

xc [i.e., V DFA
FR (ρ(r)) and V DFA

SR,μ(ρ(r))
in Eq. (9)] are provided in Sec. III B in the Supplemental
Material [41].

C. Pseudopotential generation

In this work, we construct RSH-type PSs according to the
norm-conserving PS method [43]. With the set of radial AE
functions {φnl (r)} for a preselected reference atomic configu-
ration in hand [obtained by finding the solutions to Eq. (13)],
this procedure starts with generating a corresponding set of
radial pseudofunctions {φ̃nl (r)} for the valence electrons. Each
φ̃nl (r) is constructed to be nodeless and slowly varying for
r < rc (a user-defined cutoff radius) with φ̃nl (r) = φnl (r) for
r � rc, subject to the constraint that the norm of φ̃nl (r) equals
that of φnl (r). The procedure to generate a valid and smooth
radial pseudofunction is nonunique and several protocols, e.g.,
those described in Refs. [44–47], are widely used today. In this
work, we use the optimized PS approach of Rappe et al. [44],
but all considerations outlined herein are applicable to other
choices as well.

Once φ̃nl (r) are constructed, the so-called unscreened
semilocal (SL) term in the PS, V SL

l (r), is obtained by in-
verting Eq. (13) and then subtracting the Hartree and XC
contributions corresponding to the valence electrons [48].
V SL

l (r) generated from functionals that include nonlocal Fock
exchange (e.g., global hybrids and RSH functionals) will ex-
hibit a “non-Coulombic tail” arising from this unscreening
procedure [49]; in this work, this issue is remedied by the
smoothing procedure suggested by Trail and Needs [48,50],
which (following the work of Engel et al. [49] for optimized
effective potentials) unscreens the PS in a way that slightly
sacrifices perfect norm conservation but restores the correct
asymptotic potential. To improve transferability, we also em-
ployed the designed-nonlocal (DNL) method [51–53], which
adds an auxiliary function, A(r) (the so-called local augmenta-
tion operator), to the Kleinman-Bylander (KB) separable form
[54] for the PS:

V PS(r) =V loc(r) + A(r)

+
∑

lm

|
Vl (r) ψ̃nlm(r)〉〈ψ̃nlm(r)
Vl (r)|

〈ψ̃nlm(r)|
Vl (r)|ψ̃nlm(r)〉
. (17)

In this expression, V loc(r) is the local component of the PS,
which was set equal to V SL

0 (r) throughout this work (i.e., the
default choice in OPIUM),


Vl (r) ≡ V SL
l (r) − V loc(r) − A(r), (18)

and ψ̃nlm(r) = [φ̃nl (r)/r]Ylm(θ, ϕ) is the pseudo wave func-
tion generated for the reference atomic configuration [i.e.,
the analog of the AE atomic wave function in Eq. (6)]. For
A(r) = 0, we note that Eq. (17) simplifies to the standard
KB form [54]. As mentioned above, A(r) can be optimized

to improve transferability (see below and Sec. IV A in the
Supplemental Material for more details [41]). We also note
that our work inherits both the strengths and weaknesses of the
KB approach augmented with the aforementioned smoothing
procedure. Specifically, the RSH-type PS introduced in this
work (like all KB PSs), can be susceptible to “ghost states,”
i.e., to the appearance of spurious one-node solutions below
the zero-node state [55,56]. Within the scope of this work, we
have employed standard tests for detecting such states [55,56]
and have not encountered particular difficulties with this issue.

To assess the transferability of V PS(r), an AE calculation
on a test (i.e., nonreference) atomic configuration is performed
by solving Eq. (13) to obtain {φtest

nl (r)} and {εtest
nl }. These

quantities are then compared to the corresponding radial
pseudofunctions and eigenvalues, φ̃test

nl (r) and ε̃ test
nl , for the test

atomic configuration. To enable this comparison, Vion(ρ(r))
in Eq. (5) is replaced with V PS(r) from Eq. (17) to yield the
following equation for ψ̃ test

nlm(r) and ε̃ test
nlm :

[
−

1

2
∇2 + V PS(r) + VH (̃ρ test(r)) + V̂xc

]
ψ̃ test

nlm(r)

