
Local Dualisable Objects in Local 

Algebra 

Dave Benson, Srikanth B. Iyengar, Henning Krause, and Julia Pevtsova 

Abstract We study dualisable objects in minimal subcategories of compactly 

generated tensor triangulated categories, paying special attention to the derived 

category of a commutative noetherian ring. A cohomological criterion for detecting 

these local dualisable objects is established. Generalisations to other related contexts 

are discussed. 

Keywords Balmer spectrum · Compact object · Derived category · Dualisable 

object · Reflexive object · Tensor triangulated category 

2020 Mathematics Subject Classification 13D09 (primary); 18G80, 14F08 

(secondary) 

1 Introduction 

Let . T be a rigidly compactly generated tensor triangulated category; in this work we 

consider only the symmetric tensor categories. A central problem is to classify the 

localising tensor ideals in . T. Consider the lattice, with respect to inclusion, of such 

subcategories. In many contexts, its structure is determined by the minimal elements 

in the lattice. Often these minimal elements are parameterised by some topological 
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space; for instance, the Balmer spectrum, or the spectrum of some commutative ring 

acting on . T, in the sense of [5]. 

We are interested in the structure of a minimal subcategory, say . S. Minimality 

implies that there are no proper localising tensor ideals in . S. In particular, there 

are no proper thick tensor ideals in the subcategory of compact objects in . S. 

Typically however, there are dualisable objects which are not compact. Thus there 

is a collection of thick tensor ideals in the subcategory of dualisable objects in . S, 

and one can get a handle on them by computing its spectrum. 

This is what is done in this work for .D(A), the derived category of a commutative 

noetherian ring A. In that case the minimal localising subcategories are the 

subcategories, .!pD(A), of the derived category consisting of the .p-local and .p-

torsion A-complexes, where . p is a prime ideal in A. Our main result, which 

reappears as Theorem 4.1, characterises dualisable objects in these categories. 

Theorem For each X in .!pD(A) the following conditions are equivalent. 

(1) X is dualisable in .!pD(A); 

(2) .rankk(p) H(k(p) ⊗L
A X) is finite; 

(3) X is in .Thick(R!p(Ap)). 

In the statement .k(p) is the residue field of the local ring .Ap and .R!p(−) is the 

local cohomology functor with respect to . p; see Sect. 3. In contrast, an object X in 

.!pD(A) is compact precisely when .lengthAp
H(X) is finite. 

The dualisable objects in .!pD(A) form a thick subcategory, closed under tensor 

products. Given this, and the equivalence of complete modules and torsion modules, 

established by Dwyer and Greenlees [15], we deduce that the spectrum of the 

category of dualisable objects identifies with the Zariski spectrum of the completion 

of the local ring .Ap at its maximal ideal; see Corollary 4.4. This suggests viewing 

the passage from compact objects to dualisable objects in any compactly generated 

tensor triangulated category as a completion process. Similar considerations imply 

that when the ring . Ap is regular, the category of dualisable objects in .!pD(A) has a 

strong generator; see Corollary 4.7 and the discussion surrounding it. 

Here is an outline of the contents of this manuscript: Sect. 2 collects some 

well-known, though not well-recorded, results and remarks on notions of smallness 

and dualisability in general compactly generated tensor triangulated categories. 

Sections 3 and 4 are about the derived category of a commutative noetherian ring, 

culminating in the characterisation of local dualisable objects and some corollaries. 

Section 5 contains a discussion of dualisable objects in other contexts, including 

the stable homotopy category. In fact, the formulation of the theorem above and our 

work reported here and in [7] is inspired by work of Hovey and Strickland [19] on  

dualisable objects in the .K(n)-local stable homotopy category.



Local Dualisable Objects 87

2 Dualisability 

Though the focus of our work is on the derived category of a commutative ring, we 

begin by recalling various notions of dualisability in general tensor triangulated 

categories. Our basic references for this material are [18, Appendix A.2] and 

[21, Chapter III]. While much of the discussion is valid for symmetric monoidal 

categories, our examples are equipped with a compatible structure of a triangulated 

category so we work in that context. 

Let us fix a compactly generated tensor triangulated category .(T,⊗,1), with 

symmetric tensor product . ⊗ and unit . 1; the latter need not be compact. The 

tensor product commutes with arbitrary coproducts. As usual, . Tc denotes the full 

subcategory of compact objects in . T. 

Brown representability yields function objects .Hom(X, Y ) satisfying an adjunc-

tion isomorphism 

. HomT(X ⊗ Y,Z) ∼= HomT(X,Hom(Y, Z)) for all X, Y,Z in T.

The construction implies that the functor .Hom(Y,−) on . T is exact; we will assume 

that the functor .Hom(−, Z) is also exact. The adjunction isomorphism above yields 

natural isomorphisms 

. Hom(X ⊗ Y,Z) ∼= Hom(X,Hom(Y, Z)) .

