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LOCALLY DUALIZABLE MODULES ABOUND
JON F. CARLSON anND SRIKANTH B. IYENGAR
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Abstract

It is proved that given any prime ideal p of height at least 2 in
a countable commutative noetherian ring A, there are uncount-
ably many more dualizable objects in the p-local p-torsion stra-
tum of the derived category of A than those that are obtained as
retracts of images of perfect A-complexes. An analogous result
is established dealing with the stable module category of the
group algebra of a finite group having sufficient p-rank, over a
countable field of positive characteristic p.

1. Introduction

This work is about dualizable objects in tensor triangulated categories arising in
commutative algebra and the modular representation theory of finite groups. An
object D in a tensor triangulated category C is dualizable if the natural map

Hom(D,1) ® X — Hom(D, X)

is an isomorphism for all X in C. Here Hom and ® are the internal function object
and product in C, respectively, and 1 is the unit of the product.

Consider D(Mod A), the derived category of a commutative noetherian ring A,
with tensor structure given by the derived tensor product — @Y —, the unit is A,
and function object is RHom4(—, —). The dualizable objects in D(Mod A) are pre-
cisely the perfect A-complexes, Perf A. These are also the compact objects, and hence
D(Mod A) is rigid as a compactly generated tensor triangulated category.

We consider also StMod(kG) the stable module category of a finite group G, with
k a field of positive characteristic dividing |G|. In this case the tensor structure is
given by — ®; — with diagonal G action and the function object is Homy(—, —), again
with diagonal G-action; the unit is k¥ with trivial G-action. The dualizable objects
are those in stmod(kG), namely, the kG modules that are stably isomorphic to finite
dimensional ones, and hence coincide with the compact objects, so StMod(kG) is also
rigid.

Both D(Mod A) and StMod(kG) admit natural stratifications into “local” trian-
gulated subcategories that determine, to a large extent, their global structure. In
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D(Mod A) the strata are parameterized by points p € Spec A and the stratum corre-
sponding to p consists of the p-local and p-torsion complexes in D(Mod A), which is
denoted Iy D(Mod A); see Section 2 for details. There is an analogous stratification
StMod(kG), with parameter space Proj H*(G, k); see Section 3. In both cases, the
strata are again tensor triangulated subcategories, and it is of interest to understand
the dualizable objects in these categories. A noteworthy feature now is that, unless p
is minimal, there are many more dualizable objects than compact ones, so the strata
are not rigid.

There is a natural functor I, : D(Mod A) — I, D(Mod A) and the dualizable objects
in Iy D(Mod A) are generated as a thick subcategory by I, A; see [3, Theorem].
The question arose whether I, Perf A is dense in the subcategory of local dualizable
objects; in other words, whether each dualizable object in I, D(Mod A) is a retract of
a complex I, P, with P a perfect A-complex. The point of this paper is that when A
is countable, there are uncountably many, mutually non-isomorphic, indecomposable
dualizable objects in I, D(Mod A), but at most countably many that are retracts of
images of perfect complexes in A; see Theorem 2.1.

There is an analogous description of the dualizable objects in I, StMod(kG), estab-
lished in [4], and once again it turns that there can be many more dualizable objects
in this strata than direct summands of those induced from stmod(kG), the global
dualizable objects; see Theorem 3.1.
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2. Local algebra

Let A be a commutative noetherian ring and D(Mod A) the (full) derived category
of A-modules, viewed as a tensor triangulated category, where the product of A-
complexes X, Y is the derived tensor product X ®% V. The derived category is rigidly
compactly generated, with compact objects the perfect A-complexes, that is to say,
those that are isomorphic, in D(Mod A), to bounded complexes of finitely generated
projective modules. We denote this category Perf A. It is the thick subcategory of
D(Mod A) generated by A.

Given a point p C Spec R consider the exact functor
I'y: D(Mod A) — D(Mod A)  where X +— Ry ) (Xy)

where R (p)(—) is the functor representing local cohomology with support in the
ideal p of A. The image I, D(Mod A) consists of precisely the p-local and p-torsion
complexes. It is a tensor triangulated category in its own right, with product induced
from that on D(Mod A), unit I, A, and function object I RHomy(—, —). It is not
rigid, unless p is minimal, and there are many more rigid objects than compact ones.
See [3, Section 4] for proofs of these assertions.