= ε̃ test
nlmψ̃ test

nlm(r), (19)

where ρ̃ test(r) is the electron density formed from the valence
pseudo wave functions of the test configuration. Following
the SCA procedure for RSH functionals described above
in Sec. II B, we arrive at the needed RSH radial integro-
differential equation [i.e., the analog of Eq. (13)] for φ̃test

nl (r):

d2φ̃test
nl (r)

dr2
=

2

r

[
l (l + 1)

2r
− r[V loc(r) + A(r)] + Yμ(nl; r)

+ (1 − α − β )rV DFA
FR (r)

+ βrV DFA
SR,μ(r) + rV DFA

c (r)

]
φ̃test

nl (r)

+
2

r

[
(α + β )XFR(nl; r) − βXSR,μ(nl; r)

]

− 2

∫ ∞

0 dr φ̃nl (r)
Vl (r)φ̃test
nl (r)∫ ∞

0 dr φ̃nl (r)
Vl (r)φ̃nl (r)

Vl (r)φ̃nl (r)

+ ε̃ test
nl φ̃test

nl (r), (20)

where φ̃nl (r) corresponds to the radial pseudofunctions of
the reference atomic configuration. Here, we note that the
angular part of Eq. (17) is integrated out during the SCA pro-
cedure, and the Hartree and XC terms (i.e., Yμ, V DFA

FR , V DFA
SR,μ,

V DFA
c , XFR, and XSR,μ) are computed using the valence radial

pseudofunctions from the test configuration [51–53]. We also
note in passing that Eq. (20) for φ̃test

nl (r) = φ̃nl (r) (i.e., the
trivial case in which the test configuration is the reference
configuration) simplifies to an integro-differential equation for
φ̃nl (r) [via algebraic manipulations of Eq. (20), Eq. (18), and
the definition of V SL

l (r)]. In the standard case where φ̃test
nl (r) �=

φ̃nl (r), A(r) will influence the generated φ̃test
nl (r) and ε̃test

nl , and
can therefore be used to improve transferability [51–53].
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(bohr) (bohr)

FIG. 1. (a) Plot of the unscreened semilocal PS term V SL
l (l = 0, 1) versus r for the O atom generated with the PBE, PBE0, HSE, and

SRSH DFAs. The effective external potential, V eff (r) = −2Zeff/r ≡ −2(Z − Zcore )/r, and cutoff radius rc are also shown. For clarity, plots of

V SL

l (r) ≡ V SL,DFA
l (r) − V SL,PBE

l (r) for the PBE0, HSE, and SRSH DFAs are also depicted for (b) O (l = 0, 1) and (c) Ti4+ (l = 0, 1, 2).

D. Implementation

To enable AE and PS calculations involving RSH function-
als, the following changes were made to OPIUM (version 4.1)
[32]:

(1) To correctly account for the partial cancellation of
self Hartree and Fock exchange interactions, we derived and
implemented an extension to the SCA procedure for RSH
functionals (see Sec. II in the Supplemental Material [41] for
more details).

(2) Ángyán et al. [36] suggested a nonseparable analytical
expansion (NSAE) as well as a separable series expansion
(SSE) for FL(r, r′, μ), the radial expansion functions in
Eq. (10). However, Yang et al. [57] found that the accuracy of
the SSE deteriorates with increasing angular momentum and
distance (i.e., for large r>) due to numerical precision issues.
Hence, higher-precision (i.e., beyond customary double pre-
cision) data storage and evaluation would be needed to obtain
an accurate representation for FL(r, r′, μ) using the SSE. In
the same breath, the NSAE suffers from numerical stability
issues at short distances (i.e., for small r>) [36]. In this work,
we compensate for both of these shortcomings by using the
NSAE for large r> and the SSE for small r> (see Sec. II B
in the Supplemental Material [41] and Ref. [57] for more
details).

(3) For the V DFA
SR,μ(r) term in Eq. (13), we have implemented

the ωPBE exchange functional in OPIUM (see Refs. [39,40]
and Sec. III B in the Supplemental Material [41]). This en-
ables us to perform AE and PS calculations in OPIUM for
ωPBE-based RSH functionals (e.g., HSE and screened-RSH
(SRSH) [25] functionals).

