Calculating Molecular Polarizabilities using
Exact Frozen Density Embedding with

External Orthogonality

Gaohe Hu, Pengchong Liu, and Lasse Jensen*

Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building,
University Park, 16802, United States.

E-mail: jensen@chem.psu.edu

Abstract

Frozen Density Embedding(FDE) with freeze-and-thaw cycles is a formally exact
embedding scheme. In practice, this method is limited to systems with small density
overlaps when approximate non-additive kinetic energy functionals are used. It has
been shown that the use of approximate non-additive kinetic energy functionals can
be avoided when external orthogonality(EO) is enforced, and FDE can then generate
exact results even for strongly overlapping subsystems. In this work, we present an
implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calcula-
tion of polarizabilities in the Amsterdam Density Functional program (ADF) package.
EO is enforced using the level-shift projection operator method which ensures that or-
bitals between fragments are orthogonal. For pure-functionals we show that only the
symmetric EO contributions to the induced density matrix is needed. This leads to
a simplified implementation for the calculation of polarizability that can exactly re-
produce supermolecular TDDFT results. We further discuss the limitation of exact

FDECc-EQ in interpreting subsystem polarizabilities due to the non-unique partitioning
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of the total density. We show that this limitation is due to the fact that subsystem
polarizabilities partitioning is dependent on how the subsystems are initially polarized.
As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed
to the description of the occupied orbitals. In contrast, for excitations of subsystems
that are localized within one subsystem, we show that the excitation energies are stable
with respect to the orders of polarization. This observation shows that impacts from
the non-unique nature of exact FDE on subsystem properties can be minimized by
better fragmentation of the supermolecular systems if the property is localized. For
global properties like polarizability, this is not the case, and non-uniqueness remains

independent of the fragmentation used.

1 Introduction

Quantum embedding methods have seen great development over recent years.* ' In general,
quantum embedding methods partition the total(supermolecular) system into multiple sub-
systems such that a divide-and-conquer strategy can be applied. Usually, the subsystems of
interests are termed as the active subsystem and the remaining is known as the environment.
Quantum embedding allows different levels of approximations to be applied to different sub-
systems. This leads to a common strategy that active subsystem with higher level theory
is embedded into environment with lower level theory, which makes it affordable for calcu-
lations of large systems. Among embedding methods, quantum mechanical /molecular me-
chanics(QM/MM) is the most common one that has been applied to large biological systems
such as enzymes catalysis® and even RNA-protein complexes.” Other embedding methods

L0HZand Green’s function em-

aimed at higher accuracy including density matrix embedding
bedding,** % have been applied to descriptions of strongly correlated systems.

When Kohn-Sham density functional theory(KS-DFT) is applied to a quantum embed-
ding method, it is known as subsystem DFT.® Subsystem DFT directly partitions super-

molecular electron density where each subsystem is treated using KS-DFT. Instead of direct



calculation of the supermolecular system, subsystem DFT is intended to solve KS equations
with constrained electron density(KSCED) of each subsystem.'” Within the framework of
KS DFT, interactions between subsystems are described as an embedding potential term
in the KS equation of each subsystem. Frozen density embedding(FDE), as a variant of
subsystem DFT, solves the KSCED equation for the active subsystem while densities of the
remaining subsystems are kept frozen. Self-consistent solution of the supermolecular density
is achieved through freeze-and-thaw cycles where the roles of frozen and active subsystems
are interchanged iteratively. Originally, FDE was introduced as a DFT-in-DFT embedding
scheme where both the active subsystem and the environment are treated using DFT, but
the method have been extended to go beyond the accuracy of DFT or increase efficiency in
dealing with large systems. To go beyond DFT level accuracy, methods that embeds higher-
level theory such as correlated wavefunction®® ' methods or many-body GW methods** have
been developed. To gain efficiency in the environment density generation, one approach that
has been taken is to embed active subsystem into a polarizable environment. %3