The main result of this section is as follows.
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Theorem 2.1. Let A be a countable commutative noetherian ring and p € Spec A
such that height p > 2. There exist uncountably many mutually non-isomorphic inde-
composable dualizable objects in I'y D(Mod A) none of which is a retract of an object
in I, Perf A.

Remark 2.2. In fact, the argument, which is given towards the end of this section,
shows that I}, Perf A contains only countably many isomorphism classes of objects,
even allowing for retracts, but that there are uncountably many non-isomorphic inde-
composable objects in Thick(I, A). It is easy to check that the latter subcategory con-
sists of dualizable objects in I}, D(Mod A). As it happens, these are all the dualizable
objects. This is the main result in [3]; we do not need this fact here.

We record a simple observation.

Lemma 2.3. When A is a countable noetherian ring, there are only countably many
isomorphism classes of objects in mod A, and, more generally, only countably many
isomorphism classes in Db(mod A).

Proof. Any finitely generated A-module occurs as a cokernel of a map A™ — A™,
for each nonnegative integers m,n, and each such map is given by a matrix of size
m x n with coefficients in A. Since A is countable, there are only countably many such
matrices, which justifies the claim about mod A. The one about complexes follows
because in D(Mod A) any complex with finitely generated homology is isomorphic to
one of the form

0O—M, —F,_1 —-—F —F—0,

where M, is in mod R and each Fj is a finite free A-module. O

The result below is also well-known; see [9, p. 500].

Lemma 2.4. Let A be a commutative noetherian local ring that is complete with
respect to m, its maximal ideal. If dim A > 2, then there exists an uncountable collec-
tion of distinct prime ideals in A, each of height one. In the same vein, there is an
uncountable collection of elements {ay fucy with \/ay # \/ay for u # v.

Proof. Assume to the contrary that there are only countable many prime ideals
{pi}i>1 of height one. Since each non-invertible element in A is contained in a height
one prime, by Krull’s Principal Ideal theorem, it follows that m C U;p;. Since A is
complete, it has the countable prime avoidance property; see, for instance, [6, 10].
We deduce that m C p; for some 4, contradicting the hypothesis that dim A > 2.
Because every prime ideal of height one is minimal over a principal ideal, and the
radical of principal ideal is a finite intersection of prime ideals, the second part of the
assertion follows from the first. O

Proof of Theorem 2.1. One has that I, D(Mod A) ~ I, D(Mod A,), so replacing A
by its localization at p we can suppose it is local, say with maximal ideal m, with
dim A > 2. Let A be the m-adic completion of A. A key input in the arguments
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presented below is that the natural map of rings A — Ext’y (R, A, R, A) factors
through the completion map A — A and yields an isomorphism

A =5 Exty(RIwA, R, A).
Hence, derived Morita theory yields the Greenlees-May adjoint equivalence

N Rl A®f41—
ThiCkAA(A) ThiCkA (RFmA) .
RHoma (RI'mA,—)

It is also helpful that RHom 4 (R Iy, —) = LA™(—), the left derived functor of m-adic
completion. See the discussion around [3, (4.2), (4.3)].

Let {p, }« be the uncountable collection of prime ideals in R supplied by Lemma 2.4.
For each p, let K, denote the Koszul complex on Rz R on a minimal generating
set for the ideal p,, of R. The complex K, has the following properties:

(1) Each K, is dualizable in I, D(Mod A);
(2) One has K,, # K, for u # v;
(3) Each K, is indecomposable.

Indeed (1) holds because RI, A, being the unit of the product on I, D(Mod A) is
dualizable, and K, is finitely built from RI,A.

