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Abstract

We define a congruence module W4 (M) associated to a surjective O-algebra mor-
phism A: A — O, with O a discrete valuation ring, A a complete noetherian local
(0-algebra regular at p, the kernel of A, and M a finitely generated A-module. We es-
tablish a numerical criterion for M to have a free direct summand over A of positive
rank. It is in terms of the lengths of W (M) and the torsion part of p/p>. It generalizes
results of Wiles, Lenstra, and Diamond, that deal with the case when the codimen-
sion of p is zero. Number theoretic applications include integral (non-minimal) R =T
theorems in situations of positive defect conditional on certain standard conjectures.
Here R is a deformation ring parametrizing certain Galois representations and T is a
Hecke algebra. An example of a positive defect situation is that of proving modularity
lifting for 2-dimensional ¢-adic Galois representations over an imaginary quadratic
field. The proofs combine our commutative algebra results with a generalization due
to Calegari and Geraghty of the patching method of Wiles and Taylor—Wiles and level
raising arguments that go back to Ribet. The results provide new evidence in favor
of the intriguing, and as yet fledgling, torsion analog of the classical Langlands cor-
respondence. We also prove unconditional integral R = T results for Hecke algebras
T acting on weight one cohomology of Shimura curves over Q. This leads to a tor-
sion Jacquet-Langlands correspondence comparing integral Hecke algebras acting
on weight one cohomology of Shimura curves and modular curves. In this case the
cohomology has abundant torsion and so our correspondence cannot be deduced by
means of the classical Jacquet—Langlands correspondence.
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1 Introduction

The raison d’etre of this paper is to develop new commutative algebra inspired by
number theoretic applications. The main contribution of our work is a generalization
of the theory of congruence modules and the numerical criteria of Wiles, Lenstra, and
Diamond to higher codimension. As a demonstration of the utility of our work, we
prove new (integral) R = T theorems at non-minimal level in certain positive defect
situations that arise, for instance, when proving modularity of elliptic curves over
imaginary quadratic fields. We also prove unconditional (integral) R = T theorems at
non-minimal level when T is a Hecke algebra acting on the weight one cohomology
of Shimura curves. This also gives instances of an analog of the Jacquet-Langlands
correspondence that relates torsion in cohomology arising from weight one sheaves
on Shimura curves and modular curves.

Another motivation for our work is to define congruence modules attached to aug-
mentations of (big) ordinary deformation rings arising from cohomological cuspidal
automorphic representations. These number-theoretic applications provided the intu-
ition that guided us to our commutative algebra results.

To set the stage to present our work, we fix a prime number £, and O the ring of
integers of a finite extension of QQ; with residue field k uniformizer . We consider
the category CNL» of complete noetherian local O-algebras with residue field &,
with morphisms the maps of local (J-algebras inducing the identity on k.

The patching method introduced in the work of Wiles [56] and Taylor—Wiles [52]
on modularity lifting theorems, and instrumental in Wiles’ proof of Fermat’s Theo-
rem, has undergone intense development. In the original approach of Wiles, patching
was combined with level raising results, and a numerical criterion [56, Appendix,
Proposition], extended by Lenstra [41], for a surjective map between rings R — T,
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Congruence modules in higher codimensions

with T finite flat over O, to be an isomorphism of complete intersections. In appli-
cations in [56], the ring R is a deformation ring for Galois representations and T
is a Hecke algebra. Diamond [23, Theorem 2.4] developed the results of Wiles and
Lenstra by proving a numerical criterion for freeness of R-modules M finite flat over
O, in terms of an augmentation A: R — O supported on M, that is to say, My # 0
for p the kernel of A. The work of Wiles and Lenstra corresponds to the case when M
is a cyclic A-module. Diamond’s criterion is in terms of the cotangent module p/p>
of A, assumed to be a finite abelian group, and the congruence module for M at A,
defined to be:

M
M([p] ® M[annp]’

In [23, §3], Diamond applies this in the case where R is a suitable deformation ring,
actingon M :=H[(Xo(N), O)y, with m a maximal ideal corresponding to the Galois
representation p,,, whose deformations are parametrized by R. The action of R on M
factors through the corresponding Hecke algebra T. Thus if M is free over R, the
map R — T is injective, and hence an isomorphism. In this way Diamond recovers
the results of [56].

The patching method has been extended by Calegari and Geraghty [17] to situ-
ations of positive defect in which one patches complexes rather than modules: this
is the situation one finds oneself in when proving modularity of elliptic curves over
number fields which are not totally real, such as imaginary quadratic fields.

The positive defect case presents a number of additional complications compared
to the situation of Wiles, which have prevented the numerical criterion from being
generalized in the same way as the patching method. First, the rings R and T are no
longer expected to be complete intersections in general. Secondly, they will typically
have torsion, in contrast to the defect zero case where R and T are expected to be fi-
nite flat over O. in the positive defect case. Moreover, the torsion plays an important
role in the theory (and a careful understanding of the torsion is necessary for gener-
alizing the patching method). This is an issue as the numerical criterion cannot easily
account for torsion in T or M. To make things even more complicated, R and T can
be entirely torsion which would mean that the map A: R — O used in the numerical
criterion may not even exist. Lastly, replacing the module M with a complex makes
it somewhat unclear how to correctly generalize Diamond’s criterion.

The main contribution of our work is to give a generalization of the numerical
criterion to the positive defect case. The key idea is to combine the numerical cri-
terion with patching by applying the numerical criterion directly to the patched ob-
jects rather than to the rings R and T. This sidesteps the issues raised above, as the
patched version, R, of the ring R will automatically be a complete intersection
and flat over O, and the patched version, M, of the complex will be a (maximal
Cohen—-Macaulay) R..-module rather than a complex.

The complication that arises in this approach is that Ker(R,, — O) is no longer
be a minimal prime of R, and M is no longer be finite over O. We thus consider a
larger families of rings R in CNL than those discussed above, placing no restrictions
on the height (also known as codimension) of Ker(R — O), and requiring only that
M is finitely generated and has sufficient depth. For such R and M, we establish
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a criterion for M to have a non-zero finite free summand and R to be a complete
intersection. Applying this to the patched objects R, and M,, we show that M,
has a free direct summand, which in turn implies that the ring R acts faithfully on the
original complex, giving R = T. We elaborate on this later.

The proof of the new numerical criterion takes up the first part of this paper, and
involves only commutative algebra. This is applied in the third part to prove modu-
larity lifting theorems. The second part of the paper establishes a result concerning
the compatibility of patching and duality.

In the remainder of the introduction we present the results in commutative algebra
and modularity lifting in greater detail, and explain how they fit in the line of devel-
opment of modularity lifting theorems pioneered by Wiles, and continued in the work
of Taylor—Wiles, Diamond, Kisin, and Calegari—Geraghty.

Commutative algebra results Consider pairs (A, 1), with A a complete local noethe-
rian O-algebra and A: A — O a surjective map of O-algebras with kernel p4; we
treat a somewhat larger class of rings in the text. The category consisting of pairs
(A, 1) for which the local ring Ay, is regular, of dimension c, is denoted Co(c). The
regularity hypothesis is tantamount to the condition that the conormal module p 4/ pi
of A, viewed as an O-module, has rank equal to dim Ay ,, the Krull dimension of
Ay, . In what follows its torsion-submodule

Dy i=tors (pa/pl),

also plays a key role. Here tors(U) denotes the torsion-submodule of any finitely
generated O-module U. We also need to consider the torsion-free quotient of U,
namely U := U/ tors(U).

For any finitely generated A-module M the natural map M — M /p s M induces
a map

Ext§, (O, M) — Ext§ (O, M/paM)"

of finitely generated torsion-free O-modules. We define the congruence module of
M, denoted W4 (M), to be the cokernel of this map. When ¢ = 0 this coincides with
Diamond’s definition recalled above; see Proposition 2.10. The definition is reminis-
cent of the evaluation map in rational homotopy theory and local algebra defined in
exactly the same way for the augmentation A — k to the residue field of A, and with
M := A. In particular, the localization of the map above (again for M = A) at p4 is
the evaluation map of the local ring Ay ,, and the fact this map is non-zero precisely
when Ay, is regular—this is a result of Lescot [42]—is critical to all that follows. It
implies that the O-module W4 (M) is torsion, and hence of finite length. The Wiles
defect of M is the integer

Sa(M) = (rankApA My, ) lengthy @4 —lengthy Wa(M).

We view this definition of the congruence module and Wiles defect, which extends
to all ¢ > 0 the usual definition for ¢ = 0, as one of the key contributions of this work.
We expect these will play a role in number theoretic applications, like analyzing the
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structure of deformation rings or eigenvarieties at classical points. One piece of evi-
dence in support of their utility is Theorem A below that extends the results of Wiles,
Lenstra, and Diamond. Building on the results in this paper in [34, Theorem 2.6] we
prove any A in Cp is regular if and only if W4 (A) =0.

Guided by the intended number theoretic applications, for A in Cp(c), we con-
sider finitely generated A-modules M with

depthy M >c+1 and My, #0.

Some of our results require weaker hypothesis on the depth of M; see Sect. 3, and
in particular 3.3, for a discussion of these various conditions. By the Auslander-
Buchsbaum criterion, the properties above imply that the Ay, -module My, is free.

Theorem A With A and M as above, set | := rankApA (Mp,). The following state-
ments hold.

(1) One has §54(M) > 0, with equality iff A is complete intersection and there is an
isomorphism of A-modules M = A* @ W, where Wy, =0.
Q) If 5 p(M)=0and ea(M) < - e(A), then M = A",

The invariant e4 (M) is the multiplicity of M see [13, §4.6]. The non-negativity
of the defect, which follows by a simple computation involving Fitting ideals when
¢ =0, is proved in Corollary 8.3; the remaining assertions are contained in Theorems
9.5 and 9.6. One way to think about our result is that the vanishing of the Wiles defect
allows one to propagate the local property that M is free at p4 of rank u to the global
property that M has a free direct summand A*.

As in the proof of [23, Theorem 2.4] the first step in the proof of Theorem A is to
deduce that A is complete intersection. This involves a “defect formula” that relates
the defect of M to that of A; see Lemma 3.7. At this stage, one has the following more
general criterion for detecting free summands in M, without the complete intersection
property as a consequence.

Theorem B Let A be a Gorenstein local ring in Co and M a maximal Cohen—
Macaulay A-module with p :=ranky,(Myp,) # 0. One has §4(M) = - §4(A), if
and only if

M==AY W where Wy, = 0.
If moreover eA(M) < 11 - e(A), then M is free.

This is the content of Theorem 9.2. For A and M as above, the condition that
8A(M) = -84 (A) is equivalent to the condition that the Tate cohomology module,
in the sense of Buchweitz [14], of the pair (O, M) in degree ¢ + 1 vanishes; see
Proposition 4.9. This gives yet another perspective on the Wiles defect of M.

We prove Theorems A and B by a reduction to the case ¢ = 0. For this a key
result, recorded below and contained in Theorem 8.2, is that the Wiles defect remains
invariant on going modulo certain M -regular sequences. Here pf) denotes the second
symbolic power of p4.
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Theorem C Let A be in Co(c) and M a finitely generated A-module such that
depthy M > c + 1. Let f in pa \pf) be such that it is not a zero-divisor on M.
Then the ring B:=A/fAisin Cp(c — 1), and

Sa(M) =6p(M/fM).

In the passage from A to B, the lengths of both the cotangent module and the
congruence module change; the crux is that they change by the same amount. Track-
ing the change in the cotangent module is relatively straightforward. The other, more
subtle problem, is to control the change in the congruence module of M. A key result
that permits this is the following structure theorem for the torsion-free quotient of
Yoneda Ext-algebra Ext’, (O, O).

Theorem D For A in Co(c) there is a natural isomorphism of O-algebras

/\ Homo (pa/p5, 0) = Ext; (0, O)".
@

This is the content of Theorem 6.8. It may be seen as an integral analogue of
Serre’s result that for a regular local ring R, with maximal ideal m and residue field
k, the k-algebra Ext}(k, k) is the exterior algebra on Homy (m/m?, k). Implicit in
Theorem D is the fact that Exti‘ (O, O) is the dual of the cotangent module of A;
this is not difficult to verify. The theorem above implies that the torsion-free quotient
of Ext} (O, O) is finite and graded-commutative, which is striking because the Ext-
algebra Ext’, (O, O) itself is typically infinite and non-commutative. The proof of the
theorem above uses techniques that grew out of Tate’s work [51], which introduced
methods of differential graded algebras into commutative algebra.

Another noteworthy feature of congruence modules, is an “invariance of domain”
property, Theorem 7.4, extending [12, Lemma 3.4] which is the case ¢ = 0. It too is
an important ingredient in the proof of Theorems B and C.

Theorem E Let ¢: A — B be a surjective map of local rings in Co(c). For any
finitely generated B-module M with depthg M > c, one has

WA(M)=Vp(M).
Thus §54(M) > §p(M) with equality if and only if length ® 4 = lengthy ®p.

These results above, especially the invariance of domain property, and the fact that
the element f in Theorem C need only be M -regular and not A-regular, convinces us
that the definition of Wiles defect we have is the correct one.

Torsion Langlands correspondence and integral R = T theorems for Betti cohomol-
ogy in positive defect We restrict ourselves to considering 2-dimensional representa-
tions of G r with F a number field, and assume that the prime £ does not ramify in F.
The relevant cohomology groups arise from complexes which are conjectured to be
of length £¢ where £( = r; is the defect (see Conjecture C). Here [F : Q] =r| + 2>
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with r; and r, the number of real and complex places of F, respectively. The strategy
to use our commutative algebra results for proving (integral, non-minimal) modular-
ity lifting theorems in positive defect is to apply them for suitable augmented rings
and modules that arise after carrying out patching. Thus we prove that in a patched
non-minimal situation a module M, over a ring R, has a free direct summand RY
for a positive integer u, and Ry, is a complete intersection.

These applications to modularity lifting assume Conjectures A, B, C and D listed
in Sect. 13, and are similar to those in [17]. Conjectures A, B are about existence of
Galois representations attached to Hecke eigenclasses arising from the cohomology
of symmetric manifolds and resulting maps R — T. Conjecture C is about concentra-
tion of integral cohomology of these manifolds in a certain range £, and Conjecture
D is a version of Thara’s lemma.

Patching methods of [1] can be used in principle to prove that a certain patched
module M, is maximal Cohen—Macaulay as a module over a patched deformation
ring R. Using Taylor’s Thara avoidance [1, §6.3] one may in principle deduce (even
when considering non-minimal deformations, so R, need not be a domain) that M,
is faithful as a Roo-module and Myo[1/€] is free over Ryo[1/£]. After passing to a
quotient ring by a sequence that may not be regular when [y > 0, one gets a defor-
mation ring R acting on the homology module M in lowest degree g9 = r; + rp of
an arithmetic manifold, and one may deduce that M[1/£] is a free R[1/€]-module.
However, by these methods (that rely primarily on patching) it does not seem possible
to get that M itself is a faithful R-module.

Our work is an integral refinement of such results (conditional on the conjectures
referred to above) and when applied in the situation of 2-dimensional Galois rep-
resentations over imaginary quadratic fields K, and with X a Bianchi 3-manifold,
yields that M := H{(X, O), has a free direct summand R" for some pu > 1 for a
suitable (possibly non-minimal) deformation ring R that acts on M. Here m is the
maximal ideal of a Hecke algebra T that acts faithfully on M with associated resid-
ual Galois representation p,, : Gx — GL2(T/m). (In the statement of Theorem F
below the non-minimality of the deformation ring Ry which acts on the homology
of an arithmetic manifold Yy(Ny) via Conjectures A, B is reflected in the fact that
the level A’y might be strictly divisible by the conductor of the residual representa-
tion p,,.) The resulting integral R = T theorems that follow produce new evidence
towards an emerging torsion Langlands correspondence. This addresses torsion Ga-
lois representations p: Gg — GLy(O/w") that may not lift to characteristic 0. Our
results show that such a p is automorphic in the sense that it arises from specialis-
ing the universal modular Galois deformation pr: Gx — GLy(T) lifting p,,, arising
thus from torsion Hecke eigenclasses in H{ (X, O)q,.

With 5., ¥ and Ny as in Sect. 13, our main number theory application, Theorem
15.1, is the following result. In the main text we define Yo(Ny) to have additional
level structure at an auxiliary prime ¢ { N, in order to make the subgroups neat.

Theorem F Assume Conjectures A, B, C and D hold for F and assume £ > 3. Let
m be a non-Eisenstein maximal ideal of T(Ko(Ng)) such that N(p,,) = Nz and
PmlG Fep IS absolutely irreducible. There exists an integer 1 > 1 such that for all ¥
there is an isomorphism of Ry -modules

Hy, 11, (Yo(N5), O)my = RE @ Wy
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for some Ry -module Wx . In particular, Ry, acts faithfully on H, 4, (Yo(Ny), O)ms
and so the map Ry — Ty from Conjecture B is an isomorphism for all X.

In analogy with [23, Theorem 3.4], one might expect our method to produce
the stronger result that H,1+,Z(Y0(Nz), Oy = Rg (that is, one would expect that
Wy = 0; if further F is totally complex one would expect i = 1). The reason for
our slightly weaker result is that one cannot control the generic rank of the patched
module My, unless the ring R has enough characteristic 0 points (in order to appeal
to classical multiplicity one results for automorphic forms), which is not guaranteed
in the positive defect case. Fortunately the weaker statement above is still enough
to deduce R = T. Building on these techniques, in subsequent work [33], we prove
that Hy, 4, (Yo(Nx), O)my = Ry when F has no real places and there are geometric
characteristic O lifts of p,,.

When F is a CM field and ¢ is sufficiently large,! Conjecture A is known by [45,
Theorem 1.3]. Moreover if F is an imaginary quadratic field, then Conjectures C and
D are known as well (see the discussions after their statements), and so Theorem F
gives:

Theorem G Let F be a imaginary quadratic field. Assume Conjecture B holds for F.
Let m be a non-Eisenstein maximal ideal of T(Ko(Ng)) such that N (p,,) = N and
Pm |GF(Q) is absolutely irreducible. For £ > 20, there exists an integer |t > 1 such that
for all ¥ there is an isomorphism of Ry -modules

Hi (Yo(Nx), O)my = RS & Wy

for some Rx-module Wy . In particular, Ry, acts faithfully on Hy (Yo(Ny), O)my and
so the map Ry, — Ty from Conjecture B is an isomorphism for all X.

When F is CM weaker versions of Conjecture B were proven in [1] (which primar-
ily replaced T'y, with Ty /I for a nilpotent ideal /, and also placed some restrictions
on F). It is likely that a refinement of these methods could prove Conjecture B for all
CM fields, which would make Theorem G hold unconditionally.

Torsion Jacquet-Langlands correspondence for weight one coherent cohomology of
modular and Shimura curves We also have the following unconditional applications
to integral modularity lifting of our new results in commutative algebra. These appli-
cations arise when we consider coherent cohomology of the weight one line bundle
we on modular and Shimura curves.

We refer to §14 for the unexplained notation used in the statement below, which
is Theorem 14.9 of the main text. In the case of modular curves (when ® = &) such
a result was proven in [16] using g-expansion principle. One crucial place where g-
expansions are used in [16] is to show that, in the relevant non-minimal patched situ-
ation, not only is M, faithful as a Ry,-module, but that it is free over the (patched)
Hecke algebra, and hence also free as a Roo-module. This argument does not work
for Shimura curves for the compelling reason that these have no cusps. Our methods
on the other hand do carry over to Shimura curves.

IThe precise bound is given in [45, (1.2)], in our situation, £ > 20 is sufficient if [F : Q] =2.
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TheoremH Let X ? be a Shimura curve arising from an indefinite quaternion algebra
Dy over Q that ramifies only at a finite set of primes © and assume £ > 3. Let T, be
the Hecke algebra acting on H' (X2 , wo)m and R? the corresponding deformation
ring which parametrizes deformations of p,, that are in particular unramified at €.
The surjective map Rg —» ’]I? is an isomorphism.

From this we deduce a Jacquet-Langlands correspondence comparing the degree
1 integral cohomology with coefficients in the “weight one” sheaf wp of modular
and Shimura curves. As these cohomology groups typically have abundant torsion
this cannot be deduced from the classical Jacquet—Langlands correspondence and, as
far as we know, this is the first such correspondence in the literature relating torsion
in the coherent cohomology of Shimura varieties that arise from inner forms. The
possibility of such a result had been considered earlier by Boxer, Calegari and Gee.
The following result is Theorem 14.10 of the main text.

Theorem | Let © # & and take £ > 3. Consider a residual representation p :
Gg — GLa(k) that arises from a maximal ideal mo of the Hecke algebra acting
on HY(X2 , wp). We assume that Pla,) is irreducible. Then:

(1) 7 arises from a maximal ideal mg of the Hecke algebra acting on H! (Xgug,
wO).

2 If T?u@ and T? are the Hecke algebras acting on H! (Xgusa ,wo) and
H! (X 2, wO), localized at mg and my respectively, then there is a natural sur-
Jective map Tgug — Tg with kernel generated by q, U3 — ¥ (Froby) forve®.

Wiles defects of cohomology groups of modular curves and Shimura curves The de-
formation invariance proved in Theorem C has applications to reproving and gen-
eralizing, by a different method, the results of [8]. Specifically an easy corollary of
Theorem C is the following:

Theorem J Let Ry be a complete local noetherian O-algebra and A: Roo — O a
surjective map with kernel p, such that (Rxo)yp is regular of dimension c. Let M, be
an Rso-module with depthRoo Moo > ¢+ 1 and (M)p # 0.

Let (y, @) be an Mo-regular sequence, where y = {y1, ..., y.} S pandlet Ry =
Reo/(y), My =Moo /(y) and py =p/(y) S Ry, so My is flat over O.

Provided that py /pi has finite length, the Wiles defect $g,(My) depends only on
Roo, Moo and A : Roo — O, and not on the choice of y.

When My, = R (and hence R, is Cohen—Macaulay) this recovers [8, Theorem
3.25]. Theorem J represents a significant generalization of this result, as it does not
require that Ry, is Cohen—Macaulay.

Removing the requirement that R, is Cohen—Macaulay is particularly signifi-
cant for number theoretic applications. In the context considered in [8], the ring R
would be a power series ring over a completed tensor product of certain local Galois
deformation rings, M, would be a ‘patched” module arising from the cohomology
of certain Shimura curves and the augmentation A: Ry, — O would arise from a cer-
tain cuspidal Hilbert modular form (this is still a special case, the same commutative
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algebra setup would occur in any patching situation with defect £y = 0). Crucially,
while the ring R, is only known to be Cohen—Macaulay in some rather restrictive
cases, the module Mo, would automatically satisfy depthg Moo = ¢ + 1 in all cases,
as a consequence of the patching argument.

The primary objects of number theoretic interest would be a Galois deformation
ring R and a cohomology module M, which would have the form R = Ry and M =
M), for some sequence y as above. Theorem J would thus imply that §g (M) (which
was referred to as the cohomological Wiles defect in [7] and [8]) depends only R,
My and A: Ry — O, and not on R and M directly.

As in [8], both Ry and A: Ro, — O are determined entirely by local Galois the-
oretic information. The module M, is not always known to be determined by local
information, but it is reasonable to expect that it is. In fact it is plausible that one
can prove that it is in some circumstances where R, cannot be proven to be Cohen—
Macaulay. This would then imply that the cohomological Wiles defect, §g (M), is
determined entirely by local information without requiring the assumption that R,
is Cohen—Macaulay, allowing one to generalize [8, Theorem 6.5].

Links between the commutative algebra and modularity lifting We outline where our
results fit in the evolution of modularity lifting results.

The original papers of Wiles and Taylor—Wiles, [56] and [52], deduced modularity
lifting from an R = T result which they first proved in the minimal level case via a
patching argument, and then proved in non-minimal levels via an induction argument
using the numerical criterion. The innovation of Diamond in [23] reformulated the
patching and numerical criterion for modules rather than rings, which allowed the ar-
gument to prove freeness results for certain cohomology groups (rather than requiring
these results as inputs to the argument).

Kisin’s work in [39] gave the patching method far greater flexibility and appli-
cability by patching global deformation rings and Hecke modules relative to local
deformation rings. The work of Kisin almost erases the distinction between minimal
and non-minimal cases, and removes the need for the numerical criterion. This comes
at the expense of only proving R[1/¢] = T[1/£], rather than R = T, which does not
matter for proving modularity of £-adic Galois representations.

These works were in the case when the (global) defect £y is 0. The insight of
Calegari and Geraghty in [17] generalized the patching method to positive defect
(subject to certain conjectures, which we must also assume for our work). Following
the approach of Kisin, this gives modularity lifting results for £-adic representations
in both minimal and non-minimal levels. However in non-minimal levels it again can
only prove that R[1/£] = T[1/£], or even only that R™4 = T"d_In the £y > 0 case
one typically expects R and T to have torsion, and so not having an approach to
proving R =T is a noticeable shortcoming to the patching method.

Our work generalizes the numerical criterion to positive defect, and thus gives us
R =T results in non-minimal level by an inductive argument similar to the one in
[23]. Unlike in the £y = O case, when the patching and numerical criterion arguments
were treated fairly independently of each other, when £y > 0 we are compelled to
work at a patched level to apply our numerical criterion. This is one of the key insights
of this paper: patching is a necessary prelude to using our numerical criterion for
applications to modularity lifting in positive defect.
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In the positive defect case patching is much more intrinsic to deducing non-
minimal R = T theorems from their minimal analogs than in the defect O case. In
both the defect O case and the positive defect case the augmentation A: Ry — O is
crucial for formulating the numerical criterion. In the positive defect case the aug-
mentation which we consider does not need to factor though the global deformation
ring Roc — R, and indeed may not have any relation to Galois representations or
modular forms. This is necessary, as R may not have any characteristic 0 points if
the residual representation p,, has no appropriate characteristic 0 lifts, and so the
augmentation A may only exist after patching.

As an important step in our proof of Theorem F we have to generalize the clas-
sical change of congruence modules arguments of Ribet [46] (in codimension ¢ = 0
setting) to the present higher (¢ > 0) codimension setting to deduce that the Wiles
defect § R’oo(Méo) vanishes, for patched rings R/ and modules M/ in non-minimal
situations, from dg., (M) = 0, for patched rings R and modules M, in minimal
situations. For this one uses the following results in concert:

(1) patching in Theorem 10.6;

(2) Theorem 11.3 which gives a self-duality statement for a patched module that
arises from patching complexes with self-duality properties;

(3) a version of Thara’s lemma for surjectivity of maps between patched modules of
different levels in §13.7;

(4) change of congruence module arguments for our congruence modules in higher
codimensions which is inspired by [46] and uses in addition the commutative al-
gebra results Lemma 3.10 and Proposition 4.4, as well as Theorem 7.4.

