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We prove that the canonical sub-Laplacian on SU(2) admits 
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independent of the matrix sizes. This establishes the first 
example of a matrix-valued modified log-Sobolev inequality 
for a sub-Laplacian. We also show that on Lie groups the heat 
kernel measure pt at time t satisfies matrix-valued modified 
log-Sobolev inequality with constants in order O(t−1).
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1. Introduction

Since the seminal works [28,29] of L. Gross, log Sobolev inequalities have been in-
tensively studied and found rich connections to analysis, geometry, and probability (see 
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[30,36] for surveys). In recent decades, log Sobolev inequalities for quantum systems have 
attracted a lot of attentions in quantum information theory and quantum many-body 
systems, e.g. [4,12,13,22,34,43]. Motivated by the noncommutative cases, we study mod-
ified log Sobolev inequalities for matrix-valued functions for horizontal heat semigroups 
generated by sub-Laplacians. Such matrix-valued modified log Sobolev inequalities have 
direct applications to quantum Markov semigroups on matrix algebras.

Recall that a classical Markov semigroup Pt = etL : L∞(Ω, μ) → L∞(Ω, μ) on a 
probability space (Ω, μ) is a semigroup of conservative (unital) positivity preserving 
maps. We say that Pt satisfies a logarithmic Sobolev inequality LSI (λ) if for some λ > 0

∫
Ω

f2 log f2dμ −

⎛
⎝∫

Ω

f2dμ

⎞
⎠ log

⎛
⎝∫

Ω

f2dμ

⎞
⎠ � − 2

λ

∫
Ω

(Lf)fdμ (1)

holds for all real-valued functions f ∈ L2(Ω, μ) in the domain of the generator L. A 
different version of (1), called a modified log Sobolev inequality MLSI (λ), states that for 
all positive functions g � 0

∫
Ω

g log gdμ −

⎛
⎝∫

Ω

gdμ

⎞
⎠ log

⎛
⎝∫

Ω

gdμ

⎞
⎠ � − 1

2λ

∫
Ω

(Lg) log gdμ. (2)

Recently much progress has been made in extending the MLSI to matrix-valued func-
tions. For instance, H. Li, M. Junge and N. LaRacuente in [31] proved that if a compact 
Riemannian manifold (M, g) has the Ricci curvature bounded from below by a posi-
tive scalar λ, then for all n � 1 and all smooth n × n positive matrix-valued functions 
f : M → Mn∫

M

tr(f log f)dμ − tr (Eμf logEμf) � − 1
2λ

∫
M

tr ((idMn
⊗Δf) log f) dμ. (3)

Here, Δ is the Laplace-Beltrami operator, tr is the standard matrix trace and Eμf =∫
f(x)dμ(x) ∈ Mn is the matrix-valued mean with respect to the volume form dμ. This 

extends the well-known Bakry-Émery theorem [1] to matrix-valued functions. Equation 
(3) is called a complete modified log Sobolev inequality (in short, CMLSI (λ)), as it gives 
a uniform MLSI constant for all matrix-valued functions independent of a matrix size. 
Later M. Brannan, L. Gao and M. Junge in [11] proved that the heat semigroup on any 
compact Riemannian manifold satisfies CMLSI (λ), using a finite curvature lower bound 
λ that is not necessarily positive. In the discrete setting, CMLSIs [22,31] have also been 
established for finite Markov chains satisfying detail balanced condition, including graph 
Laplacians on a weighted undirected graph. These results have found applications to 
quantum Markov semigroups on matrix algebra (see [20, Section 4]).

Despite the progress for the heat semigroups and graph Laplacians, the CMLSI for 
sub-Laplacians in sub-Riemannian settings is still mostly open. The main obstruction 
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here is lack of geometric techniques such as curvature-dimension inequalities. We consider 
M to be an n-dimensional smooth manifold, and D is a sub-bundle of TM equipped with 
a metric g and with dim D = k � n. Recall that a second order differential operator L
defined on C∞ (M) is called a sub-Laplacian if for every x ∈ M , there is a neighborhood 
U of x and a collection of smooth vector fields {X0, X1, ..., Xk} defined on U such that

L = −
k∑

i=1
X∗

i Xi + X0,

on U and {X1, ..., Xk} are orthonormal with respect to the sub-Riemannian metric g. 
Here X∗

i is the adjoint of Xi with respect to a smooth probability measure μ. We assume 
that for {X1, ..., Xk} the Lie algebra generated by these vector fields spans the whole 
tangent space TxM at any x ∈ M , and usually this is called a strong Hörmander con-
dition. The operator satisfying a strong Hörmander condition is one of main objects in 
the study of sub-Riemannian geometry. The literature on such geometry is vast, start-
ing with [46,47] and then covered in [42]. The new direction of introducing curvatures 
and applications to geometric analysis on sub-Riemannian manifolds has started with 
[7], while a more analytic and probabilistic description of such sub-Laplacians has been 
given in [23,24].

In this work, we will study the matrix-valued log Sobolev inequality for the operator 
L = − 

∑k
i=1 X∗

i Xi as a generator of Markov semigroup, which adds a new direction with 
connections to quantum Markov semigroup in the noncommutative setting.

In the scalar-valued cases, P. Ługiewicz and B. Zegarliński [40] proved that on any 
connected and compact manifolds without boundary, LSI and hence MLSI hold for sub-
Laplacians L = − 

∑
i X∗

i Xi satisfying the strong Hörmander condition. One crucial step 
was the Rothaus lemma in [45],

Ent(|f |2) � Ent(|f − Eμ(f)|2)+ ‖f − Eμ(f)‖2
L2(μ) ,

where Ent(g) =
∫

g log gdμ is the entropy functional. This approach, however, does not 
apply to CMLSI, because both the Rothaus lemma and LSI always fail for matrix-valued 
cases as pointed out in [20, Section 7.5]. On the other hand, compared to the result in 
[11] for the heat semigroup, the difficulty in the sub-Riemannian case stems from the lack 
of a Ricci curvature bound. Informally, at points of degeneracy of L, the Ricci tensor 
is not well-defined and might be interpreted as being −∞ in some directions. While 
there has been a number of results on generalized notions of curvature on some classes 
of sub-Riemannian manifolds (see e.g. [6–8]), we are not relying on those in this paper. 
Log Sobolev inequalities have been proven for some sub-Riemannian manifolds including 
Heisenberg groups and homogeneous spaces by M. Gordina and L. Luo in [25,26], with 
the techniques relying on particular structure of such groups.
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In the current paper, we overcome this issue by relying on the gradient estimate (4)
studied by [2,5,19,37,41] in the sub-Riemannian setting. We denote by ∇ = (X1, · · · , Xk)
the horizontal gradient operator associated to L.

Theorem 1.1 (Theorem 3.6). Let (M, g) be a Riemannian manifold without boundary, 
and let μ be a smooth measure on M . Suppose L = − 

∑k
i=1 X∗

i Xi is a sub-Laplacian, 
where {X1, ..., Xk} satisfy Hörmander’s condition, and denote by Pt = etL the symmetric 
Markov semigroup generated by L. Suppose

i) there exist some t0 > 0 and a positive measurable function C : [0, t0) → R+ such 
that for all f ∈ C∞(M) and 0 � t < t0,

|∇Ptf |2 � C(t)Pt(|∇f |2), (4)

where |∇f |2 =
∑

i |Xif |2.

ii)
t0∫

0

C(s)ds < ∞ is finite.

Then Pt satisfies CMLSI (λ) for some positive λ.

We note that if C(t) = e−2λt, condition (4) is exactly Bakry-Émery’s (λ, ∞) curvature-
dimension inequality. The results by B. Driver and T. Melcher in [19], T. Melcher in [41]
and F. Baudoin-M. Bonnefont in [5] show that the gradient estimate (4) holds on SU (2), 
and on stratified Lie groups including Heisenberg group. In particular, on stratified 
Lie groups C(t) ≡ C is a constant function. One of our key observations is that the 
gradient estimate (4) naturally extends to matrix-valued functions. Such an extension 
holds for diffusive semigroups given by Laplacian or sub-Laplacian but does not hold for
noncommutative examples or even discrete spaces such as graph Laplacian.

As a corollary of our main result we obtain a CMLSI for the canonical sub-Laplacian 
on SU (2). Recall that the Lie algebra su(2) is spanned by skew-Hermitian traceless 
matrices

X =
[

0 1
−1 0

]
, Y =

[
0 i

i 0

]
, Z =

[
i 0
0 −i

]
,

whose Lie brackets satisfy [X, Y ] = 2Z, [Y, Z] = 2X, and [Z, X] = 2Y . In particular, it 
implies that {X, Y } satisfies Hörmander’s condition.