Under the adjoint equivalence above, RI'y A is mapped to LA™ A, so K, is mapped
to the Koszul complex on A on the chosen minimal generating set for p,. It follows
that the kernel I,, of the natural map

A — BExt}y (K, K,) 2 Ext%(LAK,,LA"K,)

satisfies /T, = p,. Since the {p,}., are distinct, (2) follows. Moreover, the Koszul
complex over A on any minimal generating set for the ideal p is indecomposable in
D(Mod A), by [1, Proposition 4.7]. Consequently, K, is indecomposable in D(Mod A).
This justifies (3).

Since the collection {K,}, is uncountable, to complete the proof we have to ver-
ify that there are only finitely many isomorphism classes of indecomposable direct
summands of I'y P, with P a perfect A-complex. To see this, note that since A is
complete, Thick +(A) is a Krull-Schmidt category, and hence so is Thicks(RIA),
by the equivalence above. It remains to recall that there are only countably many
isomorphism classes of perfect A-complexes, by Lemma 2.3. O

3. Finite groups

Let G be a finite group and k a field of positive characteristic p, where p divides
the order of G. The stable category StMod(kG) of kG-modules modulo projective
modules is a tensor triangulated category, there the product is — ®j; — with the
diagonal G-action, and the unit is the trivial kG-module k. The compact objects are
the modules equivalent to finitely generated modules. They form a thick subcategory
denoted stmod(kG).

The cohomology ring H*(G, k) = Extjo(k, k) is a finitely generated graded k-
algebra and Ext; (M, N) is a finitely generated module over H*(G, k), for all M, N
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in mod kG. The projectivized spectrum Vg (k) = ProjH"(G, k) is the collection of
homogeneous prime ideals in H*(G, k), except the the maximal one, H=!(G, k).

The support variety V(M) of a finitely generated module M is defined as the
collection of those ideals that contain the annihilator of Ext; (M, M) in H*(G, k).
Support varieties for infinite dimensional kG-modules are introduced in [5]; see also
[2]. These are subsets of V(k) that are not necessarily closed.

As in the previous section, for each p in Vi (k), there exists an exact functor
I'y: StMod(kG) — StMod(kG)

whose image is the subcategory consisting of all kG-modules whose support is con-
tained in V. Then, I, StMod(kG) is again tensor triangulated, with tensor product
inherited from StMod(kG). The unit is I', k, and the function object is I', Homy (—, —).
There are numerous equivalent ways to characterize dualizable modules in this cat-
egory; see [4]. The full subcategory of dualizable modules in I, StMod(kG) form a
thick triangulated subcategory, and I, M is dualizable for each M in stmod(kG). The
theorem below and its proof are similar to Theorem 2.1.

Theorem 3.1. Let k be a countable field of characteristic p, and G an elementary
abelian p-group of rank > 3. Let p be a closed point in Vi (k). There exists an uncount-
able collection of mutually non-isomorphic, indecomposable dualizable modules in
I, StMod(kG), none of which is a direct summand of I'yM for M in stmod(kG).

Proof. Since the dualizable objects form a thick subcategory, it suffices to prove
that there is an uncountable collection of mutually non-isomorphic, indecomposable
objects in the thick category generated by I', stmod(kG) that are not retracts of the
images of the finite dimensional ones. This has nothing to do with tensor triangulated
structure on I, StMod(kG), and we are free to choose any coalgebra structure on kG
that is convenient.

We may assume G = H X (z) where H is elementary abelian of rank » — 1 and
zP = 1. That is, we can assume that the ideal p is the radical of the restriction to
a subalgebra k[z]/(zP) € kG, the inclusion into kG being a m-point associated to p
in the language of [8]. The choice of the complementary subalgebra kH is somewhat
arbitrary. That is, we can choose kH to be the subalgebra generated by any collection
x1,..., 2,1 in rad(kG) such that the images of z,z1, ..., z,_; in rad(kG)/rad®(kG)
form a k-basis. Then kG = kC ® kH where C is generated by the unit 1 + z and H
is generated by 1+ x1,...,1 + z,._1. This is an isomorphism of k-algebras, but not
generally as Hopf algebras.