Earlier work As noted before, our work is inspired by work of Wiles, Lenstra, and
Diamond. The result of Wiles and Lenstra has been extended by Huneke and Ul-
rich [31], and Zarzuela [57], to cover more general surjective maps of rings A — B,
where B need not be a discrete valuation ring. The direct precursors to the commu-
tative algebra developed in this paper are [7, 8, 26] (and its appendix), [12], as well
as the work of Tilouine and Urban in [54]. We describe briefly the previous work, to
provide historical context.

The results of [26, Appendix] and [12] generalized results of Wiles, Lenstra and
Diamond in [23, 41, 56] so that rather than asking that the ring A or the module M
be finite and flat over O, it is only required that M has positive depth. Theorem A in
this paper also requires that M have sufficient depth.

The papers [7, 8, 54], introduced the notion of Wiles defect of rings, and showed
that it has arithmetic significance. The appendix to [8] (written by N. Fakhruddin and
the second author) established a formula for the Wiles defect proposed by Venkatesh
for O-algebras A € C(0) with dim A = 1. This involves the André—Quillen coho-
mology module D!(A/O, E/O), where E is the fraction field of O, and another
invariant that he defined using suitable complete intersections that map onto A. The
main article [8] extended the definition of Venkatesh invariants, and Wiles defect,
to higher dimensional rings A that are Cohen—Macaulay and flat over O and with
an augmentation A: A — O such that A is smooth at A, basically by proving that
the invariants remain unchanged on going modulo regular sequences, so that one can
reduce to dimension one.
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The paper [12] considered Wiles defect for A € Cp(0), and M a finitely gener-
ated A-module. One of the main observations of that paper, [12, Theorem 1.2], is a
formula relating the Wiles defects of the module M and ring A. This is generalized
in our paper Lemma 3.7 and plays an important role in the proof of Theorem B.

The present paper defines the Wiles defect for all rings A in Cp(c) for arbitrary c.
This uses invariants ® 4 and W 4 that are more direct generalizations of the invariants
of Wiles; their definition does not use André—Quillen homology of rings. They do not
remain invariant individually on going modulo regular sequences, but the Wiles de-
fect §4 does; see Theorem C and the discussion around it. Our invariants are defined
in a way that is more intrinsic to A than the ones introduced by Venkatesh which use
as a crutch complete intersections mapping to A.

Further applications In a sequel [34] to this work, we have used the techniques of this
paper to relate our work on congruence modules in positive codimension to “zeta-
elements” (see [55]) for the adjoint motive of a newform f of weight at least 2 which
is ordinary at p. (For this paragraph we denote the prime £ of the rest of the paper by
p.) This is contained in [34, Proposition 2.5, Theorem 3.7] that we briefly describe.
The p-stablization of f induces an augmentation A y : To — O of Hida’s ordinary
p-adic Hecke algebra. By Hida theory T° is finite flat over the Iwasawa algebra
A = O[T] (and hence Ker s has height 1), and it is smooth at A s. Let Ads be
the adjoint motive of f, L(s, Ady) the corresponding degree 3 L-function and p; :
Gg — GL»(0O) the Galois representaiton associated to a p-adic place of the Hecke
field K¢ of f. Our construction of the congruence module W; . (T°9) leads to “zeta

elements” in Galois cohomology H(}rd((@, Adpy) whose image in quotients of the
corresponding local cohomology groups at p are related to the congruence module
W, (T). Here T is a classical Hecke algebra of fixed level that is finite flat over @
and ¥, 7 (T) is its classical (codimension 0) congruence module. Hida’s work in [30]
relates the length of the congruence module W to an L-value L(1, Ady).

In [8] we study situations when we have R = T without the rings being complete
intersections and determine the Wiles defect §;, f (R) at Ay : R — O; we show it is
given by p 85.; (Rg) of Wiles defects of the corresponding local deformation rings
R, . The work of [8] and the present paper lead to the intriguing possibility of proving
the Bloch-Kato conjecture for L(1, Ady) in cases which will go beyond the known
results in [25] that are proved when the map R — T is an isomorphism of complete
intersections. It also raises the intriguing possibility that lengthy Wy, (Ry) is related
to ordg ¢, where ¢y is the local Tamagawa number at ¢ which Bloch-Kato associate
to the motive Ad . This would be a local analog of the results in [34]; we will pursue
this in future work.

The residual representations p,,, and non-minimal levels Ay that we allow in The-
orem F are restrictive: for instance we assume g, % 1 (mod £) if v divides Ny and o,
is unramified at v. In forthcoming work with Fred Diamond we will extend the meth-
ods of this paper to prove a version of Theorem F without such restrictions: the level
raising arguments in Part 3 become more complicated in the general case. We will
also prove a more general version of Theorem I which will include proving under the
necessary assumptions the existence of maximal ideals of the Hecke algebra acting
on H' (X2, wp) that correspond to maximal ideals mg of the Hecke algebra acting

on H! (Xgug’ we)(see Remark 14.11 below); namely the converse to Theorem I (1).
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Comparison to the literature The question of what might be the right generalization
of Wiles numerical criterion to positive defect has been considered before us. For
example in [16] Calegari proves some non-minimal modularity lifting theorems in
the case of weight one forms. There he combines known multiplicity one theorems
for the relevant Hecke modules with the patching argument from [17]. He remarks in
the introduction to the paper that in the weight one case he considers, as the relevant
Hecke rings T are not complete intersections in general, and may not be flat over O,
the arguments of Wiles in [56, Chap. 2] seem not to be applicable. The work of this
paper gives a work around such an obstruction. Our methods apply unconditionally, to
prove the non-minimal R = T theorems of [ 16] without a priori using any multiplicity
one theorems. As explained above we use our methods to prove similar results in the
setting of Shimura curves (Theorems H and I above): the methods of [16] do not
extend to this case.

The work of Calegari and Venkatesh in [18] considers level raising in the positive
defect case—for example in the Bianchi case—and remarks that a form of Ihara’s
lemma is true for homology in degree one of Bianchi manifolds. In our work we apply
Ihara’s lemma at a patched level: as the patched complexes are then quasi-isomorphic
to a self-dual module, Thara’s lemma gives that the growth of the congruence module
we define is given by an Euler factor.

Part 1. Commutative algebra of congruence modules

In this part we introduce congruence modules for a suitable class of local rings,
and establish some of their fundamental properties. Although the focus is on the pure
commutative algebraic aspects of congruence modules, the results we prove, and even
their formulations, are dictated by applications to number theory, and indeed our in-
tuition about congruence modules comes from that realm. Nevertheless, many of the
statements are interesting in their own right, so with an eye towards possible applica-
tions, also to commutative algebra, the setting is more general and the development
is more in-depth than is strictly needed for the number theory applications presented
in this work.

2 Congruence modules and cotangent modules
Throughout O is a discrete valuation ring, with uniformizer .

2.1 We write tors(U) for the torsion submodule of an @O-module U. The torsion-
free quotient of U, denoted U tf is the cokernel of the inclusion tors(U) C U. There
is thus an exact sequence of O-modules

00— tors(U) — U — Utf—>0,

functorial in U. When U is finitely generated, so is U'f and hence it is a free O-
module. In particular, the sequence above splits. Though there is no functorial split-
ting, the existence of a splitting does mean that for any additive functor, say E(—),

@ Springer



S.B.lyengar et al.

on finitely generated O-modules, the induced map
EWU) — EWUY)

remains surjective. This remark will be used often, as will be the following ones:
Consider a map of O-modules

a:U—V

and the map o': U — V. The induced map Cokera — Coker(a'l) is surjective;
in particular, when « is onto, so is of. TIf Kera is torsion, then the induced map atfis
injective.

2.2 Throughout this manuscript A is a noetherian local ring and 1 4: A — O a sur-
jective local homomorphism. We set

pa i=Ker(da) and c:=heightp, .

Thus py4 is a prime ideal in A and c is its height, also known as the codimension,
whence the choice of notation. It is also the Krull dimension of the local ring Ay,
Our focus will be on rings for which c is the rank of the cotangent module of A4; see
Lemma 2.7. One has that

dim A > heightpg +dim(A/ps) =c+1;
we place no restrictions on dim A.

Torsion-free quotients of Ext We write D(A) for the derived category of all A-
modules; the suspension (also known as shift) functor is denoted [—]. As usual, a
module is viewed as complex concentrated in degree 0. Although the focus of our
work is on finitely generated modules, some of the basic definitions extend, and it
is helpful in some arguments to do so, to complexes with finite homology. We write
mod A for the category of finitely generated A-modules. Let DP(mod A) denote the
full subcategory of D(A) consisting of A-complexes M with H; (M) finitely gener-
ated for each i and equal to zero for |i| 3> 0. For such M the O-modules TorlA O, M)
and Ext"A (O, M) are finitely generated for each integer i, and equal to O for i < 0.
For M in D’(mod A) consider the O-module

Fi, (M) := Ext, (O, M)" |

namely, the torsion-free quotient of ExtiA (O, M). Evidently F’) (—) is a functor from
DP(mod A), the derived category of A-modules, to O-modules.

Congruence modules Let M be a finitely generated A-module. The map
AM): M — ORaM=M/psM
induces a map of O-modules

Fy(a(M)): Fy(M) — Fy(M/paM);
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recall ¢ = height p 4. The cokernel of this map is the congruence module of M:
Wo (M) := CokerF§ (A a(M)).

For a given A there may be many choices of an augmentation A: A — O and for
some applications it is important to keep track of this dependency, and then it would
be better to write W; (M) for the congruence module. However, in this work the map
A is fixed, so we stick to the notation above.

We write W 4, instead of W4 (A), for the congruence module of A. See the discus-
sion around Proposition 2.10 and 4.8 for connections to other notions of congruence
modules in the literature. It is easy to check that the assignment M — W4 (M) is a
functor from mod A to mod O; see 3.8.

Here is a simple but useful observation.

2.3 For any ﬁnitely generated O-module U, viewed as an A-module via A4, the
surjection U — U is split with torsion kernel as an O-map, and hence also as an
A-map—see 2.1—and so it induces the first isomorphism below:

FS(U) — FS(UT) = F4(0) ®p UY.
The second one holds because the O-module U is finite free. In particular, for any
finitely generated A-module M, there is a natural isomorphism:

FS (M /paM) ZFS(0) ®0 (M /paM)* (2.4)

Regularity Given a prime ideal p in A, we say A is regular at p to mean that the local
ring Ay is regular. The result below is the starting point of our work.

Theorem 2.5 In the context of 2.2, the ring A is regular at p 5 if and only if the O-
module W 4 is torsion. When this holds, so do the following statements:

(1) The O-modules F (A) and F, (O) are of rank one;
(2) The map F§ (A p): F§(A) — F4(O) is injective;
(3) The O-module ¥ 4 is torsion and cyclic;

Proof Write p instead of p4 and let k(p) be the field of fractions of O; it is also the
residue field of the local ring Ay. For any integer i there is an isomorphism

Ext) (0, 0)p ZExt)y k(). k(p))

of k(p)-vector spaces. It is well-known that the vector space on the right is nonzero
for each 0 <i < ¢, hence the O-module Exti‘ (O, O) has nonzero rank for the same
range of i; see, for instance, [13, Corollary 1.3.2, Theorem 1.3.3]. This observation
will be used in what follows.

It helps to introduce one more property equivalent to the regularity of A at p, and
prove that the following conditions are equivalent:

(i) A isregular at p;

@ Springer



S.B.lyengar et al.

(i1) The rank of the map Ext% (O, Aya) is nonzero;
(iii) W4 is torsion as an O-module.

()< (ii): Condition (ii) holds if and only if the localization of the map Ext$, (O, A4)
at p is nonzero; namely the map

Exty, (k(p). Ap) — Exty (k(p). k(p))

induced by the surjection A, — k(p) is nonzero. It remains to recall Lescot’s re-
sult [42, 1.4] that the map above is nonzero if and only if the local ring Ay, is regular;
see also [4, Theorem 2.4].

(i)=(iii): Since Ay is regular of Krull dimension ¢ one has

EX§ (O, A)p ZExt§ (k(p), Ap) = k(p)
Ext§ (0, O)p ZExty (k(p), k(p) = k(p).

Thus the source and target of the map Exti‘ (O, A4) have rank one, and the rank of
the map is nonzero, since we already know that (i)=(ii). It follows that its cokernel
is torsion, justifying (iii).

(iii)=>(ii): The rank of the O-module Ext} (O, O) is nonzero, and W, is the cok-
ernel of F$ (A 4), so (ii) follows.

This completes the proof of the equivalences of conditions (i), (ii), and (iii). As
to remaining claims, (1) and (2) were implicitly verified in that proof that (i)=>(iii),
whilst (3) is a consequence of (1). U

Lemma 2.6 Let Ag: A — O be as in 2.2 with A is regular at p4, and M a finitely
generated A-module. Then for each integer n > heightpa + 1 one has F'y (M) = 0,
and the O-module WV 4 (M) is torsion.

Proof As before we write p instead of p4 and k(p) for the fraction field of O. For
each i there is an isomorphism of k(p)-vector spaces

Ext,, (O, M), = Extilp (k(p), My).

As Ay, is regular of dimension ¢ := height p, for i > ¢+ 1 one has Ext’Ap (k(p), My) =

0. Thus the O-module Ext’A(O, M) is torsion, and hence F’A (M)=0fori>c+1.
It remains to verify that W4 (M) is torsion; equivalently, with w : M — M /pM the
natural surjection, the cokernel of ExtS (O, ) is torsion; equivalently that

Bxtq, (k(p). 7p): Bxt, (k(9). My) —> Ext} (k(p). Mp/pMy)

is onto. Replacing Ay by R and M, by N, we find ourselves in the situation where
R is a regular local ring, with residue field k(p) and Krull dimension ¢, and N is an
R-module. The desired result is that the map Ext$ (k(p), A) is onto, where A: N —
N /mN is the natural map with m the maximal ideal of R.
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Since R is regular, the R-module k(p) has a finite free resolution, so for any R-
module N the natural map

RHomg (k(p), R) ®% N —> RHomg (k(p), N)

is a quasi-isomorphism. Again because R is regular RHompg (k(p), R) =~ k(p)[—c];
this fact yields a natural isomorphism

k(p) ®g N —> ExtS, (k(p), N).

We apply this also for the R-module N/mN. Then the map N — N/mN induces a
commutative diagram

k(p) @r N ——— k(p) ®r (N/mN)

=] I

Extg(k(p), N) —— Ext%(k(p), N/mN)

It remains to note that the map in the top row, and hence in the bottom row, is even
an isomorphism. g

Cotangent modules We are also interested in the cotangent module p A/pf1 of the
map A 4. This module too detects when A is in the category Cp.

Lemma 2.7 For Aa: A — O asin 2.2 there is an equality

ranko(pA/pi) =edimAy, .

Thus heightps < rankp (pA/pIZA); equality holds if and only if A is regular at p 4.

Proof We write p instead of p,, and let e := ranko (pa/p%). With m the maximal
ideal pA, of the local ring Ay, one has an isomorphism

m/m? = (p/p?)p = k(p)

of k(p)-vector spaces, where k(p) is field of fractions of O, which is also the residue
field of Ay. This justifies the first part of the statement. This also yields inequality
height p < e. Since heightp = e if and only if A is regular at p, by definition [13,
§2.2], the second part of the result follows as well. O

The preceding result has to do with the torsion-free quotient of the cotangent mod-
ule of 1 4. In the sequel, its torsion submodule plays the major role. Set

4 i=tors(pa/p3) . (2.8)

When ¢ = 0 this is all of the cotangent module for the latter is torsion when A is
regular at p4, by Lemma 2.7.
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Wiles defect Let C be the category of pairs (A, 24) where A is a complete noethe-
rian local ring and 14 : A — O is a surjective local homomorphism with A regular at
p4 = Ker(A4). The morphisms in Cp are the obvious ones. We impose the hypoth-
esis that A is complete only for ease of exposition, especially in Sect. 5 and beyond.
Often we speak of the ring A being in the category, rather than the pair (A, A 4).
Let Cp(c) be the subcategory of Cp of rings A with heightps = c; equivalently
rankop (pA/pi) =c; see Lemma 2.7.

Fix A in Cp(c). The Wiles defect of finitely generated A-module M is the integer

Sa(M) = (1rank,4pA My, ) lengthy @4 —lengthy Wa(M). 2.9)

For ¢ = 0 this invariant has been studied in [7, 12]; see the result below. For general
c but only for M = A and Cohen—Macaulay, an analogous invariant was introduced
in [8]; see 4.8 and 8.4. we have a lot more to say about this invariant from Sect. 7
onwards.

The result below reconciles the definition of congruence modules introduced in
this work with the one when ¢ = 0 that has been discussed in the literature.

Proposition 2.10 Suppose A is in Co(0) and set 15 := A[pa]. For any finitely gener-
ated A-module M there is a natural surjection of O-modules

M

—_— U u(M).
Mipal+ Mila D

with kernel a torsion O-module. This map is an isomorphism if depth, M > 1.
Proof Given the equality
Homa (O, M/paM)=M/paM
the congruence module of the M is the cokernel of the composition
Mlpal — M/paM — (M/paM)" .
Consider the exact sequence of O-modules

M[14] M M
— —
paM paM MI[1I4]

0—

The term on the left is O-torsion for it is annihilated by p4 and 74, and so a module
over the ring W4. Thus there are natural surjections

M/paM — M/M[Ia] — (M/paM)"

and the map on the right is bijective when depth, M > 1, for then the term in the
middle is torsion-free, being a submodule of Homy (14, M). This gives the desired
result. Along the way we get that when depth, M > 1, one has

M/M[I4]= (M /pad)t

so one can recover the module on the left without recourse to /4. (I
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Here is an example that shows that the map in the preceding proposition is not
always an isomorphism.

Example 2.11 Let A := O[t]/(w?t) and M := A/(w?>). Then M is O-torsion so
W4 (M) =0, whereas, in the notation of Proposition 2.10 one has /4 = (@?), so

Mlpal= @M and M[I\]= (=, 0)M,

and hence M/(M[pal+ M[I4]) = O/(w).

3 Depth conditions

Two invariants of a finitely generated A-module M play a key role in what follows:
its depth as an A-module, denoted depth 4, M, and the length of the longest M -regular
sequence in p 4, denoted grade(p 4, M). Their value is closely connected to the prop-
erty that M is free at p 4. These interdependencies are clarified in the next two results;
see also 3.3.

Lemma3.1 Let A be in Co(c) and M € mod A.

() If My, #0, then grade(ps, M) < c and depthy M < c + 1.

(2) If grade(pa, M) < c and depthy M > c + 1, then in fact grade(ps, M) = c and
depthy M =c+ 1.

(3) If grade(pa, M) > c, then M is free at p4.

In particular, depth A <c+ 1 <dim A.

Proof (1) When My, is nonzero, its depth as an Ap-module is at most dim Ay; this
justifies the second inequality below:

grade(pa, M) < depth, M, <c.

The first one is clear. This justifies the first inequality in (1). The second one follows,
because for any finitely generated A-module M there in an inequality

depthy M < grade(pa, M) + 1.

This holds by [13, Exercise 1.2.23], since dim(A/p4s) =dim O =1.
(2) The hypotheses gives inequalities

c+1<depthy M <grade(pg, M)+1=<c+1.

Thus one has equalities everywhere.

(3) The hypothesis implies that the depth of M}, as a module over Ay, is at least
c. Since Ap, is a regular local ring of dimension c, the equality of Auslander and
Buchsbaum [13, Theorem 1.3.3] implies that M is free at p4.
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Finally, the inequality depth A < ¢ + 1 follows from (1), as Ay, # 0, whereas the
upper bound on dim A is the special case p := p,4 of the inequality

dim(A/p) + heightp < dim A
that holds for any prime ideal p in A. O

In what follows the focus will be on the modules whose depth is at least ¢ + 1.
One reason for this is the following result.

Lemma3.2 Let A be in Cp(c) and M € mod A with depthy M > c + 1.

(1) If M is supported at p 4, then grade(pa, M) = c and depthy M =c + 1.
(2) If M is not supported at p o, then grade(pa, M) =depth, M.

(3) Misfreeatpy.

(4) Ext§ (O, M) is torsion-free as an O-module.

Proof Part (1) is immediate from parts (1) and (2) of Lemma 3.1.
(2) Since the only prime ideals containing p4 are itself and the maximal ideal of
A, by [13, Proposition 1.2.10] there is an equality

grade(pg, M) = min{depthAp M, depth, M}.
Thus if M is not supported at p 4, then the equality above gives
grade(pa, M) =depthy M,

since the depth of 0 is infinity.
(3) Since grade(p4, M) > ¢, by (1) and (2), one can invoke Lemma 3.1(3).
(4) Let k denote the residue field of O, and consider the exact sequence

0— 00— k—0.
It induces the exact sequence of O-modules
... —> Ext (k, M) — Ext (O, M) = Ext$(O, M) —> - -

Since depthy, M = ¢ + 1 one has Exti‘ (k, M) = 0; see [13, Theorem 1.2.5]. Thus the
sequence above implies that zz is not a zero-divisor on ExtS, (O, M). 0

3.3 Perhaps it is helpful to summarize the results above as follows:

depthy M > ¢+ 1 —= grade(pa, M) > ¢ —— depthy M > ¢

!

M is free at pa
The two conditions on the right are vacuous when ¢ = 0, but not so the left-most one.
This condition comes up in the criteria for freeness and complete intersection pre-

sented in Sect. 9. The condition on grade comes up in arguments involving reduction
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to the case ¢ = 0; see Sect. 8. Only the weaker lower bound on depth, M is required
for the invariance of domain property discussed in Sect. 7.

We round up this discussion on depth with the following observation that is needed
for reduction to ¢ = 0. In what follows, given a prime ideal p in a ring A, we write
p@ for the ideal p>A, N A; this is the second symbolic power of p.

Lemma3.4 Fix Ain Co(c) forc > 1,and an f € pa nonzero in Ay, . The local ring
A/fAisinCo ifand only if f ¢ p; in that case A/f A is in Co(c — 1).

Proof Set B := A/fA; since f is in py the map As: A — O factors through B,
yielding an augmentation Ag: B — O. Its kernel, pp, equals p4/f. Since the local
ring Ap, is regular the quotient ring By, = Ay, /f Ap, is regular if and only if the
image of f isnotin piApA, that is to say, f is not in p*; see [13, Proposition 2.2.4].
When this property holds dim By, =dim Ay, — 1,50 B isin Co(c — 1). 0

Lemma 3.5 Let A be a local ring in Cp(c) and M a finitely generated A-module
with grade(pa, M) > c. Given any integer 1 < n < c, there exists a sequence g 1=
g1,.--,8&n NP4 such that:

(1) Thering A/gA isin Co(c —n);
(2) The sequence g is M-regular and depth o, (M /g M) = depthy M — n.

When A is Cohen—Macaulay, g can be chosen to be regular on A as well.

Proof 1t suffices to verify the statement for n = 1. Given Lemma 3.4, one has to find

an element g in p4 that avoids the associated primes of M and also pf). This can be
done by a standard prime avoidance argument; see [36, Theorem 81]. O

We illustrate the use of these conditions by establishing a link between the Wiles
defect of a module to that of the underlying ring, and by tracking the change in the
congruence modules under certain maps of A-modules.

A defect formula The natural morphism of complexes
RHomy (0, A) ®5 M —> RHomy (O, M)
and the Kiinneth map induce the map of O-modules
Ext$ (0, A) ®4 M — Ext§ (O, M),
and hence the map
nm: FG(A) ®0 (M/paM)' — Fo(M).
This map fits into a commutative diagram of @-modules

FS(A) @0 (M/paM)T OV pe 9y g0 (M/paM)

mat | E

F%(]\/[) Fe(Aa(M)) FfA(A/[/pAJ\/[) (36)
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The isomorphism on the right is from (2.4). In fact, one has such a diagram for
each cohomological index i. This leads to the following “defect formula” for con-
gruence modules. It generalizes [12, Theorem 1.2], which is the case ¢ = 0, for then
Coker(ny) = M[pal/IsaM, where 4 = A[pa]. See Proposition 4.9 for another point
of view on Coker(n,s).

Lemma 3.7 When M is free at p4, the map F¢ (L4 (M)) is injective, and there is an
exact sequence of O-modules

0 —> Coker(ny) — W4 ®0 (M/pa M)t — W (M) — 0
and hence there is an equality
Sa(M) = rankApA (Myp,) - 84(A) + lengthy Coker(na) -

Proof The map F} (Aa): F§(A) — F(O) is injective, by Theorem 2.5. Since M is
free at pa, the map F (A 4(M)) is injective when localized at p4, and hence injec-
tive. Given this observation the stated exact sequence is immediate from (3.6). Since
the Ap-module M), is free, its rank is the rank of the O-module (M /pa M ). This
remark, and the given exact sequence, yield the desired equality. g

3.8 Let Abein Cp(c) and w: M — N amap of finitely generated A-modules. This
data induces the commutative diagram

Fo (M) — A pe ()

L

FS(M/paM) — 2T B (N/paN) 3.9)

where 7 := 7 ®4 O. This induces a map Wy (M) — Wy (N) of O-modules. Thus
W4 (—) is a functor from the category of finitely generated A-modules to @-modules.

Lemma 3.10 Let A be in Co(c) and w: M — N a map in mod A such that M and
N are free at p 5 and of the same rank.

(1) The free-O-modules F, (M) and F,(N) have the same rank.
(2) When m is surjective, F, () is injective and ¥, () is bijective, and hence

lengthy W4 (M) = lengthy W4 (N) + lengthy Coker FG () .
(3) When m is injective with cokernel of depth ¢ + 1, the map F (r) is bijective.

Proof (1) This follows from the fact that the rank of an O-module can be computed
after localization at p 4, and the isomorphisms

FS (M)p, Z Xt (O, M)y, ZExty (k(p), My,)

where k(p) is the residue field of O.
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The following observation will be used below: Since M and N are free of the same
rank at p4, when 7 is surjective, it is an isomorphism at p4. The same conclusion
holds when 7 injective and depth, Coker(rr) > ¢ + 1. In particular, Ext$, (O, 7) is
bijective when localized at p4 and hence F () is injective.

(2) Since 7 is surjective, so is 77, and hence also the induced map

@ (M/paM)T =5 (N/paN)E.

That the map is also injective can be verified by localizing at p4, and using the fact
 is an isomorphism at p 4. Thus the natural isomorphism (2.4) implies that F’, () is
bijective as claimed. Given that F, (7) is one-to-one and F¢, () is bijective, the stated
formula for the lengths of congruence modules is immediate from the commutative
diagram (3.9). Here we also use the fact that the vertical maps in the diagram are
one-to-one, since M and N are free at p4; see Lemma 3.7.