The counit of the adjunction above plays a role in the sequel: 

. ε : Hom(X, Y ) ⊗ X −→ Y .

We will need the symmetric braiding in . T that we denote: 

. γ : X ⊗ Y
∼

−−→ Y ⊗ X .

One has also a natural map 

.ν : Hom(X, Y ) ⊗ Z −→ Hom(X, Y ⊗ Z) , (2.1) 

obtained as the adjoint to the composition of maps 

. Hom(X, Y ) ⊗ Z ⊗ X
1⊗γ

−−−→ Hom(X, Y ) ⊗ X ⊗ Z
ε⊗1

−−−→ Y ⊗ Z .

The Spanier–Whitehead dual of an object X is 

.DSWX := Hom(X,1) .
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The assignment .X %→ DSWX is a contravariant functor .T → T. An object X in . T is 

said to be dualisable if for all Y in . T the natural map 

. DSWX ⊗ Y −→ Hom(X, Y ) ,

obtained from (2.1) by setting .Z = 1, is an isomorphism. We denote by . Td the full 

subcategory of dualisable objects in . T. 

The adjoint of the composite .X ⊗ DSWX
γ
−→ DSWX ⊗ X

ε
−→ 1 of the braiding 

with the counit . ε gives the natural double duality map 

. ρ : X −→ DSWDSW(X) .

We say X is reflexive if this map is an isomorphism. Dualisable objects are 

reflexive—this is part of the result below—but not conversely; see 3.2. 

An object X in . T is said to be functionally compact if for all set-indexed 

collections of objects .{Yi} the following natural map is an isomorphism: 

. 

⊕

i

Hom(X, Yi) −→ Hom(X,
⊕

i

Yi).

Observe that replacing the function object with .Hom defines compactness. 

The result below collects some useful observations concerning these notions; we 

give the proofs because some of the arguments are rather delicate, and not easy to 

find in the literature. We also invite the reader to verify these statements directly for 

the derived category of a commutative noetherian ring. 

Proposition 2.1 Let X be an object in . T. The following statements hold. 

(1) The object X is dualisable if and only if there is a map . η : 1 → X ⊗ DSWX

making the following diagram commute 

The vertical map on the left is the adjoint to the isomorphism .1⊗ X
∼
−→ X. 

(2) If X is dualisable so is .DSWX and .ρ : X → DSWDSWX is an isomorphism. 

(3) If either X or Z is dualisable, then the map (2.1) is an isomorphism. 

(4) If X is dualisable and .C ∈ T is compact, then .C ⊗ X is compact. 

(5) If X is dualisable it is functionally compact; the converse holds if . T is generated 

by a set of dualisable objects. 

(6) If X is functionally compact and . 1 is compact, then X is compact. 

Proof (1) When X is dualisable, the map .DSWX ⊗ X → Hom(X,X) is an 

isomorphism, and we can use its inverse to get a map .η : 1 → X ⊗ DSWX, and
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this fits into the commutative diagram as desired. Conversely, given such an . η a 

diagram chase shows that the composite 

. Hom(X, Y )
∼
−→ Hom(X, Y ) ⊗ 1

1⊗η
−−→ Hom(X, Y ) ⊗ X ⊗ DSWX

ε⊗1
−−→ Y ⊗ DSWX

γ
−→ DSWX ⊗ Y

is the inverse of the map .DSWX ⊗ Y → Hom(X, Y ). 

(2) Given .η : 1 → X ⊗ DSWX as in (1), the composite 

. 1
η
−→ X ⊗ DSWX

ρ⊗1
−−→ DSWDSWX ⊗ DSWX

γ
−→ DSWX ⊗ DSWDSWX

plays the role of . η for .DSWX, so again using (1), .DSWX is dualisable. A diagram 

chase shows that an inverse for .ρ : X → DSWDSWX is given by the composite 

. DSWDSWX
∼
−→ 1⊗ DSWDSWX

η⊗1
−−→ X ⊗ DSWX ⊗ DSWDSWX

1⊗γ
−−→ X ⊗ DSWDSWX ⊗ DSWX

1⊗ε
−−→ X ⊗ 1

∼
−→ X .

(3) If X is dualisable, then an inverse for . ν is given by the composite 

. Hom(X, Y ⊗ Z)
∼
−→ Hom(X, Y ⊗ Z) ⊗ 1

1⊗η
−−→ Hom(X, Y ⊗ Z) ⊗ X ⊗ DSWX

ε⊗1
−−→ Y ⊗ Z ⊗ DSWX

γ
−→ DSWX ⊗ Y ⊗ Z

ν⊗1
−−→ Hom(X, Y ) ⊗ Z .

If Z is dualisable then using (2) we have a commutative diagram



90 D. Benson et al.

The vertical maps are all isomorphisms, as is the bottom horizontal map, and 

therefore so is the top horizontal map. 

