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Abstract

Frozen Density Embedding(FDE) with freeze-and-thaw cycles is a formally exact

embedding scheme. In practice, this method is limited to systems with small density

overlaps when approximate non-additive kinetic energy functionals are used. It has

been shown that the use of approximate non-additive kinetic energy functionals can

be avoided when external orthogonality(EO) is enforced, and FDE can then generate

exact results even for strongly overlapping subsystems. In this work, we present an

implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calcula-

tion of polarizabilities in the Amsterdam Density Functional program (ADF) package.

EO is enforced using the level-shift projection operator method which ensures that or-

bitals between fragments are orthogonal. For pure-functionals we show that only the

symmetric EO contributions to the induced density matrix is needed. This leads to

a simplified implementation for the calculation of polarizability that can exactly re-

produce supermolecular TDDFT results. We further discuss the limitation of exact

FDEc-EO in interpreting subsystem polarizabilities due to the non-unique partitioning
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of the total density. We show that this limitation is due to the fact that subsystem

polarizabilities partitioning is dependent on how the subsystems are initially polarized.

As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed

to the description of the occupied orbitals. In contrast, for excitations of subsystems

that are localized within one subsystem, we show that the excitation energies are stable

with respect to the orders of polarization. This observation shows that impacts from

the non-unique nature of exact FDE on subsystem properties can be minimized by

better fragmentation of the supermolecular systems if the property is localized. For

global properties like polarizability, this is not the case, and non-uniqueness remains

independent of the fragmentation used.

1 Introduction

Quantum embedding methods have seen great development over recent years.1–7 In general,

quantum embedding methods partition the total(supermolecular) system into multiple sub-

systems such that a divide-and-conquer strategy can be applied. Usually, the subsystems of

interests are termed as the active subsystem and the remaining is known as the environment.

Quantum embedding allows different levels of approximations to be applied to different sub-

systems. This leads to a common strategy that active subsystem with higher level theory

is embedded into environment with lower level theory, which makes it affordable for calcu-

lations of large systems. Among embedding methods, quantum mechanical/molecular me-

chanics(QM/MM) is the most common one that has been applied to large biological systems

such as enzymes catalysis8 and even RNA-protein complexes.9 Other embedding methods

aimed at higher accuracy including density matrix embedding10–12and Green’s function em-

bedding,13–16 have been applied to descriptions of strongly correlated systems.

When Kohn-Sham density functional theory(KS-DFT) is applied to a quantum embed-

ding method, it is known as subsystem DFT.6 Subsystem DFT directly partitions super-

molecular electron density where each subsystem is treated using KS-DFT. Instead of direct
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calculation of the supermolecular system, subsystem DFT is intended to solve KS equations

with constrained electron density(KSCED) of each subsystem.17 Within the framework of

KS DFT, interactions between subsystems are described as an embedding potential term

in the KS equation of each subsystem. Frozen density embedding(FDE), as a variant of

subsystem DFT, solves the KSCED equation for the active subsystem while densities of the

remaining subsystems are kept frozen. Self-consistent solution of the supermolecular density

is achieved through freeze-and-thaw cycles where the roles of frozen and active subsystems

are interchanged iteratively. Originally, FDE was introduced as a DFT-in-DFT embedding

scheme where both the active subsystem and the environment are treated using DFT,17 but

the method have been extended to go beyond the accuracy of DFT or increase efficiency in

dealing with large systems. To go beyond DFT level accuracy, methods that embeds higher-

level theory such as correlated wavefunction18–21 methods or many-body GW methods22 have

been developed. To gain efficiency in the environment density generation, one approach that

has been taken is to embed active subsystem into a polarizable environment.23–25

FDE has also been generalized to excited state formulation within a linear response time-

dependent DFT(TDDFT) framework.26,27 Further work has been done to include frequency

response of the environment, thus the coupling between the response of the environment and

active subsystem is captured.28–30 Recently, there have been efforts to implement real-time