(4) We have also enabled AE and PS calculations in OPIUM

for Yukawa-based variants of these RSH functionals (see
Refs. [58–61] and Sec. III B in the Supplemental Material
[41]).

(5) We have also extended the DNL method in OPIUM to
PS calculations involving Fock exchange [i.e., Eq. (20) for
Hartree-Fock (HF), global hybrids, and RSH functionals].

For simplicity, the formalism presented in this work is
nonrelativistic. While a relativistic treatment is outside the
scope of this work, all PS comparisons below are fair, as
nonrelativistic calculations are used for both consistent and
inconsistent DFA/PS combinations.

III. RESULTS AND DISCUSSION

A. PS construction

We generated PSs in OPIUM for N, O, Mg2+, Al+, P,
and Ti4+ with the PBE, PBE0, HSE, and SRSH [25,62]
DFAs (see Secs. IV A–IV B in the Supplemental Material
[41] for the parameters used during PS construction and
SRSH calculations). Note that all RSH results reported in
this work were generated using the error-function kernel in
Eq. (10). In Fig. 1(a), we plot V SL

l (r), the unscreened semilo-
cal PS term, for l = 0, 1 for the O atom generated with
these four DFAs. In general, the PSs corresponding to these
four DFAs are quite similar and display more pronounced
differences near the core (r � 0.5 bohr). For this reason, we
also plot 
V SL

l (r) ≡ V SL,DFA
l

(r) − V SL,PBE
l

(r) for the PBE0,
HSE, and SRSH DFAs for O (l = 0, 1) and Ti4+ (l = 0, 1, 2)
in Figs. 1(b) and 1(c), respectively. While there are general
discernible trends that hold for both O and Ti4+, we find that
the largest differences among these PSs are at r = 0 and range
from 1.3 Ry to 2.2 Ry for O and 2.8 Ry to 7.9 Ry for Ti4+. As
mentioned above, we employed the DNL approach to improve
the transferability of the PS generated in this work. This was
done by optimizing A(r) in Eqs. (17) and (18) to minimize the
(magnitudes of the) eigenvalue differences, 
ε ≡ εAE − εPS,
for a select set of orbitals and configurations of a given
atom. As an illustration of this approach, we optimized A(r)
for the 3s, 3p, 3d, 4s, and 4p orbitals across five different
configurations of Tip+, ranging from Ti4+ = [Ar] (reference
configuration) to Ti2+ = [Ar]3d2. In Fig. 2, we plot 
ε for
these orbitals and configurations calculated using the DNL
[optimized A(r)] and KB [A(r) = 0] approaches at the HSE
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FIG. 2. Eigenvalue differences, 
ε ≡ εAE − εPS, of the 3s, 3p,
3d , 4s, and 4p orbitals for different configurations of Tip+ (2 � p �

4; reference configuration: Ti4+ = [Ar]) calculated using the DNL
and standard KB approaches at the HSE level.

level. As expected, 
ε = 0 for any A(r) when considering the
orbitals used during PS construction (i.e., 3s, 3p, 3d) of the
reference Ti4+ configuration [see discussion below Eq. (20)].
We find that when compared to the standard KB approach, the
DNL optimization results in markedly improved 
ε3s, 
ε3p,
and 
ε3d values for the remaining four test configurations,
which is strongly indicative of improved PS transferability.
For the outer unoccupied 4s orbital, which was included in
the optimization of A(r) (but not during PS construction), we
also find a significant reduction in 
ε for all configurations.
In the reference configuration alone, 
ε4s decreases from
≈25 mRy (KB) to ≈2 mRy (DNL); this tenfold error reduc-
tion is another criterion for demonstrating PS transferability.
For the higher-lying 4p orbital, the DNL and KB approaches
yielded very similar results.