FDE has also been generalized to excited state formulation within a linear response time-
dependent DFT(TDDFT) framework.“* Further work has been done to include frequency
response of the environment, thus the coupling between the response of the environment and
active subsystem is captured.?®=" Recently, there have been efforts to implement real-time

k#189 which can provide information about excitation

TDDFT within subsystem framewor
energy transfer and coupling between subsystems. Subsystem based methods(DFT-in-DFT
and WF-in-DFT) have been widely applied for the analysis of interactions between envi-
ronment and active subsystems.*?3% For example, the solvatochromic shifts of excitation
energies for molecules solvated by water molecules.®***® Another example is the application

S99 where the transition metal ions are

of subsystem methods to transition metal complexes
treated as the active subsystem while the ligands are chosen as environment. Absorption
of molecules on metal surfaces can also be modeled with subsystem based methods where

the absorbed species and neighboring metal are treated as the active subsystem and the



remaining is the environment, 4243

Subsystem DFT and FDE are formally equivalent to KS-DFT, however, in practice, the
non-additive potentials present in embedding potential requires approximations. For the
exchange-correlation(XC) part, the non-additive term is calculated in the same manner as
approximate density functional in supermolecular DFT, unless hybrid XC functionals are
used. Traditionally, kinetic energy density functionals are used to approximate the non-
additive kinetic potential(NAKP), however, due to its local nature, it has been shown to
only be applicable to systems with weak density overlaps.##4% Although accurate NAKP can

4047 o1 the inverse Kohn-Sham method,#®

be generated with potential reconstruction methods
one can, alternatively, directly bypass NAKP by enforcing external orthogonality(EQ)49%1
among subsystem orbitals. We have previously reported an implementation of EO for both
ground state FDE®! and excited state FDE®# by adopting a simple level-shift projection oper-
ator.” By doing so, the kinetic energy of supermolecular system can be directly decomposed
into sum of subsystem kinetic energies that are calculated with subsystem orbitals with EO.
As demonstrated in previous work on ground state FDE,*! when EO and supermolecular ba-
sis sets are combined, supermolecular KS-DFT results can be exactly reproduced. FDE with
EO (FDE-EO) have also been extended to excited state properties using time-dependent
density functional theory (TDDFT).?#%4%5 Dye to a non-symmetric contribution from the
EO response kernel, Neugebauer and coworkers have shown that a non-hermitian solver is
necessary for obtained exact excitation energies and oscillator strengths.”® Neugebauer and
coworkers have also extended the approach to other response properties based on damped
response theory.=?

In this work, we present an implementation of coupled FDE TDDFT with (FDEc-EO)
for the calculation of exact molecular polarizabilities within the Amsterdam Density Func-
tional (ADF) program package.”®= EQ is enforced using the level-shift projection operator
method of Manby and co-workers.?#*%0U Similar to ground state FDE, the approach starts

with monomer subsystem KS orbitals and uses freeze-and-thaw cycles to generate converged



response properties. The method is benchmarked against supermolecular TDDFT as well
as finite field differentiation of FDE-EO and is shown to exactly reproduce the KS-TDDFT
results. Furthermore, we will discuss the non-uniqueness of the partitioning and show how

this affects subsystem response properties.

2 Theory

Analogous to FDE for ground state where the density is partitioned into subsystem densi-
ties, in FDE TDDFT the electron density response is decomposed into subsystem contribu-

tions.?%2 For subsystem I, we have

dpr(r,w) = /XI (r,r',w) oS (v, w) dr’ (1)

that shows the first-order change of the electron density as the response to an effective
perturbation potential Jv$T at frequency w, with subsystem response function y;(r,r’,w).
The effective potential can be further decomposed into the external potential and the

induced electronic potential from the density response of all subsystems as<®*®

ovST (1) = v (1)) 4+ svd! () = 6o () + Z / f " w)dps (x",w)de” (2)
J

with the response kernel given by

1 0% Exclp] 0*T[p] 0*T[p1]
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(3)

And the terms on the right-hand side correspond to the Coulomb potential, the XC potential
and the last two terms constitute NAKP contributions. In the above equations, the adiabatic
approximation has been adopted which assumes that f,. is frequency-independent and that

a local density approximation for the XC functional kernel is used.