Corollary 1.2. The sub-Laplacian L = X2 +Y 2 on SU (2) satisfies a CMLSI (λ) for some 
positive λ.

The above result is the first ever example of CMLSI obtained for sub-Laplacians. 
It also has direct implications for the CMLSI constant for quantum Markov semi-
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groups. Quantum Markov semigroups are noncommutative generalizations of Markov 
semigroups, where the underlying function spaces are replaced by matrix algebras or op-
erator algebras. Mathematically, they are continuous semigroup of completely positive 
trace preserving map. Quantum Markov semigroups satisfy what is known as a GKLS 
equation or master equation as in [16], and they model the Markovian time evolution of 
an open quantum system. There is considerable interest in quantum information theory 
on the convergence rate of quantum Markov semigroup. Thanks to [27,39], it is known 
that if a quantum Markov semigroup on matrix algebra Mm is symmetric with respect 
to the matrix trace, then it admits the following Lindbladian form,

St = eLt : Mm → Mm , L(ρ) =
∑
j=1

[aj , [aj , ρ]],

where aj are some self-adjoint matrices. As an application of Corollary 1.2, we obtain a 
uniform lower bound of CMLSI constants for quantum Markov semigroups induced by 
the sub-Laplacian L = X2 + Y 2 via Lie algebra representations of su(2).

Corollary 1.3. There exists a positive constant λ such that for any Lie algebra homomor-
phism φ : su(2) → i(Mm)s.a. into a matrix algebra Mm, the quantum Markov semigroup

St = eLφt : Mm → Mm,

Lφ(ρ) = [φ(X), [φ(X), ρ]] + [φ(Y ), [φ(Y ), ρ]]

satisfies CMLSI (λ).

Motivated by the application of L2-gradient estimate (4) to CMLSI, we also investigate 
whether L1-gradient estimate

|∇Pt(f)| � C(t)Pt|∇(f)| (5)

can be used to derive a CMLSI. Let pt be the heat kernel measure corresponding to the 
semigroup Pt at time t. In the scalar-valued case, it is known that (5) implies that the 
corresponding heat kernel measure satisfies a LSI with the constant given by

κ−1 =
t∫

0

C(s)2ds.

This corresponds to the associated Ornstein–Uhlenbeck semigroup Os = eLts, where 
Lt = −∇∗∇ is the symmetric generator on L2(dpt). Our last result shows this approach 
works for CMLSI on Lie groups.

Theorem 1.4 (Theorem 4.1). Let G be a locally compact Lie group equipped with a left-
invariant metric. Let Ht = eΔt be the heat semigroup and denote by μt the heat kernel 
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measure. Then the Ornstein–Uhlenbeck semigroup Os = esLt satisfies 1
4t -CMLSI, where 

Lt = ∇∗∇ is the generator of this semigroup symmetric with respect to the measure μt.

The rest of the paper is organized as follows. In Section 2, we review some preliminaries 
on CMLSI and sub-Laplacians. In Section 3 we prove our main Theorem 3.6 and apply 
it to SU (2). Section 4 discusses a CMLSI for the heat kernel measures on Lie groups. We 
end the paper with some discussion on connections of our results to quantum Markov 
semigroups and list some open questions.

Note 1.5. After submission of this paper, L. Gao, M. Junge, N. LaRacunte and H. Li gave 
a version of Theorem 1.1 in a preprint [21] using a completely different approach. They 
showed that a one point ultra-contractivity and a Poincaré inequality imply a CMLSI, 
which applies to a large class of examples.

Notation. Throughout the paper, we denote by (Ω, μ) a measure space equipped with 
a probability measure, and by Lp(Ω) the corresponding Lp-space of complex-valued 
functions for 1 � p � ∞. Then ‖ f ‖p is the standard Lp-norm and 〈f, g〉 =

∫
Ω fgdμ is 

the L2-inner product. By Mn we denote the space of n × n complex matrices and by tr
the standard matrix trace. The identity elements, which is the constant function 1 for 
n = 1 and the identity operator in Mn, is denoted by 1, and the identity map between 
spaces is denoted as id.

Acknowledgment

L.G. is grateful to Marius Junge and Melchior Wirth for helpful discussions.

2. Preliminaries

2.1. Logarithmic Sobolev inequalities

We first recall logarithmic Sobolev inequalities for Markov semigroups and its matrix-
valued extension. Let (Ω, μ) be a measure space equipped with a probability measure μ. 
We say that P : L∞(Ω) → L∞(Ω) is a Markov map if

i) Pt(1) = 1 (mass conservation);
ii) Pt(f) � 0 if f � 0 (positivity preserving);

A Markov semigroup (Pt)t�0 : L∞(Ω) → L∞(Ω) is a family of Markov maps satisfying

i) P0 = id and Ps ◦ Pt = Ps+t for s, t � 0 (semigroup property);
ii) For every f ∈ L2, Ptf converges to f in L2) as t → 0 (continuity property).



L. Gao, M. Gordina / Journal of Functional Analysis 287 (2024) 110453 7
The generator of Pt is given by

Lf = lim
t→0

Ptf − f

t
, Pt = eLt ,

with the domain dom(L) being the space of functions such that the above limit exists. 
Throughout the paper, we consider the semigroups which are symmetric with respect to 
a unique invariant measure μ, i.e. 〈Pt(f), g〉L2(μ) = 〈f, Pt(g)〉L2(μ) for any t � 0. Namely, 
each Pt is a symmetric operator on L2(Ω) and hence 

∫
Ω Pt(f)dμ =

∫
Ω fdμ. In this case, 

L is a negative operator on L2(Ω) and Pt is equivalently determined by its Dirichlet form

E(f, g) =
∫
Ω

f̄L(g)dμ

whose domain is dom(E) = dom((−L)1/2).

Definition 2.1. For λ > 0, a Markov semigroup Pt = etL is said to satisfy

i) λ-Poincaré inequality PI (λ) if for any f ∈ dom(E)

λ ‖f − Eμf ‖2� 2E(f, f), (6)

where Eμf =
∫

Ω fdμ.
ii) λ-logarithmic Sobolev inequality LSI (λ) if for any f ∈ dom(E),

∫
Ω

|f |2 log |f |2dμ −

⎛
⎝∫

Ω

|f |2dμ

⎞
⎠ log

⎛
⎝∫

Ω

|f |2dμ

⎞
⎠ � 2

λ
E(f, f); (7)

iii) λ-modified logarithmic Sobolev inequality MLSI (λ) if for any positive g ∈ dom(L),

∫
Ω

g log g dμ −

⎛
⎝∫

Ω

g dμ

⎞
⎠ log

⎛
⎝∫

Ω

g dμ

⎞
⎠ � 1

2λ

∫
Ω

(−Lg) log gdμ . (8)

The λ-Poincaré inequality is equivalent to that the negative generator (−L) has a 
spectral gap λ. The LSI is an equivalent formulation of hypercontractivity stating that

‖Pt‖L2(Ω)→Lp(Ω) � 1 for t � 1 + e2λt.

The MLSI is known to describe the entropy decay

Ent(Ptg) � e−2λt Ent(g), (9)
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where Ent(f) =
∫
Ω

f log fdμ is the entropy functional. Note that the right side of (8),

I(g) := −
∫

(Lg) log g dμ = − d

dt

∣∣∣∣
t=0

Ent(Ptg)

is called the Fisher information (also called entropy production), as it is the negative 
derivative of entropy along the time t.

The exponential entropy decay (9) in particular implies mixing time in L1 via Pinsker’s 
inequality (cf. [49, Appendix])

1
2 ‖f − 1‖2

1�
√

Ent(f).

It is well-known (cf. [3, Theorem 5.2.1]) that λ-LSI implies λ-MLSI, and they are equiv-
alent if the semigroup is diffusive. Recall that a carré du champ operator or the gradient 
form of L is

Γ(f, g) := 1
2(L(fg) − f(Lg) − (Lf)g)

or weakly defined as 〈h, Γ(f, g)〉 = 1
2 (E(hf, g) + E(f, gh) − E(h, fg)). We will often use 

the short notation Γ(f) := Γ(f, f). Pt is called diffusive if the gradient form satisfies the 
following product rule that

Γ(fg, h) = fΓ(g, h) + Γ(f, h)g .

