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Abstract We study dualisable objects in minimal subcategories of compactly
generated tensor triangulated categories, paying special attention to the derived
category of a commutative noetherian ring. A cohomological criterion for detecting
these local dualisable objects is established. Generalisations to other related contexts
are discussed.
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1 Introduction

Let T be arigidly compactly generated tensor triangulated category; in this work we
consider only the symmetric tensor categories. A central problem is to classify the
localising tensor ideals in J. Consider the lattice, with respect to inclusion, of such
subcategories. In many contexts, its structure is determined by the minimal elements
in the lattice. Often these minimal elements are parameterised by some topological
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space; for instance, the Balmer spectrum, or the spectrum of some commutative ring
acting on 7, in the sense of [5].

We are interested in the structure of a minimal subcategory, say 8. Minimality
implies that there are no proper localising tensor ideals in 8. In particular, there
are no proper thick tensor ideals in the subcategory of compact objects in 8.
Typically however, there are dualisable objects which are not compact. Thus there
is a collection of thick tensor ideals in the subcategory of dualisable objects in 8,
and one can get a handle on them by computing its spectrum.

This is what is done in this work for D(A), the derived category of a commutative
noetherian ring A. In that case the minimal localising subcategories are the
subcategories, I'yD(A), of the derived category consisting of the p-local and p-
torsion A-complexes, where p is a prime ideal in A. Our main result, which
reappears as Theorem 4.1, characterises dualisable objects in these categories.

Theorem For each X in I'yD(A) the following conditions are equivalent.

(1) X is dualisable in T'yD(A);
(2) rankg) H(k(p) ®Y X) is finite;
(3) X is in Thick(RTy(Ap)).

In the statement k(p) is the residue field of the local ring A, and RI'p (—) is the
local cohomology functor with respect to p; see Sect. 3. In contrast, an object X in
'y D(A) is compact precisely when length Ay H (X) is finite.

The dualisable objects in I'yD(A) form a thick subcategory, closed under tensor
products. Given this, and the equivalence of complete modules and torsion modules,
established by Dwyer and Greenlees [15], we deduce that the spectrum of the
category of dualisable objects identifies with the Zariski spectrum of the completion
of the local ring Ay at its maximal ideal; see Corollary 4.4. This suggests viewing
the passage from compact objects to dualisable objects in any compactly generated
tensor triangulated category as a completion process. Similar considerations imply
that when the ring Ay, is regular, the category of dualisable objects in I'yD(A) has a
strong generator; see Corollary 4.7 and the discussion surrounding it.

Here is an outline of the contents of this manuscript: Sect. 2 collects some
well-known, though not well-recorded, results and remarks on notions of smallness
and dualisability in general compactly generated tensor triangulated categories.
Sections 3 and 4 are about the derived category of a commutative noetherian ring,
culminating in the characterisation of local dualisable objects and some corollaries.
Section 5 contains a discussion of dualisable objects in other contexts, including
the stable homotopy category. In fact, the formulation of the theorem above and our
work reported here and in [7] is inspired by work of Hovey and Strickland [19] on
dualisable objects in the K (n)-local stable homotopy category.
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2 Dualisability

Though the focus of our work is on the derived category of a commutative ring, we
begin by recalling various notions of dualisability in general tensor triangulated
categories. Our basic references for this material are [18, Appendix A.2] and
[21, Chapter III]. While much of the discussion is valid for symmetric monoidal
categories, our examples are equipped with a compatible structure of a triangulated
category so we work in that context.

Let us fix a compactly generated tensor triangulated category (7, ®, 1), with
symmetric tensor product ® and unit 1; the latter need not be compact. The
tensor product commutes with arbitrary coproducts. As usual, T¢ denotes the full
subcategory of compact objects in 7.