TDDFT within subsystem framework31–35 which can provide information about excitation

energy transfer and coupling between subsystems. Subsystem based methods(DFT-in-DFT

and WF-in-DFT) have been widely applied for the analysis of interactions between envi-

ronment and active subsystems.27,36 For example, the solvatochromic shifts of excitation

energies for molecules solvated by water molecules.37,38 Another example is the application

of subsystem methods to transition metal complexes39–41 where the transition metal ions are

treated as the active subsystem while the ligands are chosen as environment. Absorption

of molecules on metal surfaces can also be modeled with subsystem based methods where

the absorbed species and neighboring metal are treated as the active subsystem and the
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remaining is the environment.42,43

Subsystem DFT and FDE are formally equivalent to KS-DFT, however, in practice, the

non-additive potentials present in embedding potential requires approximations. For the

exchange-correlation(XC) part, the non-additive term is calculated in the same manner as

approximate density functional in supermolecular DFT, unless hybrid XC functionals are

used. Traditionally, kinetic energy density functionals are used to approximate the non-

additive kinetic potential(NAKP), however, due to its local nature, it has been shown to

only be applicable to systems with weak density overlaps.44,45 Although accurate NAKP can

be generated with potential reconstruction methods46,47 or the inverse Kohn-Sham method,48

one can, alternatively, directly bypass NAKP by enforcing external orthogonality(EO)49–51

among subsystem orbitals. We have previously reported an implementation of EO for both

ground state FDE51 and excited state FDE52 by adopting a simple level-shift projection oper-

ator.53 By doing so, the kinetic energy of supermolecular system can be directly decomposed

into sum of subsystem kinetic energies that are calculated with subsystem orbitals with EO.

As demonstrated in previous work on ground state FDE,51 when EO and supermolecular ba-

sis sets are combined, supermolecular KS-DFT results can be exactly reproduced. FDE with

EO (FDE-EO) have also been extended to excited state properties using time-dependent

density functional theory (TDDFT).52,54,55 Due to a non-symmetric contribution from the

EO response kernel, Neugebauer and coworkers have shown that a non-hermitian solver is

necessary for obtained exact excitation energies and oscillator strengths.54 Neugebauer and

coworkers have also extended the approach to other response properties based on damped

response theory.56

In this work, we present an implementation of coupled FDE TDDFT with (FDEc-EO)

for the calculation of exact molecular polarizabilities within the Amsterdam Density Func-

tional (ADF) program package.57,58 EO is enforced using the level-shift projection operator

method of Manby and co-workers.53,59,60 Similar to ground state FDE, the approach starts

with monomer subsystem KS orbitals and uses freeze-and-thaw cycles to generate converged
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response properties. The method is benchmarked against supermolecular TDDFT as well

as finite field differentiation of FDE-EO and is shown to exactly reproduce the KS-TDDFT

results. Furthermore, we will discuss the non-uniqueness of the partitioning and show how

this affects subsystem response properties.

2 Theory

Analogous to FDE for ground state where the density is partitioned into subsystem densi-

ties, in FDE TDDFT the electron density response is decomposed into subsystem contribu-

tions.26,28 For subsystem I, we have

δρI(r, ω) =

∫︂
χI (r, r

′, ω) δveffI (r′, ω) dr′ (1)

that shows the first-order change of the electron density as the response to an effective

perturbation potential δveffI at frequency ω, with subsystem response function χI(r, r
′, ω).

The effective potential can be further decomposed into the external potential and the

induced electronic potential from the density response of all subsystems as26,28

δveffI (r′) = δvextI (r′) + δvelI (r′) = δvextI (r′) +
∑︂
J

∫︂
f (r′, r′′, ω) δρJ (r

′′, ω) dr′′ (2)

with the response kernel given by

f (r′, r′′, ω) =
1

|r′ − r′′|
+

δ2Exc[ρ]

δρ(r′)δρ (r′′)
+

δ2Ts[ρ]

δρ(r′)δρ(r′′)
− δ2Ts[ρI ]

δρI(r′)δρI(r′′)
δIJ (3)

And the terms on the right-hand side correspond to the Coulomb potential, the XC potential

and the last two terms constitute NAKP contributions. In the above equations, the adiabatic

approximation has been adopted which assumes that fxc is frequency-independent and that

a local density approximation for the XC functional kernel is used.
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The density response can be expressed in terms of orbital products as61

δρI(r, ω) =
∑︂
I

∑︂
i,a∈I

[︁
δP(ia)I (ω) + δP(ai)I (ω)

]︁
ϕI
a(r)ϕ

I
i (r) (4)

where we have taken the convention of using a, b, . . . for virtual orbitals and i, j, . . . for

occupied orbitals. Occupied-virtual and virtual-occupied orbital transitions are distinguished

explicitly with expansion coefficients δP(ia)I and δP(ai)I . Although only intra-subsystem

transitions are explicitly expressed here, inter-subsystem transitions are included implicitly

since the same virtual orbital space is shared by all subsystems when supermolecular basis

sets are used.