(4) This follows from the isomorphisms of functors 

. HomT(C ⊗ X,−) ∼= HomT(C,Hom(X,−)) ∼= HomT(C,DSWX ⊗ −) .

(5) For any set of objects .{Yi} there is a commutative diagram 

When X is dualisable, the two vertical maps are isomorphisms and hence so is the 

lower horizontal map, and hence X is functionally compact. 

Conversely, suppose X is functionally compact. Then the lower horizontal map 

in the diagram above is an isomorphism, and so it follows that the collection of 

objects Y for which the map .DSWX ⊗ Y → Hom(X, Y ) is an isomorphism form a 

localising subcategory of . T. By (3), it contains the dualisable objects, so when . T is 

generated by such objects, we deduce that X is dualisable. 

(6) Apply .HomT(1,−) to the isomorphism defining functional compactness. 

'(

We collect some sundry consequences of the preceding result, for later use. 

Remark 2.2 Let .(T,⊗,1) be a compactly generated tensor triangulated category. 

Proposition 2.1 implies that when . 1 is compact any dualisable object is compact. 

The inclusion .Td ⊆ T
c may be strict; see 3.2. 

The subcategory . Td is thick, and closed under tensor products, function objects, 

and hence also under Spanier–Whitehead duality. On the other hand, the compact 

objects in . T form a thick subcategory, but may not be closed under tensor products 

or Spanier–Whitehead duality; see 3.2. Thus when compact objects and dualisable 

objects coincide, . Tc is a tensor triangulated subcategory of . T, with unit . 1 and the 

same function objects. 

The condition that .Tc = T
d is equivalent to . T having a set of generators that 

are both compact and dualisable. Hovey et al. [18] call such a category a unital 

algebraic stable homotopy category; Balmer and Favi [3] use the term rigidly 

compactly generated category. 

3 Commutative Noetherian Rings 

Next we describe the compactly generated tensor triangulated categories that are the 

focus of this work. Throughout A is a commutative noetherian ring. We write .D(A)
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for the derived category of A and .Db(modA) for the subcategory consisting of A-

complexes M such that the A-module .H(M) :=
⊕

i H i(M) is finitely generated. 

3.1 The derived category of A is a compactly generated triangulated category, with 

compact objects the perfect complexes, namely, those that are isomorphic in . D(A)

to bounded complexes of finitely generated projective A-modules; equivalently, the 

objects in .Thick(A). See, for instance, [22, §9.2]. One has that 

. Thick(A) ⊆ Db(modA) ;

equality holds if and only if A is regular, that is to say, for each .p ∈ SpecA, the local 

ring . Ap is regular. This is just a reinterpretation of the classical characterisation, due 

to Auslander et al. [11, Theorem 2.2.7], of regular local rings as the local rings 

of finite global dimension, along with the observation, due to Bass and Murthy 

that, for objects in .D(R), finite projective dimension can be tested locally; see [1, 

Theorem 4.1]. 

The derived tensor product, .− ⊗L
A − endows .D(A) with a structure of a tensor 

triangulated category with unit A and function object .RHomA(−,−). The unit A 
generates .D(A), and is compact and dualisable, so compact objects and dualisable 

objects coincide. 

As to the reflexive objects in .D(A): For an object X in .Db(modA) the natural 

map .X → DSWDSWX is an isomorphism if and only if X has finite Gorenstein 

dimension [13, Theorem 2.4.7]. Such an X is not necessarily compact. Indeed, 

when A is Gorenstein any X in .Db(modA) has finite Gorenstein dimension, but 

.Thick(A) = Db(modA) if and only if A is regular. 

3.1 Local Cohomology and Localisation 

Fix a prime ideal . p in A. An  A-complex X in .D(A) is .p-local if the natural map 

.X → Xp is an isomorphism in .D(A). Since localisation is an exact functor, this 

conditions is equivalently to the condition that the map .H(X) → H(X)p of A-

modules is bijective. 

An A-complex X is .p-torsion if .Xq
∼= 0 in .D(A) for each .q *⊇ p. Once again, it is 

clear that X is .p-torsion if and only .H(X) is .p-torsion; equivalently, each A-module 

.H i(X) is .p-torsion. An A-module is .p-torsion precisely when, for each .x ∈ M there 

exists an integer .s ≥ 0 such that .ps · x = 0; this explains the terminology. 

It is straightforward to check that the class of .p-torsion A-complexes is a 

localising subcategory of .D(A). Its inclusion into .D(A) admits a right adjoint, 

.R!p(−), the classical local cohomology functor with respect to the (Zariski) closed 

subset of .SpecA defined by . p; see [11, §3.5], and also [4, §9].
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We are interested in the class of .p-local .p-torsion objects, namely, the subcate-

gory 

.!pD(A) := {X ∈ D(A) | R!p(Xp) ∼= X}. (3.1) 

This is a localising tensor ideal in .D(A), and even minimal, in that the only 

localising subcategory properly contained in .!pD(A) is 0, by [23, Theorem 2.8]. 