Brown representability yields function objects Hom(X, Y) satisfying an adjunc-
tion isomorphism

Homg(X ® Y, Z) = Homg (X, Hom(Y, Z)) forall X,Y,Zin7T.
The construction implies that the functor Hom(Y, —) on T is exact; we will assume
that the functor Hom(—, Z) is also exact. The adjunction isomorphism above yields
natural isomorphisms
Hom(X ®Y, Z) = Hom(X, Hom(Y, Z)) .
The counit of the adjunction above plays a role in the sequel:
e:Hom(X,Y)®X — Y.
We will need the symmetric braiding in T that we denote:
y: XY S>Y®X.
One has also a natural map

v: Hom(X,Y)® Z — Hom(X,Y @ Z), 2.1)

obtained as the adjoint to the composition of maps
1®y e®1
Hom(X,Y)QRZRQX ——> Hom(X,Y)QRXQKZ — YR Z.
The Spanier—Whitehead dual of an object X is

DSVX := Hom(X, 1).
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The assignment X — D3V X is a contravariant functor T — 7. An object X in T is
said to be dualisable if for all Y in T the natural map

DVX®Y — Hom(X,Y),

obtained from (2.1) by setting Z = 1, is an isomorphism. We denote by T9 the full
subcategory of dualisable objects in 7.

The adjoint of the composite X ® DS¥X 5 DWX ® X 5 1 of the braiding
with the counit € gives the natural double duality map

p: X — DDV (X).

We say X is reflexive if this map is an isomorphism. Dualisable objects are
reflexive—this is part of the result below—but not conversely; see 3.2.

An object X in T is said to be functionally compact if for all set-indexed
collections of objects {Y;} the following natural map is an isomorphism:

@ﬂ{om(X, Y:)) — Hom(X, EB Y.

Observe that replacing the function object with Hom defines compactness.

The result below collects some useful observations concerning these notions; we
give the proofs because some of the arguments are rather delicate, and not easy to
find in the literature. We also invite the reader to verify these statements directly for
the derived category of a commutative noetherian ring.

Proposition 2.1 Let X be an object in T. The following statements hold.

(1) The object X is dualisable if and only if there is a map n: 1 — X @ DSVX
making the following diagram commute

1 —"1 v x®D"X

| 4

Hom(X, X) +— DX ® X

The vertical map on the left is the adjoint to the isomorphism 1 @ X — X.

(2) If X is dualisable so is DX and p: X — D5 DSV X is an isomorphism.

(3) Ifeither X or Z is dualisable, then the map (2.1) is an isomorphism.

(4) If X is dualisable and C € T is compact, then C ® X is compact.

(5) If X is dualisable it is functionally compact; the converse holds if T is generated
by a set of dualisable objects.

(6) If X is functionally compact and 1 is compact, then X is compact.

Proof (1) When X is dualisable, the map DSVX ® X — Hom(X, X) is an
isomorphism, and we can use its inverse to get a map n: 1 — X ® DSVX, and
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this fits into the commutative diagram as desired. Conversely, given such an n a
diagram chase shows that the composite

~ 1
Hom(X, Y) = Hom(X,Y) @ 1 —2% Hom(X.Y)® X @ DV X
Bl yepVx L DVX oY

is the inverse of the map DSVX ® Y — Hom(X, Y).
(2) Givenn: 1 — X ® DV X as in (1), the composite

1
15 x@DVXx 225 DYDVX ® DVX X DX ® DYV DM X

plays the role of n for D3V X, so again using (1), DSV X is dualisable. A diagram
chase shows that an inverse for p: X — D3V DSV X is given by the composite

DYVDVX = 1@ DDV XL x 9 DVX ® DVDV X
1 ~
S X DVDVX®DVX & xel S X.

(3) If X is dualisable, then an inverse for v is given by the composite

Hom(X,Y ® Z) <> Hom(X,Y @ Z) @ 1 ~5 Hom(X,Y ® Z) ® X ® DV X

By ez DXL DVXeY®Z 2Eh Hom(X.Y)® Z.

If Z is dualisable then using (2) we have a commutative diagram

Hom(X,Y)® Z ————— Hom(X,Y ® Z)

1®p |2 (1®p)x

~

Hom(X,Y)® DVDWVZ —— Hom(X,Y ® DSV DV Z)

~

V] Vx|
DSVDSVZ @ Hom(X,Y) Hom(X, DSVDSVZ ®Y)
Ve Vx | ¢
Hom(D3V Z, Hom(X,Y)) Hom(X, Hom(DSVZ,Y))

¢ 2

~ ~

Hom(DVZ ® X, Y) +> Hom(X ® DSV Z,Y)
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The vertical maps are all isomorphisms, as is the bottom horizontal map, and
therefore so is the top horizontal map.
(4) This follows from the isomorphisms of functors

Homy(C ® X, —) = Homa(C, Hom(X, —)) = Homy(C, DV X ® —).
(5) For any set of objects {Y;} there is a commutative diagram

P, DVXQY, —— DVX D, Y,

| |

P, Hom(X,Y;) —— Hom(X, P, Y;)

When X is dualisable, the two vertical maps are isomorphisms and hence so is the
lower horizontal map, and hence X is functionally compact.