From Equation 2, the electronic potential can be expressed in terms of δP by introducing

a coupling matrix K with elements K(ia)I ,(jb)J :61,62

K(ia)I ,(jb)J =

∫︂
dr

∫︂
dr′ϕI

i (r)ϕ
I
a(r)f (r, r′, ω)ϕJ

j (r
′)ϕJ

b (r
′) (5)

such that

δvel(ia)I =
∑︂
jb∈J

∑︂
J

K(ia)I ,(jb)J δP(jb)J (ω) +K(ia)I ,(bj)J δP(bj)J (ω) (6)

where sum over J runs over all subsystems. When J = I, it corresponds to intra-subsystem

coupling and when J ̸= I it corresponds to inter-subsystem coupling. The response of density

matrix of subsystem I is then

δP(ia)I (ω) = χs
(ia)I

[︄
δvext(ia)I

+
∑︂
jb∈J

∑︂
J

K(ia)I ,(jb)J δP(jb)J (ω) +K(ia)I ,(bj)J δP(bj)I (ω)

]︄

= χs
(ia)I

[︄
δvext(ia)I

+ 2
∑︂
J

∑︂
jb

K(ia)I ,(jb)J δP(jb)J (ω)

]︄ (7)

where the symmetry of the density matrix can be used such that only occ-virt(or virt-occ)

elements are needed. Without EO and NAKP contributions, when real orbitals and pure

XC density functionals are used, the coupling matrix is of a symmetric structure such that
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K(ia)I ,(bj)J = K(ia)I ,(jb)J which leads to K(ia)I ,(jb)J δP(jb)J (ω) = K(ia)I ,(bj)J δP(bj)I (ω). This form

of FDE TDDFT is termed as coupled FDE (FDEc) since coupling between subsystems is

included.28,29

To eliminate the requirement for approximate NAKP, an EO term can be included.52,54,55

As remarked in previous work on EO contributions to FDE TDDFT, for perfectly orthog-

onalized subsystem orbitals, the EO potential should vanish as overlap matrices between

subsystems vanish.52 However, in practice, the EO potential serves as a first order correction

to the coupled response since subsystem orbitals are not perfectly orthogonalized.52

The EO contributions to K(ia)I ,(jb)J and K(ia)I ,(bj)J are

KEO
(ia)I ,(jb)J

= µSI,J
ij SJ,I

ba (8)

KEO
(ia)I ,(bj)J

= µSI,J
ib SJ,I

ja (9)

where SI,J
ij represents coupling matrix element between i orbital of subsystem I and j orbital

of subsystem J, and µ is a level-shift parameter. In our previous implementation of EO

contributions to FDE TDDFT, we assumed a symmetric structure of the coupling matrix

with EO contributions,52 which is in fact an approximation. As shown by Neugenbauer and

co-workers55 the correct treatment of the EO contribution leads to a set of non-Hermitian

response equations that needs to be solved. This is similar to the case for functionals that

include some fraction of Hartree-Fock exchange. However, since supermolecular basis sets

are used, all subsystems share the same virtual orbital space, thus there is no overlap between

any subsystem occupied orbitals and virtual orbitals, no matter if they belong to the same

subsystem or not such that SI,J
ib = SJ,I

ja = 0, which ensures that Equation 9 vanishes.