In this paper, we study MLSIs for matrix-valued functions. This is motivated by the 
study of quantum Markov semigroups in the noncommutative analysis and quantum 
information theory. Both LSI and MLSI enjoy the tensorization property, e.g. [3, Section 
7.6.3]: if two Markov semigroups Tt and St both satisfy (M)LSI, so does their tensor 
product semigroup Tt ⊗ St. More precisely, if we denote λLSI (resp. λMLSI) for optimal 
constant such (7) (resp. (8)) holds, then tensorization property states that

λLSI(Tt ⊗ St) = min{λLSI(Tt), λLSI(St)}

and the similar equality holds for λMLSI.
Nevertheless, in the noncommutative setting when the semigroup describes a quantum 

system modeled by matrix algebras or operator algebras, tensorization property fails for 
non-primitive semigroup (non-unique invariant states [11]) and is largely unknown for 
primitive cases (see [9,35] for positive results on 2-dimensional matrices). It turns out 
the above tensorization property in noncommutative setting hold for a stronger version 
of MLSI that is uniform for all its matrix-valued amplification Tt ⊗ idMn

. Here and in 
the following, we denote by Mn of n × n complex matrix algebra and tr for the standard 
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matrix trace. We say f : Ω → Mn is a matrix-valued density if at each ω ∈ Ω, f(ω) � 0
is positive semi-definite and 

∫
Ω tr(f)dμ = 1.

Definition 2.2. We say a Markov semigroup Tt : L∞(Ω) → L∞(Ω) satisfies a complete 
modified logarithmic Sobolev inequality CMLSI (λ) with λ > 0 if

∫
Ω

tr(f log f)dμ − tr
(
Eμf log(Eμf)

)
� 1

2λ

∫
tr

(
(idMn

⊗L)f log f
)

dμ (10)

for all n ∈ N+ and matrix-valued density f .

Here Eμf =
∫

Ω fdμ ∈ Mn is the matrix-valued mean, and f log f is interpreted as 
the matrix-valued function that at each point ω ∈ Ω, f log f(ω) = f(ω) log f(ω) is the 
pointwise functional calculus of f(ω) (similarly for Eμf logEμf). In other words, Tt

satisfies CMLSI (λ) if for all n � 1, the matrix-valued semigroup Tt ⊗ idMn
satisfies 

λ-MLSI. The left-hand side in (10) is the relative entropy of f to its matrix-valued mean 
Eμf as a constant function

D(f ||Eμf) :=
∫
Ω

tr
(

f log f − Eμf log(Eμf)
)

dμ =
∫
Ω

D(f(ω)||Eμf)dμ(ω) , (11)

which is a mixture of classical relative entropy D(f ||g) =
∫

f log f −f log g dμ for density 
function f, g ∈ L1(Ω) and quantum relative entropy D(ρ||σ) = tr(ρ ln ρ − ρ ln σ) for 
density operators ρ, σ ∈ Mn. The right-hand side of (10) is again the Fisher information

I(f) := − d

dt
D

(
(idMn

⊗Tt) f ||Eμf
)
|t=0 = −

∫
tr

(
(idMn

⊗L) f log f
)
dμ .

Note that here Eμf as a constant matrix-valued function is invariant under the amplified 
semigroup Tt ⊗ idMn

. Then (10) is equivalent to the convergence of Ttf to Eμf as an 
equilibrium state in terms of entropy

D((Tt ⊗ idMn
)f ||Eμf) � e−2λtD(f ||Eμf) .

2.2. Sub-Laplacians

Let (M, g) be a d-dimensional Riemannian manifold without boundary and H =
{Xi}k

i=1 with k � d be a family of vectors fields. Let dμ = ρd vol be a probability 
measure with smooth density ρ w.r.t. the volume form. Denote ∇ = (X1, · · · , Xk) and 
by X∗

i the adjoint of Xi on L2(M, dμ). The sub-Laplacian

L = −∇∗∇ = −
∑

X∗
i Xi =

∑
X2

i + divμ(Xi)Xi
i i
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is a symmetric generator on L2(M, μ). Here divμ(X) is the divergence of X w.r.t. to μ
and L depends both on the family H and the measure μ. The horizontal gradient form
is

Γ(f, g) =
∑

i

〈Xif, Xig〉 , Γ(f) := Γ(f, f) =
∑

i

|Xif |2 = |∇f |2

It follows from the product rule that Γ is diffusive, and the Fisher information can be 
rewritten as

I(f) := −
∫
Ω

(Lf) log f dμ = 〈∇f, ∇ log f〉 =
∫
Ω

|∇f |2
f

dμ ,

where we used the chain rule ∇(log f) = f−1(∇f). Throughout the paper, we will use 
the short notation Lf for (L ⊗ idMn

)f for the matrix-valued function f , and similarly 
for ∇ and Pt = eΔt. Recall the noncommutative chain rule that for a positive operator 
A and derivation δ

δ(log A) =
∞∫

0

(A + s1)−1δ(A)(A + s1)−1ds , (12)

where 1 is the identity operator. Then for a matrix-valued density f , the entropy pro-
duction can be rewritten as

I(f) = −
∫

tr
(

(Lf) log f
)

= 〈∇f, ∇ log f〉tr =
∞∫

0

〈∇f, (f + s1)−1(∇f)(f + s1)−1〉trds .

Here and in the following, we denote by 〈·, ·〉tr the integral-trace inner product for two 
families of matrix-valued functions (fi) and (gi)

〈(fi), (gi)〉tr =
n∑

i=1

∫
tr(f∗

i gi)dμ (13)

The identity element 1 ∈ L∞(M, Mn) is the constant function on M of the identity 
matrix, and (f + s1)−1 is the pointwise inverse matrix.

Throughout the paper, we will assume that the family of vector fields of H = {Xi}k
i=1

satisfies Hörmander’s condition, that is, at every point x ∈ M the tangent space at x is 
spanned by the iterated Lie brackets of Xis

TxM = span{[Xi1 , [Xi2 , · · · , [Xin−1 , Xin
]]], 1 � i1, i2 · · · in � k}.

By compactness we can assume there is a global constant lX such that for every point 
x ∈ M , we only need at most lXth iterated Lie bracket in above expression.
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It follows that ker L = {C1} and μ is the unique invariant measure such that ∫
Ptf dμ =

∫
f dμ. Moreover, by a celebrated theorem of Hörmander, L is hypoelliptic. 

Indeed, we have the following Sobolev-type inequality (see e.g. [40, Lemma 2.1])

‖f‖q ≤ C
(
〈Lf, f〉+ ‖f ‖2

2
)1/2

, (14)

where q = 2dlX

dlX −2 > 2. By Varopoulos’ Theorem (see [48, Chapter 2]) on the dimension 
of semigroups, this implies the following ultra-contractivity property for Pt = eLt

‖Pt‖L1(M,μ)→L∞(M,μ) � C ′t−m/2 for 0 < t � 1 , (15)

where m = dlx. The Sobolev-type inequality (14) and the ultra-contractivity (15) were 
used in [40] to prove that every sub-Laplacian L = − 

∑
i X∗

i Xi with Hörmander condition 
on a compact manifold satisfies LSI (hence equivalently MLSI). Their proof relies on the 
Rothaus lemma

Ent(f2) � Ent(f̊2) + 2 ‖ f̊ ‖2
2,

where f̊ = f − Eμf is the mean zero part of f , which is a standard tool to improve a 
defective logarithmic Sobolev inequality to a standard one. Nevertheless, the Rothaus 
lemma is known to fail for matrix-valued functions [20, Section 7.5], hence such an 
argument does not apply to the matrix-valued case.

3. Gradient estimates and Fisher information

3.1. Complete gradient estimates

Let (M, g) be a Riemannian manifold. We consider a sub-Laplacian L = − 
∑k

i=1 X∗
i Xi, 

where {X1, ..., Xk} satisfy Hörmander’s condition. Denote Pt := eLt and ∇(f) :=
(X1f, · · · , Xkf). The key tool in our argument is the following L2-gradient estimate

|∇Ptf |2 � C(t)Pt(|∇f |2) , f ∈ C∞
c (M) (16)

for some function C(t). In terms of the gradient form, (16) can be rewritten as

Γ(Ptf, Ptf) � C(t)PtΓ(f, f) . (17)

This is closely related to the Bakry-Émery curvature-dimension condition. It was shown 
in [1] that if the Ricci curvature tensor of (M, g) has a uniform lower bound λ ∈ R, then 
(17) is satisfied with C(t) = e−2λt. In the sub-Riemannian case, although the Ricci tensor 
should be interpreted as being −∞ at the points where L is degenerate, the gradient 
estimate (17) might hold for a function C(t) other than the exponential function e−λt.
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Our first result shows that the gradient estimate (17) automatically extends to matrix-
valued functions. We denote by C∞

c (M, Mn) the space of smooth Mn-valued functions 
with compact support. For f, g ∈ C∞

c (M, Mn), f � g means that at each point x ∈ M , 
f(x) − g(x) ∈ (Mn)+.