Conversely, suppose X is functionally compact. Then the lower horizontal map
in the diagram above is an isomorphism, and so it follows that the collection of
objects Y for which the map DSVX ® Y — Hom(X, Y) is an isomorphism form a
localising subcategory of J. By (3), it contains the dualisable objects, so when T is
generated by such objects, we deduce that X is dualisable.

(6) Apply Homg (1, —) to the isomorphism defining functional compactness.

O

We collect some sundry consequences of the preceding result, for later use.

Remark 2.2 Let (7, ®, 1) be a compactly generated tensor triangulated category.
Proposition 2.1 implies that when 1 is compact any dualisable object is compact.
The inclusion T4 € T¢ may be strict; see 3.2.

The subcategory 79 is thick, and closed under tensor products, function objects,
and hence also under Spanier—Whitehead duality. On the other hand, the compact
objects in J form a thick subcategory, but may not be closed under tensor products
or Spanier—Whitehead duality; see 3.2. Thus when compact objects and dualisable
objects coincide, T is a tensor triangulated subcategory of T, with unit 1 and the
same function objects.

The condition that ¢ = J9 is equivalent to T having a set of generators that
are both compact and dualisable. Hovey et al. [18] call such a category a unital
algebraic stable homotopy category; Balmer and Favi [3] use the term rigidly
compactly generated category.

3 Commutative Noetherian Rings

Next we describe the compactly generated tensor triangulated categories that are the
focus of this work. Throughout A is a commutative noetherian ring. We write D(A)
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for the derived category of A and DP(mod A) for the subcategory consisting of A-
complexes M such that the A-module H(M) := @; H' (M) is finitely generated.

3.1 The derived category of A is a compactly generated triangulated category, with
compact objects the perfect complexes, namely, those that are isomorphic in D(A)
to bounded complexes of finitely generated projective A-modules; equivalently, the
objects in Thick(A). See, for instance, [22, §9.2]. One has that

Thick(A) € DP(mod A) ;

equality holds if and only if A is regular, that is to say, for each p € Spec A, the local
ring Ay, is regular. This is just a reinterpretation of the classical characterisation, due
to Auslander et al. [11, Theorem 2.2.7], of regular local rings as the local rings
of finite global dimension, along with the observation, due to Bass and Murthy
that, for objects in D(R), finite projective dimension can be tested locally; see [1,
Theorem 4.1].

The derived tensor product, — ®k — endows D(A) with a structure of a tensor
triangulated category with unit A and function object RHom 4 (—, —). The unit A
generates D(A), and is compact and dualisable, so compact objects and dualisable
objects coincide.

As to the reflexive objects in D(A): For an object X in D°(mod A) the natural
map X — D3VDSVX is an isomorphism if and only if X has finite Gorenstein
dimension [13, Theorem 2.4.7]. Such an X is not necessarily compact. Indeed,
when A is Gorenstein any X in DP(mod A) has finite Gorenstein dimension, but
Thick(A) = D°(mod A) if and only if A is regular.

3.1 Local Cohomology and Localisation

Fix a prime ideal p in A. An A-complex X in D(A) is p-local if the natural map
X — Xj is an isomorphism in D(A). Since localisation is an exact functor, this
conditions is equivalently to the condition that the map H(X) — H(X), of A-
modules is bijective.

An A-complex X is p-torsion if Xq = 0in D(A) for each q 2 p. Once again, it is
clear that X is p-torsion if and only H (X) is p-torsion; equivalently, each A-module
H'(X) is p-torsion. An A-module is p-torsion precisely when, for each x € M there
exists an integer s > 0 such that p* - x = 0; this explains the terminology.

It is straightforward to check that the class of p-torsion A-complexes is a
localising subcategory of D(A). Its inclusion into D(A) admits a right adjoint,
RT', (—), the classical local cohomology functor with respect to the (Zariski) closed
subset of Spec A defined by p; see [11, §3.5], and also [4, §9].
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We are interested in the class of p-local p-torsion objects, namely, the subcate-
gory

IpD(A) := {X € D(A) | RTp(X,) = X}. 3.1)

This is a localising tensor ideal in D(A), and even minimal, in that the only
localising subcategory properly contained in I'yD(A) is 0, by [23, Theorem 2.8].
Said otherwise, D(A) is stratified by the A action on D(A), in the sense of [5]. This
has the consequence that localising subcategories of D(A) are in bijection with the
subsets of Spec(A). One can thus view the categories I'yD(A) as the building blocks
of the triangulated category D(A). And so it is of interest to investigate the objects
in it. This is what we do in Sect. 4.