This asymmetric feature of the EO coupling matrix again makes it possible to include
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EO in the coupling matrix of (7) as an additional term:

δP(ia)I = χs
(ia)I

[︄
δvext(ai)I

+ 2
∑︂
jb∈I

K(ia)I ,(jb)IδP(jb)I

+
∑︂
jb∈J

(︂
2K(ia)I ,(jb)J δP(jb)J + µSI,J

ij SJ,I
ba δP(jb)J

)︂]︄ (10)

as long as only pure exchange correlation functionals are used. In a compact matrix form

we have

δPI = χs
I

[︁
δvext

I + 2Keff
II δPI + 2Keff

IJδPJ + δvEO
I(J)

]︁
(11)

where δvEO
I(J) ≡ µSI,J

occ,occS
J,I
vir,virδPJ and the symmetric structure of the conventional cou-

pling matrix is preserved. In this way, we have correctly included the EO contribution to

inter-subsystem coupling and both intra- and inter-subsystem couplings can all be described

correctly. This form of FDE TDDFT with EO is thus termed as FDEc-EO.

As for the initial guess, an approximate version of FDE TDDFT can be performed. By

neglecting all inter-subsystem coupling, uncoupled FDE TDDFT(FDEu) considers only KII

such that

δPI = χs
I

[︁
δvext

I + 2KIIδPI

]︁
(12)

After convergence is reached for Equation 11, supermolecular polarizability can be ex-

pressed as a summation of subsystem polarizabilities

αλν =
∑︂
I

αI
λν

=
∑︂
I

∑︂
(ia)I

2Hλ
(ia)I

δP ν
(ia)I

(13)

where λ, ν = x, y, z and H(ia)I is the elements of the dipole matrix for subsystem I. For

completeness the non-Hermitian TDDFT solver55 for calculating excitation energies was

also implemented into the ADF program.
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3 Methods

All calculations were carried out with a local modified version of ADF2021,57,58 and a Vosko-

Wilk-Nair (VWN)63 form of local density approximation (LDA) XC potential were used. The

triple-ζ with one polarization function (TZP)64 basis set from ADF basis set library was used

for all systems. Geometry optimizations of all monomers and decanal were also carried out

under the same basis set and XC functional. Thomas-Fermi kinetic energy density functional

approximation65 was used to evaluate NAKP for conventional FDE calculations.

For all external orthogonality calculation, the subsystem orbitals are orthogonalized with

a level-shift parameter µ. As suggested in previous work,51,52a level-shift parameter of 106 Eh

is large enough to enforce external orthogonality among fragment orbitals, while > 107 Eh

may lead to numerical instabilities.53 Thus, throughout this work, µ = 106 Eh is used

for all FDE with EO calculations. Implementation of FDEc-EO is based on subresponse

module of ADF.29 To demonstrate the exactness of FDEc-EO calculation of polarizability,

an accurate density fitting is necessary, therefore, ZlmFit66 scheme for density fitting has

also been implemented for subresponse module of ADF. Static supermolecular polarizabilities

were also calculated with both TDDFT and finite differentiation of ground dipole moments

as benchmark. For the finite differentiation calculation of polarizabilities, derivatives of

molecular dipole moments based on ground state FDE EO with respect to external electric

fields are calculated with two-point differentiation.

A typical workflow for FDEc-EO polarizability calculation is: 1) Ground state calculation

of each subsystem with supermolecular basis sets; 2) FDE freeze-and-thaw cycles on one

subsystem followed by a FDEu response calculation ; 3) One FDEu response calculation on

all the other subsystems; 4) Use results from step 2 and 3 as input for a FDEc response

calculation.
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4 Results and Discussion

4.1 Polarizability with FDEc-EO

To demonstrate that FDEc-EO can exactly reproduce the supermolecular polarizability, the

static polarizabilities of benzene dimer systems are calculated. The dimer systems are set up

such that two benzene molecules are placed face to face and each molecule corresponds to

one subsystem. They are separated along z-axis from 3.18 Å to 5.28 Å and polarizabilities

of each separation distance are calculated. Other smaller systems, including helium dimer,

FHF− and C2H6 are also benchmarked in the same manner and shown in the Supporting

Information.

In Figure 1 polarizabilities and absolute errors of the Benzene dimer systems with respect

to separation distances are shown. Static polarizability of these systems is obtained in four

different ways, namely supermolecular linear response (KS), finite difference of molecular

dipole moments (FD), FDEc with EO (FDEc-EO) and FDEc without EO (FDEc-noEO).