The density response can be expressed in terms of orbital products as®

Spr(r,w) = > ¥ [6Pria), (w) + 5 Paiy, (w)] 04 ()] (r) (4)

I id,a€l

where we have taken the convention of using a,b,... for virtual orbitals and ¢, 7,... for
occupied orbitals. Occupied-virtual and virtual-occupied orbital transitions are distinguished
explicitly with expansion coefficients dF;q), and 0Fy;),. Although only intra-subsystem
transitions are explicitly expressed here, inter-subsystem transitions are included implicitly
since the same virtual orbital space is shared by all subsystems when supermolecular basis

sets are used.

From [Equation 2| the electronic potential can be expressed in terms of ) P by introducing

a coupling matrix K with elements K;q), (jv), "%

Kiapom, = [ de [ ol ol (') o] ) ¢f () 5)
such that

51}?’1‘1)1 - Z Z Kiay; (8,0 Pv), (W) + Kia);, ), 0 Pog) , (W) (6)

jbed J
where sum over J runs over all subsystems. When J = I, it corresponds to intra-subsystem
coupling and when J # [ it corresponds to inter-subsystem coupling. The response of density

matrix of subsystem I is then

0 Pia); () = Xfiay, | 005, + D D Ktiayn, (i, 0P, (w) + K(ia)z,(bj)ﬁP(bj),(W)]

jbeJ J

(7)

= Xiayy |0V, 2D Kiayr.(0),0 Py, ()
J jb

where the symmetry of the density matrix can be used such that only occ-virt(or virt-occ)
elements are needed. Without EO and NAKP contributions, when real orbitals and pure

XC density functionals are used, the coupling matrix is of a symmetric structure such that



Kia)y,(6); = K(ia)1,(jb), Which leads to Kia),,(jb), 0 Pijv), (W) = Kia)r, ), 0 Pvg), (w). This form
of FDE TDDFT is termed as coupled FDE (FDEc) since coupling between subsystems is

included. 2822

To eliminate the requirement for approximate NAKP, an EO term can be included. 242452
As remarked in previous work on EO contributions to FDE TDDFT, for perfectly orthog-
onalized subsystem orbitals, the EO potential should vanish as overlap matrices between
subsystems vanish.”? However, in practice, the EO potential serves as a first order correction

to the coupled response since subsystem orbitals are not perfectly orthogonalized.®2

The EO contributions to K(iq),,jb), and Ka),, 1)), are

EO o I1,J oJ,1

K(ia)lz(jb)J - 'usij Sba (8)
EO - I,J oJ1

K(ia)lz(bj)J - 'uSib Sja (9)

where SZ-I]-’J represents coupling matrix element between i orbital of subsystem I and j orbital
of subsystem J, and p is a level-shift parameter. In our previous implementation of EO
contributions to FDE TDDFT, we assumed a symmetric structure of the coupling matrix
with EO contributions,”® which is in fact an approximation. As shown by Neugenbauer and
co-workers®” the correct treatment of the EO contribution leads to a set of non-Hermitian
response equations that needs to be solved. This is similar to the case for functionals that
include some fraction of Hartree-Fock exchange. However, since supermolecular basis sets
are used, all subsystems share the same virtual orbital space, thus there is no overlap between
any subsystem occupied orbitals and virtual orbitals, no matter if they belong to the same

subsystem or not such that SiII;J = S]‘-]jf = 0, which ensures that [Equation 9| vanishes.

This asymmetric feature of the EO coupling matrix again makes it possible to include



EQO in the coupling matrix of as an additional term:

0Plia); = X(ia); [527?;‘5, +2 Ky, 605 Pn),
Jbel

(10)

1,0 oI
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jbed

as long as only pure exchange correlation functionals are used. In a compact matrix form
we have

5P = x§ [ovi" + 2KST 0P + 2KST6P s + 5v§3(?,)} (11)

1,J SJ,I

occ,occ™ virvir

where 5V?8) = uS OP; and the symmetric structure of the conventional cou-
pling matrix is preserved. In this way, we have correctly included the EO contribution to
inter-subsystem coupling and both intra- and inter-subsystem couplings can all be described
correctly. This form of FDE TDDFT with EO is thus termed as FDEc-EO.