(3) We already know that Fi‘ (7r) is injective, so it remains to verify that it is also
surjective. Complete 7 to an exact sequence

0O—M—N—C—0.

Since M, N are free at p and of the same rank, Cp,, =0, and so the hypothesis that
depth, C =c+1 and Lemma 3.2 yield grade(p 4, C) = ¢ + 1. Thus Ext}, (O, C) =0,
by [13, Theorem 1.2.5], and so the exact sequence above induces the exact sequence

t5 (O

‘ Bt (O1) ‘
— ExtS, (0, M) —2—"25 Bxt6, (0, N) —> Ext5 (0, C) =0.

Therefore the induced map on torsion-free quotients, F¢ (i), is also surjective. ~ [J

4 Cohen-Macaulay modules

In this section we record results on congruence modules special to Cohen—Macaulay
modules, intended for later use. There is also an alternative description of congruence
modules which brings up a connection to duality. See also [34, 2.10], which contains
a more streamlined and transparent description of this pairing.

Dualizing complexes Since each A in Cp is a quotient of a regular ring, namely, a
power series ring over O, it has a dualizing complex, w4, unique up to isomorphism
in D(A), once it is normalized so that Ext’IA (k, w4) # 0 precisely when i = 0; see [53,
Tag 0A7M]. Given any A-complex M in D(A), set

wa(M) := RHoma (M, wy) . “.1)

The dualizing complex captures the depth and the dimension of any nonzero finitely
generated A-module M, in that

depthy M = min{i | H; (wa (M)) # 0}
dim M = max{i | H;(wa(M)) # 0} .

4.2)
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This follows from Grothendieck’s local duality theorem and the fact that depth and
dimension are detected by the local cohomology of M; see [53, Tag 0ODWZ] and also
[13, Theorem 3.5.7]. The assignment M +— w4 (M) induces an auto-equivalence

wa(=): D°(mod A)®™ —= DP(mod A).
Hence the biduality map M = % (M) is an isomorphism for M in D®(mod A).

Cohen-Macaulay modules Fix A in Co(c). An A-module M is said to be Cohen—
Macaulay if it is finitely generated and satisfies depth, M > dim M ; equality holds
when M # 0. Thus if M is a Cohen—Macaulay A-module H; (w4 (M)) = 0 for all
i #dimy M. When M is a non-zero Cohen-Macaulay module, the A-module

M :=Hg(wa(M)) ford=dimy M (4.3)

is also Cohen—Macaulay of dimension d; this is easy to verify, given M = wi(M ).
We speak of this as the dual of M. Since

wa (M)~ M [d] in D(A).

the assignment M +— M is an auto-equivalence on the category of Cohen—Macaulay
A-modules. In what follows, we say a Cohen—Macaulay module M is self-dual to
mean that there is an isomorphism of A-modules

M=MY.

The result below concerns Cohen—Macaulay modules M supported at p4 and hav-
ing maximal possible depth; namely, dimM = ¢ + 1 = depth M; see Lemma 3.1.
Let vp be the valuation associated to O. The determinant of an endomorphism
a: U — U of free O-modules of finite rank is denoted detc.

Proposition 4.4 Let A be a local ring in Co(c) and M, N Cohen—Macaulay A-
modules of dimension ¢ + 1, that are self-dual, and have the same rank at p4. If
w: M — N is a surjective map, then

lengthyy W4 (M) — lengthyy WA (N) =vo(deta) = vpo(det B),
where a: F§ (M) — F§ (M) and B: F§(N) — F(N) are the compositions

F ()

C C ~ RC \% Ffﬁ(nv)
FS (M) —— F5(N) ZFS(NY)

A FG(MY) ZF (M)

F(7Y)

. , Fé, ()
FS(N) = FS(NY) —2 2 A

FQ(MV) =F, (M) —— F4(N).
Proof Since M and N have depth ¢ + 1, they are free at p4, by Lemma 3.2. We can
assume their ranks are nonzero, else each term in the desired equality is zero, and

also that 7 is not an isomorphism. Consider the exact sequence

0O—L—M—N—70
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induced by 7. There are (in)equalities
c+1<depthy L <dimL <dimM =c+1,
where the first and last inequality on the left can be verified easily using (4.2). Thus L

too is Cohen—Macaulay of dimension ¢ + 1. Thus the exact sequence above induces
an exact sequence

0—s NV 2 MY — LY — 0.
Since LY is also Cohen—Macaulay of dimension ¢ + 1, Lemma 3.10(3) yields that

F (") is bijective. Given this, the desired equalities are immediate from the defini-
tion of & and B, and Lemma 3.10(2). O

4.5 Let A be in Cp(c) and M a Cohen—Macaulay A-module of dimension ¢ + 1.
Then MY is also Cohen—Macaulay of dimension ¢ + 1 and there is a pairing

MY MY =~ M QY wa(M)[—c — 11— wal—c — 1].

Up to a shift, this is the adjoint of the natural biduality map

M — RHomy (RHoma (M, w4), wa);
see, for instance, [53, Tag 0ASW]. This yields a natural pairing

(—, —): Ext4(0, M) ®p Ext4 (O, M") — FL(O) = O. (4.6)

of O-modules defined as follows: Given morphisms

a:O— M[c] and B: O — MY[c]
in D(A) consider the morphism

a®pB: (’)®I/§ O — Mlc] ®I/§ MY[c]~M ®k MY)[2c] — walc — 1]
This induces by adjunction a morphism
y: O —> RHomyu (O, walc — 1]) =~ Olc],

where the isomorphism holds as the ring O is Gorenstein and dim O = 1. Thus y
represents an element in Ext, (O, O). Set

(a, B) := the class of the morphism y in F (O).

For the Cohen—Macaulay modules of dimension ¢ + 1, the pairing above gives
another interpretation of the congruence module.
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Proposition 4.7 Let M be a Cohen—Macaulay A-module of dimension ¢ + 1. The
congruence module V4 (M) is the cokernel of the map

Ext$ (O, M) — Homp (Ext$ (O, M), F5 (0)).
adjoint to the pairing (4.6).
Proof One has natural isomorphisms
Ext§ (O, M) =ZHompa) (O, M"[c])
= Homp4)(O, wa(M)[—1])
= Hompa)(M[1], w4 (O))
= Homp4)(M[1], O[1])
= Homy (M, O)
SEHomp(M/paM, O)
= Homo(M/paM)", O)

In this chain, the third isomorphism is a composition of two adjunctions. The fourth
uses the fact that w4 (O) is the dualizing complex of (O, and hence equal to O[1]
since the ring O is Gorenstein; see [53, Tag 0AX1, Tag 0DW7]. The rest of the
isomorphisms are standard. This yields isomorphisms

Homp (Ext§ (O, MY), F4(0)) = Homp (Hom(g((M/pAM)tf, 0),F4(0))
=F5(0) ®@0 (M/paM)".

With this on hand, and a diagram chase, one gets that the adjoint map in question is
naturally isomorphic to the map

Ext5, (O, M) — F5(0) ®0 (M /pa M),
induced by M — M /p s M. This justifies the claim; see (2.4). 0

4.8 Let M be a Cohen—-Macaulay A-module of dimension ¢ + 1. Suppose there
is map R — A such that R is Gorenstein with dimR = c¢ + 1, and M is finitely
generated over R. Thus M is maximal Cohen—Macaulay as an R-module and hence
MY =Homg(M, R). The pairing (4.6) is induced by the natural pairing

M @gr Homg(M, R) — R

The paring (4.6) becomes even more concrete when ¢ = 0, in which case one can take
R = O, and then the pairing is the composite

Mlpal ®o Homp(M, O)[pal €M ®0 Homo (M, 0) — O.

This observation reconciles the definition of congruence modules introduced in this
work with that in [7, §3].
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The following result that expresses, under certain conditions, the invariant
Coker(ny) appearing in the defect formula 3.7 in terms of the Tate cohomology
modules, M’A (O, M), of the pair (O, M); see [14, Definition 6.1.1].

Proposition 4.9 If A is Gorenstein and M is maximal Cohen-Macaulay, then there is
an isomorphism of O-modules

Coker(ny) = Ext§ (O, M).
Proof By construction, 1, is the composition of maps
ExtS, (0, A) ®4 M —> Ext§, (O, M) —> Ext$, (O, M)

Since M is maximal Cohen-Macaulay the O-module Ext‘g (O, M) is torsion-free, by
Lemma 3.2, so the map on the right is an equality. We identify 7, with the map on
the left. Moreover, as A is Gorenstein one gets that

wa(0) ZExt (0, A)[—c] and Ext4(0,A)=0.
From the first isomorphism we deduce that

fori < 1
Tord (M, waO) = ori=et
Ext{ (0, A)®a M fori=c
We leave it to the reader to verify that 1), identifies with the map
HEN(O, M): Tor? (M, ws(0)) — Ext4 (O, M).

from [14, Theorem 6.2.5]. It remains to note that from part (3) of op. cit. and the
computation above one gets an exact sequence

Tor (M, w4 (0)) —25 Ext$ (O, M) —> Ext§ (O, M) —> 0

of O-modules. O

5 Complete intersections

5.1 From now on we focus on rings A of the form P/I where P := OJty, ..., t,],
a ring of formal power series over O, and I C (w)(t) + (¢)*>. Set Ap: P — O to be
the quotient modulo (¢), and A4 : A — O the induced map.

Let f:= f1,..., fm be a minimal generating set for /. The cotangent module
pa/ pi depends only on n and the linear part of the f;, in the following sense: By our
assumption on 7, each f; has an unique expression of the form

n
fi= Zuijtj + g with ujj € (w)Oand g; € (t)z. 5.2)
j=1
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Then one has a presentation

OmﬂO"HpA/piﬁO.

The following observations will be useful in the sequel.

Lemma5.3 Fix Aasin5.1. Then Aisin Co(c) if and only ifrank(u;;) = n —c. When
this holds dim A > ¢ + 1 and height I < n — c; the latter inequality is an equality if
and only ifdimA =c + 1.

Proof The first part of the statement is immediate from Lemma 2.7, and the lower
bound on dim A has been commented on in 2.2. As the ring P is regular ring, [13,
Corollary 2.1.4] gives the first equality below:

height =dim P —dimA<n+1—-(c+1)=n—c
and the rest of the statement follows. O

It also follows from the preceding discussion that when A is in Cp(c) one can put
it in the form P /(f), where the relations f := f1, ..., f,; satisfy

fi=wt + g with g; € ()2 (5.4)

andd) <---<d,,, where d; < oo fori <n —cand d; = oo fori > n — ¢, and then
@ = 0. Observe that the d; are independent of the choice of the presentation for A,
since one gets an isomorphism

Ploog P .92
pi - wdlo wdn—co

of O-modules. In particular the d; are Fitting invariants of O-module p 4 /p% Thus

@) @)
b2 .. — 5.5
A wdl(’)@ @wdn—cO (5.5)
A standard prime-avoidance argument allows us to go further and obtain the result
below; see [56, Appendix, Proposition 2] for the case ¢ = 0, and also [22, Theo-
rem 5.26]. The hypothesis on dim A cannot be omitted in the last part of the statement
for the complete intersection C satisfies dimC =c + 1.

Theorem 5.6 Fix A in Co(c). In the notation above, let h := height I. There exists

a minimal generating set f := fi1,..., fm of the ideal I where the f; have the form
in (5.4) and the sequence fi, ..., fi is regular. In particular, when dimA = c + 1,
the complete intersection C := O[t]/(f1, ..., fn) is in Co(c) and the surjective map

C — A induces isomorphisms
pc/be —> pa/phy and dc—> Dy
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Proof We start by choosing a minimal generating set f7, ..., f;, for the ideal I where
the f/ are of the form in (5.4). Since the ring O[¢] is regular, and hence Cohen—
Macaulay, the height of I equals its grade, that is to say, the length of any maximal
O|[t]-regular sequence contained in I; see [13, Corollary 2.1.4]. We claim that there

exists a regular sequence f1, ..., f; such that
fi=f/ modI*.
It is clear that setting f; = f/ fori =h 4 1,...,m gives the desired sequence. We
construct fi, ..., fi by an induction argument.
To start with, set fi = f. Suppose that for some 1 < j < h elements fi,..., f;

have been found, with the desired properties. We can suppose f j’ 41 18 zero-divisor in

A:=O[t]/(f1,..., f}); else we can take fj+1 = fJfH. The ideal /A contains an el-
ement that is not a zerodivisor, because the grade of / is /2, and fi, ..., f; is aregular
sequence in / of length j < h. Since the ideal generated by (f]{H) + (f]f+] e fé)2

in A agrees with /A up to radical, a prime avoidance argument yields an element f”
in (f]/'+1’ e, f};)2 such that f]fH + f” is a not a zerodivisor in A; see [36, Theo-
rem 124], or [13, Lemma 1.2.2]. Setting f; 41 := f/{+l + f” completes the induction
step.

Suppose dim A = ¢ + 1, so that height / =n — ¢, by Lemma 5.3. It is clear by
the choice of the sequence f that the ring C is a complete intersection, of dimension
¢+ 1, that it is in Cp(c), and that the induced map on cotangent modules has the
stated properties. g

Example 5.7 Consider ring A := O[s, t]/I where I = (w's, w2s +st). This ring is in
Co (1) and of dimension two. We have at least two choices for a complete intersection
in Co(1) mapping onto A: O[s, t]/(ws) or O[s, t]/(w?s + st). The former is the
one we want, so choosing any minimal generator for / would not do.

In the same vein, consider A := O[s, t]/I where I = (ws, wt, st). This ring is
in Co»(0) and of dimension one. The ring O[s, t]/(ws, wt) is in C»(0), maps onto
A, and has the same cotangent space, but it is not a complete intersection. What we
want is the ideal (w's, @t + st), which is a complete intersection.

5.8 Next we record a criteria for detecting isomorphisms in Cp in terms of cotangent
modules. To that end, consider a surjective map ¢: A — B in Co(c). Since ¢ is
surjective, so is the vertical map in the middle in the commutative diagram:

00— ®a — pa/py —— (pa/py) —— 0

l | =

0—— &g —— pp/py —— (PB/PQB)tf

—0 (5.9)

Thus the vertical map on the right is also surjective; the source and target of this map
are free O-modules of the same rank, since A and B are in Co(c), so we deduce that
the map is an isomorphism. The Snake Lemma then implies ®,, is surjective.
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Here is a criterion for detecting isomorphisms in Cp; it generalizes [22, Theo-
rem 5.21] that covers the case ¢ = 0. The argument below is essentially the one in op.
cit., but couched in terms of D;(B/A; O), the ith André—Quillen homology module
of the map A — B.

Lemma 5.10 Let ¢: A — B be a surjective a map in Co(c) with B a complete in-
tersection. If lengthyy ® 4 =lengthy @, then ¢ is an isomorphism, and hence A is
also a complete intersection.

Proof The crucial point is that D2 (O/B; O) = 0, since B is a complete intersection in
Co(c). To see this, consider a presentation P — B, as in 5.1. Since the augmentation
P — O is generated by a regular sequence D; (O/P; O) =0 for all i # 1, thus the
Jacobi-Zariski sequence associated to P — B — O yields an injection:

0— D2(0O/B; 0) — D{(B/P; O).

Since By, is regular, the O-module D>(O/B; O) is torsion, as can be seen by lo-
calizing at pp. On the other hand, the O-module D;(B/P; O) is free, as the map
P — B is complete intersection. Thus D,(O/B; O) = 0.

Consider the commutative diagram (5.9). The hypothesis is that the source and
target of &, have the same length, hence it is a bijection. Then the diagram implies
that the map pA/pi — pB/p% is also a bijection.

Set J := Ker(¢). The Jacobi-Zariski sequence associated to A — B — O reads

0—> (J/J?) ®p O —> pa/ph —> pa/py — 0.

The map on the left is one-to-one because D2 (O/B; O) = 0. The map between the
cotangent modules is bijective, so we conclude that (J/J 2) ®p O =0.Hence J =0,
by Nakayama’s Lemma. d

6 Tate constructions

Let A be in Cp(c), with presentation as in 5.1. When convenient we can assume
that the relations f defining have A the form given in Theorem 5.6. In this section
we completely describe the structure of the torsion-free quotient, F (0), of the O-
algebra Ext (O, O), which is the target of the map that computes the congruence
module of A. The key tool used in the proofs are constructions of free resolutions
introduced by Tate [51], and developed further in, for instance, Avramov’s book [2].
We take the latter as our basic reference.

6.1 Let A(X) be the exterior algebra over A on indeterminates X := {x1,..., x5},
with |x;| = 1 for each i. We make this into a DG (=differential graded) algebra with
differential determined by d(x;) = ¢; for 1 <i <n. Thus A(X) is the Koszul complex
on elements £.
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Since the g;, from (5.2), are in (¢) one can write g; = Zj glfjtj with g;j in (¢).
Evidently, the elements

n n
Zi :=Zuijx,-—|—2gl{jxj forl <i <m,
Jj=1 Jj=1

are cycles in A(X) of degree one. Since f is a minimal generating set for the
ideal I, the homology classes zj, ..., 2, are a minimal generating set for the O-
module H;(A(X)). Following Tate [51], we adjoin divided powers variables Y :=
{v1,..., ym}, in degree two, to kill these homology classes:

AX,Y):=AX, Y |d(y) =ziforl1 <i<m).

This is sometimes called the Tate construction of O over A; up to an isomorphism of
DG algebras with divided powers, it is independent of the choice of a minimal gener-
ating set for the ideal p4, and the O-module H{ (A(X)). The surjection L4: A — O
extends to a map A(X,Y) — O of DG algebras over A, where X,Y map to 0,
for degree reasons. By construction Hj(A(X, Y)) = 0. Unless the local ring A is a
complete intersection, A(X, Y) will have homology in higher degrees; see Proposi-
tion 6.11. Adjoining further exterior variables and divided power variables one can
extend A(X, Y) to an acyclic closure

g: A(U)i>(’);

see [51, Theorem 1] and [2, Construction 6.3.1]. By construction U = {U;};>1 is a
graded set of indeterminates, with Uy = X and U, =Y, and A(U) is the free A-
algebra with divided powers, on the set U.

The differential on A(U) satisfies

d(A(X)) € (DA(X) and d(A(U)) S (o, HA(U) (6.2)

The first inclusion holds by construction. The second one, which says that the A(U)
is a minimal free resolution of O over A, holds because the map A — O is large,
for it has an algebra section, namely the structure map O — A; for instance, see [3,
Corollary 2.7]. The latter observation does not play a role in the sequel.

Since the acyclic closure is a free resolution of O over A, one has

Exty (O, O) =H"(End4 (A(U))),

where End4 (A(U)) := Homy4 (A{U), A(U)). The complex End4 (A(U)) is a DG A-
algebra, with composition product, and induces the product on cohomology. This en-
dows Ext}, (O, O) with a multiplication, making it into a (typically non-commutative)
O-algebra. In the sequel we view Ext’ (O, O) as an O-algebra with this product; it
coincides with the Yoneda product, up to a sign.

The quasi-isomorphism A(U) = O induces a quasi-isomorphism

Hom 4 (A(U), A(U)) —> Hom (A(U), O)
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so one can also use the complex on the right to compute Ext’ (O, O) as an O-module.
More generally, for any A-module, or complex M, one has

Ext} (O, M) ZH*(Hom4 (A(U), M)).
This identification is functorial in M.

6.3 So far we have not used the fact that A is in Co(c), but now we do, to construct
an element in Ext§ (O, O) that maps to a generator for F, (O). The discussion below
is vacuous when ¢ = 0 so we assume ¢ > 1.

We can assume the relations f defining A have the form in (5.4). Thus the residue

class of the t,_¢+1, ..., Iy are a basis for the free O-module (pA/pi)tf. Applying [32,
Proposition 1.4] yields A-linear maps

6;: AUy — A{U), forn—c+1<i<n,

with the following properties.

(a) 0; is a I'-derivation and for each 1 < j < n one has

j=i
0ixj) = 0 else

where the x; are as in 6.1.
(b) db; + 6;d =0, where d is the differential on A(U).

See [32, 1.1] for the notion of a I'-derivation; the convention in op. cit. is that such
derivations commute with the differential, up to the usual sign. Condition (b) above
states that each 6; represents a cycle, of (upper) degree 1, in the complex End4 (A(U))
and hence a class in Ext/{\ (O, O). Moreover the composition

Op:=€06,0--00y_cy1: A(U)y— O (6.4)
is a chain-map so represents a class in ExtS (O, O). Evidently
Oa(Xn—c+1--xn) =1

This computation is interesting because of the result below. Recall that by construc-
tion 6.1 the Koszul complex, A(X), is a DG subalgebra of A(U), so any map from
A(U) can be restricted to A(X).

Lemma 6.5 Let 6: A(U) — O be any A-linear chain-map, of upper degree c, with
0(A(X)) = O. The class 6] in Ext (O, O) generates the free O-module FS(O).
This conclusion applies, in particular, to the class [04] from (6.4).

Proof Suppose to the contrary that 6 does not generate the free O-module F4 (O).

Since the latter has rank one, there must exist an A-linear chain-map «: A(U) — O
of upper degree c such that the class of # — wa is zero in F§ (O); equivalently that,
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for some integer s > 1, the class of @ * (6 — wa) is zero in Ext§ (O, O). Thus, with d
denoting the differential on A(U), there exists a A-linear homotopy 8: A(U) — O,
of upper degree ¢ — 1, such that

o’ (0 —owa)=p8d.

By the hypothesis, there exists an element a in A(X) such that 8(a) = 1. Then from
the equality above we get

o' =w'0(a) =o' () + Bd(a) = o Ha(a)

where the last equality holds as d(a) is in (¢)A(U), hence Bd(a) = 0; see (6.2). This
is a contradiction. O

The preceding result can be upgraded to a complete description of the torsion-free
quotient of Ext’ (O, O). This is discussed below.

6.6 Consider Fy (M) := {F’A(M )}i>o0 for any A-complex M. The graded O-algebra
structure on Ext’ (O, O) descends to F (O). Moreover, F (M) is a graded module
over F, (O) for any A-complex M.

By construction, F (O) is a subring of Exty (k(p), k(p)) where R := Ap, and
k(p) is its residue field. Since R is regular, Exty (k(p), k(p)) is an exterior algebra
on Ext}e (k(p), k(p)), and hence strictly graded-commutative; see [28, pp. 110]. Thus
F% (O) is also graded-commutative and so there is a natural map

£a: [\F4(0) — F4(0) (6.7)
(@)

of graded O-algebras, with Fl‘((’)) in degree one. It is easy to check that this map is

bijective when ¢ = 0, for then F%(0) = O and A\ F4(0) = O, since F},(0) = 0.
The result below generalizes this to arbitrary c.

Theorem 6.8 For any A in Co(c) the following statements hold.

(1) There is an isomorphism of O-modules
¢ = Homo (pa/p}, 0) = Ext} (0, 0);

in particular, the map Ext}4 0,0) - F}L‘ (O) is bijective.
(2) The map &4 from (6.7) is bijective.

Proof Since the O-module p4 /pf‘ has rank c, its O-dual is a free module of rank

c; this explains the first isomorphism in (1). As to the other one, consider the exact
sequence of A-modules

0—py—A—0—0
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Since Extl‘(A, —) = 0, applying Homy (—, O) yields an exact sequence of O-
modules

0 —> Hom (O, ©) —> Homa(A, ©) — Homa(pa, ©O) —> Ext} (0, 0) —> 0.
It remains to note that adjunction yields an isomorphism
Homy (pa, 0) = Homo (O ®4 pa. O) = Homo (pa/p;. O).

This justifies the isomorphisms in (1).
(2) Set A := 1o Fk (0); thus Al = Ext% (0, O), by (1). In the notation of 6.3, the
class of the maps

6i: A(U)y— A(U) forn—c+1<i<n

form a basis for the O-module A'. These generate the O-algebra A so Lemma 6.5 is
equivalent to: £4 (A€) = F¢ (O). This is the key to the bijectivity of £4.

Indeed, the map &4 is an isomorphism when localized p 4. Thus &4 is one-to-one,
for its source is torsion-free, and its cokernel is O-torsion. If &4 is not surjective,
then for some integer i there exists an element & in A’ \ @ A’ such that &4 (@) is in
w FlA (O). Since A is an exterior algebra on Al, a free @-module of rank c, one has
A" ' = A€ so that

EA(AS) =Ea(A ) SEA(AHEA(@) SF (O)w Fy (0) S w FY(O).
This is a contradiction. Therefore &4 is bijective, as claimed. O

It is clear from the construction that the map &4 is functorial in A. Namely, given
amap ¢: A — B in Cp, the natural map of O-algebra Extj (O, O) — Ext} (0, O)
induces the commutative diagram

1
Ao FL

Ao Fh(0) 252 A FL(0)

~| I

F5(0) — g Fa(0)

Fe(©) (6.9)
where the isomorphisms are by Theorem 6.8.

Proposition6.10 Let ¢: A — B be a surjective map in Cp(c). If ¢ is an isomorphism
at pa, then induced map

Ff;((’)): F3(0) — F4(0)
of O-algebras is an isomorphism. In particular, F,(O) is bijective.

Proof Set I :=Ker(p). Since ¢ is an isomorphism at p4, one has I,, = 0. The dia-
gram A — B — O induces an exact sequence

I/pal —> pa/py —> ps/pg —> 0
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of O-modules. Since I, =0 the O-module //p 41 is torsion, so the exact sequence
above induces an isomorphism

Homp (pp/p%, ©) — Homp (pa/p4. O).

Thus the map F(]p (O) is bijective; see Theorem 6.8(1). It remains to recall the com-
mutative diagram (6.9). O

Complete intersections The remainder of the discussion in this section is on com-
plete intersection rings, leading to the statement that the Wiles defect of such rings is
zero; see Theorem 9.5. The result below, which is already contained in the literature,
leads us to it.

Proposition 6.11 Let A be in Co and A(X,Y) the Tate construction from 6.1. The
following conditions are equivalent:

(a) The local ring A is complete intersection;
(b) The map A(X,Y)— O is a quasi-isomorphism,
(¢) The O-module H|(A(X)) is free and the natural map is bijective:

/\(HI(A(X))) = H(A(X))
o

Proof Let P:=Olty,...,t,] and A := P/(f), as in 5.1. The kernel of the surjection
Ap: P — O is generated by the regular sequence ¢ :=11, ..., t;.

(a)=(b): Since A is complete intersection, f is a regular sequence, contained in
the ideal (#). Thus [51, Theorem 4] applies, and yields the stated result.

(b)<(c): This is a special case of [6, Theorem 1]; see also [32, Theorem 2.3].