Proposition 3.1. Let (M, g) be a Riemannian manifold with a sub-Laplacian operator 
L = −

∑k
i=1 X∗

i Xi and let P : L∞(M, dμ) → L∞(M, dμ) be a Markov map preserving 
μ. Suppose for some constant C and all scalar-valued functions f ∈ C∞

c (M)

Γ(Pf, Pf) � CPΓ(f, f) .

Then

i) for any family of scalar-valued functions {f1, · · · , fn} ⊂ C∞
c (M),

[
Γ(Pfi, Pfj)

]n

i,j=1 � C[PΓ(fi, fj)]ni,j=1 .

Here [Γ(Pfi, Pfj)]i,j and [PΓ(fi, fj)]i,j are viewed as elements in C∞
c (M, Mn).

ii) Let 0 � s � 1. For any matrix-valued function f, A, B ∈ C∞
c (M, Mn) with A, B � 0,

〈∇Pf, As(∇Pf)B1−s〉tr � C〈∇f, (P †A)s(∇f)(P †B)1−s〉tr,

where P † is the adjoint map of P on L2(M, dμ), and 〈·, ·〉tr is the inner product 
defined by (13). In particular, for any f = (fij)n

i,j=1 ∈ C∞
c (M, Mn),

Γ(Pf, Pf) � CPΓ(f, f).

Here Γ(f, f) =
[ ∑n

l=1 Γ(fli, flj)
]

i,j
∈ C∞

c (M, Mn) and similarly for Γ(Pf, Pf).

Proof. We use the standard bra-ket notation |h〉 for a vector in Cn and 〈h| for the 
dual vector. Let {|i〉}n

i=1 be an orthonormal basis of Cn. For i), we have for any vector 
|h〉 =

∑
i hi|i〉 ∈ Cn,

〈h|
[
Γ(Pfi, Pfj)

]
|h〉 =

∑
i,j

h̄ihjΓ(Pfi, Pfj) = Γ(Pfh, Pfh)

�CPΓ(fh, fh) = C
∑
i,j

h̄ihjPΓ(fi, fj) = C〈h|[PΓ(fi, fj)]|h〉,

where fh =
∑

i hifi ∈ C∞(M) and the inequality holds pointwise for each x ∈ M . For 
ii), we write As =

∑
i,j As

i,j(x)|i〉〈j| and B1−s =
∑

k,l B1−s
k,l (x)|k〉〈l|. Note that As

i,j(x)
is the coefficient function for As not the s-power of Ai,j(x).



L. Gao, M. Gordina / Journal of Functional Analysis 287 (2024) 110453 13
For f =
∑

i,j fi,j |i〉〈j| we have that for each x ∈ M

tr
((

∇Pf(x)
)∗

As(x)
(
∇Pf(x)

)
B1−s(x)

)
=

∑
m

∑
i,j,k,l

As
i,j(x)B1−s

k,l (x)〈l|(XmPf(x))∗|i〉〈j|(XmPf(x))|k〉

=
∑
m

∑
i,j,k,l

As
i,j(x)B1−s

k,l (x)XmPfi,l(x)XmPfj,k(x) (18)

=
∑

i,j,k,l

As
i,j(x)B1−s

k,l (x)Γ(Pfi,l, Pfj,k)(x)

�C
∑

i,j,k,l

As
i,j(x)B1−s

l,k (x)PΓ(fi,l, fj,k)(x) (19)

where the equality (18) follows from the fact that the evaluation 〈i| · |j〉 is a linear 
functional, hence commutes with ∇ and P . Since B and B1−s are pointwise positive in 
C∞(M, Mn), we have B1−s

k,l (x) = B1−s
l,k (x) for every x. Then the inequality (19) follows 

from the assumption that

[
Γ(Pfi,l, Pfj,k)

]
il,jk

�
[
PΓ(fi,l, fj,k)

]
il,jk

and 
[
As

i,jB1−s
l,k

]
il,jk

is a positive matrix in terms of indices (il, jk). Let

P (f)(x) =
∫
M

f(y)dm(x, y)

be the kernel representation. The adjoint is then P †(f)(y) =
∫

M
f(x)dm(x, y). Integrat-

ing (19) over M , we have

〈(∇Pf
)
, As(∇Pf)B1−s〉tr =

∫
M

tr
((

∇Pf(x)
)∗

As(x)
(
∇Pf(x)

)
B1−s(x)

)
dμ(x)

�C

∫
M

∑
i,j,k,l

As
i,j(x)B1−s

l,k (x)PΓ(fi,l, fj,k)(x)dμ(x)

=C

∫
M

∑
i,j,k,l

P †(As
i,jB1−s

l,k )(y)Γ(fi,l, fj,k)(y)dμ(y)

=C
∑

i,j,k,l

∫
M

( ∫
M

As
i,j(x)B1−s

k,l (x)dm(x, y)
)

Γ(fi,l, fj,k)(y)dμ(y)

=C

∫ ( ∫
tr

(
(∇f(y))∗As(x)(∇f(y))B1−s(x)

)
dm(x, y)

)
dμ(y)
M M
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�C

∫
M

tr
(

(∇f(y))∗(P †A(y))1−s(∇f(y))(P †B(y))s
)

dμ(y)

=C〈∇f, (P †A)s(∇f)(P †B)1−s〉tr,

where the last inequality used the Lieb concavity in [38] for the function

(A, B) �→ tr(K∗AsKB1−s)

is joint concave for (A, B) ∈ Mm. The last assertion follows from choosing s = 0 or 
s = 1. �
Lemma 3.2. Under the assumptions of Proposition 3.1, if in addition [P, L] = 0, then for 
any matrix-valued density ρ

I(P †ρ) � CI(ρ) . (20)

Proof. Recall that for a matrix-valued function f ∈ C∞(M, Mn)

∇f = (Xif)k
i=1 ∈

k⊕
i=1

L∞(M,Mn) ∼= L∞(M, ⊕k
i=1Mn) ,

where the inner product is defined as

〈∇f, ∇g〉tr =
k∑

i=1

∫
M

tr
(

(Xif)∗(x)(Xig)(x)
)

dμ(x) .

Given a matrix-valued density function ρ, define the operator

Mρ : L2(M, ⊕k
i=1Mn) −→ L2(M, ⊕k

i=1Mn) ,

Mρ

(
(fi)k

i=1
)

:=

⎛
⎝ 1∫

0

ρsfiρ
1−sds

⎞
⎠

k

i=1

,

Kρ = ∇∗Mρ∇ : L2(M,Mn) → L2(M,Mn).

For simplicity, we assume that ρ ∈ C∞(M) satisfies μ21 � ρ � μ11 for some 0 < μ1 < μ2. 
Then μ1 id � Mρ � μ2 id is a bounded positive operator on L2(M, ⊕k

i=1Mn). In this case, 
Kρ has the same domain and kernel as L = −∇∗∇. Then Proposition 3.1 implies that

P †KρP � CKP †ρ (21)

as a positive operator on L2(M, Mn). Note that here KP †ρ is a positive operator because 
the adjoint P † is also a positive map. Thus we can define the inverse K−1

ρ as a densely 
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defined operator on the support ker(L)⊥ = {f − Eμf | f ∈ L2(M, Mn)}. Then, since 
P (ker(L)⊥) ⊂ ker(L)⊥ (namely, P (1) =1) we have that the following equivalence from 
[44, Lemma 2]

P †KρP � CKP †ρ (22)

⇐⇒ K
−1/2
P †ρ

P †KρPK
−1/2
P †ρ

� C (23)

⇐⇒ ‖K
−1/2
P †ρ

P †K1/2
ρ ‖�

√
C

⇐⇒ K1/2
ρ P †K−1

P †ρ
PK1/2

ρ � C

⇐⇒ PK−1
P †ρ

P † � CK−1
ρ . (24)

Recall that we can represent Mρ(f) as the double operator integral

Mρ(f) =
1∫

0

ρsfρ1−sds =
∞∫

0

∞∫
0

λ − μ

log λ − log μ
dEλ(ρ)(f)dEμ(ρ) ,

where Eλ(ρ) is the spectral resolution of ρ. Then

M−1
ρ (f) =

∞∫
0

∞∫
0

log λ − log μ

λ − μ
dEλ(ρ)(f)dEμ(ρ) =

∞∫
0

(ρ + s1)−1f(ρ + s1)−1ds.