As for the initial guess, an approximate version of FDE TDDFT can be performed. By
neglecting all inter-subsystem coupling, uncoupled FDE TDDFT(FDEu) considers only K;;
such that

5P] == X? [5V?Xt + ZKIICSP]} (12)

After convergence is reached for [Equation 11, supermolecular polarizability can be ex-

pressed as a summation of subsystem polarizabilities

Oé)\,/ = Z Of{\u
I
=D D 2H}w,0 0,
I (ia)r

where \,v = z,y,2 and H(), is the elements of the dipole matrix for subsystem /. For
completeness the non-Hermitian TDDFT solver® for calculating excitation energies was

also implemented into the ADF program.



3 Methods

All calculations were carried out with a local modified version of ADF2021,°%% and a Vosko-
Wilk-Nair (VWN)% form of local density approximation (LDA) XC potential were used. The
triple-¢ with one polarization function (TZP)®* basis set from ADF basis set library was used
for all systems. Geometry optimizations of all monomers and decanal were also carried out
under the same basis set and XC functional. Thomas-Fermi kinetic energy density functional

5

approximation® was used to evaluate NAKP for conventional FDE calculations.

For all external orthogonality calculation, the subsystem orbitals are orthogonalized with

k2192 Jevel-shift parameter of 10° £,

a level-shift parameter p. As suggested in previous wor
is large enough to enforce external orthogonality among fragment orbitals, while > 107 E,
may lead to numerical instabilities.”® Thus, throughout this work, p = 10° Ej is used
for all FDE with EO calculations. Implementation of FDEc-EO is based on subresponse
module of ADF.?? To demonstrate the exactness of FDEc-EO calculation of polarizability,
an accurate density fitting is necessary, therefore, ZImFit® scheme for density fitting has
also been implemented for subresponse module of ADF. Static supermolecular polarizabilities
were also calculated with both TDDFT and finite differentiation of ground dipole moments
as benchmark. For the finite differentiation calculation of polarizabilities, derivatives of
molecular dipole moments based on ground state FDE EO with respect to external electric
fields are calculated with two-point differentiation.

A typical workflow for FDEc-EO polarizability calculation is: 1) Ground state calculation
of each subsystem with supermolecular basis sets; 2) FDE freeze-and-thaw cycles on one
subsystem followed by a FDEu response calculation ; 3) One FDEu response calculation on

all the other subsystems; 4) Use results from step 2 and 3 as input for a FDEc response

calculation.



4 Results and Discussion

4.1 Polarizability with FDEc-EO

To demonstrate that FDEc-EO can exactly reproduce the supermolecular polarizability, the
static polarizabilities of benzene dimer systems are calculated. The dimer systems are set up
such that two benzene molecules are placed face to face and each molecule corresponds to
one subsystem. They are separated along z-axis from 3.18 A to 5.28 A and polarizabilities
of each separation distance are calculated. Other smaller systems, including helium dimer,
FHF™ and CsHg are also benchmarked in the same manner and shown in the Supporting
Information.

In [Figure 1| polarizabilities and absolute errors of the Benzene dimer systems with respect
to separation distances are shown. Static polarizability of these systems is obtained in four
different ways, namely supermolecular linear response (KS), finite difference of molecular
dipole moments (FD), FDEc with EO (FDEc-EO) and FDEc without EO (FDEc-noEO).
All of FD, FDEc-EO and FDEc-noEO are based on the same converged supermolecular
density from FDE freeze-and-thaw cycles. Both FDEc-EO and FDEc-noEO are based on
the same FDEu results, the only difference is that in FDEc-noEO, the EO term is excluded
from the response kernel, thus the EO contribution to the induced potential is removed.

As shown in all three methods are benchmarked against KS results and the
absolute error is plotted. In general, both FD and FDEc-EO results agree very well with KS
results, while FDEc-noEO tends to only be accurate as the monomers are well separated.

