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1. Introduction

Since the seminal works [28,29] of L. Gross, log Sobolev inequalities have been in-
tensively studied and found rich connections to analysis, geometry, and probability (see
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[30,36] for surveys). In recent decades, log Sobolev inequalities for quantum systems have
attracted a lot of attentions in quantum information theory and quantum many-body
systems, e.g. [4,12,13,22,34,43]. Motivated by the noncommutative cases, we study mod-
ified log Sobolev inequalities for matrix-valued functions for horizontal heat semigroups
generated by sub-Laplacians. Such matrix-valued modified log Sobolev inequalities have
direct applications to quantum Markov semigroups on matrix algebras.

Recall that a classical Markov semigroup P, = e* : L>®(Q, 1) — L>®(Q,p) on a
probability space (£, ) is a semigroup of conservative (unital) positivity preserving
maps. We say that P, satisfies a logarithmic Sobolev inequality LSI () if for some A > 0

[ e sran | [ fan)ros | [ i) <=5 [ensa (1)
Q Q Q

Q

holds for all real-valued functions f € L?(Q, ) in the domain of the generator £. A
different version of (1), called a modified log Sobolev inequality MLSI ()), states that for
all positive functions g > 0

1
/ glog gdp — / gdu | log / gdu | < =55 | (Lg)loggdpu. (2)
Q Q Q Q

Recently much progress has been made in extending the MLSI to matrix-valued func-
tions. For instance, H. Li, M. Junge and N. LaRacuente in [31] proved that if a compact
Riemannian manifold (M, g) has the Ricci curvature bounded from below by a posi-
tive scalar A, then for all n > 1 and all smooth n x n positive matrix-valued functions
f:M—M,

/tr(flog f)dp —tr (B, flogE,f) < —% tr ((idag, @Af)log f) dp. (3)
M M

Here, A is the Laplace-Beltrami operator, tr is the standard matrix trace and E,f =
J f(z)du(z) € M, is the matrix-valued mean with respect to the volume form dy. This
extends the well-known Bakry-Emery theorem [1] to matrix-valued functions. Equation
(3) is called a complete modified log Sobolev inequality (in short, CMLSI ())), as it gives
a uniform MLSI constant for all matrix-valued functions independent of a matrix size.
Later M. Brannan, L. Gao and M. Junge in [11] proved that the heat semigroup on any
compact Riemannian manifold satisfies CMLSI (\), using a finite curvature lower bound
A that is not necessarily positive. In the discrete setting, CMLSIs [22,31] have also been
established for finite Markov chains satisfying detail balanced condition, including graph
Laplacians on a weighted undirected graph. These results have found applications to
quantum Markov semigroups on matrix algebra (see [20, Section 4]).

Despite the progress for the heat semigroups and graph Laplacians, the CMLSI for
sub-Laplacians in sub-Riemannian settings is still mostly open. The main obstruction
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here is lack of geometric techniques such as curvature-dimension inequalities. We consider
M to be an n-dimensional smooth manifold, and D is a sub-bundle of T'"M equipped with
a metric g and with dim D = k < n. Recall that a second order differential operator £
defined on C*° (M) is called a sub-Laplacian if for every x € M, there is a neighborhood
U of x and a collection of smooth vector fields {Xg, X1, ..., X} defined on U such that

k
L=-> XX+ Xo,
i=1

on U and {X3,..., X} are orthonormal with respect to the sub-Riemannian metric g.
Here X is the adjoint of X; with respect to a smooth probability measure pr. We assume
that for {Xy,..., X} the Lie algebra generated by these vector fields spans the whole
tangent space T, M at any x € M, and usually this is called a strong Hérmander con-
dition. The operator satisfying a strong Hérmander condition is one of main objects in
the study of sub-Riemannian geometry. The literature on such geometry is vast, start-
ing with [46,47] and then covered in [42]. The new direction of introducing curvatures
and applications to geometric analysis on sub-Riemannian manifolds has started with
[7], while a more analytic and probabilistic description of such sub-Laplacians has been
given in [23,24].