Therefore by the noncommutative chain rule (12)

Kρ(ln ρ) = ∇∗Mρ∇(ln ρ) = ∇∗MρM−1
ρ ∇(ρ) = −L(ρ).

Then for mean zero elements −Lρ ∈ ker(L)⊥ we have

〈(−Lρ), K−1
ρ (−Lρ)〉tr

=〈(−Lρ), K−1
ρ Kρ(ln ρ)〉tr

=〈−Lρ, ln ρ〉tr

=I(ρ) .

Similarly, since [P, −L] = 0

〈(−Lρ), PK−1
P †ρ

P †(−Lρ)〉

=〈−LP †ρ, K−1
P †ρ

(−LP †ρ)〉

=I(P †ρ).

Thus by (22) we have
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I(P †ρ) � CI(ρ) .

That completes the proof. �
We now show that the Fisher information inequality in Lemma 3.2 is generally suffi-

cient to derive an CMLSI.

Theorem 3.3. Let (M, g) be a Riemannian manifold, L = − 
∑k

i=1 X∗
i Xi is a sub-

Laplacian and Pt = etL is a symmetric Markov semigroup on L2 (M, μ) with the 
infinitesimal generator L. Suppose there exists a positive function C : [0, ∞) → R+

such that

i) for all scalar-valued functions f ∈ dom(Γ) and t � 0,

Γ(Ptf, Ptf) � C(t)PtΓ(f, f) (25)

ii) κ :=
∞∫

0

C(s)ds < ∞.

Then Pt satisfies CMLSI (λ) with λ = 1
2κ .

Proof. Assumption i) allows us to apply Proposition 3.1 and Lemma 3.2 to see that for 
any bounded and invertible matrix-valued density function ρ,

I(Ptρ) � C(t)I(ρ) .

Then, using the identity

I(Ptρ) = − d

dt
(D(Ptρ||Eμρ))

and P0(ρ) = ρ, lim
t→∞

Pt(ρ) = Eμρ,

∫
Ω

tr(ρ log ρ − Eμρ logEμρ)dμ = D(ρ||Eμρ)

=
∞∫

0

I(Ptρ)dt �
∞∫

0

C(t)I(ρ)dt = κI(ρ).

This proves CMLSI for bounded and invertible ρ. The general case follows by approxi-
mation, see e.g. [11, Appendix]. �
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Theorem 3.3 can be regarded as a matrix-valued extension of Bakry-Émery’s ap-
proach. Indeed, in [1] they proved that if Ricci � λ then for a scalar-valued function

Γ(Ptf, Ptf) � e−2λtPtΓ(f, f),

and therefore

I(Ptf) � e−2λtI(f).

Thus Pt satisfies CMLSI (λ), where

λ = 2
κ

= 2

⎛
⎝ ∞∫

0

e−2λtdt

⎞
⎠

−1

.

This approach works if and only if e−2λt is integrable, in other words, the lower curvature 
bound λ is positive. Recently this method has been extended to a non-positive curvature 
regime, where

I(Ptf) � e2λtI(f) for some λ > 0,

and the upper bound is not integrable. The idea is to use L∞-mixing time defined for 
0 < ε < 1

t(ε) := inf{t > 0 : ‖Pt − Eμ‖L1(Ω)→L∞(Ω) � ε}.

The L∞-mixing time approach was used in [18] to prove an LSI via hypercontractivity. It 
was proved in [11] that at time t(ε), for any matrix-valued density ρ the relative entropy 
(11) from Pt(ε)ρ to the mean Eμρ is at most ε times the initial relative entropy, i.e.

D(Pt(ε)ρ||Eμρ) � εD(ρ||Eμρ) . (26)

Using this, we have the following version of Theorem 3.3.

Theorem 3.4. Let (M, g) be a Riemannian manifold with a sub-Laplacian L =
− 

∑k
i=1 X∗

i Xi and let Pt = etL be the symmetric Markov semigroup generated by L. 
Suppose

i) for some 0 < ε < 1, the L∞-mixing time is finite

t(ε) := inf{t > 0 : ‖Pt − Eμ‖L1(Ω)→L∞(Ω) � ε} < ∞.

ii) there exists a positive function C : [0, t(ε)) → R+ such that for all scalar-valued 
functions f ∈ dom(Γ) and 0 � t � t(ε),
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Γ(Ptf, Ptf) � C(t)PtΓ(f, f) (27)

and κε :=
t(ε)∫
0

C(s)ds is finite.

Then Pt satisfies CMLSI (λε) with λε = (1 − ε)
2κε

.

Proof. The proof is similar to the proof of Theorem 3.3. Note that by (26), we have

D(ρ||Eμρ) − D(Pt(ε)ρ||Eμρ) � (1 − ε)D(ρ||Eμρ).

Then

(1 − ε)D(ρ||Eμρ) � D(ρ||Eμρ) − D(Pt(ε)ρ||Eμρ)

=
t(ε)∫
0

I(Ptρ)dt

�
t(ε)∫
0

C(t)I(ρ)dt = κI(ρ),

which proves the claim. �
The L∞-mixing time t(ε) is finite whenever the semigroup satisfies a Poincaré in-

equality (PI) and ultracontractivity.

‖Pt − Eμ‖L2(Ω,μ)→L2(Ω,μ) � e−γt (PI (γ))

‖Pt0‖L1(Ω,μ)→L∞(Ω,μ) � C for some t0 � 0. (Ultracontractivity)

Indeed, for t � t0

‖Pt − Eμ‖L1(Ω,μ)→L∞(Ω,μ)

� ‖P t0
2

‖L1→L2 · ‖Pt−t0 − Eμ‖L2→L2 · ‖P t0
2

‖L2→L∞

� ‖Pt0‖L1→L∞ · ‖Pt−t0 − Eμ‖L2→L2 � Ce−γ(t−t0).

Therefore, t(ε) � log C−log ε
γ + t0.

We now show that under Hörmander’s condition, the gradient estimate (17) for any 
short period of time t is sufficient for CMLSI. We recall a lemma from [22, Lemma 2.1 
& Lemma 2.2].
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Lemma 3.5. Let ρ, σ ∈ L∞(M, Mn) be two matrix-valued density functions. Denote the 
multiplication operator M−1

ρ : L∞(M, Mn) → L∞(M, Mn) and the associate weighted 
L2-norm as follows

M−1
ρ (f) =

∞∫
0

(ρ + s1)−1f(ρ + s1)−1ds

‖f ‖2
ρ−1= 〈f, f〉ρ−1 := 〈f, M−1

ρ f〉tr =
∞∫

0

tr
(

f∗(ρ + s1)−1f(ρ + s1)−1
)

ds .

Then,

i) if ρ � Cσ, C ‖f ‖ρ−1�‖f ‖σ−1

ii) D(ρ||Eμρ) �‖ρ − Eμρ ‖Eμρ−1

Proof. The proof is almost identical to the finite-dimensional matrix case in [22]. �
Theorem 3.6. Let (M, g) be a Riemannian manifold with μ being a smooth probability 
measure. Let L = − 

∑k
i=1 X∗

i Xi be a sub-Laplacian and denote by Pt = etL the symmet-
ric Markov semigroup generated by L. Suppose

i) {Xi}k
i=1 satisfies Hörmander’s condition.

ii) there exists some 0 < t0 < 1 and a positive function C : [0, t0) → R+ such that for 
all scalar-valued functions f ∈ dom(Γ) and 0 � t � t0,

Γ(Ptf, Ptf) � C(t)PtΓ(f, f) (28)

and κ :=
t0∫

0

C(s)ds is finite.

Then Pt satisfies CMLSI.