Since FD calculation takes the derivatives with respect to the external electric field and
it is based on exact FDE ground state results, all errors of FD results are introduced by nu-
merical errors from finite differentiation. Since symmetry is not enforced in the calculations,
small differences between o, and a,, components are found. In principle, tighter numerical
settings should eliminate this difference, however, it was not pursued here. As shown in

[Figure 1] at all separation distances, FDEc-EO results are significantly more accurate than
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Figure 1: Polarizability and absolute errors with respect to separation distances between
two Benzene molecules along z-axis. The equilibrium separation distance is marked with red
dashed line.

those of FD. To be specific, the errors of a,, and «,, are oscillating around 107°, while
errors of a,, are around 10~* which is slightly larger than those of the other two compo-
nents. Because the dimer systems are separated along z-axis, overlaps between subsystems
are strongest along z direction comparing to x and y directions. Since a level-shift factor of
10% E), is used, numerical errors of overlap matrix will also be shifted significantly. Therefore,
deviations from KS results are largest for «,, component due to errors from overlaps between
subsystems. As demonstrated recently by Neugebauer and coworkers,53 g combination of
supermolecular basis sets and EO makes sure the same virtual orbital space is shared by both
subsystems which is necessary for exact description for inter-subsystem charger-transfer exci-
tations. Meanwhile, enforcing EO between subsystems also avoids the failure of approximate
NAKE in strongly-overlapping systems such as covalent bonded subsystems(see Supporting
Information).

In addition to the benzene dimer systems, helium dimer systems separated by different

11



distances are shown in the Supporting Information, of which KS supermolecular polariz-
abilities at all distances can be exactly reproduced with the same numerical settings shown
in previous section. Other molecular systems, namely water dimer, FHF~ and CyHg, are
also shown to test the ability of FDEc-EO in describing interactions of different strength
between subsystems, which covers the cases from weak hydrogen bond to strong hydrogen
bond and finally covalent bond. For all interactions of different strength, FDEc-EO can
exactly reproduce KS polarizabilities.

Besides results of FDEc-EO, FDEc-noEO results are also shown in to highlight
the contribution of EO term to supermolecular response. At all distances, FDEc-noEO
results exhibits very large errors comparing to those from FDEc-EO. It is only at the long-
distance limit that the accuracy of FDEc-noEO becomes comparable to FD. Similar to those
results from FDEc-EO, the errors are always larger for o, than both a,, and «,,. For a..,
the error decreases as the overlap between the two subsystems decreases. Note that even
at equilibrium distance, which represents moderate overlaps between subsystems, deviation
of a,, is also as large as 0.68 a.u comparing to the supermolecular TDDFT results. This
indicates that even with EO orbitals, the contribution of EO term in response kernel is still
important and cannot be neglected.

In contrast to our previous work on FDEc-EQ,"? the current implementation includes a
more accurate density fitting method which in addition to accounting for the full symmetry
of the EO contribution is necessary to reproduce the supermolecular response properties.
Based on discussions above, we can conclude that the current implementation of FDEc-EO

can exactly reproduce supermolecular polarizabilities.

4.2 Non-uniqueness in subsystem polarization

One of the main advantageous of the FDE approach is the ability of calculating subsystem
polarizabilities. As shown above the sum of subsystem polarizabilities can exactly repro-

duce the total supermolecular response. However, in the following we will show that the
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Figure 2: Water dimer system, each monomer corresponds to one subsystem

interpretation of subsystem polarizabilities is limited due to problems with non-unique na-
ture of exact FDE method.?*"% In our case, the problem of non-uniqueness emerges as the
partitioning of subsystem polarizabilities is dependent on the order of polarization. While
the subsystem polarizabilities obviously should depend on the nature of the fragments, i.e.

which nuclei and how many electrons assigned to each fragment, it should ideally not depend

on how that fragment has been polarized during the freeze-thaw cycles.

Table 1: Subsystem polarizabilities calculated with both FDEc-EO and FDE-TF with dif-

ferent orders of polarization.

Polarizability/ a.u.