To wrap up this section, we give an example of a compactly generated tensor
triangulated category where the unit is compact, so dualisable objects are compact,
but not every compact object is dualisable. It also has the feature that the tensor
product of compact objects is not always compact.

3.2 Let A be a commutative noetherian ring and K(Proj A) the homotopy category
of complexes of projective A-modules. This is a compactly generated triangulated
category, with a triangle equivalence

D°(mod A)® =5 K(Proj A)¢

given by the assignment M — (pM)*, where pM is a projective resolution of M
and (—)* := Homu(—, A); see [20].

We endow K(Proj A) with a structure of a tensor triangulated category with
tensor product the usual tensor product over A. The unit for this tensor product
is A. By Brown representability, the inclusion K(Proj A) — K(Mod A) has a right
adjoint q: K(Mod A) — K(Proj A). It is easy to verify that q preserves function
objects. Thus

Hom(X,Y) = qHoma(X,Y) (X,Y € K(Proj A)).

Evidently A is compact, so dualisable objects in K(Proj A) are compact.
We claim that the subcategory of dualisable objects in K(Proj A) is precisely
Thick(A), the bounded complexes of finitely generated projective modules.
Indeed, fix a dualisable object; since it is compact we can assume it is of the form
(pM)*, for some M in D" (mod A). Moreover since A is noetherian, we can assume
pM consists of finitely generated projective A-modules, and that (pM)’ = 0 for
i > 0. Then the Spanier—Whitehead dual of (pM)* is

Hom((pM)*, A) = qHoma((pM)*, A) = q(pM) = pM

where the second isomorphism holds because of the structure of pM and the last
one holds because pM is already in K(Proj A). In particular pM is also dualisable,
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being the Spanier—Whitehead dual of a dualisable object. But then it is also compact.
Observe that pM is in Loc(A), so compactness implies that it is in Thick(A). It
remains to observe that then so is (pM)*.

Suppose now that A is singular; this condition is equivalent to the existence
of finitely generated A-modules of infinite projective dimension. Then for any M
in D°(mod A) of infinite projective dimension the complex (pM)* is compact in
K(Proj A) but it is not dualisable. Moreover the Spanier—Whitehead dual of the
compact object (pM)* is pM and this will not be compact, by the argument above.

For M, N in DP(mod A) the natural map is an isomorphism:

(PM)* @4 (PN)* — Homyu (pM, (pN)™).

In particular the cohomology of the object on the left is Ext4 (M, RHom4 (N, A)).
When A is singular and Gorenstein the cohomology of any compact object in
K(Proj A) is bounded. However one can find M, N such that the cohomology of
(PM)* ®4 (pN)* is not bounded, so the tensor product will not be compact.

4 Local Dualisable Objects in D(A)

Let A be a commutative noetherian ring and D(A) the derived category of A-
modules, with the usual structure of a tensor triangulated category; see 3.1. As noted
there, the dualisable objects and compact objects in D(A) coincide, and are precisely
the perfect complexes in D(A). In this section we focus on the dualisable objects in
I'pD(A), the category of p-local and p-torsion objects in D(A), for p a prime ideal
in A; see (3.1).

Fix a prime ideal p. It is straightforward to verify that when X and Y are p-local
and p-torsion, so is X ®IA Y that is to say, the triangulated category I'yD(A) inherits
a tensor product from D(A). With this tensor product I'yD(A) is tensor triangulated,
with unit RI'y A, and function object

Hom(X, Y) := R[,R Hom4(X, Y).

The thick subcategory of compact objects in I'yD(A) has a simple structure, in that
it is minimal. The unit RI", (Ay) is compact only when p is a minimal prime ideal
in A. So, typically, there are more dualisable than compact objects in I'yD(A).

Here is a characterisation of the dualisable objects in this category, in terms of
their cohomology. We write k(p) for Ay /pAy, the residue field of the local ring A
and X for the suspension, or shift, functor in a triangulated category.