Proof. By Varopoulos’ dimension condition, we have that for any positive scalar func-
tion f

Ptf �‖Ptf ‖∞ 1 � Ct−m ‖f ‖1 1 = Ct−mEμf , 0 < t � 1

for some C and m. Then Ct−mEμ − Pt is a positive map from L∞(M) to L∞(M). 
Note that any positive map onto L∞(M) is automatically completely positive, be-
cause positivity in L∞(M, Mn) is a.s. pointwise positive. Then, for any matrix-valued
density ρ
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Ptρ � Ct−m(Eμρ)1 , 0 < t � 1

as matrix-valued functions in L∞(M, Mn), where the right-hand side stands for the 
constant function of the value Eμρ =

∫
M

ρ dμ. For a matrix-valued density ρ such that 
D(ρ||Eμρ) < ∞, we denote ρt := Ptρ. Then for any 0 < t � 1

D(ρt||Eμρ) � ‖ρt − Eμρ‖Eμρ−1 (29)

� 1
γ

‖∇ρt ‖Eμρ−1 (30)

� tm

Cγ
‖∇ρt ‖ρ−1

t
= tm

Cγ
I(ρt). (31)

Here (29) uses part ii) of Lemma 3.5, (30) uses the spectral gap γ and (31) uses part i) 
of Lemma (3.5) and ρt = Ptρ � Ct−mEμρ. Denote h(t) = D(ρt||Eμρ). Then the above 
inequality shows that

h(t) � − tm

Cγ
h′(t) , 0 < t � 1

Consider the differential equation

s′(t) = − tm

Cγ
s(t),

whose solution is

s(t) = e− tm+1
γC(m+1) s(0).

Thus by Grönwall’s inequality

D(ρt||Eμ(ρ)) = h(t) � e− tm+1
γC(m+1) h(0) = D(ρ||Eμ(ρ)) , 0 < t � 1 .

This implies that for any matrix-valued density ρ

D(ρ||Eμ(ρ)) − D(ρt0 ||Eμ(ρ)) � (1 − e− tm+1
γC(m+1) )D(ρ||Eμ(ρ)).

Then using assumption (28),

(1 − e− tm+1
γC(m+1) )D(ρ||Eμ(ρ)) �(D(ρ||Eμ(ρ)) − D(ρt0 ||Eμ(ρ))

�
t0∫

I(ρt)dt
0
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�
t0∫

0

C(t)I(ρ)dt

=κI(ρ)

which proves CMLSI (λ) with

λ =κ−1(1 − e− tm+1
γC(m+1) ) . �

3.2. Applications to the sub-Laplacian on SU (2)

We now apply our results to the canonical sub-Laplacian on the special unitary group 
SU (2). Recall the skew-Hermitian matrices

X =
[

0 1
−1 0

]
, Y =

[
0 i

i 0

]
, Z =

[
i 0
0 −i

]

span its Lie algebra over R. The group G = SU (2) is isomorphic to 3-sphere S3 via the 
following parametrization

G = {cI + xX + yY + zZ : c2 + x2 + y2 + z2 = 1, x, y, x, c ∈ R}.

The Lie algebra is g = spanR{X, Y, Z} with Lie bracket rules as

[X, Y ] = 2Z , [Y, Z] = 2X , [Z, X] = 2Y . (32)

Suppose that g is equipped with the left-invariant metric such that {X, Y, Z} ⊂ g forms 
an orthonormal basis, the corresponding Laplacian (Casimir operator) is

Δ = X2 + Y 2 + Z2.

It is known that SU (2) has the constant Ricci curvature 2. Then by the complete Bakry-
Émery theorem [31, Theorem 3.4] the heat semigroup Tt = e−Δt satisfies CMLSI (2).

We are interested in the sub-Riemannian setting. The canonical sub-Riemannian 
structure is given by H = {X, Y } as a generating set of g since [X, Y ] = 2Z satis-
fies Hörmander’s condition. The horizontal sub-Laplacian is

L = X2 + Y 2.

The semigroup Pt = eLt on SU (2) has been intensively studied. In particular, Baudoin 
and Bonnefont in [5] proved that for all p > 1, the following Lp-gradient estimate holds 
for all scalar-valued function f ,
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Γ(Ptf, Ptf)
p
2 � Cpe−2ptPt(Γ(f, f)

p
2 ), (33)

where Cp is a constant depending on p. Applying our Theorem 3.3 for p = 2, we obtain

Theorem 3.7. The semigroup Pt = eLt generated by the sub-Laplacian L = X2 + Y 2

satisfies CMLSI
(

C2
8

)
, where C2 is the constant in (33) for p = 2.

We note that this is the first example that CMLSI is obtained for sub-Laplacians. The 
CMLSI constant for sub-Laplacians has direct applications to quantum Markov semi-
group via its representations. The representation theory of SU(2) gives the well-known 
spin structure of quantum mechanics, where any irreducible representation of SU(2) is 
indexed by an integer m ∈ N+. Let φm : su(2) → i(Mm)sa be the Lie algebra homo-
morphism induced by the m-th irreducible representation, and let {|j〉|j = 1, · · · , m} be 
the orthonormal basis consisting of eigenfunctions ηm(Z). Denote Xm := φm(X), and 
similarly for Ym and Zm. Under the normalization of (32),

Xm|j〉 =
√

(j − 1)(m − j + 1) |j − 1〉 −
√

(j + 1)(m − j − 1) |j + 1〉,
Ym|j〉 = i

√
(j − 1)(m − j + 1) |j − 1〉 + i

√
(j + 1)(m − j − 1) |j + 1〉,

Zm|j〉 = (m − 2j + 1) |j〉.

We consider the quantum Markov semigroup

St = eLmt : Mm → Mm ,

Lm(ρ) = [Xm, [Xm, ρ]] + [Ym, [Ym, ρ]].

This semigroup can be viewed as a representation of classical Markov semigroup Pt :
L∞(G) → L∞(G). Indeed, let πm : G → Mm be the mth irreducible representation of 
G = SU (2). The following transference diagram holds

L∞(G,Mm) L∞(G,Mm)

Mm Mm,

Pt⊗idMm

α

St

α (34)

where the map α is given by

α : Mm → L∞(G,Mm) ,

α(ρ)(g) = πm(g)(ρ)πm(g)∗ .

Note that α is an algebra homomorphism, which is an embedding of the matrix algebra 
Mm into the matrix-valued functions L∞(G, Mm) on G. Under this embedding, the 
quantum Markov semigroup St is exactly the restriction of the matrix-valued extension 
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Pt ⊗idMm
on the image of α(Mm). Such a transference relation holds for any (projective) 

unitary representation, which yields the following dimension-free CMLSI estimate.

Theorem 3.8. Let St = eLmt : Mm → Mm , Lm(ρ) = [Xm, [Xm, ρ]] + [Ym, [Ym, ρ]] be the 
transference semigroups above. Then for all m � 1, St satisfies CMLSI

(
C2
8

)
.

Proof. This follows from the diagram (34) as in [20, Section 4]. �
The above example was first studied by Li, Junge and LaRacuente [31] with a 

dimension-dependent CMLSI constant. It is clear from the diagram (34) that CMLSI 
constant for matrix-valued functions in L∞(G, Mm) is crucial for the transference to 
quantum Markov semigroup on matrix algebras, while only the LSI or MLSI for the 
scalar-valued functions is not enough.

4. Ornstein–Uhlenbeck semigroup on Lie groups

In this section, we discuss matrix-valued modified Log-Sobolev constants for the heat 
kernel measures on Lie groups. Before the matrix-valued case, we first review a standard 
approach for scalar-valued functions. Let (M, g, dg) be a Riemannian manifold with the 
volume form dg and let ∇ and Δ = ∇ ·∇ be the gradient operator and Laplace-Beltrami 
operator respectively. Denote by Ht = eΔt the heat semigroup. Recall that Bakry and 
Émery in [1] proved that Ricci(M) � λ for some λ ∈ R if and only if the following p = 1
gradient estimate

|∇Htf | � C(t)Ht(|∇f |) , for all f ∈ C∞
c (M), t > 0 (35)

holds for C(t) = e−λt. Let μx
t be the heat kernel measure at some point x ∈ M such that

Htf(x) =
∫
M

fdμx
t .

It is well known that the gradient estimate (35) for p = 1 implies the LSI for μx
t

∫
f2 log f2dμx

t −
(∫

f2dμx
t

)
log

(∫
f2dμx

t

)
� 2t

∫
|∇f |2dμx

t (36)

with the constant κ =
∫ t

0 C(s)2ds. This further implies an MLSI, namely, that for g � 0

∫
g log gdμx

t −
(∫

gdμx
t

)
log

(∫
gdμx

t

)
� t

∫ |∇g|2
g

dμx
t . (37)

In terms of the semigroup, (36) and (37) are equivalent to respectively hypercontractivity 
and exponential entropy decay for the Ornstein–Uhlenbeck semigroup
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Ps = eLx,ts, Lx,t = ∇∗∇,

where ∇∗ is the adjoint of ∇ in L2(dμx
t ) and Lx,t is symmetric with respect to the 

measure μx
t .