Method | Initial Fragment fragment A fragment B
Ay Qlyy | Ay Qlyy Qyz
A 10.44 | 7.70 | 8.67 | 10.74 | 8.76 | 8.08
FDEe-EO B 9.62 | 8.83 | 8.14 | 11.56 | 7.62 | 8.61
A 10.34 | 8.07 | 8.66 | 10.02 | 8.43 | 8.04
FDE-TF B 10.34 | 8.06 | 8.66 | 10.02 | 8.43 | 8.04

To demonstrate the polarization dependence and the possible origin of this dependence,
a water dimer system has been studied as shown in [Figure 2|
chosen because the overlap between the two monomers is weak enough so that Thomas-

Fermi kinetic energy functional can give qualitatively correct results.”! Since exact FDE

13
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would give non-unique results, while approximate FDE can give unique results, %8 polariz-
abilities and electron density calculated with FDE-TF are thus used for comparison. First,
both supermolecular and subsystem polarizabilities calculated with exact FDE(FDEc-EO)
and approximate FDE with Thomas-Fermi kinetic energy density functional(FDE-TF) in
different orders of polarization are shown in [Table 1| We then address the origin of the non-

uniqueness problem by analyzing the polarized electron density in freeze-and-thaw cycles as

shown in

(a) (b)

Figure 3: Electron density of each subsystem calculated with (a) FDE-EO and (b) FDE-TF.
The arrows start from the initial fragment densities and point to the sets of electron densities
of each subsystem.

In freeze-and-thaw cycles for ground state FDE-EO calculations, there is always one sub-
system set as the initial subsystem to be polarized by the other initial active fragment. In
our calculations, we have observed that for those two water monomers, the subsystem polar-
izabilities results are dependent on which monomer is chosen as the initial active fragment.
In these cases two sets of subsystem polarizabilities partitioning are generated for the two or-
ders of polarization. In[Table IJsubsystem polarizabilities corresponding to different methods
and different orders of polarization are shown. For FDE-TF, a Thomas-Fermi kinetic energy
functional is used for NAKE, and the polarizabilities are calculated as a finite differentia-
tion of molecular dipole moment with respect to an external electric field. For FDEc-EQO,
a regular FDEc-EO process is taken. Initial fragment refers to the fragment which is al-
lowed to relax in the first freeze-and-thaw cycle while the other is frozen as the environment.

Thus with different initial fragments, we have adopted different orders of polarization of the
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subsystems.

As can be found from [Table ] for results calculated with FDE-TF, all components of
polarizabilities of each subsystem stay almost invariant with respect to the different orders of
polarization. While for FDEc-EQO, supermolecular polarizability can be exactly reproduced
with either fragment as initial fragment, but there is significant difference between subsystem
polarizabilities. For instance, difference in «,, of FDEc-EO can be around 0.8 a.u.( 8%),
while difference in «a,, of FDE-TF is only around 0.001 a.u.( 0.01%). This indicates that
when different orders of polarization are used, different subsystem polarizability partitioning
is also expected in exact FDE while approximate FDE is not affected and can be regarded
as invariant in practice. Such difference in subsystem polarizability partitioning hinders
our further understanding of interactions between subsystems. As shown here, subsystem
polarizabilities for both subsystems are determined by the orders of polarization and neither
can be regarded as the correct one. Applications of exact FDE method are consequently
limited because direct interpretation on subsystem polarizabilities would be impossible.

As has been pointed out in previous work, FDE is known to be formally non-unique.”
The non-uniqueness is a consequence of lack of constraints on subsystem densities, as long
as subsystem densities can sum up to supermolecular density, any sets of subsystem densi-
ties that are v—representable can be solutions to the KSCED equations. Non-uniqueness of
subsystem densities can thus lead to other non-unique subsystem properties such as dipole
moment and consequently subsystem polarizability. A variety of solutions to ensure unique-
ness of embedding potential have also been proposed.®® 3 Although subtle differences are
present, they share the idea that uniqueness is achieved by adding extra constraints to gen-
erate embedding potentials shared across all subsystems. By enforcing EO, we only remove
the requirements for NAKE in embedding potential, and no extra constraints on embedding
potential are applied. As for approximate FDE, since the errors introduced by approxi-
mate NAKE are minimized during freeze-and-thaw cycles, unique subsystem densities can