(c)&(a): Condition (c) says precisely that the map Ag: A — O is a quasi-
complete intersection, in the sense of [5, 1.1]. Since O is regular, hence a complete
intersection, the desired equivalence is contained in [5, Proposition 7.7]. O

6.12 Let A in Cp(c) be a complete intersection. We can assume A := P /(f), where
f = f1,..., fm is a regular sequence, and of the form given in (5.4); see Theo-
rem 5.6. By Proposition 6.11, the Tate construction A(X, Y) is the acyclic closure of
O over A. Thus there is an isomorphism

Ext} (O, O) ZH"(Homx (A(X, Y), 0)).
Writing O(X, Y) for O ®4 A(X, Y), standard adjunction yields an isomorphism
Homy (A(X,Y), O) =Z=Homp(O(X,Y), O)

Given that the f; are as in (5.4), the differential d on O(X, Y) satisfies d(X) = 0 and
d(y;) = wdi x; for 1 <i <m =n — c. Keeping in mind that the dual of a free algebra
with divided powers is a symmetric algebra, one gets an isomorphism of complexes
of O-modules

Homo (O(X, Y), 0) Z O, oy s X1 -5 Xm 1 d(i) = % xi ,d(x;) = 0]
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where each 7; is exterior variable of (upper) degree one, and each y; is a polynomial
variable of degree two. This yields an isomorphism of O-modules

OMmtts - os s X1 -5 Xm)
(@hxy, ..., &% )

Ext} (0, 0) =

Recall that d; = 0o for ¢ + 1 <i < n. Thus one gets an isomorphism of J-modules
Ext$ (O, O) Z Ony1 - - - n @ (torsion)

where the torsion part depends on ¢ and m. Thus F (O) is generated by the residue
class of 1,41 - - - n,; confer the construction of the class 0 in 6.3 and Lemma 6.5.

Since A and O are both complete intersections, the map A4: A — O is a quasi-
complete intersection map, in the sense of [5]. Applying Theorem 2.5(4) from op. cit.
yields

: O wheni=c
Ext, (O, A) =
Al ) 0 else.

In fact, one can follow the proof of [5, Theorem 2.5(4)] and deduce that
W, = O/(wd1+"'+dm)

Given this isomorphism and the description of ®4 in (5.5), it follows that when A
in Cp is a complete intersection ring, §4 (A) = 0. We omit details, for later on we
present another proof that goes by a reduction to the case ¢ = 0; see Theorem 9.5,
which also contains a converse.

7 Invariance of domain

In this section we establish an “invariance of domains” property for congruence mod-
ules; see Theorem 7.4. The statement takes some preparation.

7.1 Let ¢: A — B be a surjective map in Co(c) and M a finitely generated B-
module. For each integer i, the natural transformation Ext’ (O, —) — Ext, (O, —)
induces the map:

F (M): Fg(M) — Fy(M).

Noting that pga M = ppM, the naturality of the transformation Ffp(—) gives a com-
mutative diagram of O-modules

, F(, (M) -
Fiy (M) - Fy (M)
; l Fo(M/paM) . l
Fo(M/ppM) Fa(M/paM) (7.2)
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For i = ¢, the diagram above induces a map on the cokernels of the vertical maps:

W, (M): Wg(M) —> Wa(M). (7.3)

This result below may be viewed as a statement about invariance of domains for
congruence modules. The case ¢ = 0 is covered by [12, Lemma 3.4].

Theorem 7.4 Let ¢: A — B be a surjective map of local rings in Co(c). For any
finitely generated B-module M with depthy M > c, the map of O-modules in (7.3) is
bijective, and hence

lengthyy W4 (M) = lengthy W (M) .

Thus 54(M) > §p(M) with equality if and only if lengthy ® 4 =lengthpy Pp.

Proof 1t suffices to verify that (7.3) is bijective; the claim about defects is a simple
consequence. The map ¢ induces the surjective map ¢y, : Ap, — By, of local rings.
Its source and target are regular local rings of dimension ¢ so it is an isomorphism.
This remark will be used in the argument below.

Consider the commutative diagram (7.2). We prove that the horizontal maps are
isomorphisms for i = c; this implies the desired result.

First we verify that the induced map F;(M ): Fg(M) — F5 (M) is bijective. In-
deed since ¢y, is an isomorphism, it is easy to see by localizing at p4 that the kernel
of the map

Ext3 (0, M) — Ext§ (O, M)

is O-torsion, and hence the map Fg (M) is one-to-one. This requires no hypotheses
on M. The crucial point is that since depthg M > ¢ the map above is surjective, and
hence so is F,,(M). The argument goes as follows: Since A-acts on M through B,
there is an isomorphism of complexes

RHomy, (O, M) = RHomg(B ®Y% O, M),

and the map RHomp (O, M) — RHomy4 (O, M) is induced by the natural morphism
B ®IA O — O in D(B). Consider the exact triangle in D(B) that it generates:

J—>B®IZO—>O—>J[1]

For the desired statement it suffices that Ext (J, M) = 0. Evidently the map H; (B ®IA
0) — H;(O) is surjective for i > 1 and bijective for i < 0; moreover, it is bijective
for all i once we localize at pp. It follows that H; (J) is O for i <0 and O-torsion
for all i; equivalently, mp-power torsion, where mp denotes the maximal ideal of B,
for the B action on H;(J) factors through Apg. Since depthy M > ¢, any mp-power
torsion B-module W satisfies

Exty (W, M)=0 fori<c—1.

@ Springer



S.B.lyengar et al.

Given that H; (J) = 0 for i <0 and mpg-power torsion for all i, it follows, for example
by using a standard spectral sequence argument, that

Ext’é(], M)=0 fori<c.

This is as desired.
Next we verify that the following map is bijective:

FG(M/pgM) — F(M/paM).

This part of the proof also does not require that depthz M > c. Given the isomorphism
(2.4) it is enough to check that F;(0) — F (O) is bijective. This is contained in
Proposition 6.10. g

The following application of Theorem 7.4 will be used often in the sequel.

Lemma 7.5 Let A be in Cp(c) and M a finitely generated A-module supported at
pa and satisfying grade(pa, M) > c. Let A’ be the image of the natural map A —
End s (M). The following statements hold.

(1) A’ is in Co(c) and the surjective map A — A’ is an isomorphism at p 5;
(2) assq A’ CassaM;

(3) If f € A is not a zero-divisor on M, it is also not a zero-divisor on A’.
(4) There are equalities

lengthyy W4 (M) =lengthyy Wo (M) and lengthy &4 > lengthy 4.
Hence 54(M) = §4/ (M), with equality if and only if ®4 = ® 4.

Proof The hypothesis on M implies that depth, M > ¢ and also that M is free at p4;
see Lemma 3.1. These observations will be used below.

(1) Since M is faithful as an A’-module and free at p4, it follows that the map
A — A’ is an isomorphism at p4.

(2) Since A’ is an A-submodule of End4 (M), the inclusion below holds:

assg A’ Cassy Enda (M) =assa M .

The equality is a direct computation; solve [13, Exercise 1.2.27].

(3) The zero-divisors of a module over a noetherian ring are the union of its asso-
ciated primes, so (3) is a consequence of (2).

(4) The action of A on M factors through A’ so depth,, M = depth, M > c.
Hence, given (1), it remains to apply Theorem 7.4 to the map A — A’. O

8 Deformations

The main result of this section, Theorem 8.2, is that the defect of a module does not
change under deformations. Throughout we fix the following notation.
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8.1 Fix A in Cp(c), for some ¢ > 1, and M a finitely generated A-module sup-
ported at p4, and with grade(ps, M) = c; this is the maximum value possible, by
Lemma 3.1. Let f inpy \pf) be such that it is not a zero-divisor on M. Set

B:=A/fA and N:=M/fM,
where N is viewed as a B-module.

Theorem 8.2 In the context of 8.1, the ring B is in Co(c — 1), and
5a(M)=45p(N).
Moreover N is supported at pp and grade(pp, N) = grade(ps, M) — 1.

This result often permits one to reduce questions about defects to the case when
¢ = 0, which has been studied earlier in the literature. Here is one application; see
also Sect. 9.

Corollary 8.3 Let A be a local ring in Cp(c). If M is a finitely generated A-module
with grade(pa, M) > c, then 4(M) > 0.

Proof Let g be an M-regular sequence of length ¢ provided by Lemma 3.5. Set
B:=A/gA and N := M/gM. Then a repeated application of Theorem 8.2 yields
34(M) =58p(N). After replacing A and M by B and N, respectively, one can assume
¢ = 0. Then given the defect formula Lemma 3.7, it suffices to verify that 54 (A) > 0,
that is to say that

lengthy ® 4 > lengthy W4 .

Since ¢ = 0, one has P4 = pgy /pi, and so the inequality above is exactly the one
proved by Wiles’; see [56, Appendix, Proposition 1] and [22, #(5.2.3)]. Il

8.4 Theorem 8.2 also permits one to reconcile our notion of Wiles defect with the
one introduced in [7] when M = A is a Cohen—Macaulay ring. Indeed, both invariants
remain unchanged when we go modulo a suitable regular sequence; for the former,
this is by Theorem 8.2, and for the latter, this is essentially by definition [7, §3.4]. So
it suffices to compare them when ¢ = 0, in which case they are defined in the same
way.

The proof of Theorem 8.2 makes repeated appeal to Theorem 7.4, and some ob-
servations of independent interest recorded below.

8.5 Let A be alocal ring in Cp, and consider the natural pairing
tf
(= =)t Homo(pa/p}. O) x (pa/p3) — O.
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Given an element f € p4, let [ f] denote its residue class in (p4 /pi)tf, and consider
the induced map

(= [f1): (pa/p) — O.

Let O(f) denote its image; this is called the order ideal of [ f]. It is the subset of O
consisting of elements «(f), as « ranges over O-linear maps pA/pi — O. Set

va(f) :=lengthp (O/O(f)).
Let f be asin 8.1. The maps A — B — O give rise to an exact sequence

pa bs

0——0— — —

— 0,
A P}

of O-modules, where the map on the left sends 1 € O to the class of f in py /p%; it

is one-to-one because it is so when it is localized at p 4. This uses the hypothesis that

f is notin pff). Applying Homp (—, O) gives an exact sequence

61
0 —> Homp(pg/p%, ©) —> Homu (pa/p3, O) —> O (8.6)

where the map on the right is evaluation on the class of f. In particular, the image of
dlis O(f), so

length Coker(d') = va(f).
The relevance of this discussion is manifest from the result below.
Lemma 8.7 In the set-up of 8.1, the ring B is in Co(c — 1) and
lengthyy ®p — lengthyy P4 =va(f).

Proof Lemma 3.4 yields that B is in Cp(c — 1). By construction, the exact se-
quence (8.6) continues as the exact sequence

51
Hom (pa/p%, O) —> O —> Extl(pp/p%, O) —> Exth(pa/p3, O) — 0.

It is easy to check that the length of Exté9 (pB/ p%, O) equals that of ® g, and similarly
for A. Therefore the exact sequence above yields

length ®p — lengthy & 4 = length Coker(d') = vy -
This is the desired equality. O
We need one more observation regarding these order ideals.

Lemma8.8 With Aand f asin8.1,letw: A — A’ be a surjective map in Co(c) that
is an isomorphism at p 4. Then w(f) is in p o \p(Az,), and v (w(f)) =va(f).
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Proof Since 7 is surjective and an isomorphism at p 4, one has

2 -1 (p (@)

P =7 py) and pliAp, ZpR AL

Thus f not in p$ implies that 77 (f) is not in p. The equality va (7 () = va(f)
is immediate from the definition of v(—), given that 7 induces an isomorphism
tf tf
(Pa/pi) = (a/pi) -
See (5.9). O

Now we present a proof of Theorem 8.2. See [34, Theorem 2.28] for a different
perspective.

Proof of Theorem 8.2 The hypothesis is that A is in Co(c), the A-module M has depth
atleastc,and f €ps\ pf) is not a zero-divisor on M. We have to verify

dAM)=06p(N) forB:=A/fAand N:=M/fM.

One has depth,(pa, M) = c and f € ps is not a zero-divisor on M. Thus
depthp(pp, N) =c — 1. Since f is in pyu, the surjection M — N induces an iso-
morphism M /paM = N /ppN, so there is an equality

rankApA My ,) = rankBpB (Npg) . (8.9)

We reduce to the case where f is not a zero-divisor also on A, as follows: Let A’
be the image of A in Ends (M) and set B’ := A’/fA’. Then A’ is in Cp(c) and the
map A — A’ is an isomorphism at p4, by Lemma 7.5. Thus image of f in A’ is not

contained in pf,) and vy (f) =va(f), by Lemma 8.8. Applying Lemma 8.7 to A and
A’ we deduce that B and B’ are in Cp (¢ — 1), and

lengthy ®p — lengthy ® 4 = lengthy ®pr — lengthy D 4/ .

Moreover grade(p4/, M) = grade(ps, M) > c, since the A action on M factors
through A’, and similarly grade(pg’, N) > ¢ — 1, so Theorem 7.4 yields equalities

lengthy W4 (M) = lengthy W4 (M)

lengthyy Wp/(N) =lengthy Wp(N).
The displayed equalities above yield

SA(M) —8p(N) =84(M) —ép/(N)

It thus suffices to verify the desired result for the A’-module M, so replacing A and
A’,and so B by B’, one can assume f is not a zero-divisor also on A, as claimed; see
Lemma 7.5.

The next step in the proof is a reduction to the case M = A. The assertion below
concerns the map 1y from (3.6).
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Claim There is an isomorphism Coker(ny) = Coker(nys) of O-modules.

Indeed, since f is not a zero-divisor on A, the free resolution of the A-module B

is0— A i> A — 0. In particular, it is finite free, so for any A-complex X there is a

natural isomorphism
RHomy (B, X) = RHomu (B, A) ®% X = (B ®4 X)[-1]
in D(B). This gives rise to isomorphisms
RHomy (O, X) = RHomp (O, RHomy (B, X)) = RHompg (O, (B ®k X)H[—1D.
Thus, passing to cohomology and applying (—)" yields an isomorphism

F,(X) =F; (B & X)

for each integer i, and natural in X. Moreover, since f is not a zero-divisor on M,
the natural map

BRY M - Hy(BY M)=M/fM=N
is a quasi-isomorphism. Summing up, one gets a commutative diagram

FS(A) @0 (M/paM)"" ——=—— F$Y(B) @0 (N/psN)"

nm l l”?N

FA(M) FG ()

1R

of O-modules. This justifies the claim.

Given the preceding claim, (8.9), and the exact sequence Lemma 3.7, it suffices
to establish the desired equality for M = A, namely that §4(A) = §p(B). In view of
Lemma 8.7, this is equivalent to

lengthyy Wp — lengthyy Wa =va(f). (8.10)
To that end, consider the commutative square

F4(4) —— F,(0)

% F

FSLU(B) —— FSH(B @Y 0) — FSL(0) (8.11)

The maps in the lower row are induced by canonical maps B — B ®];\ O — O whose
composition is A . The key point is this:

Claim The map F%_l (B ®]/; 0) - F%_l (O) is one-to-one and its cokernel has length
equal tova(f).
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Given this claim and the diagram (8.11) one gets inclusions
F'(B) > Fy ' (B &Y% 0) > Fy ' (0)

These and the isomorphisms in (8.11) yield (8.10), as desired.
To verify the claim we consider the canonical exact triangle

O[] — BRL 0 — 0 — 0[2]
in D(B). Applying Homp(g) (O, (—)[c — 1]) yields an exact sequence of O-modules
Ext$ (0, 0) — Ext§ 10, B 8 0) — Ext571(0, 0) 55 Ext§HH0, 0) —

The first part of the claim follows because the O-module Ext’é (O, O) is torsion for
all i > c; see Lemma 2.6 and 2.1. As an aside we note that x is the cohomology
operator of the map A — B, discovered by Eisenbud and Gulliksen; see [2, §9.1].

It remains to verify the second part of the claim. In view of the commutative
diagram (8.11), this is tantamount to the statement that the cokernel of the map
F(0) — F%_l (O) has length v4 (f). This follows from a certain equivariance prop-
erty of the map. Namely, the connecting map

Ext’y (0, 0) — Exty (0, 0)

is Ext}; (O, O)-linear, where the source is viewed as an Ext}; (O, O)-module via the
natural map Ext} (O, O) — Ext}, (O, O). Thus the induced map

5*: F4(0) — F 1(0)

is F} (O)-linear. The map ol is precisely the one in (8.6). In view of Theorem 6.8, the
exact sequence (8.6) implies that the image of F}B (O) in F}L‘(O) is a nonzero direct
summand, and hence also that Fj;l ) - Fi‘((’)) = F5(0). Since the image of ol is
the order-ideal of f, the equivariance property of 0* implies

0°(F{ (0)) = 0°(Fy (O)F(0) =Fy 1 (0)8' (F} (0)) = ="V FH(0)

Thus the cokernel of 0¢ has length v4 (f), as claimed.
This completes the proof of the claim and hence of the theorem. O

9 Criteria for freeness

In this section we establish numerical criteria, in terms of congruence modules and
cotangent modules, for detecting when a module has a free summand, and also for
detecting the complete intersection local rings in Cp.
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Gorenstein rings A noetherian local ring R is Gorenstein if R, viewed as a module
over itself, has finite injective dimension. Over such a ring R, a finitely generated
R-module M is maximal Cohen—Macaulay if and only if

Exti(M,R)=0 foralli>1. 9.1)

This follows from (4.2), keeping in mind that wg = R[dim R] in D(R); see also [13,
Theorem 3.3.10]. The result below is Theorem B from the Introduction. In the state-
ment, e4 (M) denotes the multiplicity of an A-module M see [13, §4.6].

Theorem 9.2 Let A be a Gorenstein local ring in Co and M a maximal Cohen—
Macaulay A-module with p :=ranky, (Myp,) #0. Then 4 (M) = - §4(A) holds if
and only if

MZA"e W where Wy, =0.

When this holds and es (M) < - e(A), then M is free.

A key step in the proof of Theorem 9.2 is a criterion for detecting free summands
in modules over general Gorenstein local rings, and not special to the category Co.
This is explained below.

Lemma 9.3 Let R be a Gorenstein local ring, M € mod R a maximal Cohen—
Macaulay module, and x € R not a zero-divisor on R and on M. If the R /x R-module
M /xM has a free summand of rank |, then so does the R-module M.

Proof 1t suffices to verify that if R’ := R/x R is a direct summand of M’ := M/xM,
then R is a direct summand of M. The latter condition is equivalent to the condition
that the trace ideal of M is R; that is to say, the natural map is surjective:

iy (R): Homgp(M,R) g M — R, givenby f @ m — f(m).

See, for instance, [43, Proposition 2.8(iii)]. By Nakayama’s Lemma, it suffices to
prove that 7,7 (R) is surjective after applying — ® g R’; equivalently, the horizontal
map in the diagram below is surjective:

(HOIHR(]W, R) KRR R,) Qr M' —— R’
HOmR/(]\J/,R/) Qp M’ /M,(R’)

The vertical map is induced by the map
Hompg (M, R) — Homgr (M, R') Z=Homp (M’', R,

where the first map is induced by R — R’, and the isomorphism is standard adjunc-
tion. It is a simple exercise to check that the diagram above is commutative. More-
over, Ty (R') is surjective because R’ is a direct summand of M’. Thus, it suffices
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to verify that the vertical map is surjective. Since M is maximal Cohen—Macaulay,
Ext}e (M, R) =0by (9.1), so applying Homg (M, —) to the exact sequence

0—R-SR—R —0

yields the desired result. O

Here is a general result on detecting free summands. The hypothesis on the Ext
modules is equivalent to the vanishing of the Tate cohomology module of the pair
(O, M), in degree c; see Proposition 4.9 and also [14, Corollary 6.3.4].

Lemma 9.4 Let R be a Gorenstein local ring and M a maximal Cohen—Macaulay
R-module. Let »: R — O be surjective map, set p := Ker(L) and c := heightp. If
the induced map Ny : ExtG(O, R) g M — Ext%(O, M) is surjective and M), is
nonzero, then M has a free R-summand.

Proof The argument is by reduction to Krull dimension zero. Choose an element x
in R such that A(x) = @, the uniformizer for O, and is not zero-divisor on R or on
M.Set S:=R/xR and N := M/xM. For any R-module, say U, on which x is not a
zero-divisor, the surjection U — U/xU induces, for each integer n, a map

Ext} (O, U) — Ext{ (O, U/xU) ZExts(k, U/xU)

natural in U. This isomorphism is by standard adjunction. Specializing U to R and
to M gives a commutative diagram:

Ext$,(0, R) @ M —255 Bxt$,(0, M)

l |

ExtS(k, S) ®s N —2— BExtS(k, N)

The vertical map on the right is nonzero, as can be seen by considering the long exact
sequence induced by Hompg (O, —) to the exact sequence

0—M->M—>N—0
and Nakayama’s Lemma. This is where we need the hypothesis that My # 0, for it
implies Ext% (O, M) # 0; localize at p. Thus we conclude that the map 7y in the

diagram above is nonzero. It thus suffices to prove following claim, for then M has a
free R-summand, by Lemma 9.3.

Claim When 1y is nonzero, the S-module N has a free summand.

To verify the claim, choose a sequence x := xp, ..., x, in mg that is regular on §
and on N; this is possible as both have maximal depth. Set S := S/xS and N’ :=
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N/xN.By [13, Lemma 3.1.16] one gets the isomorphisms in the diagram:

ExtS(k, S) ®s N —>— BxtS(k, N)

! ]

Soc(S") ®g N —=— BExt%, (k, S") ©g N' -2 Ext%, (k, N') —— Soc(N')

1R

The diagram is commutative because of the naturality of the maps. Since 7y is
nonzero so is 7y, that is to say, Soc(S’) - N’ # 0. We claim that this property im-
plies N’ has a free S’-summand, so then N has a free S-summand, by Lemma 9.3,
which is as desired. Here is one way to verify the claim.

Choose an element @ € N’ such that Soc(S")a # 0 and consider the S’-linear map
a: §"— N’ defined by 1 > a. Since S’ is a Gorenstein ring of Krull dimension zero,
Soc(S’) is the smallest nonzero ideal in S’. Thus the choice of a implies that « is
injective. It remains to observe that S’ being a Gorenstein ring of Krull dimension
zero, it is injective as a module over itself, so « is split-injective. O

We can now present a proof of Theorem 9.2. Instead of the argument given be-
low, one could also use Theorem 8.2 to reduce to the case ¢ = 0, as in the proof of
Corollary 8.3; then the result is implicit in the proof of [23, Theorem 2.4]. The latter
statement is contained in Theorem 9.6 further below.

Proof of Theorem 9.2 Suppose A is in Co(c). Since M is maximal Cohen—Macaulay,
depth, M > ¢ + 1, so it is free at p4 and the O-module Ext, (O, M) is torsion-free,
by Lemma 3.2. Thus if §4 (M) = - §4(A), then Lemma 3.7 yields that the map

Ext$ (O, A) ®4 M —> Ext4 (O, M)

is surjective. Then a repeated application of Lemma 9.4 yields that M has a free
summand of rank . Thus M = A* @ W for some A-module W. It remains to observe
that since M is free of rank w at p4, one must have Wy, =0.

Conversely, if M = A* & W with W not supported at p4, then 4 (W) =0, by
Lemma 3.7, so

Sa(M)=p1-84(A) +8a(W)=p-84(A).

As to the last part of the statement, write M = A* @ W for some A-module W.
When the stated bound on the multiplicity of M holds, one gets

w-e(A)+ea(W)=es(A* D W)=ea(M) < p-e(A)
Thus e4 (W) = 0. Since M is maximal Cohen—Macaulay, either W is O or it is also

maximal Cohen—Macaulay. The latter case cannot hold, the multiplicity of a nonzero
maximal Cohen—Macaulay module is positive; see [13, §4.6]. Il

Complete intersection rings Next we turn to complete intersections. Any local ring
A in Cp is of the form P/I, where P := O[t], a ring of formal power series, and in
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particular, a regular local ring. Such an A is complete intersection if and only if the
ideal I can be generated by a regular sequence; see [13, §2.3].

The result below generalizes a criterion for complete intersection due to Wiles [56,
Proposition, Appendix] and Lenstra [41, Theorem in introduction], as extended in
[26, Proposition A.1], both of which deal with the case ¢ = 0. Compare this result
with [34, Theorem 2.6] that states that A in Cp is regular if and only if &4 =0, if
and only if W4 (A) =0.

Theorem 9.5 Let A be a local ring in Cp(c) with depth A > ¢ + 1. The ring A is
complete intersection if, and only if, § 4 (A) = 0.

Proof One can reduce to the case ¢ = 0 as in the proof of Corollary 8.3. At that point,
one can invoke [26, Proposition A.1]. O

Here is an extension of a result due to Diamond [23, Theorem 2.4].

Theorem 9.6 Let A be a local ring in Co(c) and M a finitely generated A-module
with depthy M > ¢ + 1 and p :=ranky, (My,) # 0. Then §4(M) = 0 if and only if
A is complete intersection and

M==AY W where Wy, =0.

When this holds and es(M) < - e(A), then M is free.

Proof The “if” direction of the statement is clear, given Theorem 9.5. The proof of
“only if” direction uses the observation below.

Claim The desired statement holds for all A in Cp(c) if it holds for all such A with
depth A > 1.

Indeed, let A’ be the image of A in End4(M). Since the A action of M factors
through the surjection A — A’, the depth of M as an A’-module also equals ¢ + 1.
Moreover, Lemma 7.5 yields the first inequality below:

0=384a(M) >4 (M) >0.

The equality is by hypothesis and the second inequality is from Corollary 8.3. Thus
one gets the first equality below:

84(M)=0 and Ilengthy ®4 =lengthy Py .

The second one is again by Lemma 7.5. It thus suffices to prove the desired result for
A’, for when A’ is complete intersection Lemma 5.10 implies that A = A’.

This justifies the claim.

We verify the first part of the statement by induction on c; the second part then
follows as in the proof of Theorem 9.2.

The base case is ¢ = 0. By the preceding claim, we can assume A has positive
depth. Since ¢ = 0, one has §4(A) > 0; see Corollary 8.3. Thus the hypothesis that
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84(M) =0 and Lemma 3.7 implies §4(A) = 0. Thus A is complete intersection, by
Theorem 9.5. At this point, we can invoke Theorem 9.2 to conclude that M has a free
summand; this is where the hypothesis that the My, is nonzero is required, so that
the rank of M at p4 is nonzero; see Lemma 3.2.

This completes the proof when ¢ = 0.

Suppose that ¢ > 1. One again, thanks to the claim above, we can suppose
depth A > 1. Pick an element f in pg \pf) that is not a zero-divisor on M and on
A.Set B:=A/fAand N:=M/fM. The ring B isin Cp (c — 1) and §3(N) =0,
by Theorem 8.2. Moreover the rank of N at pp equals u, as can be easily verified.
Thus, by induction, B is a complete intersection and the B-module N has a free sum-
mand of rank p. Thus A is complete intersection, by [13, Theorem 2.3.4], and that
the A-module M has a free summand of rank u, by Lemma 9.3.