All of FD, FDEc-EO and FDEc-noEO are based on the same converged supermolecular

density from FDE freeze-and-thaw cycles. Both FDEc-EO and FDEc-noEO are based on

the same FDEu results, the only difference is that in FDEc-noEO, the EO term is excluded

from the response kernel, thus the EO contribution to the induced potential is removed.

As shown in Figure 1, all three methods are benchmarked against KS results and the

absolute error is plotted. In general, both FD and FDEc-EO results agree very well with KS

results, while FDEc-noEO tends to only be accurate as the monomers are well separated.

Since FD calculation takes the derivatives with respect to the external electric field and

it is based on exact FDE ground state results, all errors of FD results are introduced by nu-

merical errors from finite differentiation. Since symmetry is not enforced in the calculations,

small differences between αxx and αyy components are found. In principle, tighter numerical

settings should eliminate this difference, however, it was not pursued here. As shown in

Figure 1, at all separation distances, FDEc-EO results are significantly more accurate than
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Figure 1: Polarizability and absolute errors with respect to separation distances between
two Benzene molecules along z-axis. The equilibrium separation distance is marked with red
dashed line.

those of FD. To be specific, the errors of αxx and αyy are oscillating around 10−5, while

errors of αzz are around 10−4 which is slightly larger than those of the other two compo-

nents. Because the dimer systems are separated along z-axis, overlaps between subsystems

are strongest along z direction comparing to x and y directions. Since a level-shift factor of

106 Eh is used, numerical errors of overlap matrix will also be shifted significantly. Therefore,

deviations from KS results are largest for αzz component due to errors from overlaps between

subsystems. As demonstrated recently by Neugebauer and coworkers,54,55 a combination of

supermolecular basis sets and EO makes sure the same virtual orbital space is shared by both

subsystems which is necessary for exact description for inter-subsystem charger-transfer exci-

tations. Meanwhile, enforcing EO between subsystems also avoids the failure of approximate

NAKE in strongly-overlapping systems such as covalent bonded subsystems(see Supporting

Information).

In addition to the benzene dimer systems, helium dimer systems separated by different
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distances are shown in the Supporting Information, of which KS supermolecular polariz-

abilities at all distances can be exactly reproduced with the same numerical settings shown

in previous section. Other molecular systems, namely water dimer, FHF− and C2H6, are

also shown to test the ability of FDEc-EO in describing interactions of different strength

between subsystems, which covers the cases from weak hydrogen bond to strong hydrogen

bond and finally covalent bond. For all interactions of different strength, FDEc-EO can

exactly reproduce KS polarizabilities.

Besides results of FDEc-EO, FDEc-noEO results are also shown in Figure 1 to highlight

the contribution of EO term to supermolecular response. At all distances, FDEc-noEO

results exhibits very large errors comparing to those from FDEc-EO. It is only at the long-

distance limit that the accuracy of FDEc-noEO becomes comparable to FD. Similar to those

results from FDEc-EO, the errors are always larger for αzz than both αxx and αyy. For αzz,

the error decreases as the overlap between the two subsystems decreases. Note that even

at equilibrium distance, which represents moderate overlaps between subsystems, deviation

of αzz is also as large as 0.68 a.u comparing to the supermolecular TDDFT results. This

indicates that even with EO orbitals, the contribution of EO term in response kernel is still

important and cannot be neglected.

In contrast to our previous work on FDEc-EO,52 the current implementation includes a

more accurate density fitting method which in addition to accounting for the full symmetry

of the EO contribution is necessary to reproduce the supermolecular response properties.

Based on discussions above, we can conclude that the current implementation of FDEc-EO

can exactly reproduce supermolecular polarizabilities.

4.2 Non-uniqueness in subsystem polarization

One of the main advantageous of the FDE approach is the ability of calculating subsystem

polarizabilities. As shown above the sum of subsystem polarizabilities can exactly repro-

duce the total supermolecular response. However, in the following we will show that the
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Figure 2: Water dimer system, each monomer corresponds to one subsystem

interpretation of subsystem polarizabilities is limited due to problems with non-unique na-

ture of exact FDE method.5,67–69 In our case, the problem of non-uniqueness emerges as the

partitioning of subsystem polarizabilities is dependent on the order of polarization. While

the subsystem polarizabilities obviously should depend on the nature of the fragments, i.e.

which nuclei and how many electrons assigned to each fragment, it should ideally not depend

on how that fragment has been polarized during the freeze-thaw cycles.