Said otherwise, .D(A) is stratified by the A action on .D(A), in the sense of [5]. This 

has the consequence that localising subcategories of .D(A) are in bijection with the 

subsets of .Spec(A). One can thus view the categories .!pD(A) as the building blocks 

of the triangulated category .D(A). And so it is of interest to investigate the objects 

in it. This is what we do in Sect. 4. 

To wrap up this section, we give an example of a compactly generated tensor 

triangulated category where the unit is compact, so dualisable objects are compact, 

but not every compact object is dualisable. It also has the feature that the tensor 

product of compact objects is not always compact. 

3.2 Let A be a commutative noetherian ring and .K(ProjA) the homotopy category 

of complexes of projective A-modules. This is a compactly generated triangulated 

category, with a triangle equivalence 

. Db(modA)
op ∼

−−→ K(ProjA)c

given by the assignment .M %→ (pM)∗, where .pM is a projective resolution of M 
and .(−)∗ := HomA(−, A); see [20]. 

We endow .K(ProjA) with a structure of a tensor triangulated category with 

tensor product the usual tensor product over A. The unit for this tensor product 

is A. By Brown representability, the inclusion .K(ProjA) → K(ModA) has a right 

adjoint .q : K(ModA) → K(ProjA). It is easy to verify that . q preserves function 

objects. Thus 

. Hom(X, Y ) ∼= qHomA(X, Y ) (X, Y ∈ K(ProjA)) .

Evidently A is compact, so dualisable objects in .K(ProjA) are compact. 

We claim that the subcategory of dualisable objects in .K(ProjA) is precisely 

.Thick(A), the bounded complexes of finitely generated projective modules. 

Indeed, fix a dualisable object; since it is compact we can assume it is of the form 

. (pM)∗, for some  M in .Db(modA). Moreover since A is noetherian, we can assume 

.pM consists of finitely generated projective A-modules, and that .(pM)i = 0 for 

.i . 0. Then the Spanier–Whitehead dual of .(pM)∗ is 

. Hom((pM)∗, A) ∼= qHomA((pM)∗, A) ∼= q(pM) ∼= pM

where the second isomorphism holds because of the structure of .pM and the last 

one holds because .pM is already in .K(ProjA). In particular .pM is also dualisable,
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being the Spanier–Whitehead dual of a dualisable object. But then it is also compact. 

Observe that .pM is in .Loc(A), so compactness implies that it is in .Thick(A). It  

remains to observe that then so is .(pM)∗. 

Suppose now that A is singular; this condition is equivalent to the existence 

of finitely generated A-modules of infinite projective dimension. Then for any M 
in .Db(modA) of infinite projective dimension the complex .(pM)∗ is compact in 

.K(ProjA) but it is not dualisable. Moreover the Spanier–Whitehead dual of the 

compact object .(pM)∗ is .pM and this will not be compact, by the argument above. 

For .M,N in .Db(modA) the natural map is an isomorphism: 

. (pM)∗ ⊗A (pN)∗
∼

−−→ HomA(pM, (pN)∗) .

In particular the cohomology of the object on the left is .ExtA(M,RHomA(N,A)). 

When A is singular and Gorenstein the cohomology of any compact object in 

.K(ProjA) is bounded. However one can find .M,N such that the cohomology of 

.(pM)∗ ⊗A (pN)∗ is not bounded, so the tensor product will not be compact. 

4 Local Dualisable Objects in D(A) 

Let A be a commutative noetherian ring and .D(A) the derived category of A-

modules, with the usual structure of a tensor triangulated category; see 3.1. As noted 

there, the dualisable objects and compact objects in .D(A) coincide, and are precisely 

the perfect complexes in .D(A). In this section we focus on the dualisable objects in 

.!pD(A), the category of .p-local and .p-torsion objects in . D(A), for . p a prime ideal 

in A; see  (3.1). 

Fix a prime ideal . p. It is straightforward to verify that when X and Y are .p-local 

and .p-torsion, so is .X⊗L
A Y ; that is to say, the triangulated category .!pD(A) inherits 

a tensor product from .D(A). With this tensor product .!pD(A) is tensor triangulated, 

with unit .R!pAp, and function object 

. Hom(X, Y ) := R!pRHomA(X, Y ) .

The thick subcategory of compact objects in .!pD(A) has a simple structure, in that 

it is minimal. The unit .R!p(Ap) is compact only when . p is a minimal prime ideal 

in A. So, typically, there are more dualisable than compact objects in .!pD(A). 

Here is a characterisation of the dualisable objects in this category, in terms of 

their cohomology. We write .k(p) for .Ap/pAp, the residue field of the local ring . Ap

and . ' for the suspension, or shift, functor in a triangulated category. 