This completes the proof. O

Here is one corollary, which may be seen as a counterpart to Lemma 5.10. When
¢ =0 the result below is [41], and [22, Theorem 5.8], both of which were inspired by
Wiles” work in [56, Appendix].

Corollary 9.7 Let ¢: A — B be a surjective a map in Co(c) with B a complete
intersection. If 4 (B) = 0, then ¢ is bijective and A is a complete intersection.

Proof Since B is a complete intersection, §p(B) = 0, by Theorem 9.5. Thus the hy-
pothesis and Theorem 7.4, applied with M = B, imply length ®4 = lengthy, ®p.
The desired result follows from Lemma 5.10. 0

Part 2. Patching and duality

In this part we summarize the commutative algebra needed for the patching con-
struction in the derived setting. Our main purpose is to show that this construction
preserves duality; see Theorem 11.3.

10 Abstract patching

This section is mostly a recollection of the patching construction, following the ap-
proach of Calegari and Geraghty [17], Hansen [29, 38] and Allen et. al. [1]. In par-
ticular, the ultrapatching method is due to Scholze [48].

10.1 Going forth we assume the residue field k := O/ O of O is finite, and of
positive characteristic £. We fix a power series ring

O[y] wherey:=yi,..., .

For each integer n > 1, fix integers e(1, n), ..., e(r,n) > n and quotient rings

ee(i,n)

Ap = O[y]/L,, where I, = ((1 T r).
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These are flat O-algebras, augmented to A9 = O, and complete intersections. For
each n pick a A,-algebra R, that is finite as a A,-module, and such that there is
an isomorphism R, /(y)R, = O ®x, Ry = Ry; we suppress this isomorphism in our
notation and write an equality instead. We assume no other relations between the R,,.
Let ¢, : A, — R, denote the structure maps.

In what follows we consider derived actions of rings on complexes. We introduce
some language and notation to facilitate the discussion.

10.2 Let A be aring, M a A-complex and R a A-algebra. We say that M is a derived
R-complex, or that R has a derived action on M, to mean that there is a map of A-
algebras R — Endp(a)(M). When M is a module this means exactly that there is
an R-module structure on M extending its A-module structure. For a general M one
only gets an R-module structure on the homology modules H; (M) extending their
A-structure.

Let Dg(A) denote the category of pairs (M, t) consisting of an M in D(A) and a
map ¢: R — Endpa)(M) of A-algebras. We usually write M, instead of the pair, for
an object on D (A), but one has to keep in mind that an M in D(A) may host different
derived R-actions. The morphisms in Dr(A) are the morphisms of A-complexes
compatible with the derived R-action, that is to say, a morphism f: M — N in D(A)
where for each r € R the diagram

M—LN

rl l,,

]\4[7>N

in D(A) is commutative. We record some stability properties of derived R-actions.
Let (M, () be a derived R-complex. For any A-complex, C, the RHomp (M, C)
has a derived R-action with structure map the composition

R = Endp( (M) —> Endp(a)(RHoma (M, C))

where the one on the right is induced by RHomx (—, C). An analogous statement
holds for RHomy (C, M).

A map A — A’ of rings induces a derived R’ := (R ® A’)-action on A’ ®% M
in D(A) via the natural map

p: N ®n Endp(a) (M) —> Endp(ary (A @% M).
Thus one gets a functor Dr(A) — Dg/(A’) that sends (M, ¢) to (A’ ®I;\ M, p(A'®0)).

10.3 Fix integers d and £, and consider a category PaSy of patching systems whose
objects are collections € := (Cy, @), >0 Where

(1) C, is aperfect A,-complex;
(2) Hi(k ®% Cn)=0fori ¢[d,d+tol;
(3) C, is aderived R,-complex;
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@ a,: O ®Ij\n C, = Cy is an isomorphism in Dg, (O), where the R,-action on Cy
is via the surjection R,, — Rp.

Given (2), condition (1) is equivalent to requiring that C,, is in DP(mod A,,).

A morphism f: € - © in PaSy is a family f,: C, — D, of morphisms in
DR, (A,) commuting with the morphisms in the systems defining € and ©. The cat-
egory PaSy is defined over the system of rings (A, ); this will be emphasized only if
needed.

10.4 Consider the power series ring

Seo :=0[y, w] where w:=wy,..., wj,and set
ni=(y,w).

The ring O[y] is a subring of Seo. In what follows we write (—)" for the extension
of scalars functor (also known as framing) from the category of finitely generated
O[y]-modules to finitely generated Soo-modules; thus

MP = S o[y M -

When A is a module-finite O[ y]-algebra and M a finitely generated A-module, A"
is a module-finite Soo-algebra and M" a finitely generated A”-module. Moreover,
since the extension O[y] — Ss is flat, (—)" extends to a functor on appropriate
derived categories, derived complexes, and even to the category of patching systems.
In particular, one gets a functor from patching systems over (A,) to those defined
over (AE). These remarks will be used without further comment.

10.5 Let r, £p and j be the integers from 10.1, 10.3, and 10.4, respectively. Fix a
complete local, flat, noetherian O-algebra R, of dimension r + j — £+ 1, equipped
with surjective O-algebra morphism 7, : Rs — R} for n > 1. We do not assume the
7, are compatible. The ultrapatching construction of [1, Sect. 6.4] and the work of
[29] give the following

Theorem 10.6 There exists a homomorphism Qoo Seo — Roo making R into a
finite Sxo-algebra and a functor P: PaSy — mod R, with the following properties:

(1) P(€) is a maximal Cohen—Macaulay R.o-module, nonzero when € # Q.
(2) There is a surjection R /MR — Ry and an isomorphism of Ry-modules

P(€)/mP(€) =Hy(Co) .

(3) Treating P(€) as an Soo-module via ¢, for any open ideal a C S and for
infinitely many n, there are isomorphisms

(Soo/®) ®Y,, P(OId] = (Sxo/0) @ €/
of derived R~o-complexes, where Ry acts on CnD via LETL’n.
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(4) There is an isomorphism of R-algebras:
Endps,.) (P(€)) = lim Endp s, /a) ((Soo /@) ®y, P(©)
(5) Fixamap f: € — €inPaSy. If there exists an element T € R, such that
7a(t) = f  as elements in Endp 0, o
for all but finitely many n, then P(f) =t in Endg_ (P(T)).

Proof As noted in 10.4, each patching system € over (A,) gives rise to the framed
patching system €U over (A})). Parts (3)—(5) of the statement only involve €U,
so does the construction of the functor P. Thus replacing (A,), (R,;) and € by
(AD), (RY), and (€), we assume we are in the framed context.

We use the ultrapatching method introduced in [48, §9]. Fix a non-principal ul-
trafilter § on N. Take any finite local ring A (that is to say, a ring with finite
cardinality). Consider the ring [],2, A. As A is finite and § is an ultrafilter, for
any element (aj,apz,...) in ]_[flozl A there is a unique element a € A for which
{n € Nla, = a} € §. Denote this element f(aj,ay,...). It is easy to verify that the
function f: []°2; A — A is an A-algebra homomorphism, and that for any I € §,
f factors through the natural quotient map [[,2; A — [,<; A.

Let m4 be the maximal ideal of A and let p = f~!(my); this is a maximal ideal of
]_[3021 A. Then f induces an isomorphism (]_[3(’:1 A) p 5 A and so in particular for
any [ € §, the map ([T;2; A), — ([T,e; A),, is an isomorphism.

For any sequence M{, M3, ... of A-modules (respectively A-algebras) the ker-
nel of the map [[,2, M, — (]—L‘i":1 M,l)p is the set of sequences (mp,ma,...) €
]_[,fo:] M, for which {n € N|m, = 0} is in §. By definition this implies that
(]_[;il Mn)p is the ultraproduct of the M,,’s.

If the M,,’s are all finite with uniformly bounded cardinality, standard properties
of ultraproducts imply that the set of i € N for which there is an isomorphism

o0
<]_[ M,,) =~ M;
n=1 p

as A-modules (respectively, as A-algebras) is an element of §. In particular, as § is a
nonprincipal ultrafilter, (]_[ZOZ 1 Mn) 9 is isomorphic to M; for infinitely many i.
For any open ideal a C S and integer s > 0 set

oo
R(s,a,00) := (l_[ Soo/0®n, R,,/m‘}en>
p

n=1
where when I, ¢ a we interpret
Soo/at QA, Rn/mien =0;
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this only happens for finitely many n. As in [1, Remark 6.4.14], we get surjections
Roo = R(s, a,00) for all s, a, inducing a surjection Ro, — limg 4 R(s, a, 00). Since
each R(s, a, 00) is an Ss.-algebra, the structure map S — limg o R(s, a, 00) lifts to
a homomorphism

Yoo Soo = Roo

as desired. For the moment, any lift will do, but later on we prove that there exists a
lift that ensures that R, is finite as an Sy-module. In any case, [1, Lemma 6.4.15]
gives the surjection

Roo/MRo = O ®s., Roo — Ry .

Let € := (Cy, an),>0 be a patching system. Since each Cy, is perfect, we can re-
placing it by its minimal free resolution over A,, and assume C, is a bounded com-
plex of free modules; see [47, Chap. 2, Theorem 2.4]. Then O ®kn C, is represented
by the complex O ®4, C,, which is also free and minimal as an O-complex. Thus
we can assume « is a morphism of O-complexes:

ap: O®a, C,— Cyp.

Since this is a quasi-isomorphism between minimal free complexes, it is an isomor-
phism; see [47, Chap. 2, Theorem 2.4]. For any open ideal a C S, set

C(a,00) = (]‘[ Seo/a®0, C,,)
n=1 p

where as before when 1, ¢ a the tensor product in question is assumed to be 0.
Since C,, is a minimal free complex over A, for each integer i one has

rank, (Cp); = rank; H; (k ® o, Cp)
=rankg H; (k ® 0 (O ®4, Cn))
=rank; H; (k ®» Cop)

The last equality holds because O ®,, C,, = Co, via ;. Thus the integers
¢ :=ranky, (Cy);

are independent of n. It follows that the complex Soo/a ®4, C, over S /a is mini-
mal, free and for each i € Z and all n, one has

ranks, /a(Soo/a ®n, Cu)i =c; .

In particular, the modules (So/a ®a, C,); are all finite of bounded cardinality. It
follows that C(a, o0) is a minimal complex of finite free modules over S.,/a and
that for infinitely many n there are isomorphisms

C(a,00) = S0/a®np, Cp .
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Thus ranks_ /q C(a, 00); =¢; foreachi € Z. As in [1, Proposition 6.4.10] one gets

So00/8®s55/6 C(b, 00) = C(a, 00)
for any b C a. Set

Coo 1= lism C (m“sm, 00) .
By [38, Lemma 2.13] this is a minimal complex of S,-modules with
S0/ ®s,, Coo = C(a,00) foralla,

and for each i € Z we have

H;(Cx) = lisrnHi (C (quoo, oo)) .
Also (the proof of) [38, Lemma 2.13(3)] implies that the natural map

EndD(Soc) (Coo) — lign EndD(Sm/a) (C(a, OO))

is an isomorphism.
The structure maps R In, R, — Endp(,,,)(C,) induce maps

Roo — R(s, a,00) — Endp(s,,/a) (C(a, o0))
for all s > 0, compatible with the maps
Endp(s,,/6)(C (b, 00)) —> Endp(s,, /a)(C(a, 00))

for b C a. Thus these maps induce a map

loo: Roo —> Endp(s,)(Coo)
As the maps

Soco —> R, —> Endp(a,)(Cy)
induce the natural action of Sy, on Cj, it follows that the map

So0 25 Roo —> Endp(s,, ) (Coo)

induces the natural action of Sy, on Cs. Thus the Sy action on Co extends to a
derived R -action. Set

P(€):=Hy(Cs) inMod R.

This is finitely generated as an S.,-module, for C is a finite free complex over S,
and hence also as an R,-module. Thus P(€) is in mod R.
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We check that this assignment is functorial on PaSy. Without loss of generality, in
the remainder of the proof we assume d = 0, to ease up notation. Let f: € — D be
a morphism in PaSy. As before we assume each D, is a finite free A,-complex, and
that O ®x, D, = Dy is an isomorphism of O-complexes. Moreover, we assume that
the maps f;,: C,, — D,, are morphisms of complexes; these are uniquely defined up
to homotopy, and we leave it to the reader to check that the patching process preserves
these homotopies.

For each open ideal a € S the f,; induce maps

fu: Ch — D, and fa,n: Soo/a®An C,— Soo/a®A,, D,,
and hence a map fq,00: C(a,00) — D(a, 00). By construction
S0/ ®5s/6 fon = fan forallb Caandn,

80 So0/a ®s../6 fb,00 = fa,00- By [38, Lemma 2.13(3)], for each s the map fmg 0
determine a unique, up to homotopy, map foo: Coo — Do satisfying

Soo /M, By foo = fmgw,oo
and hence Soo/a ®s., foo = fa,00. We can now define the S-module morphism
P(f) :=Ho(feo): Ho(Coo) —> Ho(Dco), -

This map depends only on the homotopy class of f, so does not depend on the
choices of f;,. It follows that f — P(f) is functorial.
As the maps f,, commute with the structure maps

R, — EndD(An)(Cn) and R, — EndD(A,l)(Dn)
the map foo: Coo = Doo commutes with the maps
Ry — EndD(Soc)(Coo) and Ry —> EndD(Soo) (Do),

and so P(f) is in fact an Ryo-module homomorphism. It follows that P defines a
functor PaSy — mod R.

Now we verify claims (1)—(5). Recall that we have assumed d = 0.

(1) Each C is a finite free Soo-complex with a derived Roo-action. For each n
one has (C,); =0 fori ¢ [0, £o], thus (C); = 0 for the same range of values of i.
Since £y = dim Soc — dim R, we can apply Lemma 10.7 below to deduce that the
Rso-module P(€) is maximal Cohen—Macaulay, as claimed.

Let R denote the image of Ry in Ends, (P (€)). Then dim R’ = dim R, as the
Roo-module P(€) is maximal Cohen—Macaulay. Moreover, R’ is a finite Sy,-algebra.
At this point, one can readily adapt the proof of [8, Lemmas 3.6 and 3.7] to deduce
that the 1ift Soo — R 0of the map Soo — R’ can be chosen to ensure that R is finite
as an Soo-module.

(2) Take any integer s > 0 and consider the open ideal ay :=n 4 @w?*So. Then

P(&)/nP(€) ®p O/(*) =P(€)/as;P(T)
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=Ho(Sx0/as ®Y,_ P(€))
= Ho(Soo/0s ®5, Coo)
Z Ho(C(ay, 00)).

But now as O ®,,, C,, = Cp, in D(O) one gets

C(ay, 00) = (l_[ Soo/as ®A,1 Cn)
p

n=1

(]‘[ Seo/8s ®0 (O ®4, Cn))
p

n=1

(1_[ Soo/as ®0 CO)
n=1

= P
= (H 0/(@*) ®0 Co)
n=1

=0/(@*) ®p Co .

p

Combining the computations above, one gets isomorphisms
P(&)/mP(€) @0 O/(@*) =Ho(O/(z*) ®0 Co) = O/(w*) ®o Ho(Co) -

Taking inverse limits gives the desired isomorphism P (&) /nP(€) = Hy(Cp).
(3) The fact that H; (Coo) = 0 for i # 0 also implies that

00 2 Hp(Coo) =P(€) in DROO(Soo)-
The discussion above thus yields
(Soo/®) ® P(€) 2 (Soo/%) R, Coo = C(a,00) = (Soo/a) R, Cn

for infinitely many n, proving (2).
(4) This now follows from the above observation that the natural map

Endp(s..)(Coo) — licl;n EndD(Soc/u) (C(a, 00))

is an isomorphism.
(5) If f, = m,(7) in Endp(a,)(Cy) for all but finitely many 7, then for any open
ideal a the map f, ~ is the image of T under the map

Roo —> R(s,a,00) —> Endp(s,./a)(C(a, 00)) = Endk(s,,/a)(C(a, 00)),

and so by the construction of P(f) we get foo = too(T), Which gives P(f) =t by
the definition of the R,,-module structure on P(¢). O
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The result below was used in proof of Theorem 10.6(1); see [17, Lemma 6.2].
The basic argument goes to the acyclicity criteria of Buchsbaum and Eisenbud [13,
Proposition 1.4.12], and Peskine and Szpiro [13, 1.4.24].

Lemma 10.7 Let S be a Cohen—Macaulay local ring with residue field k. If C is an
S-complex in DP(mod S) admitting a derived action of a noetherian local S-algebra
R with dim R <dim S and

H; (k ®]§ C)=0 fori¢[0,dimS —dimR],
then C = Hy(C) and the R-module Hy(C) is maximal Cohen—Macaulay.

Proof Given that C is in D° (mod S) and the hypothesis on H; (k ®IS‘ C) replacing C
by its minimal free resolution, we can assume C is a finite free complex with C; =0
fori ¢ [0,dim S — dim R]. Let R’ denote the image of R in Endp(s)(C). Then R’ is
a finite S-algebra and C has a derived R’-action. Thus the S-complex Homg(C, S)
inherits a derived R’-action so each H; (Homg(C, S)) is an R’-module. Since R’ is a
finite S-algebra, for each i we get

dimg H; (Homg(C, S)) < dimg R’ = dim R’ < dim R..

For the next step, it is convenient to use the notion of dimension of the complex
Homg(C, §), defined as follows:

dimg Homg(C, §) := max{dimg H; Homg(C, S)) —i | i € [dim R — dim S, 0]} .

See [19, (2)] and references therein. Since the complex Homg(C, S) is zero outside
the range [dim R — dim S, 0], one immediately gets the inequality below:

dimg Homg(C, S) <dim S.
This gives the inequality on the right in:
0 <max{i | H; (C) # 0} = dimg Homg(C, S) —dim S <O0.

The equality is from [19, Proposition 6]. It follows that H; (C) = 0 for i > 0, thatis to
say, C is a free resolution of Hy(C) over S. Then the Auslander—Buchsbaum formula
[13, Theorem 1.3.3] implies the inequality below:

depth, Ho(C) = depthp Ho(C)
=depthg Ho(C)
>dimS — (dimS —dim R) =dimR.

The equalities hold because the maps R — R’ and S — R’ are finite. Thus the R-
module Hy(C) is maximal Cohen—Macaulay. O

The result below on derived action is used in the proof of Proposition 14.2.
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Lemma 10.8 Let A be a noetherian local ring with residue field k and fix C in
DP(mod A) such that H; (k ®k C) =0 for i #0,1 and projdim, Ho(C) < 1. Set
CT:=RHomjy (C, A)[1].

If ¢ € Endp(a)(C) is such that Hy(p) = 0 =Ho(¢"), then ¢ = 0 in D®(mod A).

Proof Given the hypotheses on C, replacing it by its minimal free resolution, we
can assume the A-module C; is finite free for each i, and equal to 0 for i # 0, 1.
Thus ¢ can be represented as a pair (¢1, ¢9) where ¢; : C; — C; are A-linear maps
satisfying pod = d¢1, where d: C1 — Cj is the differential on C. Moreover go can
be realized as the morphlsm Homy (¢, A)[1], and hence is represented by the pair
(¢, ¢7). Moreover ¢ = @' T s0 ¢ is zero in D(A) if and only if so is .

The hypothesis Hyo(¢) = 0 implies that there is an map #: Cyp — C; of A-modules
with g = dh. Replacing ¢ by the homotopy-equivalent morphism ¢ + [/, d] one can
assume ¢o = 0. Thus the morphism ¢ factors as

0 c, —% ¢, 0

b

00— Hi(C) —— 0 —— 0

oo

0 c, —% ¢, 0

with ¢j = ¢;. Since projdim, Ho(C) < 1 the A-module Coker(:) = Image(d) is free,
so ¢ is split-injective, and in particular H;(C) is free as well. It follows that ¢*
surjective. Applying (—)* to the diagram above yields the diagram of complexes of
A-modules

0 c; —“— ¢ 0

|k

00— 00— H;(C)" —— 0

b

0 c; —+— 0

Since j*i* = ¢} and * is surjective, the hypothesis that Ho(p") =H_{(¢*) =0 im-
plies that H_; (j*) = 0, and since H;(C)* is free, j* lifts through d*, that is to say,
J* is homotopic to 0. Thus ¢" is homotopic to zero, as claimed. g

11 Duality

In this section we prove that patching commutes with duality, in a suitable sense. The
setup and notation is as in Sect. 10. In particular, we consider local rings

Oly], S:=0[y,w], and R
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All rings considered are quotients of these local rings, and hence possess dualizing
complexes. We normalize them as in Sect. 4, making them unique up to isomorphism
in the appropriate derived category. Recall that w4 denotes the dualizing complex of
alocal ring A and w4 (—) the duality functor; see (4.1).

11.1 The following observations about dualizing complexes are used implicitly.
(1) If A is Gorenstein, for M € DP(mod A) and free resolution F => M, one has
wa(M)=Homy (F, A)[dim A] in D(A).
In particular, when M is perfect, so is wa (M).
(2) If A — B is a finite map, then w (M) = wg (M) for M € DP(mod B).
(3) If A — B is a flat map with A, B Gorenstein, and M is in DP(mod A), then
wa(M)®4 B=wp(B®4 M)[dimA —dimB] in D°(mod B).

Indeed, A Gorenstein means wg = A[dim A]—see [53, Tag ODW7]—so (1) follows
from isomorphisms

RHoma (M, wa) = Homy (F, wa) = Homy (F, A)[dim A].
As to (2), since RHomy (B, ws) = wp in D(B), by [53, Tag 0AX1], one has
RHomu (M, ws) = RHomp (M RHomx (B, w4)) = RHompg (M, wp) .
Part (3) is a direct consequence of the isomorphism:
RHomy (M, A) 4 B=RHompg(B ®4 M, B),
which is valid because M is in DP(mod A) and B is flat as an A-module.

11.2 Let € := (Cy, ay) >0 be a patching system over (A, ); see 10.3. The dual of €
is the patching system ¢h= (CZ, OlnT);@o where

C;[ := RHomp (C,, O)[2d + £y] = wo (Cy)[2d + £y — 1]
Since A, is Gorenstein and dim A, = 1, one gets
Cl =wa, (Cy)[2d + £y — 11 = RHomy, (Cp, Ap)[2d + €o].

In particular, C; is a perfect complex over A,, and hence it satisfies condition (1)
in 10.3. The suspension by 2d + £( ensures that condition (2) is also satisfied. Since
duals and suspension are functors on the category of derived R,-complexes, C; sat-
isfies (3) as well. Finally, a standard computation yields that applying wo(—) to
yields an isomorphism

0o (an): ®0(Co) => O R wa, (Cp)
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compatible with derived R,-actions. Setting ozZ to be the (2d + £() suspension of the
inverse of this morphism completes the definition of the ¢.

It is clear that (—)T defines a contravariant functor on PaSy, and that the equiva-
lence (—) = wf\n (—) induce a natural isomorphism in PaSy:

[ adN (Q:T)T

The statement below is the desired result on duality. The argument is an extension
of that for [44, Proposition 4.10]. Here (—)" denotes the duality functor on Cohen—
Macaulay modules defined in (4.3). Applying it is justified for P(—) takes values in
maximal Cohen—Macaulay R..-modules by the Theorem 10.6.

Theorem 11.3 For € in PaSy, there is an natural isomorphism of Rso-modules
PEH=P@)"Y.

This is functorial in €, in that, if f: € — 2 is a morphism in PaSy then
PUH=PH".

Proof To begin with, given the discussion in 11.2, we can assume we are already
in the framed situation, j = 0, as in the proof of Theorem 10.6. Moreover, we can
assume the A,-complex C, is finite free and concentrated in degrees [0, £¢] for each
n. The functor (—)' preserves these properties. Let

P: PaSy — Dg,,(Sco)

be the functor € = Co and f > foo constructed in the proof of Theorem 10.6, so
that P(€) = Ho(P(2)). It suffices to verify that there is an isomorphism

Peh) =5 ws, (P(@)[—dim Ry]

in D(S«), functorial in &, and compatible with Ry;-actions. Indeed, given this iso-
morphism one gets

P’ =Hy(P(e"))
= Him g (05, (P(€)))
= Haim ko (5., (P(€)))
=P©@)"

keeping in mind that P(€) is Cohen—-Macaulay of dimension dim Rx.

As to the isomorphism above, fix € = (C,, @), >0 in PaSy. For any open ideal
a € S containing the ideal Ker(Soo — A,) the complex Soo/a ®I]\n C, of S /a-
modules is finite free, so using the properties of duality listed in 11.1, one gets a
natural isomorphism

Seo/a ® wa,(Cy) —> RHoms,, /a(Seo/a ®Y Cn. Seo/a)[1]

@ Springer



S.B.lyengar et al.

respecting the action of R, on both sides. Here we are using the fact that A, is
Gorenstein and C, is a perfect A,-complex. Similarly there is an isomorphism

Soc/a ®%_ ws,, (P(€)) —> RHoms,, /a(See/a ®_ P(€), Soc/a)[dim ]

again compatible with the action of R and functorial in €. This uses the fact that
Seo 1s Gorenstein and that the Soo-complex P(€) is perfect. Then, for any open ideal
a € Seo, Theorem 10.6(3) gives an isomorphism

Swc/a @ P = Sx/a®k Cf
= Seo/a @Y% wa, (Ca)[lo — 1]
= RHoms,,/a(Ss0/a ®Y% Cn, Soc/@)[€0]
= RHomy,, /a(Soc/a ®%. P(€)., Soo/a)[£o]
= Spo/a @Y ws., (P(€))[— dim Roo]

for infinitely many », again, compatible with the action of R and functorial in €. As
P(€) is a bounded complex of finite free So, modules, it follows from [53, Section
06XY] that we have natural isomorphisms

P(e’) = lim (soo Ja @ 73(@))
=lim (soo /a®%_ w5, (P(@)[—dim Roo]>
= wg, (P(€)[—dim Ro]
respecting the action of R, and functorial in €. This is as desired. 0

Remark 11.4 As an immediate application of Theorem 11.3, one can generalize the
main result of [44].

Specifically let F be a CM field in which £ does not ramify, let D be a quater-
nion algebra over F, and let Yx be the manifold associated to a compact open
K € D*(A}’) (analogous to the manifolds constructed in Sect. 13). Assume appro-
priate analogues of Conjectures A, B and C. Let m be a non-Eisenstein ideal of the
Hecke algebra of Yk, corresponding to a Galois representation p,, : Gr — GLa(k),
satisfying certain “Taylor—Wiles conditions.”