Table 1: Subsystem polarizabilities calculated with both FDEc-EO and FDE-TF with dif-
ferent orders of polarization.

Method Initial Fragment Polarizability/ a.u.
fragment A fragment B

αxx αyy αzz αxx αyy αzz

FDEc-EO A 10.44 7.70 8.67 10.74 8.76 8.08
B 9.62 8.83 8.14 11.56 7.62 8.61

FDE-TF A 10.34 8.07 8.66 10.02 8.43 8.04
B 10.34 8.06 8.66 10.02 8.43 8.04

To demonstrate the polarization dependence and the possible origin of this dependence,

a water dimer system has been studied as shown in Figure 2. Water dimer system was

chosen because the overlap between the two monomers is weak enough so that Thomas-

Fermi kinetic energy functional can give qualitatively correct results.51 Since exact FDE
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would give non-unique results, while approximate FDE can give unique results,67,68 polariz-

abilities and electron density calculated with FDE-TF are thus used for comparison. First,

both supermolecular and subsystem polarizabilities calculated with exact FDE(FDEc-EO)

and approximate FDE with Thomas-Fermi kinetic energy density functional(FDE-TF) in

different orders of polarization are shown in Table 1. We then address the origin of the non-

uniqueness problem by analyzing the polarized electron density in freeze-and-thaw cycles as

shown in Figure 3.

Figure 3: Electron density of each subsystem calculated with (a) FDE-EO and (b) FDE-TF.
The arrows start from the initial fragment densities and point to the sets of electron densities
of each subsystem.

In freeze-and-thaw cycles for ground state FDE-EO calculations, there is always one sub-

system set as the initial subsystem to be polarized by the other initial active fragment. In

our calculations, we have observed that for those two water monomers, the subsystem polar-

izabilities results are dependent on which monomer is chosen as the initial active fragment.

In these cases two sets of subsystem polarizabilities partitioning are generated for the two or-

ders of polarization. In Table 1 subsystem polarizabilities corresponding to different methods

and different orders of polarization are shown. For FDE-TF, a Thomas-Fermi kinetic energy

functional is used for NAKE, and the polarizabilities are calculated as a finite differentia-

tion of molecular dipole moment with respect to an external electric field. For FDEc-EO,

a regular FDEc-EO process is taken. Initial fragment refers to the fragment which is al-

lowed to relax in the first freeze-and-thaw cycle while the other is frozen as the environment.

Thus with different initial fragments, we have adopted different orders of polarization of the
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subsystems.

As can be found from Table 1, for results calculated with FDE-TF, all components of

polarizabilities of each subsystem stay almost invariant with respect to the different orders of

polarization. While for FDEc-EO, supermolecular polarizability can be exactly reproduced

with either fragment as initial fragment, but there is significant difference between subsystem

polarizabilities. For instance, difference in αxx of FDEc-EO can be around 0.8 a.u.( 8%),

while difference in αxx of FDE-TF is only around 0.001 a.u.( 0.01%). This indicates that

when different orders of polarization are used, different subsystem polarizability partitioning

is also expected in exact FDE while approximate FDE is not affected and can be regarded

as invariant in practice. Such difference in subsystem polarizability partitioning hinders

our further understanding of interactions between subsystems. As shown here, subsystem

polarizabilities for both subsystems are determined by the orders of polarization and neither

can be regarded as the correct one. Applications of exact FDE method are consequently

limited because direct interpretation on subsystem polarizabilities would be impossible.