Theorem 4.1 Let A be a commutative noetherian ring and . p a prime ideal in A. For  

each .p-local and .p-torsion A-complex X the following conditions are equivalent. 

(1) X is dualisable in .!pD(A). 

(2) .rankk(p) H(k(p) ⊗L
A X) is finite.
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(3) X is in .Thick(R!p(Ap)). 

If moreover .rankk(p) H(k(p)⊗L
A X) = 1, then .X ∼= 'sR!p(Ap) for some integer s. 

As will be clear from the proof, the implications (1). ⇒(2) and (3). ⇒(1) are 

elementary to verify. The implication (2). ⇒(3) is the non-trivial one, and its proof 

takes most of the work in this section; it makes critical use of derived completions. 

There is a simpler proof when the ring . Ap has finite global dimension; see [7]. 

4.1 Derived Completions 

Given an ideal I in A and an A-module M , the  I -adic completion of M is the inverse 

limit 

. ΛIM := lim
n

(· · · ! M/In+1M ! M/InM ! · · · ! M/IM) ,

where the surjections are the natural ones. The canonical maps . M → M/InM

induce a map .M → ΛIM; when this is bijective we say M is classically I -complete. 

Given an A-complex M we write .LΛIM for the left derived functor of the 

completion; see [16]. This comes equipped with a morphism .M → LΛIM in .D(A), 

and the complex M is said to be I -complete when this map is a quasi-isomorphism. 

A complex M is I -complete if and only if .H i(M) is I -complete for each i. A caveat: 

classically complete A-modules are complete, but the converse does not hold; see 

[16, Example 1.4] and also [9, Example 2.4]. 

When M is an A-module, there is natural surjective map .H 0(LΛIM) → ΛIM . 

This is an isomorphism when M is a finitely generated, and then . H i(LΛIM) = 0

for .i ≥ 1, that is to say, there is an isomorphism .LΛIM ∼= ΛIM in .D(A) for any 

finitely generated A-module M . In particular, .LΛIA ∼= ΛIA; this observation is 

used implicitly in the sequel. 

The derived local cohomology functor .R!I and the derived I -adic completion 

functor .LΛI form an adjoint pair: 

D(A) D(A) . 
LΛ

I 

RΓI 

(4.1) 

This is the Greenlees–May duality. It restricts to an equivalence between the I -

torsion and I -complete complexes, and so one has natural isomorphisms 

.R!IM ∼= R!ILΛIM and LΛIR!IM ∼= LΛIM . (4.2) 

For a proof of these results, and for a different perspective on completions, as a 

localisation, see [15], and also [14, Tag091N]. 

The result below is a crucial step in the proof of Theorem 4.1.
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Proposition 4.2 Let A be a local ring with maximal ideal . m and residue field k, 

and let . ̂A be the .m-adic completion of A. The following statements hold for any 

object .X ∈ D(A) that is .m-complete. 

(1) If .H(k ⊗L
A X) is bounded, then the natural map 

. X −→ k ⊗L
A X

induced by the surjection .A → k, is nonzero in homology. 

(2) If .rankk H(k ⊗L
A X) is finite, then X is in .Thick(Â). 

(3) If .H(k ⊗L
A X) ∼= 'sk for some integer s, then .X ∼= 'sÂ. 

Proof (1) Since X is .m-complete so is .H n(X) for each n. Thus, if . m · H n(X) =

H n(X), then .H n(X) = 0; see [26, 1.4], and also [14, Tag09b9]. Given this 

observation, the hypothesis that .H(k ⊗L
A X) is bounded implies .H(X) is bounded; 

this can be checked via a standard devissage argument using .H(K ⊗R M), where K 
is the Koszul complex of R. Set .i = inf{n | H n(X) *= 0}. Then the composed map 

. H i(X) −→ H i(k ⊗L
A X) ∼= k ⊗A H i(X) ∼= H i(X)/mH i(X) ,

where the first isomorphism holds because the tensor product is right exact, is the 

obvious surjection and the target is nonzero. This justifies the claim. 

(2) We verify this by an induction on the integer .r := rankk H(k ⊗L
A X). The  

base case is .r = 0. Then .k ⊗L
A X = 0 in .D(A), that is to say, . m is not in .suppA X. 

Thus .R!mX ∼= 0. It remains to note that 

. X ∼= LΛmX ∼= LΛmR!mX ∼= 0 ,

where the second isomorphism is from (4.2). 

Suppose .r ≥ 1. Since .HomD(A)('
iA,−) ∼= H−i(−), part (1) is equivalent to 

the existence of a map .'sA → X in .D(A) such that the induced map . 'sk →

H(k ⊗L
A X) is nonzero. Since X is .m-complete, the map .'sA → X factors through 

.'sÂ → X and this fits into an exact triangle 

. 'sÂ −→ X −→ Y −→ .