Theorem 4.1 Let A be a commutative noetherian ring and p a prime ideal in A. For
each p-local and p-torsion A-complex X the following conditions are equivalent.

(1) X is dualisable in T'yD(A).
(2) rankg) H(k(p) ®Y X) is finite.
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(3) X isin Thick(RI'y(Ap)).
If moreover ranky ) H (k(p) ®]/; X) =1, then X = X°RT'y (Ay) for some integer s.

As will be clear from the proof, the implications (1)=(2) and (3)=(1) are
elementary to verify. The implication (2)=>(3) is the non-trivial one, and its proof
takes most of the work in this section; it makes critical use of derived completions.
There is a simpler proof when the ring A, has finite global dimension; see [7].

4.1 Derived Completions

Given an ideal I in A and an A-module M, the I-adic completion of M is the inverse
limit

ATM = 1lim(--- > M/ "M - M/I'"M — - — M/IM),
n

where the surjections are the natural ones. The canonical maps M — M/I"M
induce amap M — A M; when this is bijective we say M is classically I-complete.

Given an A-complex M we write LA'M for the left derived functor of the
completion; see [16]. This comes equipped with a morphism M — LA’ M in D(A),
and the complex M is said to be /-complete when this map is a quasi-isomorphism.
A complex M is I-complete if and only if H' (M) is I-complete for each i. A caveat:
classically complete A-modules are complete, but the converse does not hold; see
[16, Example 1.4] and also [9, Example 2.4].

When M is an A-module, there is natural surjective map HO(LA' M) — A’ M.
This is an isomorphism when M is a finitely generated, and then H* (LA’ M) = 0
for i > 1, that is to say, there is an isomorphism LA'M = A'M in D(A) for any
finitely generated A-module M. In particular, LA’A = A’ A; this observation is
used implicitly in the sequel.

The derived local cohomology functor RI'; and the derived /-adic completion
functor LA form an adjoint pair:

RI';
D(4) T D(4).
LAT 4.1)

This is the Greenlees—May duality. It restricts to an equivalence between the /-
torsion and /-complete complexes, and so one has natural isomorphisms

RIUM = RI;LA'M and LA'RD;M ZLA'M. (4.2)
For a proof of these results, and for a different perspective on completions, as a

localisation, see [15], and also [14, Tag091N].
The result below is a crucial step in the proof of Theorem 4.1.
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Proposit}i\on 4.2 Let A be a local ring with maximal ideal m and residue field k,
and let A be the m-adic completion of A. The following statements hold for any
object X € D(A) that is m-complete.

() If H(k ®IA X) is bounded, then the natural map
X — kb x

induced by the surjection A — k, is nonzero in hg\mology.
(2) Ifrank H(k ®Y X) is finite, then X is in Thick(A).
(3) IfH(k ®IA X) = X%k for some integer s, then X = X' A.

Proof (1) Since X is m-complete so is H"(X) for each n. Thus, if m - H"(X) =
H"(X), then H"(X) = 0; see [26, 1.4], and also [14, Tag09b9]. Given this
observation, the hypothesis that H (k ®I/; X) is bounded implies H (X) is bounded;
this can be checked via a standard devissage argument using H (K Qg M), where K
is the Koszul complex of R. Seti = inf{n | H"(X) # 0}. Then the composed map

H'(X) — H (k®Y% X) Zk®s H (X) = H' (X)/mH (X),

where the first isomorphism holds because the tensor product is right exact, is the
obvious surjection and the target is nonzero. This justifies the claim.

(2) We verify this by an induction on the integer r := rank; H (k ®IA X). The
base case is » = 0. Then k ®IA X = 0in D(A), that is to say, m is not in supp4 X.
Thus RI'p, X = 0. It remains to note that

XELA"X ZELA™RIL X =0,

where the second isomorphism is from (4.2).

Suppose r > 1. Since Homp(4)(Z'A, —) = H~(—), part (1) is equivalent to
the existence of a map XA — X in D(A) such that the induced map Xk —
H (k ¢ ®II; X) is nonzero. Since X is m-complete, the map ¥*A — X factors through
>*A — X and this fits into an exact triangle

TA—>X—Y — .
Evidently rank; H (k ®IA Y) = r — 1, so the induction hypothesis yields that Y is in

Thick(;f), and hence so is X. R
(3) When r = 1, the argument above yields that ¥*A = X, as desired. O
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4.2 A Derived Morita Equivalence

Let A be a local ring with maximal ideal m. It helps to consider another adjoint pair:
The map A — RHomy4 (R, A, RI'y, A) induces, by (4.2), a quasi-isomorphism

A —> RHom4(R['mA, R[ A) (4.3)
so derived Morita theory yields adjoint functors
RI, AQ% —

D(A) D(A).
RHomg (RN A,—)

The functors introduced above give alternative descriptions of the category we are
interested in, namely, the thick subcategory generated by RI", A.