Similarly to the construction given in Sects. 13 and 15, one can use the chain
complexes for the Yg’s (localized at m) to produce a patching system € and then
apply the functor P to produce a maximal Cohen—Macaulay module M, over a ring
Rso. By Theorem 10.6(2), one gets

Moo /mp Moo =Hg(Yk, O)m/mpr,Ha(Yk, O,

with d the lowest degree for which H, (Y, O) # 0. Thus determining M, allows
us to determine the multiplicity of p., in Hy (Y, O), just as in [44, Sect. 4].

@ Springer


https://stacks.math.columbia.edu/tag/06XY
https://stacks.math.columbia.edu/tag/06XY

Congruence modules in higher codimensions

Crucially R is the same ring as the one in [44], since both rings are determined
by local information at finite places, which is not affected by the transition from
totally real fields to CM fields (or general number fields). Moreover, by an analogous
construction to the one used in Proposition 13.7, one can show that ¢t = ¢, and so
Theorem 11.3 gives MY, = Mo, just as in [44, Proposition 4.10].

If Hi(Yk, E)m # 0, then standard multiplicity one theorems for automorphic
forms imply that My, has generic rank 1, and so [44, Theorem 3.1] implies that
dim My /mp, Moo = 2k giving dimH; (Yg, O)m/mp, = 2]‘, where k is an integer
(defined in [44, Theorem 1.1]) depending only the local properties of p,, at the places
where the quaternion algebra D ramifies. The method of [44] crucially relies on the
assumption that M, has generic rank 1.

This observation is not original to this paper. Frank Calegari has remarked to one
of us (JM) that he discovered this result (and Theorem 11.3) before we did.

In addition to the multiplicity statement, [44, Theorem 3.1] also implies (again
under the assumption that H; (Y, E)m # 0) that the natural map

My s Moo ®Roy Moo —> R,

induced by the self-duality of M is surjective. In the setting of [44], that is to say, the
“fo = 07 case, this implies an important statement about the associated congruence
module (see [44, Theorem 1.2] and [7, Theorem 3.2]). This argument does not gener-
alize to the “¢y > 0 case considered here, but it seems plausible that the surjectivity
of T, still implies some statement about the homology group H.(Yg, O)m.

Part 3. Deformation rings and Hecke algebras

We now use our work in Parts 1 and 2 to prove integral, non-minimal modularity
lifting theorems in defect £y > 0. We prove two versions of our main ‘R =T’ theo-
rem, one in the case of PGL, over an arbitrary number field and one in the case of
weight one modular forms on a Shimura curve over Q. Our main argument (given in
Sect. 15) will be essentially identical in the two cases, so the only difference in the
two cases will be in the setup. When necessary, we refer to these two cases as cases
(PGL2) and (Wtl):

Case (PGL2) This deals with Hecke eigenclasses arising from the cohomology of
symmetric manifolds associated to PGL, over an arbitrary number field F. Our main
result in this case is Theorem F. Most of our work in this case is contingent on con-
jectures A, B, C and D.

Case (Wt1) This deals with weight one modular forms on a Shimura curve over Q.
Our main result in this case is Theorem H. As a corollary of this we also obtain an
integral Jacquet—-Langlands statement, Theorem 14.10, in certain situations. In this
case, our results hold unconditionally.

In Sect. 12, we introduce the necessary Galois deformation theory required for
our results. We work in a generality which covers both cases for most of this section,
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and only specialize when necessary. In Sect. 13 we define the Hecke algebras and
complexes involved in case (PGL2), and introduce the conjectures A, B, C and D. In
Sect. 14 we define the Hecke algebras and complexes needed in case (Wtl), and prove
the analogues of conjectures A, B, C and D. We deduce Theorem I from Theorem H.
Our main result, Theorem 15.1, is proved in Sect. 15. It implies Theorem F in Case
(PGL2) and Theorem H in Case (Wt1).

The work in this part is illustrative of the applicability of the commutative algebra
developed earlier to number theory. As such, we have not worked in the fullest gener-
ality possible. We have indicated a few other plausible number theoretic applications
in the introduction.

12 Galois deformation theory

For the remainder of this paper we fix a prime £ > 2 and a finite extension E/Qy
with ring of integers O, uniformizer @ and residue field k := O/w . Let F denote an
arbitrary number field and assume that £ does not ramify in F. Let

p: G — GLa(k)

be a continuous Galois representation with p|g Fep is absolutely irreducible. For con-
venience we assume that for each o € G the eigenvalues of p(o) € GLy (k) lie in
k (which can be done by replacing k by its unique quadratic extension if necessary).
Let ¢ : Gg — O be a character lifting detp : Gp — k*.

While we work in the generality stated above for most of this section, in the re-
mainder of the paper we apply these results only in two special cases, corresponding
to the cases (PGL2) and (Wt1) mentioned above.

e Case (PGL2): Here F is an arbitrary number field, i is the cyclotomic character
¢ and plg,, is flat at all places v|¢.

e Case (Wtl): Here F := Q, the character i is the Teichmuller lift of detp (and
hence has finite image), and p is unramified at £ and odd.

12.1 Local deformation rings

We introduce the various local (framed) deformation rings needed for the rest of the

paper.
Fix a prime v of F, and consider the local Galois representation

Py =0lGp, : GF, > GLa(k)

Write g, = Nm(v) = #(OF /v) for the norm of v. Let I, < GF, be the inertia sub-
group and Pr, < If, be the wild inertia subgroup.

Let ¢, € GF, be a lift of (arithmetic) Frobenius Frob, and o, € G, a lift of a
topological generator of I, / Pr,, so that g,0,¢, l=6/"inG r,/ PF,.

Let RL:J be the unrestricted framed deformation ring parameterizing lifts of p,
with determinant ¢ |G, . Let ,o‘v:' :Gfp, — GLQ(R'U:') be the universal lift of p,,.
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Suppose first that v[¢. If o, is flat, as is V|G, (which will be the case if ¢ =

&¢), then let RE be the quotient of RUD parameterizing flat deformations of p,,, with
determinant g¢. As ¢ does not ramify in F, from [20, Sect. 2.4.1] we get

RE = O[x1, x2, ... ’x3+[Fu:QK]]] .

If p, and ¥r|G,, are unramified at v, let R)" be the quotient of R,‘)j parameterizing
unramified lifts of o, with determinant ¥|G, . Then we clearly have

Rlvlr = (’)[[xl,xz,x3ﬂ.

From now on assume that v { £. It follows (see for example [50, Theorem 2.5]) that
RvD is a reduced complete intersection, flat over O of relative dimension 3.

Also, as Ker(GLz(Rll)j) — GLy(k)) is pro-¢, the natural map pF(PFU) —
ﬁUD(PFv) is an isomorphism, and so if p,, is tamely ramified, /01;] is as well.

Let Rvmin be the quotient of Rll)j parameterizing “minimally ramified” lifts of o,
(see [20, Definition 2.4.14]). Then by [20, Lemma 2.4.19] we get that

er)nin = (’)[[xl, X2, )C3]] .

From now on we consider the case where v is unramified in p, and ¢, # 1 (mod ¢)
and p,(Frob,) has eigenvalues with ratio g,. Fix a choice /¢, ¥ (¢y)~! € O* of

square root of qvlp(q)v)_l in O, and also use /g, ¥ (¢,)~! to denote the image
in k*. In Case (PGL2) we have ¥ = &, so that ¢, ¥ (¢,)"! = 1, and so we take

qv¥ (9y)~1 =1 for convenience.
As g, # 1 (mod £) the eigenvalues of p(¢,) are distinct and so up to conjugation,
P (¢y) has the form

o) — (wwv)em/qvx/f(%)-l 0 _]>
’ 0 €vv Q¥ (@)~

for some €, € {1, —1}. If g, % £1 (mod £), then the choice of ¢, is uniquely deter-
mined by p(¢,). In the case when ¢, =+ — 1 (mod ¢), either e, =1 or ¢, = —1is
possible.

For €, € {1, —1} the Steinberg quotient Rst(ev) is the unique torsion free re-
duced quotient of RE characterized by the fact that the L-valued points of its
generic fiber, for any finite extension L/E, correspond to representations conjugate

to
VX %
0 Xv_l

where x, is an unramified character with x,(y,) = €yv/qu¥ (@)~ L. If g, #
41 (mod ¢), then there is a unique €, for which Rgt(é") # 0, while if g, = —1 (mod £)

then Rgt(l) and Rgt(fl) are both nonzero.
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Bni(ev) of

We define the unipotent quotient R RvD to be the unique reduced quotient

of R such that
Spec R — Spec RS U Spec RMI

inside Spec RY.
The computations of [49, Sect. 5] give the following result.

Proposition 12.1 Assume that p,, is unramified and q, # 1 (mod ).
If the ratio of the eigenvalues of p,(¢y) is not q;—LI, then

RUD = er)nin = O[x1, x2, x3] .

Now assume that the eigenvalues of p,(¢y) have ratio q,. If g, # £1 (mod £), let €,
be the unique element of {1, —1} for which R;t(év) #0.If gy =—1 (mod £), let €, be
either 1 or —1. )

We have an isomorphism REm(E”) = O[Ay, By, Xy, Y]/ (AyBy) and the corre-
sponding universal representation sends:

oy > U™ <(1) AlU>U whereU::(Q )iv>,and
v

@y > Ul (wv((pv)ev QUI/I(QOU)_I(l"‘Bv)_l 0 . )
) 0 eV (gy)™! (1 + By)

We have and R = RY™ ) /(A,) = O[B,. X, Y,] and R} = Ry /(B,) =
Ol Ay, Xy, Vo] If gu # £1 (mod £), then R™ = RS, 0

Remark 12.2 In our main results (e.g., Theorem 15.1) we restrict ourselves to allow-
ing (non-minimal) ramification of lifts of p only at the places in Proposition 12.1
above (these are our “level raising” primes); this is done mainly for simplicity. We
should be able to treat unrestricted ramification at places v such that g, =1 (mod ¢)
and p is unramified at v with p(Frob, ) having distinct eigenvalues, or unipotent ram-
ification at places v such that g, = 1 (mod ¢) and p is unramified at v with p(Frob,)
of order divisible by ¢, without too much trouble. (It would be more work to allow
unipotent ramification at places v that are trivial for p.)

We note that if p is odd at a real place of F, with corresponding (conjugacy class
of) complex conjugation ¢ € G r, then any v such that p(Frob,) is conjugate to p(c)
is a level raising prime (with g, = —1 (mod £)) in our sense. If the projective image
of p is PSLy (k) (for |k| > 5) and [F (&) : F] > 2 then there are places v such that
o (Frob,) has eigenvalues with ratio ¢, and g, % £1 (mod ¢); these are again level
raising primes in our sense.

12.2 Global deformation rings

Let p: Gr — GLa(k) be as before. Let S be the set of all finite places v of F,
such that either p or ¢ is ramified at v, or v|€. At places v € S and v { £, we either
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assume that ¢, # —1 (mod £), or that p|;, is irreducible, or that p|p, is reducible.
(We allude to this condition as non-vexing following the use of this terminology in
[16]; it avoids considerations of types on the automorphic side to match conditions
of minimal ramification on the Galois side.) Also fix three disjoint finite collections
T,® and Q of finite places of F such that foreachv e T UD:

e p, is unramified.
e v{fand g, #Z1 (mod ¢).
e The ratio of the eigenvalues of p, (Frob,) is g, .

and for each v € Q:

e p, is unramified.
e gy, =1 (mod ¢).
e p,(Frob,) has distinct eigenvalues in k.

Foreachv e T UD we fix a €, € {1, —1} for which Rﬁ“fv) # 0 (and recall that for
gy # £1 (mod £), there is a unique such choice). Let X be any subset of 7.

In our applications, X represents a collection of ‘level raising primes’ for p and
O represents a collection of ‘Taylor—Wiles primes’, which are used in our patching
construction. In the case (Wtl), ® is the discriminant of a Shimura curve over Q,
while ® = @ in the case (PGL2).

The goal of this section is to construct global Galois deformation rings R? and

RE 0 and their framed variants R and R

Let Ao (respectively, CNLp) denote the category of Artinian (respectively, of
complete local noetherian) O-algebras with residue field k.

Define a functor D: Ap — Sets which sends a ring A € A to the set D(A)
of equivalence classes of continuous representations p: Gr — GL2(A) for which
det p = v and the composition

Gr 5 GLy(A) — GLy (k)

is equal to p: Gr — GLy(k), where two such representations p, p: Gr — GL2(A)
are considered equivalent if p’ = ypy ! for some y € 1 + Ma(my).
Define subfunctors D%’ - DQQ C D: Ap — Sets such that for any p € D(A),

we have p € D? (A) if

e In Case (PGL2), p is flat at v for all places v|¢;

e In Case (Wtl), p is unramified at ¢;

e If v is any place of F for which v ¢ and p is ramified at v, then p is minimally
ramified at v;

e If v is any place of F with v ¢ SU X UD (including the case v € T \ ¥) then p
is unramified at v.

o If v €D then plg,, arises from RO

e Ifve ¥ and g, = —1 (mod ¢) then p|G, arises from Rbmi(e”).
and p € DQQ(A) if

e In Case (PGL2), p is flat at v for all places v|¢;
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e In Case (Wtl), p is unramified at ¢;

e If v is any place of F for which v { ¢ and p is ramified at v, then p is minimally
ramified at v;

e If v isany place of F withv ¢ SUX UD U Q (including the case v € T \ X) then
p is unramified at v.

o If v € D then p|g,, arises from RO,

e Ifve T and g, = —1 (mod ¢) then p|g,, arises from RUME)
Note that for p € D? (A) (respectively, p € DSQ(A)) there is no restriction on
the ramification of p at primes in X (respectively, at primes in ¥ U Q) with g, #
—1 (mod ¢).

Similarly define framed versions of these functors

D?’D, D?:QD: Ap —> Sets
as follows: For A € Ao, let D?’D(A) (respectively, D?’QD(A)) denote the set
of tuples (p, (By)vesuruD) wWhere p € Dx(A) (respectiveiy, p € Dy ¢(A)) and
each B, is an element of 1 + M>(m4), where two tuples (o, (By)vesuruo) and
(o', (B,)vesuTud) are equivalent if there is some y € 1 + My (my) satisfying p' =
yoy 'and B, =yp, forallve SUT UD.

One may view S, as a choice of basis for A? lifting the standard basis for k2.

It is well known that the functors Dg, ’D?’D, Dg 0 and D?‘Qj are all pro-
representable by rings R, R?’D, Rg o and Rg’g , respectively, in CNL». When
D is either clear from context or empty (as it is in Case (PGL2)) we sometimes omit
it from our notation, and write these rings as Ry, Rg, Ryx o and Rg 0

By definition we have Dg - Dg 0 and for any ¥| C ¥, C T we have Dgl C D?z

and Dg oS DBEDz. o- These maps on functors induce a commutative diagram

D D
Ry, — By,

| |

D D
Rs, @ — By,

. 2,0 2,0 D,0 D,0 O D.,0
S.m.nlarly we have Dy, g D;Q (for any %), DZI - D22 and DZI,Q - DEz,Q
giving rise to a commutative diagram

0,0 .0
Ry, q — By,

! |

D,0 ,0
RELQ Rzl

It is important here that the definitions of D?’D, D?QD included B,’s for all v €

SUT UD, including v € T . X (but not for v € Q). Otherwise we would not be able

to compare the functors D?l’m, D%D, D%DQ and D?zmQ in this way.
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The map (p, (By)vesuTud) = p clearly induces maps R? — R?’D and
RQ S0 R?QD Itis well-known and easy to see that these maps are formally smooth,
and thus induce (non-canonical) isomorphisms

D,0 ~ D,0 ~
RS :R?le,...,quuﬂ_]ﬂ and REQ_R Q[[wl,...,w4‘SUT|_1]],

respecting the commutative diagrams above.
Also for any v e S U T UD, the map (p, (By)vesuTuD) ,3;1,0|GFU By induces

a map R® 0 R ) and (and hence a map R© SN R): Q — R?’D). By the

definition of Ry g, 1t is easy to see that this induces a map

R = QRIS @ RIPBRRID @ RN S,

v|e veS, vl VEX veT\X

in Case (PGL2), and in Case (Wtl) a map

Rig.s =QR'® @ RMBRRIWE K) RMBRQRN > RY 5.
v[e ves,vft veX veT\X ve®D

R’D

Moreover for £1 C Xy C T it is easy to see that the natural map R2 loc. 5,

given by the quotient map

loc, ):2

Rsni(ev) _ Rgni(ev)/(AU) — er)nin

forall v e ¥ \ X1, gy # —1 (mod £) gives the commutative diagram

D .0 0,0
Rloc,Eg REz-,Q R

D 2,0 9,0
Rloc,El Rle ,Q R

12.3 Taylor-Wiles deformations

Suppose v is a prime of F that is unramified in p and that ¢, = 1 (mod ¢), and p|g,
is unramified. Let A, = k(v)*(€) and A, = O[A,], and suppose that p(Frob,) has
distinct eigenvalues yy. 1, ¥y.2 € k. Then the universal representation ,0“““’ Gp—

GLz(RZ’ Q) when restricted to G r, is of the form

Xl,U @ X2,v»

for continuous characters x1,y, x2.0: Gf, — (R? Q)>< satisfying the following
conditions: we have (x;)(Frob,) = y,; (mod mRE‘Q) and x;|sp, induces via the

Artin map a homomorphism A, — (RQQ)X that we denote by the same sym-
bol Xi-
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Let Ag = [],cp Av, and consider the group algebra O[A]. Then RQQ is nat-
urally a O[Ag]-algebra via [, x1,0: O[Ap] — RSQ. If ap C O[Ap] is the aug-

mentation ideal, then there is a canonical isomorphism R%’ 0 /(ag) = R?. We record
this as the following proposition.

Proposition 12.3 For any X, there is a map O[Ag] — R%D 0 such that
RS 0 ®01ag1 O = RS

via the natural map R? 0~ R?, and for any ¥1 C X», the map R?z 0™ R?} oIS
an O[A gl-algebra homomorphism.

13 Hecke algebras for PGL,/F

In this section we work exclusively in the case (PGL2). As before, F is an arbitrary
number field such that the prime £ does not ramify in F. Let r; and r, respectively
denote the number of real and complex places of F. For the remainder of this section
we use the notation and results of Sects. 10 and 11 withd =ry +rp; and £y =r;. In
particular, for any C € D(QO), we set

C":= RHomp(C, O)[2d + £9] = RHome (C, O)[2r1 + 3r2].

In the case when C is a derived A-complex for an O-algebra A, this induces a derived
A-complex structure on CT, and so we may view (—)" as a contravariant functor
D4(0O) — D4(O).

13.1 Manifolds and complexes

Consider the algebraic group PGL; over F. Let Koo € PGL,(F ®¢ R) be a maxi-

mal compact subgroup. For any compact open subgroup K =[], K, € PGL2(AY)
consider the topological space:

Yk =PGL2(F)\PGL2(AF)/K Koo

which is an orbifold of dimension 2ry + 3r;. We say that K is sufficiently small if
gK g ' NPGLy(F) is torsion-free for all g € PGL, (AP).
We note the following lemma ([38, Lemma 6.1]).

Lemma 13.1 Let K C PGLy(AY) be a sufficiently small subgroup.

(1) Then forall g € PGLy(AY), the group FK,g := gKg 'NPGLy(F) acts freely on
PGL>(F ®g R)/ Koo, and Yk is endowed with the structure of smooth manifold
of dimension 2ry + 3r5.

(2) Let V =[], Vy be a normal open compact subgroup of K. Then the map Yy —
Yk is a Galois covering space, with Galois group K/ V. O
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For any K, let Cx be the complex of singular chains on Yx with coefficients in
O, so that Cx computes of the homology Hy(Yg, O). Then Ck is quasi-isomorphic
to a bounded complex of free O-modules, as so may be viewed as a perfect complex

in D(O).
13.2 Double coset operators

Let G =PGLy(A}’) Let C.(G) be the abelian group of compactly supported contin-
uous functions f: G — Z. For any compact open subgroups K, K» C G, let

H(K2\G/K1) = { f € Co(G)| f (kaxky) = f(x) forall x € G, ki € K1, k» € K2},

which is an additive subgroup of C.(G). For any @ € G and any compact opens
K1, Ky C G, let [KraK ] € H(K2\G/K1) denote the indicator function of the dou-
ble coset Koo K| = {koaki|k1 € K1, k2 € K2} € G. Then H (K>2\G/K)) is clearly a
free abelian group generated by the distinct [Koa K1]’s.

Moreover we may define a convolution operation

*: H (K3\G/K>) x H(K2\G/K1) > H(K3\G/K1)

by

@xH@= Y gy Hro.

KryeK)\G

This operation is clearly bilinear and associative, and satisfies
[K2]* f=f=Ff*[Ki]

for any f € H (K2\G/K1). In particular, this makes H (K\G/K) into a ring.
Moreover it is well known that the convolution operation is given by

[K3BKo)* [KaKil= Y cy[K3y K]
Kiy K3

where the sum runs over all double cosets K3y K1 € G and
cy =#{(0, )IBjai K1 =y Ki}

where {o;} and {B;} are (finite) sets of coset representatives, Koo K1 = L;o; K1 and
K3BKy =U;B;K>.

Let Ky, K2 € PGLy(A%’) be any compact open subgroups and a € PGLy(A$)
any element. we define a map K, K] : Cx, — Ck, in D(O) as follows.

Let L = aKja~'N K>, which is also a compact open subgroup of PGL, (A%). De-
fine maps py: YL — Yk, and py: Y — Yk, by p1([x]L) = [xa]k, and pa([x]L) =
[x]k, for x € PGLy(A$’) (where for any U and any y € PGL2(A%), [y]y denotes
the equivalence class of y in Yy = PGL,(F)\PGL(AF)/U Ko ). Note that the map
p1 is well-defined as o 'La CKj.
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The maps p;: Y — Yk, for i = 1,2 are both finite-to-one maps of topologi-
cal spaces (and are covering maps in the case where the K;’s are sufficiently small,
Lemma 13.1). Thus they induce maps p; x : C;, — Ckg; and p;": Ck, — CrL.

Define the double coset operator [Kra K] € Homp0y(Ck,, Ck,) as the compo-

sition Ck, ﬂ) CL L Ck,. As shown in [45, Lemma 2.191% we have

Lemma 13.2 The assignment [Koa K 1] — [Koa K] defines an additive group homo-
morphism H (K2\G /K1) — Homp0)(Ck,, Ck,) such that the map

Homp©)(Ck,, Ck;) x Homp)(Ck,, Ck,) — Homp©)(Ck,, Ck;)

induced by convolution x: H (K3\G/K>) x H (K2\G/K1) > H (K3\G/K1) is just
function composition.
In particular, H (K\G/K) — Endp©)(Ck) is a ring homomorphism. O

13.3 Hecke algebras

From now on, take a compact open subgroup K =[], K, € PGLy(A%), and let S
be a finite set of places such that for each v ¢ S, K, is a maximal compact subgroup
of PGL,(F}) (S need not be the minimal set with these properties). For each v ¢ S,
let T, € Endp(¢)(Ck) be the double coset operator

. w, 0
e[ (5 94
if veg S and Ki(v) € Ky, C Ko(v) and d € Ko(v)/ Ky = (Op/v)* let Uy, (d) €
Endp(@)(Ck) denote the double coset operators

U, = [K (wo” ?) K] and (), = [K (g ?) K:|
for any lift d € Op , ofd.

Define TS (K) = O[T,|v ¢ S1 < Endp(0)(Ck ), which is well known to be a finite,
commutative O-algebra. We state a conjecture about existence of Galois representa-
tions attached to Hecke eigenclasses (which might be torsion) arising from the coho-
mology of Ck. In the case when F is a CM field, part (i) is known by the work of

Scholze and part (ii) is known for sufficiently large ¢; see [45, Theorem 1.1, Theorem
1.3]. This is similar to Conjecture A of [17].

Conjecture A Let K =[], Ky, € PGLy(AY) be a compact open subgroup, and let S
be any finite set of places such that for each v ¢ S, Ky, is a maximal compact subgroup
of PGLy (Fy). Then:

2Technically [45] only proves this in the case when K1 = K5. However their methods give the result stated
here without any significant modifications.
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(i) For every maximal ideal m of TS (K), there is a semisimple Galois representation
Pm: Gr — GLo(TS(K)/m) such that for all v ¢ S, v 1e, PwulGp, is unramified
and p, (Froby) has characteristic polynomial x2 — T,x + Nm(v).

(i1) Furthermore there is a lift of py, to a representation

px: Gr— GLa(TS(K)m)

such that forall v ¢ S, vt e, pk |G F, is unramified and pg (Froby) has character-
istic polynomial x* — Tyx + Nm(v).

Remark 13.3 Note that if we assumed in (ii) above the weaker statement that, for a
T € CNLo with an inclusion TS (K ) <> T, there is a lift of P to arepresentation
pk : Gr — GL(T) such that for all v ¢ S, v not above ¢, pk |G, is unramified and
ok (Frob,) has characteristic polynomial x2 — Tyx + Nm(v), then the stronger hy-
pothesis in (ii) that the representation can be chosen to take values in GLy (T (K)m)
follows provided the residual representation p,, is irreducible. This follows upon us-
ing the Chebotarev density theorem as traces of Frob, for v ¢ S, v{ ¢, with S a finite
set of places, are in T (K ).

We say that a maximal ideal m C TS(K) is non-Eisenstein if the representation
P 1s absolutely irreducible. In what follows we often use the lemma below, which
is a consequence of the Chebotarev density theorem (see [38, Lemma 6.20]).

Lemma 13.4 Assume Conjecture A. Then for any finite set of places S’ containing S,
the natural map TS (K)m — TS(K)m is an isomorphism when m is non-Eisenstein.

Thus if m is non-Eisenstein the localization TS (K ) does not depend on S, and so
we often use T(K )y, to denote this localization, eliding S in the notation. As shown
in [38], for any maximal ideal m € T'(K) the localization (Ck )y, is a direct summand
of Cg and we have H,(Yg, O)im = Hy(Ckx)m = Ho ((Cg)m). Given a maximal ideal
mcC ']I‘S(K) and any compact open K’ C K, we also use m C ']TS(K’) to denote the
preimage of m under the map TS (K') — TS (K).

In what follows we assume that p,, is such that p\, | (¢, is irreducible. The result
below is easy to prove; see [35, Lemma 12.3] for the proof of the first part.