Evidently .rankk H(k ⊗L
A Y ) = r − 1, so the induction hypothesis yields that Y is in 

.Thick(Â), and hence so is X. 

(3) When .r = 1, the argument above yields that .'sÂ ∼= X, as desired. '(
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4.2 A Derived Morita Equivalence 

Let A be a local ring with maximal ideal . m. It helps to consider another adjoint pair: 

The map .A → RHomA(R!mA,R!mA) induces, by (4.2), a quasi-isomorphism 

.Â −→ RHomA(R!mA,R!mA) (4.3) 

so derived Morita theory yields adjoint functors 

The functors introduced above give alternative descriptions of the category we are 

interested in, namely, the thick subcategory generated by .R!mA. 

Lemma 4.3 The adjoint pairs above restrict to triangle equivalences 

Moreover the pair on the left is compatible with tensor products. 

Proof The equivalence on the left follows by the usual argument in Morita theory, 

given (4.3). The equivalence on the right is by the isomorphisms (4.2) for .I = m. 

'(

Composing the equivalences in Lemma 4.3 yields a triangle equivalence 

. ThickÂ(Â)
∼

−−→ ThickA(Â) .

It is easily verified that this is induced by the restriction functor . D(Â) → D(A)

arising from the natural map .A → Â of rings. 

Proof of Theorem 4.1 We may assume .(A,m, k) is a local ring and . p = m, so  

that .k(p) = k. Thus X is an .m-torsion A-complex. We recall that .D(A) is a tensor 

triangulated category, generated by its unit A, and so compact objects and dualisable 

objects in .D(A) coincide. This fact will be used throughout the proof. 

(1). ⇒(2): Let K be the Koszul complex on a generating set for the ideal . m. As  

X is dualisable the A-complex .K ⊗A X is compact, by Proposition 2.1, and so in 

.Thick(A). Hence the k-vector space .H(k ⊗L
A (K ⊗A X)) has finite rank. Since k is 

a field there are isomorphisms 

.H(k ⊗L
A (K ⊗A X)) ∼= H((k ⊗A K) ⊗k (k ⊗L

A X))

∼= H(k ⊗A K) ⊗k H(k ⊗L
A X) .
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Observe that .H(k ⊗A K) is nonzero. As the rank of .H(k ⊗L
A (K ⊗A X)) is finite, 

so is that of .H(k ⊗L
A X). 

(2). ⇒(3): Since k is .m-torsion, the natural map below is an isomorphism: 

. k ⊗L
A X

∼
−−→ k ⊗L

A LΛmX

The hypothesis and Proposition 4.2 imply that .LΛmX is in .Thick(Â). Lemma 4.3 

then yields that .R!mX is in .Thick(R!mA). It remains to recall that X is .m-torsion. 

(3). ⇒(1): As .R!mA is the unit of .R!mD(A), it is dualisable. It remains to note 

that the dualisable objects form a thick subcategory. 

The last part of the theorem follows from Proposition 4.2(3). '(

4.3 Balmer Spectrum 

Set .T := D(A) and fix a prime . p in .SpecA. The full subcategory .(!pT)d of 

dualisable objects in .!pT is an essentially small tensor triangulated category, with 

unit .R!p(Ap). The unit generates .!pT, in the sense of thick subcategories, so thick 

subcategories are tensor ideals; this follows from Theorem 4.1. 

We are interested in the lattice of thick subcategories of .(!pT)d, captured in the 

Balmer spectrum introduced in [2]. Given Theorem 4.1 and Lemma 4.3, one can 

describe the underlying topological space easily. 

Corollary 4.4 One has a homeomorphism .Spc (!pT)d ∼= Spec(Âp). 

Proof We can again assume A is local with maximal ideal . p. Given Theorem 4.1, 

the equivalence of categories on the left in Lemma 4.3 yields a homeomorphism 

. Spc (!pT)d ∼= SpcThickÂ(Â) .

It remains to recall the classification of the thick subcategories of perfect complexes 

of a commutative noetherian ring, due to Hopkins [17] and Neeman [23], 

interpreted in terms of the Balmer spectrum [2, Theorem 5.5]. '(

Remark 4.5 The (Zariski) spectrum of . ̂Ap can be wildly different from that of . Ap, 

though they have the same Krull dimension. We offer a few remarks to convey this 

point. Suppose A is local and .p = m, the maximal ideal of A. The completion map 

.A → Â induces a homeomorphism 

. Spec Â −→ SpecA .