B. PS consistency errors

Naturally, the next question to ask concerns the degree
to which the differences among the PSs generated with the
PBE, PBE0, HSE, and SRSH DFAs affect computed solid-
state properties. To answer this question, we first computed
the band gaps of MgO, AlN, TiO2, and AlP with PBE,
PBE0, HSE, and SRSH using an in-house modified version
of Quantum ESPRESSO (version 6.6) [63] (see Sec. IV C in
the Supplemental Material [41] for computational details).
For each of the hybrid and RSH DFAs, we performed two
calculations to quantify the PS consistency errors (PSCEs) in
the band gap, i.e., the difference in a given solid-state property
when computed using an inconsistent DFA/PS combination
(e.g., a solid-state calculation employing PBE0 as the DFA
in conjunction with a PBE PS) versus a consistent DFA/PS
combination (e.g., a solid-state calculation employing PBE0

TABLE I. Band gaps (eV) of select materials computed using
consistent and inconsistent DFA/PS combinations. Absolute and
relative PS consistency errors (PSCEs; bold font) were computed as
band gap differences between inconsistent and consistent DFA/PS
combinations (i.e., PBE0/PBE versus PBE0/PBE0).

MgO AlN TiO2 AlP
DFA/PS (�→�) (�→�) (�→�) (�→X )

PBE/PBE 4.551 4.305 1.766 1.612

PBE0/PBE 6.941 6.349 3.974 2.969
PBE0/PBE0 7.033 6.396 3.981 2.965

−0.092 −0.046 −0.007 0.004
PSCEs

−1.3% −0.7% −0.2% 0.1%

HSE/PBE 6.226 5.650 3.237 2.313
HSE/HSE 6.314 5.694 3.243 2.303

−0.088 −0.044 −0.006 0.010
PSCEs

−1.4% −0.8% −0.2% 0.4%

SRSH/PBE 7.901 6.621 2.933 2.588
SRSH/SRSH 8.008 6.688 2.935 2.581

−0.107 −0.067 −0.003 0.007
PSCEs

−1.3% −1.0% −0.1% 0.3%

Expt. [64] 8.4 6.5 3.0 [65] 2.5

as the DFA in conjunction with a PBE0 PS). From the re-
sults shown in Table I, we find that the PSCEs grow with
the magnitude of the band gap. As such, larger band gap
materials (e.g., MgO and AlN) seem to be more sensitive to
PS consistency (with average PSCEs of −1.3% (or 0.1 eV)
and −0.8% (or 0.05 eV) for MgO and AlN, respectively),
while smaller band gap systems (e.g., TiO2 and AlP) are less
affected by PS consistency (with average PSCEs of −0.1%
and 0.3%, respectively). For MgO, AlN, and TiO2, the PSCEs
tend to be systematically negative (i.e., the use of consistent
DFA/PS combinations tends to yield larger band gaps), while
we see the opposite trend in AlP; hence, inconsistent DFA/PS
combinations can lead to uncontrolled error. We also note in
passing that the magnitudes of these errors do not seem to
depend strongly on the choice of hybrid or RSH DFA.

We also studied the PSCEs when computing the equilib-
rium lattice parameters a0, bulk moduli k0, and atomization
energies 
E of MgO and AlP, which are the simplest (cubic)
systems in Table I (see Sec. IV D in the Supplemental Material
[41] for computational details). From the results shown in Ta-
ble II, equilibrium lattice parameters are the least sensitive to
DFA choice and PS consistency. While the computed atomiza-
tion energies were not very sensitive to the DFA choice, this
property has an average PSCE of −0.6% (or 24 meV/atom)
for MgO and AlP [and a maximum PSCE of −0.7% (or 28
meV/atom) for AlP]. For the bulk moduli, we found an aver-
age PSCE in this response property of −0.5% (or 0.5 GPa) for
MgO and AlP [and a maximum PSCE of −0.8% (or 0.7 GPa)
for AlP]. We also note that the PSCEs when computing 
E

and k0 were negative in all cases considered here; that is, the
use of consistent DFA/PS combinations tends to yield larger
values for these solid-state properties.

In general, our results agree with the general consensus
that PSCEs tend to be smaller than the error due to the use

165142-6



RANGE-SEPARATED HYBRID FUNCTIONAL … PHYSICAL REVIEW B 108, 165142 (2023)

TABLE II. Equilibrium lattice parameters a0 (Å), bulk moduli k0

(GPa), and atomization energies 
E (eV/atom) of select materials
computed using consistent and inconsistent DFA/PS combinations.
Absolute and relative PS consistency errors (PSCEs; bold font)
were computed as property-specific differences between inconsis-
tent and consistent DFA/PS combinations (i.e., PBE0/PBE versus
PBE0/PBE0).