Lemma 4.3 The adjoint pairs above restrict to triangle equivalences

N Rl A®%— Rl ~
Thick 7(A) Thick 4 (RT'w A) Thick4(A).
RHom4 (RI'm A,—) LA™

Moreover the pair on the left is compatible with tensor products.

Proof The equivalence on the left follows by the usual argument in Morita theory,
given (4.3). The equivalence on the right is by the isomorphisms (4.2) for / = m.
O

Composing the equivalences in Lemma 4.3 yields a triangle equivalence
Thick;(A) = Thick (A).

It is easily verified that this is indg\ced by the restriction functor D(A\) — D(A)
arising from the natural map A — A of rings.

Proof of Theorem 4.1 We may assume (A, m, k) is a local ring and p = m, so
that k(p) = k. Thus X is an m-torsion A-complex. We recall that D(A) is a tensor
triangulated category, generated by its unit A, and so compact objects and dualisable
objects in D(A) coincide. This fact will be used throughout the proof.

(1)=(2): Let K be the Koszul complex on a generating set for the ideal m. As
X is dualisable the A-complex K ®4 X is compact, by Proposition 2.1, and so in
Thick(A). Hence the k-vector space H (k ®II; (K ®4 X)) has finite rank. Since & is
a field there are isomorphisms

Hk @Y% (K ®4 X)) = H((k Q4 K) & (k®% X))
= H(k ®a K) @ H(k @4 X).
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Observe that H (k ® 4 K) is nonzero. As the rank of H (k ®IA (K ®4 X)) is finite,
so is that of H (k ®If; X).
(2)=(3): Since k is m-torsion, the natural map below is an isomorphism:

ko X = ke La™x

The hypothesis and Proposition 4.2 imply that LA™ X is in Thick(A). Lemma 4.3
then yields that RI", X is in Thick(RI'y, A). It remains to recall that X is m-torsion.
(3)=(1): As RI'1 A is the unit of RI";,D(A), it is dualisable. It remains to note
that the dualisable objects form a thick subcategory.
The last part of the theorem follows from Proposition 4.2(3). O

4.3 Balmer Spectrum

Set T := D(A) and fix a prime p in Spec A. The full subcategory (Fp‘J')d of
dualisable objects in I'p T is an essentially small tensor triangulated category, with
unit RI"y (Ap). The unit generates I', 7, in the sense of thick subcategories, so thick
subcategories are tensor ideals; this follows from Theorem 4.1.

We are interested in the lattice of thick subcategories of (Fp‘Dd, captured in the
Balmer spectrum introduced in [2]. Given Theorem 4.1 and Lemma 4.3, one can
describe the underlying topological space easily.

Corollary 4.4 One has a homeomorphism Spc (I'y T)d = Spec(Z p)-

Proof We can again assume A is local with maximal ideal p. Given Theorem 4.1,
the equivalence of categories on the left in Lemma 4.3 yields a homeomorphism

Spc (MpT)? = Spc Thick;(A) .

It remains to recall the classification of the thick subcategories of perfect complexes
of a commutative noetherian ring, due to Hopkins [17] and Neeman [23],
interpreted in terms of the Balmer spectrum [2, Theorem 5.5]. O

Remark 4.5 The (Zariski) spectrum of A, p can be wildly different from that of Ay,
though they have the same Krull dimension. We offer a few remarks to convey this
point. Suppose A is local and p = m, the maximal ideal of A. The completion map
A — A induces a homeomorphism

Spec A —> SpecA.

This map is surjective as A — Ais faithfully flat. Moreover dim A = dim A. Since
mA is the maximal ideal of A, there is a single point lying over the closed point m
of Spec A, namely, the closed point of Spec A. This shows that the Krull dimension
of the fibres of the completion map is at most dim A — 1.
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The fibres over other non-closed points can be highly non-trivial. This is so even
over the generic points of Spec A. It is easy to construct local domains such that the
generic formal fibre has more than one point. Here is one example: Consider the
local ring

N Q[X, }’](x,y)
2=y -1

Since x> — y2(y — 1) is irreducible in the ring Q[x, ¥l(x,y), the ring A is a domain.
However that polynomial factors in the (x, y)-adic completion Q[x, y[l, so the
completion of A is not a domain.