The proof of (36) and (37) from (35) is now standard (cf. [2, Theorem 6.1]). Indeed, 
(37) follows from the function inequality at point x ∈ M ,

Ht(g log g) − Ht(g) log Ht(g) � κ

2 Ht

(
∇g

g

)
. (38)

Fix t > 0, and for g ∈ C∞
c (M) we define

G : [0, t] → C∞(M) , G(s) = Hs(Ht−sg log Ht−sg).

Note that

Ht(g log g) = G(t) , Ht−sg log Ht−sg = G(0) .

Then

Ht(g log g) − Htg log Htg = G(t) − G(0) =
t∫

0

∂sG(s)ds .

The derivative is given by

∂sG(s) =ΔHs (Ht−sg log Ht−sg) − Hs ((ΔHt−s)g log Ht−sg) − Hs(ΔHt−sg)

=Hs (Δ(Ht−sg log Ht−sg) − (ΔHt−sg) log Ht−sg − ΔHt−sg)

=Hs (Δ(Ht−sg log Ht−sg) − (ΔHt−sg) log Ht−sg − ΔHt−sg)

=2Hs (∇Ht−sg · ∇(log Ht−sg))

=2Hs

(
|∇Ht−sg|2

Ht−sg

)
,

where we used the product rule for Δ = ∇ · ∇

Δ(f log f) = Δ(f) log f + fΔ(log f) + 2∇f∇(log f) .

Here comes the step using the gradient estimate for p = 1 which gives that for any s > 0,

|∇Hsg|2
Hsg

� C(s)2 Hs(|∇g|)2

Hsg
� C(s)2Hs( |∇g|2

g
), (39)

where the second inequality uses the joint convexity of the bivariate function (x, y) �→ x2

y . 
Then (38) follows immediately from the semigroup property
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Ht(g log g) − Htg log Htg �2
t∫

0

Hs

(
|∇Ht−sg|2

Ht−sg

)
ds � 2C(s)2

t∫
0

Ht−sHs

(
|∇g|2

g

)
ds

=2(
t∫

0

C(s)2ds)Ht(
|∇g|2

g
).

To summarize, the key consequence the gradient estimate (35) for p = 1 used above is 
that

|∇Htf | � C(t)Ht(|∇f |) ⇒ |∇Htg|2
Htg

� C(t)2Ht(
|∇g|2

g
) . (40)

This approach can be used to recover Gross’ LSI for the Ornstein–Uhlenbeck semigroup 
on Rn, as well as the Heisenberg group in [2] in the sub-Riemannian setting, for which 
the gradient estimate (35) for p = 1 was proved by H.-Q. Li in [37] with C(t) ∼= C being 
constant.

Given Theorem 3.6 using the gradient estimate for p = 2, it is natural to consider 
whether the gradient estimate for p = 1 can be used to tackle the matrix-valued case. 
However, there are two obstructions. First, it is not clear whether p = 1 gradient estimate 
extends to matrix-valued cases as in Proposition 3.1. Note that for a matrix A, the 
absolute value |A| should be interpreted as 

√
A∗A using functional calculus for positive 

operators. For a matrix-valued function f ∈ C∞
c (M), we have the gradient vector ∇f =

(X1f, · · · , Xnf) and |∇f | =
√∑

i(Xif)∗(Xif). Secondly, we also lack of (40) in the 
matrix-valued case as an analog of Lemma 3.2 for p = 2. These observations make it 
unclear whether (35) implies a CMLSI for the Ornstein–Uhlenbeck semigroup.

In the following, we shall show that the above approach partially works for matrix-
valued case if we have the exact commutation relation

∇Htf = e−λtHt∇f. (41)

Equation (41) is also called an intertwining relation. It was first introduced by Carlen 
and Maas in [14] as a sufficient condition to derive the entropic Ricci curvature condition. 
Here we present a different use of it. The natural example of spaces for which (41) holds 
are groups. Let G be a Lie group equipped with a left-invariant metric. Let X1, · · · , Xn

be a O.N.B of the Lie algebra of left invariant vector field. It is well known that the 
Casimir element Δ =

∑
i X2

i , which is also the Laplace-Beltrami operator, is a central 
element for the Lie algebra. Thus for the gradient operator ∇ = (X1, · · · , Xn)

∇Δf = Δ∇f , ∇Htf = Ht∇f , ∀f ∈ C∞
c (M), (42)

which is an intertwining relation (41) with λ = 0.
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Theorem 4.1. Let G be a locally compact Lie group equipped with a left-invariant metric. 
Let Ht = eΔt be the heat semigroup and denote pt as the heat kernel measure (for the 
identity element). Then for any positive matrix-valued function g ∈ C∞

c (G, Mn)

tr Ht(g log g) − tr(Htg log Htg) � 2t tr Ht

( ∞∫
0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

,

where 1 is the constant matrix-valued function of identity operator. In particular, the 
Ornstein–Uhlenbeck semigroup Ps = eLts satisfies 1

4t -CMLSI, where Lt = ∇∗∇ is the 
generator symmetric on L2(dpt).

Proof. Let g ∈ C∞
c (G, Mn) be a matrix-valued function on G and g(x) � 0 for all x ∈ G. 

For the ease of notation, we write Htg := (Ht ⊗ idMn
)g and Δg = (Δ ⊗ idMn

)g. Fix t > 0
and define the function

G : [0, t] → C∞(M) , G(s) = tr
(

Hs(Ht−sg log Ht−sg)
)

.

Then

tr Ht(g log g) − tr(Htg log Htg) = G(t) − G(0) =
t∫

0

∂sG(s)ds .

Recall that for a smooth scalar function φ : (a, b) → R on a interval (a, b) and matrix-
valued function s �→ g(s) with specg(s) ⊂ (a, b),

d

ds
tr(φ(g(s))) = tr(φ′(g(s))g′(s)) . (43)

The derivative with respect to s is given by

∂sG(s) =ΔHs

(
tr (Ht−sg log Ht−sg)

)
+ Hs

(
tr(−ΔHt−sg(log Ht−sg + 1))

)
=Hs

(
tr

(
Δ(Ht−sg log Ht−sg) − Δ(Ht−sg) log Ht−sg − Δ(Ht−sg)

))
,

where we used (43) with φ(x) = x log x and the fact that Ht tr = tr Ht commute (more 
precisely, Ht tr = tr(Ht ⊗ idMn

)). By the product rule for Δ = ∇ · ∇,

Δ(f log f) =Δ(f) log f + fΔ(log f) + 2∇f∇(log f).

Using the noncommutative derivative,

∇(log f) =
∞∫

(f + r1)−1(∇f)(f + r1)−1dr,
0
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∇
(
(f + r1)−1)

= −(f + r1)−1(∇f)(f + r1)−1,

we have

Δ(log f) =∇ ·
( ∞∫

0

(f + r1)−1(∇f)(f + r1)−1
)

=
∞∫

0

(f + r1)−1(Δf)(f + r1)−1dr

− 2
∑

i

∞∫
0

(f + r1)−1(Xif)(f + r1)−1(Xif)(f + r1)−1dr

Then

tr
(

Δ(f log f) − (Δf) log f − Δf
)

= tr
(

fΔ(log f) + 2∇f∇(log f) − Δf
)

= tr
( ∞∫

0

f(f + r1)−1(Δf)(f + r1)−1dr
)

− 2
∑

i

tr
( ∞∫

0

f(f + r1)−1(Xif)(f + r1)−1(Xif)(f + r1)−1dr
)

+ 2
∑

i

tr
( ∞∫

0

(Xif)(f + r1)−1(Xif)(f + r1)−1dr
)

− tr
(

Δf
)

. (44)

The first and the last term cancel out

tr
( ∞∫

0

f(f+r1)−1(Δf)(f+r1)−1dr
)

= tr
(( ∞∫

0

f(f+r1)−1(f+r1)−1dr
)
Δf

)
= tr

(
Δf

)
,

where we used the tracial property tr(AB) = tr(BA) and the integral identity

∞∫
0

(A + r1)−1A(A + r1)dr = 1

for a positive operator A. Also, the second term is always negative. Note that for positive 
f , (Xif)∗ = Xif is self-adjoint. Then for any s > 0,
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tr
(

f(f + r1)−1(Xif)(f + r1)−1(Xif)(f + r1)−1
)

= tr
(

f1/2(f + r1)−1(Xif)(f + r1)−1(Xif)(f + r1)−1f1/2
)

= tr
((

f1/2(f + r1)−1(Xif)(f + r1)− 1
2
)(

(f + r1)− 1
2 (Xif)(f + r1)−1f1/2))

� 0.