As has been pointed out in previous work, FDE is known to be formally non-unique.5

The non-uniqueness is a consequence of lack of constraints on subsystem densities, as long

as subsystem densities can sum up to supermolecular density, any sets of subsystem densi-

ties that are v−representable can be solutions to the KSCED equations. Non-uniqueness of

subsystem densities can thus lead to other non-unique subsystem properties such as dipole

moment and consequently subsystem polarizability. A variety of solutions to ensure unique-

ness of embedding potential have also been proposed.68,70–73 Although subtle differences are

present, they share the idea that uniqueness is achieved by adding extra constraints to gen-

erate embedding potentials shared across all subsystems. By enforcing EO, we only remove

the requirements for NAKE in embedding potential, and no extra constraints on embedding

potential are applied. As for approximate FDE, since the errors introduced by approxi-

mate NAKE are minimized during freeze-and-thaw cycles, unique subsystem densities can

be generated.67
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To understand why orders of polarization matter in exact FDE, we went back to analyze

how the electron density gets polarized in the ground state. In Figure 3, electron densities

of unpolarized subsystems and polarized in the first iteration of freeze-and-thaw cycles are

shown, respectively. Although electron densities do get relaxed in the following freeze-and-

thaw cycles, the majority of the electronic polarization is determined in the first iteration.

For subsystem densities calculated with FDE-TF, no significant difference is found for

both orders of polarization. This agrees with the fact that approximate NAKE would gen-

erate unique solutions. As for subsystem densities calculated with FDE-EO, two sets of

subsystem densities are generated when each subsystem is chosen as the initial one. To be

more specific, when one fragment is allowed to relax in the first iteration, subsystem electron

density gets polarized into the frozen environment. To enforce EO, supermolecular basis

sets are used for FDE-EO calculations which accounts for electron delocalization into the

inactive fragments. In the following thaw process of the frozen fragment in the first cycle,

no subsystem electron density gets polarized into the environment. And such difference in

the subsystem electron densities remain in the following cycles which results in two sets of

subsystem densities. Note that electronic polarization from the active fragment into the in-

active fragment is not the same as charge spill-out in approximate FDE which is attributed

to lack of repulsion from approximate NAKE.

To conclude, exact FDE with EO does not change the non-unique nature of FDE method

and it leads to limited ability to interpret subsystem properties. In our implementation of

FDEc-EO, direct decomposition of the supermolecular polarizability into subsystem polariz-

abilities is thus also non-unique, which results in different sets of subsystem polarizabilities

and therefore one has to be careful to assign physical significance.
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Figure 4: (a) Two fragmentation schemes for decanal; (b) HOMO calculated with super-
molecular DFT; (c) HOMOs calculated with FDE-EO and the label indicates the initial
active fragments.

Table 2: FDEu excitation energies of decanal that corresponds to the HOMO to LUMO
transition.

Initial Fragment Excitation energy/ eV
A 4.19
B 4.29
A′ 4.18
B′ 4.20

Supermolecular 4.16
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4.3 Fragmentation of Supermolecular System and Localized Exci-

tation

Although different orders of polarization in exact FDE freeze-and-thaw calculations may

results in different partitioning of supermolecular properties, we expect that properties that

are localized within only one subsystem should stay robust with respect to different polar-

ization orders. An example of this would be excitation energies localized to one fragment.

Previous work have shown that the excitation energies depends on the specific approach used

to ensure EO.74 Here we will examine the dependence on the polarization order. We show an

example of decanal molecule shown in Figure 4(a) where there is a supermolecular HOMO

localized on the aldehyde group and neighboring carbon atoms as shown in Figure 4(b).

To illustrate how localization of the orbitals affect the results, two different fragmentation

are shown in Figure 4(a). Those two fragmentation schemes, denoted as AB and A′B′, differs

in how many neighboring carbon atoms are included together with aldehyde group in one

fragment. And this leads to different portions of supermolecular HOMO localized in one frag-

ment. With different fragments as initial fragments, due to the non-unique problem stated

in previous section, different excitation energies are expected. In Table 2, we have shown the

excitation energies calculated with FDEu for both orders of polarization and both fragmen-

tation schemes. As a reference, supermolecular excitation energy for the same HOMO to