Here is a more drastic scenario: Given any pair of integers d,t with 0 < ¢ <
d — 2, Rotthaus [24] constructs a noetherian local domain A of Krull dimension d
such that the formal fibre over the generic point of A has Krull dimension ¢.

4.4 Reflexive Objects

With A and p as before, the Spanier—Whitehead dual of an object X in I'yD(A) is
D™ (X) = RT'yRHomy (X, R['L(Ap)) .
Recall, from Sect. 2, that X is reflexive if the natural map X — DSV D3V (X) is an

isomorphism. Here is the connection between this notion and dualisability.

Lemma 4.6 Let A be a commutative noetherian ring, p a prime ideal in A, and fix
X in T'yD(A). If X is dualisable, it is reflexive; the converse holds when the local
ring Ay is regular and H (X) is bounded.

Proof The first part of the statement follows from Proposition 2.1. So it remains to
prove that when Ay is regular, H (X) is bounded, and X is reflexive, it is dualisable.

We can replace A by Ay and assume it is a regular local ring, say with maximal
ideal m and residue field k. The Spanier—Whitehead duality on the category ', D(A)
is the functor

D3V (X) := RI'yRHom4 (X, R[N A) = R RHom4 (X, A).
Thus, keeping in mind Greenlees—May duality (4.1) one gets that

DSV o DSV (X) = Ry R Hom 4 (RT R Hom 4 (X, A), A)
= RI'myRHoms (RHomy (X, A), LA™A)
= RI'yLA™R Hom4 (RHomy (X, A), A)
= RI'mRHom s (RHomu (X, A), A).
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Since A is regular, the A-module k has a finite free resolution, so the isomorphism
X = DSV o DSV(X), which holds because X is reflexive, induces isomorphisms

k®% X =5 k ®% R[nRHom4(RHom (X, A), A)
> R Homy (R Homy (k ®% X, k), k) .

In homology, this yields that the natural vector-space duality is an isomorphism:
H (k ®% X) = Hom (Homy (H (k ®% X), k)) .

Hence rank; H' (k ®IA X) is finite for each i. As A is regular, k is in Thick(A),
thus H(X) bounded implies H (k ®If; X) is bounded as well. We deduce that
ranky H (k ®IA X) is finite, so X is dualisable, by Theorem 4.1. O

In the preceding result, the condition that H (X) is bounded is required: When A
is any local ring, X := €D, X' A is reflexive but not dualisable, for it is not compact.

4.5 Strong Generation

Let us return to the general framework of a compactly generated tensor triangulated
category (7, ®, 1). We are interested in the property that T¢, the thick subcategory
consisting of compact objects, has a strong generator, in the sense of Bondal and
Van den Bergh [10]. Roughly speaking, an object G € T is a strong generator if
there exists an integer d such that every compact object in T can be built out of
G using direct sums, retracts, and at most d extensions. This might be viewed as
a regularity condition, for when A is a commutative noetherian ring the category
of perfect A-complexes D(A)® has a strong generator if and only if the global
dimension of A is finite; see [25, Proposition 7.2.5].

A question that arises is this: If T¢ has a strong generator, does each category of
local dualisable objects also have a strong generator? The motivation comes from
the following result in commutative algebra; we recall that Ay is regular precisely
when the subcategory of compact objects in D(Ay) has a strong generator.

Corollary 4.7 Let A be a commutative noetherian ring and p a prime ideal in
A. When Ay is regular, RI'z(Ay) is a strong generator for the subcategory of
dualisable objects among the p-local p-torsion A-complexes.

Proof We pass to the localisation at p and assume A is a regular local ring, and
hence of finite global dimension. Then A, the completion of A at its maximal ideal
also has finite global dimension; see [11, Proposition 2.2.2]. Thus Ais a strong
generator for Thick ;(X). It remains to recall that this category is triangle equivalent
to the category of dualisable objects in I'yD(A), by Theorem 4.1 and Lemma 4.3.
O
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5 Other Contexts

In this section we discuss other examples of compactly generated tensor triangulated
categories for which we have some information on the local dualisable objects.