Keeping in mind that I, = I'y(y), from [7, Proposition 5.2] we see that
e .
R := Endyg (k) = Homy o (Typk, Tyk) = Homy o (Thk, k) = [ [ H'(H, k),
i=0

as an additive group. The product is the obvious one, except that, if p is odd, then
any two elements of odd degree multiply to zero. Hence the endomorphism ring
is a commutative local ring that, modulo a nilpotent ideal, is the completion of a
polynomial ring of degree r — 1. In particular its Krull dimension is 7 — 1 > 2.
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For each ( € R, we define the module K¢ to be the third object in the triangle

¢

K¢ Ik Ik

Evidently, K. is in the thick subcategory generated by I, stmod(kG). Let a,(K¢)
be the annihilator of the R-module Hom,(I,k, K¢)). Then we recall [7, Theorem
7.6] that the radical of a, () coincides with the radical of the ideal generated by (.
Thus, we have that if ( and « are elements in R that generate ideals with different
radicals, then K¢ is not isomorphic to K.

When M is a finite dimensional module, the R-module End,, (I, M) is finitely gen-
erated. Consequently, I';M has only a finite number of indecomposable summands,
as otherwise, End, (1, M) would have an infinite number of idempotents. It follows
from the Lemma 2.3 that the collection of modules K. that can be direct summands
of modules of the form I'yy M for M finitely generated, is countable. Since dim R > 2
it remains to recall from Lemma 2.4 that it has an uncountable number of elements
¢ having mutually distinct radicals. O

Ezxample 3.2. Suppose p = 2 and that G is elementary abelian of order 8. We use the
notation of the previous proof. We write kG = kH ® kC where kH = k[z,y]/(x?,3?)
and kC = k[z]/(2?%). Here the variety V is the point corresponding to the inclusion
kC — kG. Choose ¢ € Hom,(I'vk,I'vk) to have the form ¢ = (0,¢1, (o, ... ) where
¢ € H'(H, k). Assume that ¢; # 0. Because ¢; # 0, we have that the restriction to kH
of K¢ is a direct sum Z;ﬁo U; where U; 2 kH. Choose u; € U; to be a kH-generator,
for all <. With some calculation, it can be shown that the action of z is give by a
formula
Zu; = Z(ajx + Bjy)ui—j

Jj=0

where for each j, the elements «;, 8; € k, depend on the choices of ¢, for £ < j. With
some slight adjustment in the proof, Theorem 3.1 tells us that if £ is countable, then
there is an uncountable collection of such elements ¢ such that the resulting modules
K are mutually non-isomorphic and not isomorphic to a direct summand of any
I'y M for any M € stmod(kG).

General finite groups
We end with the following result, extending Theorem 3.1 to any finite group.

Theorem 3.3. Let k be a countable field and G a finite group. Suppose that p be a
closed point in V(k) that is contained in resg; (Vi (k)) for some elementary abelian
p-subgroup E having rank > 3. There exists an uncountable collection of mutually
non-isomorphic, indecomposable dualizable modules in Iy StMod(kG), none of which
is a direct summand of I'vM for M in stmod(kG).

Proof. We use the induction functor StMod(kE) — StMod(kG) that takes a kE-
module M to MT¢ = kG @i M. The restriction to a kE-module of the idempotent
module I,k is still an idempotent module, and a support variety argument establishes
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that, in the stable category, it has the form

(Ipk)yp 2 ) Lok

where the sum is over the finite collection of closed points q € Vg(k) such that
res; p(q) = p. Then by Frobenius reciprocity, we have that

Lok @ (kyp)'€ = (k) yp) '€ = Y (Iyk)'e.

As a consequence, the modules (I';k)T¢ are dualizable.
Let q denote any one of the points with resg; p(q) = p. Because the induction func-

tor is exact, for ¢ in Homyg(Ik, I',k), the module KEG is also dualizable. Moreover,
by the Mackey Theorem, any such module has at most a finite number of indecompos-
able direct summands. Now the theorem follows from the fact that, by Theorem 3.1,
there is an uncountable number of such modules and they are in I, StMod(kG). On
the other hand, the thick subcategory obtained by taking the idempotent completion
of I, stmod(kG) has only a countable number of indecomposable objects. O
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