This map is surjective as .A → Â is faithfully flat. Moreover .dimA = dim Â. Since 

.mÂ is the maximal ideal of . ̂A, there is a single point lying over the closed point . m

of .SpecA, namely, the closed point of .Spec Â. This shows that the Krull dimension 

of the fibres of the completion map is at most .dimA − 1.
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The fibres over other non-closed points can be highly non-trivial. This is so even 

over the generic points of .SpecA. It is easy to construct local domains such that the 

generic formal fibre has more than one point. Here is one example: Consider the 

local ring 

. A :=
Q[x, y](x,y)

(x2 − y2(y − 1))
.

Since .x2 − y2(y − 1) is irreducible in the ring .Q[x, y](x,y), the ring A is a domain. 

However that polynomial factors in the .(x, y)-adic completion . Q[|x, y|], so the  

completion of A is not a domain. 

Here is a more drastic scenario: Given any pair of integers .d, t with . 0 < t <

d − 2, Rotthaus [24] constructs a noetherian local domain A of Krull dimension d 
such that the formal fibre over the generic point of A has Krull dimension t . 

4.4 Reflexive Objects 

With A and . p as before, the Spanier–Whitehead dual of an object X in .!pD(A) is 

. DSW(X) = R!pRHomA(X,R!p(Ap)) .

Recall, from Sect. 2, that X is reflexive if the natural map .X → DSWDSW(X) is an 

isomorphism. Here is the connection between this notion and dualisability. 

Lemma 4.6 Let A be a commutative noetherian ring, . p a prime ideal in A, and fix 

X in .!pD(A). If  X is dualisable, it is reflexive; the converse holds when the local 
ring . Ap is regular and .H(X) is bounded. 

Proof The first part of the statement follows from Proposition 2.1. So it remains to 

prove that when . Ap is regular, .H(X) is bounded, and X is reflexive, it is dualisable. 

We can replace A by .Ap and assume it is a regular local ring, say with maximal 

ideal . m and residue field k. The Spanier–Whitehead duality on the category . !mD(A)

is the functor 

. DSW(X) := R!mRHomA(X,R!mA) ∼= R!mRHomA(X,A) .

Thus, keeping in mind Greenlees–May duality (4.1) one gets that 

.DSW ◦ DSW(X) ∼= R!mRHomA(R!mRHomA(X,A),A)

∼= R!mRHomA(RHomA(X,A),LΛmA)

∼= R!mLΛmRHomA(RHomA(X,A),A)

∼= R!mRHomA(RHomA(X,A),A) .
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Since A is regular, the A-module k has a finite free resolution, so the isomorphism 

.X
∼
−→ DSW ◦ DSW(X), which holds because X is reflexive, induces isomorphisms 

. k ⊗L
A X

∼
−−→ k ⊗L

A R!mRHomA(RHomA(X,A),A)

∼
−−→ RHomk(RHomk(k ⊗L

A X, k), k) .

In homology, this yields that the natural vector-space duality is an isomorphism: 

. H(k ⊗L
A X) ∼= Homk(Homk(H(k ⊗L

A X), k)) .

Hence .rankk H i(k ⊗L
A X) is finite for each i. As  A is regular, k is in .Thick(A), 

thus .H(X) bounded implies .H(k ⊗L
A X) is bounded as well. We deduce that 

.rankk H(k ⊗L
A X) is finite, so X is dualisable, by Theorem 4.1. '(

In the preceding result, the condition that .H(X) is bounded is required: When A 
is any local ring, .X :=

⊕
i 'iA is reflexive but not dualisable, for it is not compact. 

4.5 Strong Generation 

Let us return to the general framework of a compactly generated tensor triangulated 

category .(T,⊗,1). We are interested in the property that . Tc, the thick subcategory 

consisting of compact objects, has a strong generator, in the sense of Bondal and 

Van den Bergh [10]. Roughly speaking, an object .G ∈ T
c is a strong generator if 

there exists an integer d such that every compact object in . T can be built out of 

G using direct sums, retracts, and at most d extensions. This might be viewed as 

a regularity condition, for when A is a commutative noetherian ring the category 

of perfect A-complexes .D(A)c has a strong generator if and only if the global 

dimension of A is finite; see [25, Proposition 7.2.5]. 

A question that arises is this: If . Tc has a strong generator, does each category of 

local dualisable objects also have a strong generator? The motivation comes from 

the following result in commutative algebra; we recall that .Ap is regular precisely 

when the subcategory of compact objects in .D(Ap) has a strong generator. 

Corollary 4.7 Let A be a commutative noetherian ring and . p a prime ideal in 

A. When .Ap is regular, .R!p(Ap) is a strong generator for the subcategory of 

dualisable objects among the .p-local .p-torsion A-complexes. 

Proof We pass to the localisation at . p and assume A is a regular local ring, and 

hence of finite global dimension. Then . ̂A, the completion of A at its maximal ideal 

also has finite global dimension; see [11, Proposition 2.2.2]. Thus . ̂A is a strong 

generator for .ThickÂ(Â). It remains to recall that this category is triangle equivalent 

to the category of dualisable objects in .!pD(A), by Theorem 4.1 and Lemma 4.3.