LUMO transition is also shown. Since FDEu cannot fully capture inter-subsystem coupling,

the excitation energy cannot exactly reproduce the supermolecular results. However, we can

still observe significant difference when different orders of polarization is applied. In AB

fragmentation, the difference is around 0.1 eV, while in A′B′ the difference is 0.02 eV. Such

improvement on stability of excitation energy can be justified by the HOMO of the super-

molecular system. As can be found in Figure 4(c), where the HOMOs of the subsystems to

the aldehyde group ends are plotted. Note that since exact FDE can reproduce supermolec-

ular virtual orbitals no matter how the fragmentations are performed, only difference is the

quality of the occupied orbitals. As stated before, the supermolecular HOMO from KS DFT
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is localized within the aldehyde and closest carbon atoms, thus A′B′ fragmentation which

could describe the HOMO more precisely gives more stable results. This idea is supported by

data from Figure 4(c). In A′B′, the difference between the HOMO generated in both orders

of polarization agree with each other better than those from AB. This is also consistent with

previous work demonstrating that the best results were obtained for embedding in which the

subsystem HOMO best resembled that of the supermolecular system.74 It is worth noticing

that although only the carbon atom closest to aldehyde group is included in fragment A,

part of the HOMO is delocalized on the carbon atom next to it. Such delocalization of

occupied orbital, again, is a result of supermolecular basis sets. As for A′B′, both orders

of polarization give similar HOMO, which indicates that the excitation localized within the

fragment is better described.

We also compared subsystem polarizabilities with different orders of polarization. Under

both fragmentation schemes, the partitioning of the subsystem polarizability is depending

on the order of polarization, while the supermolecular polarizability always remain robust.

As shown in Table 3, deviations from the supermolecular results remain around 1% and is

independent on the order of polarization. In contrast, the two set of subsystem polarizabil-

ities are significantly different. When comparing results from AB and A′B′ fragmentation,

it can be found that the relative magnitudes of subsystem polarizabilities is reversed, while

the difference between subsystem polarizabilities of the two orders of polarization is similar.

Thus, extending the fragments does not mitigate the non-uniqueness of the subsystem po-

larizabilities. One probable explanation of such difference is that unlike excitation between

localized orbitals, the polarizability involves numerous transitions from occupied orbitals

that are delocalized over multiple subsystems to virtual orbitals.
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Table 3: Subsystem polarizabilities of decanal calculated for two orders of polarization of
two fragmentation schemes.

Initial Fragment Polarizability/ a.u.
Subsystem A Subsystem B

αxx αyy αzz αxx αyy αzz

A 48.04 24.60 33.01 116.51 90.05 82.69
B 32.14 21.87 31.47 132.41 92.78 84.24

Subsystem A′ Subsystem B′

αxx αyy αzz αxx αyy αzz

A′ 63.25 36.56 43.04 101.29 78.10 72.66
B′ 47.60 33.38 41.63 116.96 81.28 74.07

Supermolecular polarizability αxx αyy αzz

164.56 114.66 115.70

5 Conclusions

In this work, we present an implementation of FDEc-EO for the calculation of exact po-

larizabilities in the Amsterdam Density Functional program (ADF) package. Comparing to

supermolecular TDDFT, there is no more approximation introduced(although both require

approximate XC functionals), such implementation is thus exact comparing to supermolec-

ular TDDFT. To avoid using a NAKP, we adapt EO through a level-shift projection oper-

ator method, which ensures that orbitals between fragments are orthogonal. We show that

for pure-functionals only the symmetric EO contributions to the induced density matrix

is needed which this leads to a simplified implementation for calculation of polarizability

that can exactly reproduce supermolecular TDDFT results. To test the accuracy of this

method, we have shown example systems with different strengths of inter-subsystem cou-

plings. Comparing to supermolecular TDDFT, the supermolecular polarizabilities obtained

with our implementation of FDEc-EO is exact. We further investigate the non-unique sub-

system polarizability partitioning which is a result of differences in electronic polarization

process in freeze-and-thaw cycles and roots in the non-unique nature of exact FDE. The

subsystem polarizability partitioning limits further applications of such method on analysis
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of subsystem interactions. While the non-uniqueness problem could not be solved within

current framework, we also test the applicability of FDEu on localized properties. We show

that for excitations involving localized orbitals, FDEu is invariant with respect to different

orders of polarization while properties involving delocalized transitions such as subsystem

polarizability can not be correctly described. In general, this formulation could be used as

a benchmark for further development in approximate FDE methods.
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