5.1 Noetherian Schemes

Let X be a separated noetherian scheme and 7T the derived category of quasi-
coherent sheaves on X, viewed as a tensor triangulated category in the usual way.
For each x € X one can consider the dualisable objects in the subcategory I'yJ € T
consisting of objects supported on {x}. This category is described by Theorem 4.1,
for by standard arguments it is the same as the dualisable objects in I'y D(Ox ),
where Ox  is the local ring at x and m is its maximal ideal. Thus Corollary 4.4 and
Remark 4.5 yield the following result.

Corollary 5.1 The Balmer spectrum of (FX“Dd is homeomorphic to Spec Gx, v O

5.2 Modular Representations of Finite Groups

Let k be a field of positive characteristic and G a finite group whose order is
divisible by the characteristic of k. We write StMod kG for the stable category of
kG-modules, and stmod kG for its full subcategory of finite dimensional modules.
Then StMod kG is a compactly generated triangulated category, with compact
objects stmod kG, and tensor product over k, with diagonal G-action, gives it a
structure of a tensor triangulated category. The unit is & with trivial action and
the function object is Homy(—, —), again with the diagonal G-action. Moreover
compact objects in StMod kG are easily seen to be dualisable and hence one has an
equality (StMod kG)© = (StMod kG)?.

The group cohomology ring H*(G, k) is a finitely generated k-algebra. As in
the case of the derived category of a commutative noetherian ring, one considers
the subcategory I'p (StMod kG) of the (big) stable module category consisting of
p-local and p-torsion modules. These are the minimal localising tensor ideals of
StMod G, and so the lattice of localising tensor ideals in the stable module category
is parameterised by subsets of Proj H*(G, k), the homogenous prime ideals in
H*(G, k) not containing the maximal ideal H Z21(G, k). These results are proved
in [6]; see also [8]. In [7] we prove the following analogue of Theorem 4.1; the case
when p is a closed point is also treated in the work of Carlson [12].

Theorem 5.2 Fix p in Proj H*(G, k). For each kG-module X in I'p(StMod kG)
the following conditions are equivalent:

(1) X is dualisable in "y, (StMod kG);
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(2) The H*(G, k)p-module H*(G, C @k X)y is artinian for each finite dimensional
kG-module C;
(3) M is in Thick(I'p (StMod kG)). O

Compare condition (2) above with the corresponding condition in Theorem 4.1.
It is not hard to prove that the latter implies that the A, module H(C ®If; X) is
artinian for each compact object (that is to say perfect complex) in D(A); see [7]. But
condition Theorem 4.1(2) is strictly stronger, for the residue field is not a compact
objectin I'yD(A) unless the local ring A, has finite global dimension. This suggests
that there is a broader framework than that covered by Theorem 4.1 wherein one can
get a handle on dualisable objects.

5.3 The Stable Homotopy Category

The last example we consider is the stable homotopy category of spectra. This is
a rather more involved context than the ones discussed earlier, so the discussion is
more telegraphic than before; we refer readers to [19] for details.

Akin to the derived category of a commutative ring, the stable homotopy category
is determined by its localisations at various prime numbers. Fix a prime number p,
a positive integer n, and let 8 be the homotopy category of p-local spectra. This is a
tensor triangulated category with tensor identity the p-local sphere S. Let K (n) be
the Morava K -theory of level n at the prime p, and X the category of K (n)-local
spectra. By [19, Theorem 7.5], this is a minimal localising subcategory of 8. Let
L: 8 = X be the localisation functor.

Theorem 5.3 Fix X in X, and consider the following conditions:

(1) X is dualisable in X;
(2) K(n)«(X) is finite;
(3) X isin Thick(LS).

Then (1) and (2) are equivalent and are implied by (3). |

Condition (3) is strictly stronger than (1) and (2): Hopkins constructed a K (n)-
local spectrum Y in the case n = 1 that is dualisable but not finitely built from LS.
Set £ := E(T) and T := y* — 1 € E°(E), where y¢ is the Adams psi-operation
with a a topological generator for 1 + pZ,. Provided p is odd, Y is the cofibre of
the map 7> — p: E — E. The spectrum Y is dualisable but is not in the thick
subcategory generated by the Picard group of invertible objects in K, and hence not
in Thick(ZS). For details, see [19, Section 15.1].
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