'(
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5 Other Contexts 

In this section we discuss other examples of compactly generated tensor triangulated 

categories for which we have some information on the local dualisable objects. 

5.1 Noetherian Schemes 

Let . X be a separated noetherian scheme and . T the derived category of quasi-

coherent sheaves on . X, viewed as a tensor triangulated category in the usual way. 

For each .x ∈ X one can consider the dualisable objects in the subcategory . !xT ⊆ T

consisting of objects supported on . {x}. This category is described by Theorem 4.1, 

for by standard arguments it is the same as the dualisable objects in .!mD(OX,x), 

where .OX,x is the local ring at x and . m is its maximal ideal. Thus Corollary 4.4 and 

Remark 4.5 yield the following result. 

Corollary 5.1 The Balmer spectrum of .(!xT)d is homeomorphic to .Spec ÔX,x . '(

5.2 Modular Representations of Finite Groups 

Let k be a field of positive characteristic and G a finite group whose order is 

divisible by the characteristic of k. We write .StMod kG for the stable category of 

kG-modules, and .stmod kG for its full subcategory of finite dimensional modules. 

Then .StMod kG is a compactly generated triangulated category, with compact 

objects .stmod kG, and tensor product over k, with diagonal G-action, gives it a 

structure of a tensor triangulated category. The unit is k with trivial action and 

the function object is .Homk(−,−), again with the diagonal G-action. Moreover 

compact objects in .StMod kG are easily seen to be dualisable and hence one has an 

equality .(StMod kG)c = (StMod kG)d. 

The group cohomology ring .H ∗(G, k) is a finitely generated k-algebra. As in 

the case of the derived category of a commutative noetherian ring, one considers 

the subcategory .!p(StMod kG) of the (big) stable module category consisting of 

.p-local and .p-torsion modules. These are the minimal localising tensor ideals of 

.StModG, and so the lattice of localising tensor ideals in the stable module category 

is parameterised by subsets of .ProjH ∗(G, k), the homogenous prime ideals in 

.H ∗(G, k) not containing the maximal ideal .H!1(G, k). These results are proved 

in [6]; see also [8]. In [7] we prove the following analogue of Theorem 4.1; the case 

when . p is a closed point is also treated in the work of Carlson [12]. 

Theorem 5.2 Fix . p in .ProjH ∗(G, k). For each kG-module X in . !p(StMod kG)

the following conditions are equivalent: 

(1) X is dualisable in .!p(StMod kG);
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(2) The .H ∗(G, k)p-module .H ∗(G,C⊗k X)p is artinian for each finite dimensional 

kG-module C; 

(3) M is in .Thick(!p(StMod kG)). '(

Compare condition (2) above with the corresponding condition in Theorem 4.1. 

It is not hard to prove that the latter implies that the .Ap module .H(C ⊗L
A X) is 

artinian for each compact object (that is to say perfect complex) in . D(A); see [7]. But 

condition Theorem 4.1(2) is strictly stronger, for the residue field is not a compact 

object in .!pD(A) unless the local ring . Ap has finite global dimension. This suggests 

that there is a broader framework than that covered by Theorem 4.1 wherein one can 

get a handle on dualisable objects. 

5.3 The Stable Homotopy Category 

The last example we consider is the stable homotopy category of spectra. This is 

a rather more involved context than the ones discussed earlier, so the discussion is 

more telegraphic than before; we refer readers to [19] for details. 

Akin to the derived category of a commutative ring, the stable homotopy category 

is determined by its localisations at various prime numbers. Fix a prime number p, 

a positive integer n, and let . S be the homotopy category of p-local spectra. This is a 

tensor triangulated category with tensor identity the p-local sphere S. Let .K(n) be 

the Morava K-theory of level n at the prime p, and . K the category of .K(n)-local 

spectra. By [19, Theorem 7.5], this is a minimal localising subcategory of . S. Let  

.L̂ : S → K be the localisation functor. 

Theorem 5.3 Fix X in . K, and consider the following conditions: 

(1) X is dualisable in . K; 

(2) .K(n)∗(X) is finite; 

(3) X is in .Thick(L̂S). 

Then (1) and (2) are equivalent and are implied by (3). '(

Condition (3) is strictly stronger than (1) and (2): Hopkins constructed a .K(n)-

local spectrum Y in the case .n = 1 that is dualisable but not finitely built from . ̂LS. 

Set .E := Ê(1) and .T := ψa − 1 ∈ E0(E), where .ψa is the Adams psi-operation 

with a a topological generator for .1 + pZp. Provided p is odd, Y is the cofibre of 

the map .T 2 − p : E → E. The spectrum Y is dualisable but is not in the thick 

subcategory generated by the Picard group of invertible objects in . K, and hence not 

in .Thick(L̂S). For details, see [19, Section 15.1]. 
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