Applying the above estimate to f = Ht−sg, we see that

tr
(
Δ(Ht−sg log Ht−sg) − Δ(Ht−sg) log Ht−sg − Δ(Ht−sg)

)
�2

∑
i

tr
( ∞∫

0

(XiHt−sg)(Ht−sg + r1)−1(XiHt−sg)(Ht−sg + r1)−1dr
)

=2 tr
( ∞∫

0

(∇Ht−sg)(Ht−sg + r1)−1(∇Ht−sg)(Ht−sg + r1)−1dr
)

(1)=2 tr
( ∞∫

0

(Ht−s∇g)(Ht−sg + r1)−1(Ht−s∇g)(Ht−sg + r1)−1dr
)

(2)
�2Ht−s tr

( ∞∫
0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

.

Here, (1) uses the commutation relation ∇Htg = Ht∇g, and (2) uses the joint convexity 
of the trace function (see cf. [44, Eq. (7)])

(A, B) ∈ (Mn)+ × (Mn)+ �→ tr
( ∞∫

0

A(B + r1)−1A(B + r1)−1dr
)

.

Finally, using the semigroup property we see that

tr Ht(g log g) − tr(Htg log Htg) =
t∫

0

∂sG(s)ds (45)

�2
t∫

0

HsHt−s tr
( ∞∫

0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

ds

=2
t∫

0

Ht tr
( ∞∫

0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

ds

=2t tr Ht

( ∞∫
0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

. (46)



L. Gao, M. Gordina / Journal of Functional Analysis 287 (2024) 110453 29
To see that this implies a CMLSI, we note that Htf(e) = Ept
f at the identity element 

e and the Fisher information for a positive matrix-valued function g ∈ C∞
c (G, Mn) is

I(g) =
∫
G

tr
( ∞∫

0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

dpt.

Then (45) at the identity element x = e gives

D(g||Ept
g) =

∫
tr(g log g) − tr(Ept

g logEpt
g)dpt

= tr Ht(g log g) − tr(Htg log Htg)|x=e

�2t tr Ht

( ∞∫
0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

|x=e

=2t

∫
G

tr
( ∞∫

0

(∇g)(g + r1)−1(∇g)(g + r1)−1dr
)

dpt

=2tI(g) .

That completes the proof. �
Remark 4.2. Comparing to the scalar-valued case (37), our constant differs by a factor 
of 2. This is because for a scalar-valued function f , we can find (44) explicitly

− 2
( ∞∫

0

f(f + r1)−3|∇f |2dr
)

+ 2
( ∞∫

0

(f + r1)−2|∇f |2dr
)

= − f−1|∇f |2 + 2f−1|∇f |2 = f−1|∇f |2 ,

which gains a factor of 2 compared to the matrix-valued case.

5. Final discussion

We end our discussion with some remarks on connection to the noncommutative 
setting and extendability of our results.

The assertion (i) in the key Proposition 3.1 is closely related to the Γ2-condition intro-
duced by M. Junge and Q. Zeng [33] for noncommutative symmetric Markov semigroup. 
In particular, they showed that if a Riemannian manifold has its Ricci curvature bounded 
below by λ, then the heat semigroup Tt satisfies

[Γ(Ttfi, Ttfj)]i,j � e−2λt [TtΓ(fi, fj)]i,j . (47)
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Part i) in Proposition 3.1 extends this to the sub-Laplacian case for a single Markov map 
P . Although (47) gives a matrix-valued version of Bakry-Émery’s curvature-dimension 
condition, it is not clear whether (47) in the matrix-valued case or noncommutative 
setting implies a MLSI. On the other hand, part ii) of Proposition 3.1 for matrix-valued 
function f

〈∇Ttf, As(∇Ttf)B1−s〉tr � e−2λt〈∇f, (T †
t A)s(∇f)(T †

t B)1−s〉tr, (48)

is more related to complete gradient estimates studied by Wirth and Zhang [51]. Their 
complete gradient estimates were inspired by the entropic Ricci curvature lower bound
introduced in the work of E. Carlen and J. Mass [14], and N. Datta and C. Rouzé in 
[17], which are powerful tools in deriving modified log Sobolev inequalities for quantum 
Markov semigroups [10,11]. It is clear that (48) is more general than (47) by choosing 
A = B and s = 0, and they coincide when reduced to scalar-valued functions. They 
differ in matrix-valued cases because the matrix multiplication is not commutative, and 
there are various ways to multiply a matrix A by X, such as AX, XA and AsXA1−s. 
Proposition 3.1 basically shows that for sub-Laplacians, (47) and (48) are equivalent and 
both reduce to Bakry-Émery’s curvature dimension condition for scalar-valued functions

Γ(Ttf, Ttf) � e−2λtTtΓ(f, f) . (49)

One can consider whether the above equivalence holds beyond the sub-Laplacian 
case. Indeed, the equivalence between (47) and (49) holds with for all symmetric Markov 
semigroup with the same argument as used in Proposition 3.1. The equivalence between 
(47) and (48) is more involved. To formulate (48) for a general symmetric generator 
Pt = eLt : L∞(Ω) → L∞(Ω), one needs a densely defined closed derivation operator 
δ : L2(Ω) → H such that L = −δ∗δ, where H is a Hilbert module or more specifically 
L2-space. It was proved in a preprint by M. Junge, E. Ricard and D. Shlyahktenko 
[32] that every symmetric (quantum) Markov semigroup admits such a derivation on 
a noncommutative L2-space L2(M) of some von Neumann algebra (see also the more 
recent preprint [50] for the strongly continuous semigroup). The proof for part ii) of 
Proposition 3.1 works as long as the range of δ commutes with the functions in L∞(Ω), 
which is obvious for sub-Laplacians because the range of ∇ = (X1, · · · , Xk) can be 
viewed as the diagonal matrices in C∞(M, Mk). Nevertheless, in a private communication 
Melchior Wirth pointed out to us that this is unlikely to hold for quantum Markov 
semigroups.

Our main Theorem 3.6 states that any sub-Laplacian L = − 
∑k

i=1 X∗
i Xi generated 

by a collection of vector fields satisfying (i) Hörmander’s condition and (ii) the gradient 
estimates

Γ(Ptf, Ptf) � C(t)PtΓ(f, f) (50)
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for some integrable function C(t), satisfies a CMLSI. Up to the writing of this paper, such 
estimates were obtained for SU (2) in [5] and for nilpotent Lie groups in [41] including 
Heisenberg group in [19]. An interesting question is to explore whether (50) holds for a 
larger class of sub-Laplacians on Lie groups, which by our results will imply a CMLSI 
and a dimension-free estimate for the corresponding quantum Markov semigroups as 
discussed in Section 3.2. On the other hand, such results were achieved by Gao, Junge, 
LaRacunte and Li in a preprint [21], which proves that one point ultra-contractivity plus 
spectral gap implies CMLSI. Their results in particular give CMLSI for sub-Laplacians 
of any Hörmander system on a compact manifold.

The intertwining relation

∇Ptf = e−λtPt∇f (51)

is obviously a stronger condition than Bakry-Émery’s curvature-dimension inequality

|∇Ptf | � C(t)Pt(|∇f |) , for any f ∈ C∞
c (M), t > 0, (52)

hence can be used to derive an CMLSI for the semigroup Pt itself. Indeed, the Ornstein–
Uhlenbeck semigroup on Rn satisfies ∇Ptf = e−tPt∇f with λ = 1, which is an alterna-
tive approach to a CMLSI for the Gaussian measure in [31]. In the sub-Riemannian set-
ting, (51) is never satisfied because of lack of curvature lower bound. So our method here 
does not apply to Ornstein–Uhlenbeck semigroup on Heisenberg group studied in [2,37], 
for which the standard (scalar-valued) log Sobolev inequality can be obtained from (52). 
In that sense, finding a CMLSI for the sub-Laplacian Ornstein–Uhlenbeck semigroup on 
the Heisenberg group remains an open question. For the more applications of intertwining 
relations to CMLSIs in the noncommutative setting, see [10,11,14,15,17,31,51,52].
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