Lemma 13.5 Let p : G — GLy(k) be such that p|F(,) is irreducible.
(1) Then there exists a place t ¢ S such that
tr p(Frob,)/ det p(Frob,) #£ (1 + Nm(t))z/Nm(t)
Nm(¢)#£1 (mod?),
and Nm(t) > ALFQ],

(ii) For such places t the (unrestricted) deformation ring R,Ij = R}nin, and is isomor-
phic to a power series ring over O of relative dimension 3.
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(iii) For such places t, the compact open subgroup

K12 = {(i 3) € PGLy(OF)

cet’,ad ' =1 (mod tz)} C PGL,(OF)

is sufficiently small. O

In what follows we apply the lemma for p = p,,, and always impose level struc-
tures at ¢ so that we work with open compact subgroups K of PGL(A%) that are
sufficiently small. Because no lift of p;, is ramified at # we do not need to explicitly
allow the Galois deformations of p,,, we consider below to ramify at 7. (See 6.5.1,
Lemma 6.5.2, and Lemma 6.5.2 of [1] for similar considerations.)

13.4 Sufficiently small level subgroups

We fix a prime ¢ as in Lemma 13.5. For any nonzero ideal N' € OF define the fol-
lowing compact open subgroups of PGL(A%):

Ko(\) = {(‘Cl 2) € PGL,(Or)

ceNt2,ad ' =1 (mod 12)} C PGL,(OF)

Ki(\) = {(‘C’ Z) € PGL,(Op)

ceNt*>,ad™' =1 (mod N;z)} C PGL,(OF)

so that K1 (V) < Kg(N) and Ko(N)/K1(N) = (Of/N)* via the map

(i Z) —ad™'  (mod N).

Also define K (N) to be the smallest intermediate subgroup
Ki(N) < Ka(N) < Ko(N)

for which |Ko(\)/Ka(N)]| is an " power.

In the case when A = v¢ for some prime v and some e > 0, we also sometimes
use Ko(v¢), K1 (v®) and KA (v°®) to denote the compact open subgroups Ko(v¢) N
PGL,(OF,), K1(v®) NPGLy(OF,y) and Ka (v¥) NPGL2(OF ) of PGLy (F).

For any nonzero ideal N’ C O we write Yo(N) =Y, Ko\ - Also for an ideal Q of
OF prime to NV, write Yo A (N, Q) = Yk, \)nka(0)- Write Co(N) and Co a (N, Q)
for the corresponding prefect complexes in D(O).

(Thus we are imposing level structure at ¢ for the compact open subgroups K of
PGL(A%) we consider; we suppress this from the notation to make it less clumsy
and hope this will not be misleading for the reader.)

Duality From now on fix a nonzero-ideal N € OF and a non-Eisenstein maximal
ideal m € TS (Ko (Ngp)). Assume that N (p,,,) = N (i.e. N is the minimal level for
Pm). By enlarging O if necessary we may assume that TS (K)/m = k, and so p,,, is
a representation G — GLj (k).
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Proposition 13.6 Assume Conjecture A holds. Then for any compact open K =
[1, Kv € Ko(Ng), there is a natural derived T (K ) -isomorphism

(Cx)m = RHomo ((Cx)m, O)[2r1 +3r2] = (Cx),

in D1(x),, (O). Moreover, for any K1, K» C Ko(Ng) the adjoint of the double coset
operator [KraK1]: (Ck,)m — (Ck,)m With respect to these isomorphisms is given
by the double coset operator [Kia 1 Ks]: (Cxy)m = (Cgm.

Proof By [45, Proposition 3.7] and [45, Theorem 4.2] there is a Verdier duality iso-
morphism (Cg)m = RHomp ((Ck)m, O[2r1 + 3r2]) sending each double coset op-
erator [Koa K] to [Kje—'K5]. Here we are using the fact that condition # of loc.
cit. holds in the case m =2 by Conjecture A and in the case m = 1 by class field
theory.

In particular this is TS (K )-equivariant as it is easy to check that

—1 -1
w0\ (0 1\ (@ 0\(0 1
K(o 1)K—K<1 o)(o 1)\ o)k

whenever K, = PGL2(OF ), and so each T, for v ¢ S is self-adjoint. O

The isomorphism from Proposition 13.6 is not in general equivariant for the Hecke
operators U, and (d),. However, it is easy to modify this isomorphism to make it
equivariant for all Hecke operators.

From now on we restrict our attention to compact open subgroups K in the form
K=][,K, S Ko(Ng) where for all v either K, = PGL,(OF ;) or K{(v) < K, <

Ko(v). For each v, let
0 -1
w=[x (o 9]

if Ki(v) < K, < Ko(v) and let w, = 1 if K, = PGLy(OF ). Observe that
0 -1 0 -1

Ky (Wv 0 )= \w, o > K, for K1(v) < K, < Ko(v) and K, = PGLy(OF ).

It is easy to verify from this that

[K3/3K2]*[K2<a? _Ol)Kl}= K3ﬂ<£ _OI)KI

and

0 -1 i 0 -1 T
[K3 (wU 0 >K2] ¥ [KraK ] = _K3 (wU 0 >OlK1_

@ Springer



S.B.lyengar et al.

It follows that w% =1 for all v and wyw, = wyw, for any v and v’. Moreover by
definition, w, = 1 whenever K, = PGL(OF ;) (and hence in particular, w, = 1 for
v ¢ §). Hence the operator wx = Hves wy € Endp0)((Ck )m) is well-defined and
independent of S. As w%{ =1, wg is an automorphism in D(O). So now we may

define an isomorphism @g : (Cg)m = (CK)In by

9K (CK)m =5 (Cx)m — (Cx)y

where the second map is the isomorphism from Proposition 13.6.
Now we have the following:

Proposition 13.7 The isomorphism ¢k : (Cx)m = (CK):fn commutes with the actions
of all the Hecke operators Ty, U, and (d),.

Moreover the adjoint of [KraK1]: (Ck,)m — (Ck,)m with respect to ¢k, and
9K, is wg, [Kia" Kalwg, : (Cxy)m = (Ck)m-
Proof The last claim is immediate from Proposition 13.6 and the definition of ¢ .

For the first claim, we have wx Tywg = T, for v ¢ S by the definition of wg. The
fact that U, and (d), are self adjoint now follows from the observation that

0 —1\fa O\ 'f0 —1\_[0 —1\{a' 0\[/0 -1
oy, O 0 d wy, 0) \w, O 0 4! wy, 0
_(—wd! 0
o 0 —wya” !
_f(a O
“\0 d
in PGL,(Fy), forany a,d € F*. O

13.5 Level lowering maps

For this subsection fix a compact open K of PGL,(A) as before and a place v for
which K, = PGLy(OF,,). Write L = K N Ko(v). Define two maps 71, 721 (CpL)m —

(Ck)m by
nlz[K((l) ?)L] and 7[2=|:K<w0v ?)L:|

and write g,y = 711 © 72 (CL)m — (Cx)E2. Let g 1 (Cx)E2 — (Cp)m be the
adjoint of g , with respect to gk and ¢z . It is easy to see that

(T, -l
T[K,UOUU_<Nm(v) O >OT[K,U
as morphisms (Cr)m — (Cg)E2.
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13.6 Tz and T):’ 0

Pick disjoint finite sets 7 and Q of places of F satisfying the conditions from
Sect. 12.2 (which in particular imply that every element of 7 and Q is prime to
No).

For any subset £ C T let Ny = Ng [[,c5 v, where Ny is as above. From now
on assume that 7 U Q C S, and S contains all primes dividing Nz and the place t.
For any £ C T, define Ky, = Ko(Nx) and K5 o = Ko(Nx) N Ka(Q). Note that
Ks o =Ks.

Consider the Hecke algebras TS (Ks) and TS (K o). Let m € TS(Ko(Ng)) be
a non-Eisenstein maximal ideal. Assume further that p,;,|g Fp) is absolutely irre-
ducible.

Again, for any compact open K C Ko(Ny), let m € TS(K) denote the preimage
of m. Write Ty = TS(KE)m and Ty o = TS(KE,Q)m.

Now define the full Hecke algebras:

TS (K5) = T5(Ks)[{Uy}ves] € Endp(o)(Cky)

T5(Ks.0) = TS (K)[{Ushvezug. {{d)v}veg.aea,] S Endpo) (Cksy. o)-

These are commutative (D-algebras, finite over TS (K 2) and TS (K x,0)- Again
note that TS(KE o) = TS(KE) We define ideals my o C TS (Ks,0) lying overm C
']I‘S(K): o) by specifying that U, — €, (for v € ¥) and U, — y1,, (for v € Q) are in
myx, o. Then it is easy to see that these are indeed maximal ideals and that the ideal
my g C ’H‘S(Kg ,0) lies over the ideal my o C TS(KE) and for 2| C X, the ideal
my, 0 C TS (Ks,,0) lies over the ideal my, o C TS (Ksx,,0)-

The following conjecture asserts that the Galois representations of Conjecture A
satisfy local-global compatibility. Many cases of this conjecture (up to the issue of
going modulo a nilpotent ideal) are known from [1, §3, §4]).

Conjecture B For any ¥ and Q, the representations px g: Gr — GLy(Tx o)
stemming from Conjecture A arise from the corresponding universal representation
Gr — GLy(Ryx, o) via maps Rs o — Tx o and satisfy the following properties:

(1) trps,o(Froby) =T, forallv ¢ S.

(2) If Rx, g is given the O[Ag] structure arising from Proposition 12.3, then the
composition of maps Ry g — Tx g — ’IT“S(KE,Q)mZYQ is an O[Ag]-algebra
homomorphism. Furthermore X1 ,(@y) maps to Uy for v € Q for a suitable lift
@y of Frob,,.

(3) Forv € X, writing By € T 5, for the image of B, € Ry

i) ynder the map

RUM(E) < Ry 1oc — R3 — T5,
we have (By) = (e, Uy — 1) as ideals oleg.
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(4) The diagrams

Ry o — Tso Ry, 0 — Tyy0
| Lot ] |
Ry — Ty Ry — Ty 0

(for £1 € ¥y C T) commute.

Note that the assumption that T's ¢ is a quotient of Ry ¢ implies that px ¢ satis-
fies all of the necessary local-global compatibility assumptions (such as the fact that
it is flat at all primes v|€).

Lemma 13.8 We have that TS (Kx.0)my, o = T5(Kx.0)m = Tx. 0

Proof This follows from the above Conjecture B as from it we see that Uy, v € U Q
and {{d)y}veg,den, S EHdD(O)(CKz,Q) belong to Ty, ¢. O

We will write my, = my . Lemma 13.8 implies that we may now treat U, for
veXUQ and (d), forve Qandd € A, as elements of Ty ¢. In particular there is
now a natural O-algebra homomorphism O[Ap] = ®ycpO[A,] = Tx, o, given by
d > (d), for d € A, and so we may view Ty o as a O[Ap]-algebra.

Define the complexes Cx = (Cky)my and Cx ¢ = (Cky )myg o In D(O). Note
that these are not the same as the complexes (Cky)m and (Cky ,)m, as we are lo-
calizing with respect to the action of a larger ring. In particular we naturally have
Cx eDrs(0)and Cx g € DTZ’Q(O).

Proposition 13.9 For each ¥ C T and each Q we have:

o The action O[Ag] — Tx g — Endp0)(Cx, o) gives Cs o the structure of a per-
fect complex of O[A g]-modules.

* Tz 0®0(ag O=Tsx

e Cso ®%9[AQ] O = Cyx in D (0).

Proof This is proved in [38, §5] in a more general context. It is also proved (for GL;)
in [17, Lemma 9.5]. g
Now fix v € T \\ X and consider the map

. @2
TK,v =T D (CKZU{v),Q)mE,Q — (CKE,Q)m):Q

arising from Sect. 13.5 (for K = K5, ¢, after localizing at my o). We claim that this
induces a map 7, : Cxufv),@ — Csx, - To see this we consider the operator

T, -1
Nm() 0
@2

that we call U}, acting on (Cky )35 ,-

Consider the maximal ideal m’E’ 0 of
Tx.olU1/(U)? — T,U, + Nm(v))
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acting on (Cgy, Q)gé o that extends the maximal ideal my ¢ and is given by

(mx, 0, U] — €,). We consider the localization of (CKz,Q)%%;, at m’E’Q. This is
isomorphic as a Ty o module to Cx . Thus we get a Hecke equivariant (for
the Txu(), p-action) map 7, : Csup),0 = Cx, . It also induces an adjoint map
n;f: Cs,0 = Csuju,0- (See [56, §2.2] for similar arguments.)

Note that we may treat U, as an element of T's_ o via Lemma 13.8 and the quotient
map Tsu),0 — Tx,o. From the relation

T, -1
jTK,UOUU=<leEv) 0 )OT[K,U

noted in §13.5 we get that the action of U,S on Cyx ¢ agrees with the action of U, €
Ts,oonCs g.
Proposition 13.7 and a standard computation gives the following:

Proposition 13.10 There is a family of isomorphisms
9.0 CZ,Q :> C-)}-:,Q

in DT:,Q(O) compatible with the isomorphisms Cx o ®I(7)[AQ] O=Cs.
Moreover for eachv € T \ &, if

. ~ i t ~
7, Cs,0=Cy o = Cp.0 = Cxupo

is the adjoint of m,: Cxu),0 — Cx,0, upon using the isomorphisms ¢s o and
PxUv}, 0> then

Ty 07'[;r ~ Ug —1le El‘ldD(O)(CZ,Q) and
! o, = U2 — 1 € Endpo)(Csupn), 0)s

where > means up to units in the corresponding Hecke algebras T, ¢ and Tsu), 0
respectively.

Proof The first assertion follows from localizing the results of Proposition 13.7. To
see the second assertion above we can use that (see the proof of [46, Proposition 3.3]
for a similar computation)

NK,UO(Uf—l):nonTo<_Ol ;_,1>O7TK,U
v

as maps (Cky ). 0)m — (CKZ,Q)gZ' -

Conjecture C If K € PGLy(AY) is any compact open subgroup and m is a non-
Eisenstein maximal ideal, then H; (X g, k)m =0 fori ¢ [r1 +r2, 11 + 2r2].

This conjecture is known when F is an imaginary quadratic field as then Xg is a

3-dimensional manifold and H; (X g, k), = 0 for i =0, 3 (as m is a non-Eisenstein
maximal ideal).
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13.7 Level raising and Ihara’s lemma

Conjecture D Let K and v be as in Sect. 13.5, and assume that m C TS(K) is a non-
Eisenstein maximal ideal. Let g : (Cknkow))m — (CK)ﬁ2 be the level lowering
map.

Then the induced map

Hy, 1, (T 0) 1 Heypr Yk ko) O)m = Hiy 1, (Y, O3

is surjective.

Note that by Conjecture C, H; (Y, O)y =0 for i < ry + r2, and so Conjecture D
concerns the smallest degree in which the homology H.(Yx, O)m does not vanish.

As the map 7, : Cxuju),0 — Cx, o constructed above is a localization of the map
Ky g,vs WE get:

Lemma 13.11 If Conjecture D holds for K = Ks ¢ then the map

Hyj 4, (v) : Hey 4, (Cuge}, 0) = Hr 41, (Cx,0)

is surjective.

Theorem 13.12 When F is an imaginary quadratic field and € > 3, Conjecture D is
true. Namely the map Hy (g ) : Hi(Yknky@), O)m — H1(Yk, (’))?12 is surjective.

Proof This is well known; see [18, §4.1] or [40]. It is a consequence of the congruence
subgroup property of SL, (O p[%]) for F an imaginary quadratic field. |

14 Hecke algebras for weight one modular forms

In this section we work exclusively in Case (Wtl), so restrict to the case F = QQ and
fix a finite set © of primes with even cardinality. We consider weight one modular
forms defined on a Shimura curve X ? (defined below) of discriminant ©. Frequently,
we use ® also to denote the product of all the primes in the set ®. The context will
make clear which meaning is intended.

Theorem H from the introduction was proved by Calegari [16] when ® = &, i.e.
the modular curve case, so (in the proofs below) we assume © # & for convenience.
We also fix a prime £ > 3 which is notin ® and for all v € ®, v 1 (mod ¢). Let E,
O, w and k be as before.

14.1 Weight one sheaves and complexes on Shimura curves
Let Dp be the quaternion algebra over QQ, ramified precisely at the primes in ©. As

® has even cardinality, Dy is indefinite.
Let K =[] . Kq S D3 (A(‘S’) be a compact open subgroup such that:

e K, is the maximal compact subgroup of D% (Qq) when g € D;
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e K, is a maximal compact subgroup of PGL,(Qy);

e K is sufficiently small, in the sense that gKg~' N D;S (Q) is torsion free for all
g € DJ(AY);

e and the determinant map K to I1,Z; is surjective.

A typical such K that we use is the subgroup K 1? A(Nx, Q) defined below.
Consider the (compact) Riemann surface

X2 .= D*(Q)\ (DX(A?Q?) x Hi) /K

where H* := C \ R is the complex upper and lower half planes. Give X ? its canon-
ical structure as an algebraic curve over Q. Let X I? be a minimal integral model for
X? over O, and for any (O-algebra A, let XI?A be the base change of XI? to A.

For A=0,E,O/w"O, let ws be the sheaf on X? arising from (applying an
idempotent e as in [24, §4] which satisfies the condition e* = e for a Rossati involu-
tion * to) 77, 2 A/XD for the universal abelian surface 7: A — X ? 4- Forany n > 1

define the coherent homology group as in [17, §7.2] by
Hi(XR, 00/a0) := Homo(H' (X}, ©0/5770), E/O)
and define

Hi (X}, 00) :=limH; (X%, ©00/5n0)-

n

Note that if we define the sheaf wg,© to be the direct limit over n of the sheaves
Wey —nO/O then

H; (X%, wp) = Homo(H (X% . wg/0). E/O)

By the work of [17, §7.2], one can construct perfect complexes C 15? in D(O) com-

puting H; (X ?, @), which will play a similar in our argument to the complexes Ck
from Sect. 13.

Proposition 14.1 Let K C D% (A(‘L’f) be a compact open subgroup satisfying the
above properties. Then

(1) Then there is a perfect complex C? in D(O) such that for all i:

(@) H;(C¥ ®% k) =0fori¢[0,1];
(b) Hi(CE ®F O/ ZH; (X, 00w 0) for all n > 0;
(© Hi(CY) ZH(XR, wo).

(2) Let Kp C D% (A%’) be another compact open subgroup satisfying the above
properties we with Kx I K and A := K /K a finite abelian group of £-power
order. Then there is a perfect complex CI:?A in D(O[A)) such that for all i:

(2) Hi(CR, ®pa k) =0fori¢0,1];

(b) H;(CR, ®%9[ A O/@"[A]) = H; (X%, ©0/wn0) as OlAl-modules for all
n=>0;
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(©) Hi(C?A) = Hi(XQA, wo) as O[Al-modules;

(d) There is a quasi-isomorphism C?A ®LO[A] o= C? in D(O),

where the O[ Al-module structures on H; (X?A, @O /@) and H; (X?A , WO) are
induced by the action of A on X ?A.

Proof Note that (1) is simply the special case of (2) with Ko = K, so it is enough to
prove (2). The assumption that K is sufficiently small implies that the quotient map

X ?A — X ? is étale with Galois group A. Thus the work of [17, §7.2] constructs

(using Cech complexes associated to an affine open cover of X ?) foreachn >1a
perfect complex C ?A,n of (O/w@™O)[A]-modules with:

Hi(CR,) SHi(XE, . 00/m10),
3 L ~ ~D
CKA,n+1 ®(O/w"+10)[A] (O/a"O)[A]= CKMI,
) L ~ ~D
CKAJ! ®(O/w"0)[A] (O/w"@) = CK,n'

Now [38, Lemmas 2.13, 2.14] produce a perfect complex C?A in D(O[A]) with
C?A ®IEQ[A] (O/o"O)[A]=C?.  and

Ka,n

Hi(CR,) ZlimH; (XR, 00/5m0) = Hi(XR , ©0).

n

It is now straightforward to verify that C ?A satisfies all of the listed properties. Note

that property (a) follows as H; (C?A ®%9[ Al k) =H; (C?A,l) =H;(X ?A, wy) vanishes
fori #0, 1. O

One can now define actions of double coset operators on the complexes C? by
the procedure described in [17, §7.2] (combined with the work of [38, §2.4] to lift the
actions of the double coset operators on C?n to an action on C,? ).

We will now use this to define Hecke algebras analogously to Sect. 13.3. Let S be
a set of primes including the primes in D, the primes v for which K, is not maximal
compact, and the prime £. For v ¢ S, let T, € EndD(@)(C?) denote the double coset

operator
_ w, 0
=[x (% V)]

alsoforve S\® withv # ¢, K| (v) < K, < Ko(v)andd € Kog(v)/Ky — (Of/v)*,
let Uy, (d)y € Endp) (C I?) denote the double coset operators

B @, 0 [.(d 0
=& (T Vx| wew= & (G 0)k]
for any lift d € 2. of d. Set

TS(K) := O[T, |v ¢ S1 < Endp(0)(CR)

which is a finite, commutative O-algebra.
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Before going on, we should address a subtlety with the definition of TS(K). We
have defined TS(K) as a subring of EndD(@)(C?), whereas most sources (including
[17], which we rely on heavily in the proof of Theorem 14.5) define it as a subring
of Endo (HY(XR, g,0)) = Endo (Ho(XR, 00)) = Endp (H*(CR)). A priori, this
means that the classical Hecke algebra will only be a quotient of T (K'), which makes
it difficult to apply available results in our setting.

Fortunately the result below shows that our definition of TS (K) agrees with the
classical definition, and so we may freely use results proved using the classical one.

Proposition 14.2 The ring TS (K) C Endp () (C¥) acts faithfully on H*(C¥).
For the remainder of this section we let define (—): D4 (0) — D4 (O) by
C" :=RHomp(C, O)[1].

(more specifically, will take d = 0 and lp = 1 in the results of Sects. 10 and 11).
Proposition 14.2 is a consequence of the following analogue of Proposition 13.6:

Proposition 14.3 For each K , there is a natural derived T° (K )-equivariant isomor-
phism,

CR =RHomo(CR, O)[1]=(CY)"
in Dps ) (O).

Proof The existence of this isomorphism follows from the arguments of [10,
Sect. 3.2], using Serre duality applied to the sheaves w4 and the Kodaira-Spencer iso-
morphism, which gives w?z = Q4 where Q4 is the canonical sheaf on the Shimura

curve X g . After this the Proposition 14.3 follows from arguments analogous to the
ones given in Sect. 13 (see proof of Proposition 13.6). g

In particular, this implies that if f € TS(K) acts trivially on HO(C?) then its dual
f T acts trivially on HO((C?)T) = HO(C?) as well. Thus Proposition 14.2 follows
immediately from Lemma 10.8.

We also need the existence of a Hasse invariant in this setting.

Lemma 14.4 Let X be the Shimura curve X?. There is an element Ha in HO(Xy,

w® DY (called a Hasse invariant) which has simple zeros at all the supersingular
points of Xy, and such that the map

HO(Xk, w@k) N HO(Xk, w®(k+€—l))

given by multiplication by Ha is equivariant for Hecke operators T, and U, for all
primes r # £ and all weights k > 1, and is also equivariant for Uy if k > 2.

Further this section lifts to a section Ha € HO(XO, a)®(i_1)) such that for all m >
1 and all weights k > 1, the map

@ (k4 —1)em=1
HY (X0, w%’;wm) — H° (XO s a)o(/wm )>
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~  pm—1
given by multiplication by (Ha)Z is equivariant for Hecke operators T, for all

ré¢s.

Proof The section Ha exists by [15, Sect. 5]. The integral lift is constructed in [37,
Sect. 7]; this relies on the assumption that £ > 3.

The final statement about Hecke equivariance follows by the argument given in [9,
Proposition 7.2.1]. The key point is that while the lift Hae H(X o, 0®*~D) is not

m—1
canonical, the image of (Ha) in H° (X O/ w%(/ez;,i)g ) will be independent

~  pm—1

of the choice of Ha, which allows one to mimic the proof that multiplication by Ha
itself if Hecke equivariant. g

14.2 The conjectures A and B in weight one

Here is the analog of Conjecture A in this setting; we thank George Boxer for ex-
plaining the argument to us.

Theorem 14.5 The following statements hold.

(i) For every maximal ideal m of TS (K), there is a semisimple Galois representation
Pm: Go— GLo(TS(K)/m) such that forall v ¢ S, v # £, PwlGp, is unramified
with tr py, (Frob,) = T,, (mod m), and 0|, is unramified.

(ii) Furthermore there is a lift of p, to a representation

pk: Gg — GLo(TS (K)m)

such that forall v ¢ S, v # £, pg |GFU is unramified and pk (Froby) has charac-
teristic polynomial x* — Tyx 4+ (Frob,), where  : Gqg — O is the Teichmuller
lift of detp,, and pk |G, is unramified.

Proof The proof follows the “doubling” strategy used in the proof of [17, Theorem
3.11] in the case of modular curves. All but one step of proof in loc. cit. works for
Shimura curves with no modifications.

Abbreviate X ? by X. Take any integer m > 1. By Lemma 14.4 there exits some
power, A, of Ha such that the map

HO(X 0oy, 00 jym) — HO (XO i w%'}wm)
given by multiplication by A is equivariant for the Hecke operators 7, for all r ¢ S,

where n — 1 is the weight of A.
This implies that the “doubling map”

H'(X, 05/0) ("]~ H' (X, 0/,
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given by (f, g) — Af + AT¢(g) — Up(Ag) is also equivariant for all of the Hecke
operators for all r ¢ S. Here, T is the Hecke operator acting on H(X, wg /o). This
can be defined exactly as in [10, Sect. 3.1].3

The proof in [17] reduces (by an argument that still works for Shimura curves) to
showing that this doubling map is injective. Moreover, as in loc. cit. it is sufficient to
prove this claim in the case m = 1. Indeed, as HO(X, wE/@)z[w’”] is a finite length
O-module, it suffices to prove that the map

HO(X, )2 = HO(X, 0 )0) (] — HO (X, wg';o) (] =H(X, 0"

is injective. Moreover, as the multiplication by Ha map
H (X, 0f") - HO (X, 0f**0)
commutes with U, for k > 2, it will actually suffice to show that the map
HO(X, wi)? - H (X, 0P

given by (f,g)— Ha- f +Ha- T;(g) — Uy(Ha - g) is injective.

In loc. cit. this is proven via g-expansions, which are not available for Shimura
curves. However the arguments in [11, Sect. 5.1] give an alternative proof of this
injectivity which does not rely on g-expansions, which completes the proof.

In the specific case of Shimura curves however, one can substantially simplify the
proof given in [11, Sect. 5.1]. If (f, g) is in the kernel of the doubling map, then
letting fo = f + T¢(g), one gets Ug(Ha - g) =Ha - fy for fo, g € HO(X, wi). As in
[11,(5.1. l)],4 one can now consider the following commutative diagram:

HO (X, wi) ~Z20 (X wf)

| |

H%(SS,wp) ——=—— H°(SS,w®)

where SS C X is the supersingular locus. Here, the vertical maps are restriction maps
and the lower horizontal map is an isomorphism. As Ha vanishes on SS, so does
Uy(Ha-g) =Ha- fy. Thus Uy(Ha- g) maps to 0 in HO(SS, »®%), and so the commu-
tative diagram implies that the restriction of g to SS must vanish. Thus g =Ha- & for
some g € HO(X, a)z_e). But as £ > 2, this cohomology group vanishes, so g =0, and
hence (f, g) = (0, 0). O

From now on we fix a Galois representation p: Gg — GLa (k) for which plq,) is
absolutely irreducible and p|g, is unramified. Let Ngy = N (p) denote the conductor
of p. We take ¢ : Gg — O to be the Teichmuller lift of detp.