be generated.“"
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To understand why orders of polarization matter in exact FDE, we went back to analyze
how the electron density gets polarized in the ground state. In [Figure 3 electron densities
of unpolarized subsystems and polarized in the first iteration of freeze-and-thaw cycles are
shown, respectively. Although electron densities do get relaxed in the following freeze-and-
thaw cycles, the majority of the electronic polarization is determined in the first iteration.

For subsystem densities calculated with FDE-TF, no significant difference is found for
both orders of polarization. This agrees with the fact that approximate NAKE would gen-
erate unique solutions. As for subsystem densities calculated with FDE-EO, two sets of
subsystem densities are generated when each subsystem is chosen as the initial one. To be
more specific, when one fragment is allowed to relax in the first iteration, subsystem electron
density gets polarized into the frozen environment. To enforce EO, supermolecular basis
sets are used for FDE-EO calculations which accounts for electron delocalization into the
inactive fragments. In the following thaw process of the frozen fragment in the first cycle,
no subsystem electron density gets polarized into the environment. And such difference in
the subsystem electron densities remain in the following cycles which results in two sets of
subsystem densities. Note that electronic polarization from the active fragment into the in-
active fragment is not the same as charge spill-out in approximate FDE which is attributed
to lack of repulsion from approximate NAKE.

To conclude, exact FDE with EO does not change the non-unique nature of FDE method
and it leads to limited ability to interpret subsystem properties. In our implementation of
FDEc-EQO, direct decomposition of the supermolecular polarizability into subsystem polariz-
abilities is thus also non-unique, which results in different sets of subsystem polarizabilities

and therefore one has to be careful to assign physical significance.
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Figure 4: (a) Two fragmentation schemes for decanal; (b) HOMO calculated with super-
molecular DFT; (¢) HOMOs calculated with FDE-EO and the label indicates the initial
active fragments.

Table 2: FDEu excitation energies of decanal that corresponds to the HOMO to LUMO
transition.

Initial Fragment | Excitation energy/ eV
A 4.19
B 4.29
A’ 4.18
B’ 4.20
Supermolecular 4.16
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4.3 Fragmentation of Supermolecular System and Localized Exci-

tation

Although different orders of polarization in exact FDE freeze-and-thaw calculations may
results in different partitioning of supermolecular properties, we expect that properties that
are localized within only one subsystem should stay robust with respect to different polar-
ization orders. An example of this would be excitation energies localized to one fragment.
Previous work have shown that the excitation energies depends on the specific approach used
to ensure EO.™ Here we will examine the dependence on the polarization order. We show an
example of decanal molecule shown in [Figure 4|(a) where there is a supermolecular HOMO
localized on the aldehyde group and neighboring carbon atoms as shown in [Figure 4|(b).

To illustrate how localization of the orbitals affect the results, two different fragmentation
are shown in (a). Those two fragmentation schemes, denoted as AB and A'B’, differs
in how many neighboring carbon atoms are included together with aldehyde group in one
fragment. And this leads to different portions of supermolecular HOMO localized in one frag-
ment. With different fragments as initial fragments, due to the non-unique problem stated
in previous section, different excitation energies are expected. In we have shown the
excitation energies calculated with FDEu for both orders of polarization and both fragmen-
tation schemes. As a reference, supermolecular excitation energy for the same HOMO to
LUMO transition is also shown. Since FDEu cannot fully capture inter-subsystem coupling,
the excitation energy cannot exactly reproduce the supermolecular results. However, we can
still observe significant difference when different orders of polarization is applied. In AB
fragmentation, the difference is around 0.1 eV, while in A’B’ the difference is 0.02 €V. Such
improvement on stability of excitation energy can be justified by the HOMO of the super-
molecular system. As can be found in (c), where the HOMOs of the subsystems to
the aldehyde group ends are plotted. Note that since exact FDE can reproduce supermolec-
ular virtual orbitals no matter how the fragmentations are performed, only difference is the