MgO AlP

DFA/PS a0 k0 
E a0 k0 
E

PBE/PBE 4.272 147.4 4.741 5.515 81.7 4.118

PBE0/PBE 4.221 164.5 4.703 5.484 89.7 4.099
PBE0/PBE0 4.220 164.9 4.730 5.477 90.4 4.127

0.001 −0.4 −0.027 0.007 −0.7 −0.028
PSCEs

0.0% −0.2% −0.6% 0.1% −0.8% −0.7%

HSE/PBE 4.222 163.9 4.718 5.485 89.2 4.106
HSE/HSE 4.222 164.2 4.744 5.479 89.8 4.131

0.000 −0.3 −0.026 0.006 −0.6 −0.024
PSCEs

0.0% −0.2% −0.5% 0.1% −0.7% −0.6%

SRSH/PBE 4.205 170.5 4.703 5.486 89.1 4.103
SRSH/SRSH 4.207 170.7 4.723 5.479 89.7 4.129

−0.002 −0.2 −0.020 0.006 −0.6 −0.025
PSCEs

0.0% −0.1% −0.4% 0.1% −0.7% −0.6%

Expt. [68] 4.19 165.0 5.20 5.45 86.0 4.32

of different DFAs [30,32,66]. While the PSCEs shown above
are non-negligible and can reach 1.4% (or 0.1 eV) in the
case of band gap calculations, this work further quantifies the
errors made when using hybrid or RSH DFAs in conjunction
with commonly available PBE-based PSs to compute a num-
ber of solid-state properties. Here, we emphasize that PSCEs
are completely avoidable errors, especially when performing
electronic structure calculations at the more demanding hybrid
and RSH levels, and this work remedies this long-standing
issue. We also note in passing that better agreement with the
experimental values in Tables I and II can be obtained us-
ing a multiprojector PS, e.g., the optimized norm-conserving
Vanderbilt (ONCV) pseudopotential method [67]; since this
matter is not directly related to PSCEs, it was not pursued any
further in this work.

IV. CONCLUSIONS AND FUTURE OUTLOOK

In this work, we presented a methodology for generating
RSH-type PSs and a respective implementation in OPIUM.
With the current implementation, any RSH functional can be
used for PS generation. As a proof of principle, we generated

nonlocal PSs for several atoms with GGA, hybrid, and RSH
functionals. We tested the importance of PS consistency when
computing a series of solid-state properties (e.g., band gaps,
equilibrium lattice parameters, bulk moduli, and atomization
energies) of MgO, AlN, TiO2, and AlP. In doing so, our
findings demonstrate that PSCEs are non-negligible (with an
average of 0.4%) and can be as large as 1.4% (or 0.1 eV) when
computing band gaps using inconsistent (but commonly avail-
able) PBE-based PSs. Equilibrium lattice parameters, bulk
moduli, and atomization energies are somewhat less affected,
with maximum PSCEs of 0.0% (0.002 Å), 0.8% (0.7 GPa),
and 0.7% (28 meV/atom), respectively. We also observed that
PSCEs tend to be systematic (i.e., most of the PSCE values
are negative). As such, this work removes the need to incur
these unnecessary errors when performing electronic structure
calculations at the more demanding hybrid and RSH levels.

For further improvement, we plan on employing the mul-
tiprojector method [67], which has been shown to improve
the results over standard KB design, for the hybrid and RSH
PSs. In addition, we believe that the importance of using a
consistent functional for the electronic structure calculation
and underlying PS will be even more pronounced in at least
two directions, i.e., response properties and heavier elements,
both of which are known to be more sensitive to the basis set
and PS [52,69]. In this regard, further improvements to hybrid
(and RSH) functional codes [70–80] as well as extensions of
the RSH and hybrid PS kernels to the projector augmented
wave method [81] and scalar/fully relativistic PS generation
schemes [82–84] will also be needed to explore these direc-
tions.
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