3Note that while that argument is written for the modular curve, it does not rely on the g-expansion
principle, and in fact holds without modification for Shimura curves.

4Again, while [11, §5.1] only considers weight one forms on a modular curve, the construction of this
diagram does not rely on the ¢g-expansion principle, and works without modification in the case of Shimura
curves.
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We now make more particular choices of the compact open subgroups K <
Do (Ag). Let T and Q be finite sets of primes, disjoint from each other and from
D, satisfying the conditions from Sect. 12.2. Let ¢ be an auxiliary prime that is not in
T U Q UD and satisfies the conditions of Lemma 13.5 above for our choice of p.

As in Sect. 13.7, for any integer N > 1 with (N, ®) = 1 we define (identifying
Dy (Zy) = GLa(Zy) for v ¢ D):

b Bps

K2 (N) = {(Z d) e DX (@)

k2w =1(* 2)epz@
1 - c d D

so that again K7 (N) < K? (N) with KP (N)/K? (N) = (Z/NZ)*, and K7 (N)

and KlD (N) are sufficiently small. Also define K? (N) and KI? (N) to be the small-
est intermediate subgroups

¢c=0 (mod Nt*),d=1 (mod ﬂ)} C DX(Z)

c=0 (mod Nt?),d=1 (mod Nt2)} C DX (Z)

KP(N) <KX (N), K5 (N) <K (N)

for which K (N)/K ¥ (N)] is an £/ power and |K3 (N)/K 7 (N)] is prime to £.
Forany M and N define K A (N, M) = K3 (N) N K} (M).

For any subset ¥ C T, set Ny = Ny X, where by ¥ we mean the product of the
primes in X.

For convenience, write K?,Q = KI?,A(NE, Q), and KD = Kgg = KS(NE).
Let X/’ED,Q = X%’Q’ ng = 'OK?,Q’ Xg = ng and p? = ,ogg.

By Proposition 14.1, C??Q can be given the structure of a perfect complex of

O[A g]-modules. By construction, the action of O[A o] defined by this structure co-
incides with the action of O[Ag] on C I?? defined using the diamond operators (d),
forve Q. ©

Let S be a finite set of primes containing 7 U Q U D, all primes dividing Ng
and the prime . From now on we assume that p arises (in the sense of Theorem
14.5) from a maximal ideal m of the Hecke algebra TS (K g ) acting on HY(X2, wo)
(which is isomorphic to HY(X3, wg,0)).

Let ’IF be the localization T (X5 D Q)m We observe now that the analog of
Conjecture B can be proved in this setting by the variant of doubling method used in
the proof of Theorem 14.5.

Theorem 14.6 For any ¥, Q and 9, the representations p?: Gr — GLZ(’JI?)
stemming from Theorem 14.5 arise from the corresponding universal representation
Gr— GLQ(R?, Q) via maps RSQ —» TgQ and satisfy the following properties:

(D) trng(Frobv) =T, forallv¢Ss.
(2) There is a natural O[A gl-algebra structure on Tg 0 defined analogously to as

in Sect. 13 (via the full Hecke algebra) which makes the map RS 0~ Tg 0 into
a O[A gl-algebra homomorphism.
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(3) Forv e ¥, writing By € ']T?’Dfor the image of B, € Rll)j under the map
RL:’ “— Ryx 10c — RE — T?’D

we have (By) = (€xv/qu¥ (9y) LU, — 1) as ideals of’IFg’D.

(4) For 1 C ¥ C T, the diagram below commutes:

R%,Q — Tg,@ RSQ,Q ng,Q
| Lo ] |
R% T?} Rgl,Q Tgqu

Forany X C T, Q and v € T \ ¥, we can now define the complex C gQ €

D1y ,(O) and the level lowering map 7y : C?U 0o C completely analo-
gously to the definition given in Sect. 13 (that is, by locallzmg at an appropriate
maximal ideal of an extension of T}: Q).

Note that Cg 0 again has the structure of a perfect complex of O[A p]-modules,
and we have CSQ ®%9[AQ] o= Cg in D14 (O).

Proposition 14.7 There is a family of isomorphisms
~ i
9201 CE o= (C2 )

in Dy, , (O) compatible with the isomorphisms CSQ ®LO[AQ] o= C%.
Moreover for eachv € T \ X, if

L9~
JTJ. Cs.o (CE Q) — (C):u Q) = CEU{U} 0

is the adjoint of my: C%’U{U},Q — CgQ upon using the isomorphisms ¢s o and
YsU{v}, Q- then one has

Ty o7t} ~ quUZ — Y (gy) € EndD(O)(Cz 0)
773 oy X qUUv — V() € EndD(O)(Czu{U},Q),

where >~ means up to units in the corresponding Hecke algebras.

Proof Using the arguments of [10, Sect. 3.2], we deduce the existence of isomor-
phisms

~ t
¢§,Q: CQQ = (CQQ)

using Serre duality applied to the sheaves w4 and using the Kodaira-Spencer isomor-
phism that gives a);\g’z = Q4 where Q4 is the canonical sheaf on the Shimura curve
X5 D . After this the Proposition 14.7 follows from arguments analogous to the ones

glven in Sect. 13 (see proof of Proposition 13.10). O
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14.3 The conjectures C and D in weight one

For any curve X, the cohomology groups H (X, F) with coefficients in a coherent
sheaf F are non-zero only for i =0, 1. It follows from the definition of C 15? that we

deduce that H; (C ? ®I@ k) =0fori ¢ [0, 1]. Thus the analogue of Conjecture C holds
in this setting.
The analogue of conjecture D follows from the following proposition:

Proposition 14.8 The map
HO(m,): HUXS, 0£/0) iy = HY(XS ) @E/0) s
for v € X is surjective.

Proof By duality it suffices to prove that the kernel of the map H’(X g\{ o) wp)? —

HY(X2, wy) is Eisenstein (and in particular vanishes on localizing at my). This fol-
lows from [24, Proposition 5]. O

14.4 R =T theorems and the torsion Jacquet-Langlands correspondence in the
weight one case

In Sect. 15 we prove the following Theorem (as a consequence of Theorem 15.1 in
Case (Wtl)):

Theorem 14.9 The surjective maps R? — Tg are isomorphisms.

As a corollary of this, we deduce a torsion Jacquet—Langlands correspondence for
weight one modular forms.

Theorem 14.10 Consider a residual representation p : Gg — GLa(k) that arises
from a maximal ideal wmg of the Hecke algebra acting on H (X2, wp). We assume
that plq,) is irreducible. Then:

(1) p also arises from a maximal ideal mg of the Hecke algebra acting on
H' (XZ 5, ©0)-

(2) For any set ¥ of level raising primes satisfying the conditions from Sect. 12.2,
if Tgug and Tg are the Hecke algebras acting on Hl(X)?U@,a)@) and

H! (X 2 , W), localized at mg and myo respectively, then there is a natural sur-
Jective map T?u@ — Tg with kernel generated by q, UU2 — ¢ (Froby) forv e®.

Proof We first observe that by using the duality H(X2, wp/0)" = H! (X?, wO),
and that HO(XQ, wi) = HO(X© ,wg,0)[w], we deduce that p arises from HO(XQ,
k). By multiplying by the Hasse invariant we then get that p also arises from
HO(XD, o).

Let X =X 523 Consider the long exact sequence of cohomology arising from the

exact sequence of sheaves on X:
1L 1L (=04
0= wpn —> oy —> o =0
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(where the second arrow is multiplication by a uniformizer @ of ). We claim that
H!(Xp, a)%e)[w] = 0. Indeed H' (X, a)%e) vanishes as using Serre duality, and
the Kodaira-Spencer isomorphism w®? ~ Qy, this follows from the vanishing of
HO(Xx, 05°7Y) (for £ > 2).

From the claim, and the fact that 7 arises from HO(X2, wf’z), we deduce that p

arises from a classical weight ¢ form f that is a section of HY(x2, w%g).

To prove the existence of mg, we can now apply the classical Jacquet-Langlands
correspondence to f and get a classical weight £ form fz on Xg with residual
representation p. One can then apply level and weight optimization on the modular
curve to get the desired maximal ideal mg producing p. Here one uses crucially the
companion forms results of [27] and [21] to lower the weight from £ to 1 using that
the mod ¢ representation p that f gives rise to is unramified at £. This proves (1).

To prove (2), using Theorem 14.9 (for © # &) and the results in [16] (for © = @)
and part (1), we deduce that for any set X of level raising primes for p that satisfy

our earlier conditions, we have isomorphisms RZU’D = T):u@ and Ry = ’]I‘2 , SO the

claim follows from the analogous statement for the map Rgug — R? , which is clear
from the definitions. 0

Remark 14.11 1If one had available results about companion forms for mod ¢ repre-
sentations on Shimura curves one could show that if 7 arises from H! (X2, wp) then

it also arises from H! (Xgm\@“ we) for all ® C D, and not just ®" = &. This will
need results for companion forms on Shimura curves (to lower the weight from £ to
1 when the mod ¢ representation is unramified at £) that would be the analogs of the
results of Gross and Coleman—Voloch [27] and [21] on modular curves. This also is
the obstruction to going from a maximal ideal my of the Hecke algebra acting on
H' (X gui)’ we) to a maximal ideal mp of the Hecke algebra acting on H! (X 2 wE)
(under the necessary assumption that the primes in ® are level raising primes for
p arising from mg ). Toby Gee has informed us that the possibility of proving a re-
sult like Theorem 14.10 had been considered earlier by him in work with Boxer and

Calegari.

15 Applications to integral modularity lifting

In this section we apply the results from Part 1 in order to prove R = T theorems in
non-minimal cases. The essential strategy is the same as the arguments given in [56,
Chap. 2] and [23, Theorem 3.4]. Namely, one first proves the result in the minimal
level case via patching — in our case the relevant patching result is already known,
see [17, Theorem 1.3]. One then proceeds by induction on the level, using Thara’s
Lemma to control the growth of congruence modules, and then using the numerical
criterion to prove the isomorphism Ry = Ty.

The key difference in our approach is that we apply the inductive argument and
the numerical criterion directly to the patched modules My o, rather than applying
them to the global deformation rings and Hecke algebras. This allows us to sidestep
many of the complications that arise by working over non totally real fields or with
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weight 1 modular forms (the “¢o > 0” case) as the patched situation in these cases
behaves quite similarly to that for weight 2 modular forms over Q. This modification
to the argument is what necessitates working with congruence modules in higher
codimension.

In both minimal and non-minimal cases the patched modules My, o are known
to be maximal Cohen—Macaulay over the corresponding patched deformation rings
Ry . In the minimal case (i.e. ¥ = &) Ry  is a power series ring, which is well-
known to imply M &  is free, giving our base case. However in the non-minimal case
our patched rings Ry oo are not power series rings, and have multiple components
(although they are quite nice and easy to describe, and in particular are complete
intersections in our case). This causes difficulty in analyzing the structure of patched
modules in the non-minimal case purely via patching.

We show by induction on X, using our version of the numerical criterion, Theorem
9.6 (although for our purposes Theorem 9.2 is sufficient, as we already know that
relevant local deformation rings are complete intersections), that each My o has
a free direct summand. The desired statement about global deformation rings and
Hecke algebras (Theorem 15.1) follows immediately from this.

Proposition 4.4, together with Theorem 7.4, provides the necessary generalization
of the growth of congruence modules argument of loc. cit., provided one assumes
the version of Thara’s Lemma given in Conjecture D (which is known in the case of
Bianchi manifolds by Theorem 13.12) or Proposition 14.8.

One should note that the augmentation A: Ry oo — O which we define below
in order to apply our numerical criterion is picked essentially arbitrarily, and need
have no relation to the global deformation rings and Hecke algebras. This means in
particular that our method does not need to distinguish between the cases where the
ring T has characteristic 0 points and the case when it does not.

One slight complication that arises in our argument, compared to that of /oc.
cit., is that we have no direct control over the generic rank of the patched modules
My ~, unless the Hecke algebra Ty has at least one characteristic 0 point lying on
each component of Spec Ry ~. Fortunately Theorem 9.2 needs no assumption about
the generic rank of the module (in contrast to [23, Theorem 2.4]), so this does not
present an issue for our main application to proving R = T. This does however pre-
vent us from proving an analogue of the ‘multiplicity one’ result of [23, Theorem
3.4]—instead we can only prove the weaker statement in Theorem 15.1. Note that
this issue is already present in [17, Theorem 1.3], although it is somewhat more se-
vere in our case as Spec Ry o has multiple components and one cannot conclude that
My ~ has the same generic rank on each component.

We treat the two cases (PGL2) and (Wt1) in parallel here. To fix notation:

e In case (PGL2) we freely use all notation introduced in Sect. 13, and assume con-
jectures A, B, C and D. In particular we consider a non-Eisenstein maximal ideal
m C TS(Ko(Ng)) with residue field k, and the corresponding Galois representa-
tion P, : G — GLy (k). We assume that m was chosen so that N (0,,,) = Ny

For each ¥ C T we then have rings Rz ¢ and Ts ¢, a surjective map Ry o —
Ty, ¢ from Conjecture B and a complex Cx ¢ € Dty ,(O). These will again be
denoted Ry, Ty and Cy when Q = &.
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We again let r; and r, be the number of real and complex places of F respec-
tively, and let d = r1 +r; and [y = r,. Note that by Conjecture C, H; (k ®'(“9 Cy)=0
for i ¢ [d.d + €o] and Hy(Cs) = Hy, 47, (Yo(Nx), O)my.

e In case (Wtl) we freely use all notation introduced in Sect. 14. Again, we con-
sider a non-Eisenstein maximal ideal m C ’]I‘S(K S) with residue field k, and the
corresponding Galois representation p,, : Gg — GL2(k). We assume that m was
chosen so that N(p,) = Ng.

The discriminant © is fixed throughout this section, and so omit it from our
notation. Thus we consider rings Ry ¢ and Ts ¢, a surjective map Ry g — Tx o
and a complex Cx g € DTE,Q((’)). These will again be denoted Ry, Ty and Cyx
when Q = @.

Here we let d =0 and /p = 1. Then we again have H; (k ®%9 Cy)=0fori¢
[d.d + €] and Hy(Cx) =H' (XY, wg,0),. -

Our main result is the following, which is Theorem F in Case (PGL2) and Theorem
H in Case (Wtl):

Theorem 15.1 Assume that ﬁm|Gp(;£) is absolutely irreducible. Then there exists an
integer & > 1 such that for each ¥ C T there exists an Ry-module Wy and an
isomorphism of Ry -modules

Hy(Cs) =RE & Ws.

In particular, Ry, acts faithfully on Hy(Cyx) and so the map Ry — T is an isomor-
phism for all X.

This result is deduced from Theorem 15.4 below. As in Sect. 12.2, let S be the set
of all finite places of F" where either py, |G, ramifies or v|¢.Let j =4|SUTUD| -1,
so that for all ¥ and Q one has

Rg :Rg[[wl,...,wj]} and RE)Q:RE,Q[[wl,...,wj]].

The result below that is by now standard (see for instance [17, Proposition 5.2])
allows us to construct sets of Taylor—Wiles primes Q,:

Proposition 15.2 Assume that 0, |F () is absolutely irreducible. Then there exist in-
tegers r, g > 1 such that for all integers n > 1 there is a set of finite places Qn of F
for which:

o [Qyl=r;

e 0,N(SUTUD) =0,

e Nm(v) =1 (mod £") for each v € Q;

® D, is unramified at v and p,, (Froby) has distinct eigenvalues in k for eachv € Qp;
e The map Rioc,7 — RE on extends to a surjection

RIOC,T[[-xlv . ,xgﬂ —» RYl;len

thus inducing compatible surjections Rioc x[x1, - - -, xg]] —» RE On forE CT.
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Moreover we have
dim R7 joc[x1, ..., xg] =dim Ry joc + g =1+ j +7) —lp.
Now for each X C T let Ry oo = Ry loc[X1, ..., Xg]. Also let
00 =0y, w]=0[y1,....yr, wi,..., wj]

so that dim Ry, oo =dim Ss, — lp for all . Forv € X, let A,, B, € Rbmi(é”) C Ry .«
be as in Proposition 12.1, so that Rz yujv},00/(Ay) = Rz co-

Write c = j +r —lp, so that dim Ry oo =c + 1 for all X.

For any n > 1, let A, = OJAp,]. Since |Q,| =r, Ag, is isomorphic to
[1i_,(Z/€¢“™Z) for some integers e(i, n) > n. Thus we may write A, = O[y]/I,
for some ideal 7, € O[y] as in Sect. 10.1.

Now let Ry , = Ry g, and Cx , = Cx g,. Alsolet Ry o = Ry and Cx g = Cx.
Note that we may regard Cx , as an element of Dgy ,(A,) via the composition
Ry, — Tx g, = Endp,)(Cx,»). Let ax , be the isomorphism

Cza®f O = Cx.0

from Proposition 13.9. Recalling that H, (k ®';\n Cx ) vanishes outside of [d, d + {o],
the work of Sect. 13 (Propositions 13.6, 13.7, 13.9) in Case (PGL2) and Sect. 14
(Proposition 14.7) in Case (Wtl) gives the following:

Lemma 15.3 For each ¥ C T the tuple €y = (Cz,n, ag,,,)n>0 is a patching system.
Moreover there is an isomorphism €y, = s, of patching systems. 0

Now forany X C T let Mx o = P(€x). By Theorems 10.6 and 11.3 each M5
is a self-dual maximal Cohen—Macaulay R7 -.-module. Also by construction the ac-
tion of R7 oo On My o factors through Ry o.

Moreover (after picking an appoperiate homomorphism So, — R, as in Theo-
rem 10.6) we have Ry o ®s,, O = Ry and My o ®s,, O =Hy(Cx).

Theorem 15.1 will thus follow from the following:

Theorem 15.4 There is an integer i > 1 such that for each ¥ C T there is an iso-
morphism My, o = R;OO @ Wy o« for some Ry, oo-module Wy, .

We need the following consequence of Theorem 11.3, Proposition 13.10 and Con-
jecture D (in particular, its consequence Lemma 13.11) in Case (PGL2), and Propo-
sitions 14.7 and 14.8 in Case (Wtl).

Proposition 15.5 For each ¥ C T and each v € T ~ X the family of maps
7y Csufuy,n = Cx,p induces a morphism Cxypyy — Cx and hence a Ry oo-module
homomorphism 1, : Msu},co = Mz, 00

Moreover the map m,: Mxuiv),co = Ms oo is surjective, and ifnvv: Ms o —
Ms U}, 00 IS the dual map, induced by the self-duality of Ms. o and Msyy),c0, then
for some units u,, u', € R;’OO we have

myomn) =uyBy € Rroc and ) om,=u,By € Ry oo-

@ Springer



Congruence modules in higher codimensions

Proof The surjectivity of m, follows from Lemma 13.11 and Nakayama’s Lemma.
Next we note that under the map

Rgni(ev) > RT 00 = R‘g — TD R

the element B, maps to wy(€yv/qu¥ (¢y) " 1U, — 1) for some unit w, € (']I“g)>< by
Conjecture B(3) and Theorem 14.6(3) which means that w;l B,(2 + w,jl B,) maps

to
(fv\/ QN//(QDU)_IUv - 1)(61)\/ QUw((pv)_lUv +1)= (Ev\/ QUl/f(‘Pv)_IUv)2 -1

=qu¥(py) U~ 1

(as €, = £1). Recall that in Case (PGL2) this equals UE — 1 since ¥ (¢y) = qy-
Note that v (¢,) € O* and 2+wv_le € R;,oo’ as B, e mg,  and 2 € O*. Using
the formulas for maps 7, on,f and n;‘ oy of the complexes Cx, Cxyy(y) in Proposition
13.10 in Case (PGL2) and Proposition 14.7 in Case (Wtl), and Theorem 11.3, which
gives that 7?(71: ) =P(my)Y, we deduce the formulas for 7, o7,/ and 7" or,. O

Now pick an augmentation A: Rr oo — Rz 0o — O such that A(4,) =0 and
A(By) # 0 for all v € T. It follows that each Ry o is regular at p := Ker A, and
30 (R3,00. 1) € Co(c). Let u =ranky, Mg, o, and note that Mg o = Ry . by the

Auslander—Buchsbaum formula. (Note that Mg « 7% 0 as Cx # 0 by the choice of
m,and so u > 1.)

Lemma 15.6 For each ¥ C T and eachv € T \. X the map
Ty - MEU{U},oo — Ms
is an isomorphism at p. In particular, ranky, M o = for all .

Proof By the choice of A, B, ¢ p, and so By, is a unitin (R, o)p. Thus by Proposition
15.5, the maps 7, o,/ = uy B, and 7,/ o, = u), B, are both multiplication by units
in (R7,00)p, after localizing at p. The claim follows. O

Remark 15.7 To prove the lemma it suffices to have an element o, € Ryu{y},00 Which
annihilates Kersr, and maps to an element of Ry o that is not in Ker X; the com-
putation 7, o 7, = u} B, shows that we may take o, = B,. On the other hand for
the proof of Theorem 15.4 below it is crucial to have the precise computation that
(7ry o)) = (By) as ideals of Ry, o to compute the change of congruence modules
lengthey YRy (MEU().00) = lengthy Wry ) (M,00) + 18- vO (u(By)).

Proof of Theorem 15.4 For any X C T and ve T \ X, as 7, o n,}v =u,B, we get
using Proposition 15.5 that the composition

c ~ pc v e v ~ c
Fip.(Ms.00) = Fp (M5 o) = Fp,  (M3yp).00) = Fr,  (Mxup),c0)
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= Fry (M3 00)

is multiplication by A(u,B,) and so as FICQT . (Mx ) = OH, its determinant is
A(uy)*A(By)*. As u, is a unit, Proposition 4.4 yields
length(’) \IlR):U(v).oo (MZU{U},OO) = length(’) \I]Rgu{v)’oo (ME,OO) + VO()"(MU)M)"(BU)M)
=lengthp Wry . (Mx,00) + 1 - vO (AL(By)).
We note that the hypotheses of Proposition 4.4 are satisfied as Lemma 15.6 yields
that MsUjv),00 and Ms o have the same rank w at A and, as noted after Lemma 15.3,
we know that both these modules are maximal Cohen-Macaulay over Rxujy},00 and

self-dual.
Since Ry, is formally smooth and hence regular, we get that ® g, ., = 0 and

YRy oo Mgz 00) = \I/Rg‘oo(Ré,oo) =Wg,  (Ro o) =0 =0.

Rg 00
by Theorem 9.5. It now follows by induction that
lengthpy Wry . (Mz.00) =11 Y vO(A(By))
vEX

forany X C T.
On the other hand, by §12.2 and Proposition 15.2, one gets that Ry  is a power

series ring over ®R3“i(e”). By Proposition 12.1 it is thus a power series ring over
veXx

QO[A.. B,]/(AyBy)

veX
An easy computation now gives that

Dpy =[] (O/1(B,)O)
vex
and so
lengthp Oy o = ) vO(L(BY)).
vEX

Hence dgy (M5 00) =0forall 2 C T.
As each Ry  is a complete intersection (and hence Gorenstein), Theorem 15.4

now follows from Theorems 9.2 and 9.5. O
Glossary

Ao category of Artinian (J-algebras

c the height of p 4, also known as codimension
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Fi{ (M) the torsion-free quotient of Ext’A (O, M)

WA (M) the congruence module attached to an A-module M

CNLp category of complete local noetherian O-algebras

Co category of pairs (A, A) with A: A — O a surjective
map in CNLp such that A is regular at Ker(})

Co(c) pairs (A, 1) in Cp with height Ker(A) = ¢

Dy the torsion part of the cotangent module of A: A — O

Sa(M) the Wiles defect of an A-module M

depth, M the depth of an A-module M

D(A) the derived category of mod A

DP(mod A) the bounded derived category of mod A

Dr(A) a category of A-complexes with derived R-action

D deformation conditions

£ the cyclotomic character

grade(/, M) the length of the longest M -regular sequence in /

Aa(M) themap M > M ®4 O

mod A the category of finitely generated A-modules

IF, the inertia subgroup of prime v

Pr, the wild inertia subgroup of a prime v

Nm(v) norm of a prime v in a number field

N(p) Artin conductor of o

(V) lift of the Frobenius

oy a lift of the topological generator of If, / PF,

@ a discrete valuation ring, typically complete

PaSy a category of patching systems

M torsion-free quotient of a derived trace map

p?® the second symbolic power of a prime ideal p

tors(U) the torsion submodule of an O-module U

vt the torsion-free quotient of an O-module U

WA the dualizing complex of A, suitably normalized

wA(M) the dual with respect of w4 of a complex M

¢f the dual of a patching system €

MY the highest degree homology module of w4 (M)

MII] the submodule of M annihilated by the ideal 1

[—] the suspension functor in any triangulated category

z level raising primes

0 sets of Taylor—Wiles primes

Ry global deformation ring with ramification at places in S
and ¥

RY framed deformation ring at v

R finite flat deformation ring at v|¢

Ry quotient of RvD parameterizing unramified lifts of p,

R? global Galois deformation ring

Rioe, s completed tensor product of local deformation rings

L)) power series ring over Rjoc,

T (R) the trace map on an R-module M
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Yk

Ck

[Kra K]

TU? UU5 (d)v

KoWN), Ki(N), KaWN)
KR (N), K3 (N)
Yo(WN), Co(N)

Yo,aW, Q), Co,aN, Q)

TS(K)
P

TTK v

Ty

Ts,Ts 0
Ks,Kx.q
TS(Kx), T5(Kx,0)
Cs,Cx

X3

H (X2, F)

Ha

congruence manifold of level K

complex of singular chains on Yx

double coset operator

Hecke operators

congruence subgroups of level A/t?

subgroups intermediate between K 1@ (N) and K 83 (N)
congruence manifolds and chain complexes at level
Ko(WN)

congruence manifolds and chain complexes at level
Ko(N)NKA(Q)

Hecke algebra at level K

residual Galois representation corresponding to

m C TS(K)

level lowering map

localized level lowering map

localizations of Hecke algebras

shorthands for Ko(Nx) and Ko(Ns) N KA (Q)
full Hecke algebras

localizations of Cky, and Cky ,

Shimura curve

coherent cohomology of X ? with values in a sheaf F
Hasse invariant attached to a Shimura curve
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