quality of the occupied orbitals. As stated before, the supermolecular HOMO from KS DFT
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is localized within the aldehyde and closest carbon atoms, thus A'B’ fragmentation which
could describe the HOMO more precisely gives more stable results. This idea is supported by
data from [Figure 4(c). In A'B’, the difference between the HOMO generated in both orders
of polarization agree with each other better than those from AB. This is also consistent with
previous work demonstrating that the best results were obtained for embedding in which the
subsystem HOMO best resembled that of the supermolecular system.™ It is worth noticing
that although only the carbon atom closest to aldehyde group is included in fragment A,
part of the HOMO is delocalized on the carbon atom next to it. Such delocalization of
occupied orbital, again, is a result of supermolecular basis sets. As for A'B’, both orders
of polarization give similar HOMO, which indicates that the excitation localized within the
fragment is better described.

We also compared subsystem polarizabilities with different orders of polarization. Under
both fragmentation schemes, the partitioning of the subsystem polarizability is depending
on the order of polarization, while the supermolecular polarizability always remain robust.
As shown in [Table 3| deviations from the supermolecular results remain around 1% and is
independent on the order of polarization. In contrast, the two set of subsystem polarizabil-
ities are significantly different. When comparing results from AB and A'B’ fragmentation,
it can be found that the relative magnitudes of subsystem polarizabilities is reversed, while
the difference between subsystem polarizabilities of the two orders of polarization is similar.
Thus, extending the fragments does not mitigate the non-uniqueness of the subsystem po-
larizabilities. One probable explanation of such difference is that unlike excitation between
localized orbitals, the polarizability involves numerous transitions from occupied orbitals

that are delocalized over multiple subsystems to virtual orbitals.
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Table 3: Subsystem polarizabilities of decanal calculated for two orders of polarization of
two fragmentation schemes.

Initial Fragment Polarizability/ a.u.

Subsystem A Subsystem B
Ay Ay Qyz Ay Ay Az
A 48.04 | 24.60 | 33.01 | 116.51 | 90.05 | 82.69
B 32.14 | 21.87 | 31.47 | 132.41 | 92.78 | 84.24
Subsystem A’ Subsystem B’
Qg o & Qg Qiyyyy &
A’ 63.25 | 36.56 | 43.04 | 101.29 | 78.10 | 72.66
B’ 47.60 | 33.38 | 41.63 | 116.96 | 81.28 | 74.07
Supermolecular polarizability 7 gifg 5 lley.% 5 1105270

5 Conclusions

In this work, we present an implementation of FDEc-EO for the calculation of exact po-
larizabilities in the Amsterdam Density Functional program (ADF) package. Comparing to
supermolecular TDDFT, there is no more approximation introduced(although both require
approximate XC functionals), such implementation is thus exact comparing to supermolec-
ular TDDFT. To avoid using a NAKP, we adapt EO through a level-shift projection oper-
ator method, which ensures that orbitals between fragments are orthogonal. We show that
for pure-functionals only the symmetric EO contributions to the induced density matrix
is needed which this leads to a simplified implementation for calculation of polarizability
that can exactly reproduce supermolecular TDDFT results. To test the accuracy of this
method, we have shown example systems with different strengths of inter-subsystem cou-
plings. Comparing to supermolecular TDDF'T, the supermolecular polarizabilities obtained
with our implementation of FDEc-EO is exact. We further investigate the non-unique sub-
system polarizability partitioning which is a result of differences in electronic polarization
process in freeze-and-thaw cycles and roots in the non-unique nature of exact FDE. The

subsystem polarizability partitioning limits further applications of such method on analysis
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of subsystem interactions. While the non-uniqueness problem could not be solved within
current framework, we also test the applicability of FDEu on localized properties. We show
that for excitations involving localized orbitals, FDEu is invariant with respect to different
orders of polarization while properties involving delocalized transitions such as subsystem
polarizability can not be correctly described. In general, this formulation could be used as

a benchmark for further development in approximate FDE methods.
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