In this work, we will study the matrix-valued log Sobolev inequality for the operator
L=— Zle X7 X, as a generator of Markov semigroup, which adds a new direction with
connections to quantum Markov semigroup in the noncommutative setting.

In the scalar-valued cases, P. Lugiewicz and B. Zegarliniski [40] proved that on any
connected and compact manifolds without boundary, LSI and hence MLSI hold for sub-
Laplacians £ = — ), XX, satisfying the strong Hérmander condition. One crucial step
was the Rothaus lemma in [45],

Ent(|f*) < Ent(|f = Eu(N)*)+ 1f = Eu(H) L0 -

where Ent(g) = [ glog gdp is the entropy functional. This approach, however, does not
apply to CMLSI, because both the Rothaus lemma and LSI always fail for matrix-valued
cases as pointed out in [20, Section 7.5]. On the other hand, compared to the result in
[11] for the heat semigroup, the difficulty in the sub-Riemannian case stems from the lack
of a Ricci curvature bound. Informally, at points of degeneracy of £, the Ricci tensor
is not well-defined and might be interpreted as being —oo in some directions. While
there has been a number of results on generalized notions of curvature on some classes
of sub-Riemannian manifolds (see e.g. [6—8]), we are not relying on those in this paper.
Log Sobolev inequalities have been proven for some sub-Riemannian manifolds including
Heisenberg groups and homogeneous spaces by M. Gordina and L. Luo in [25,26], with
the techniques relying on particular structure of such groups.
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In the current paper, we overcome this issue by relying on the gradient estimate (4)
studied by [2,5,19,37,41] in the sub-Riemannian setting. We denote by V = (X1, -+ , X})
the horizontal gradient operator associated to L.

Theorem 1.1 (Theorem 3.6). Let (M,g) be a Riemannian manifold without boundary,
and let u be a smooth measure on M. Suppose L = —Zle X)X, is a sub-Laplacian,
where { X1, ..., Xi} satisfy Hormander’s condition, and denote by Py = et* the symmetric
Markov semigroup generated by L. Suppose

i) there exist some to > 0 and a positive measurable function C : [0,tg) — Ry such
that for all f € C°(M) and 0 <t < to,

VP[> <C)P(IV ), (4)
where |V f? = >, | X, f*.
to

ii) /C’(s)ds < 00 18 finite.
0

Then P; satisfies CMLSI (\) for some positive A.

We note that if C(t) = e~ >, condition (4) is exactly Bakry-Emery’s (), co0) curvature-
dimension inequality. The results by B. Driver and T. Melcher in [19], T. Melcher in [41]
and F. Baudoin-M. Bonnefont in [5] show that the gradient estimate (4) holds on SU (2),
and on stratified Lie groups including Heisenberg group. In particular, on stratified
Lie groups C(t) = C is a constant function. One of our key observations is that the
gradient estimate (4) naturally extends to matrix-valued functions. Such an extension
holds for diffusive semigroups given by Laplacian or sub-Laplacian but does not hold for
noncommutative examples or even discrete spaces such as graph Laplacian.

As a corollary of our main result we obtain a CMLSI for the canonical sub-Laplacian
on SU (2). Recall that the Lie algebra su(2) is spanned by skew-Hermitian traceless

¢ 0
0 —il’

whose Lie brackets satisfy [X,Y] = 2Z7,[Y, Z] = 2X, and [Z, X| = 2Y. In particular, it
implies that {X,Y} satisfies Hérmander’s condition.

matrices

Y: Z:

)

-1 0

X:[O 1 |
1 0

Corollary 1.2. The sub-Laplacian £ = X?+Y? on SU (2) satisfies a CMLSI (\) for some
positive \.

The above result is the first ever example of CMLSI obtained for sub-Laplacians.
It also has direct implications for the CMLSI constant for quantum Markov semi-
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groups. Quantum Markov semigroups are noncommutative generalizations of Markov
semigroups, where the underlying function spaces are replaced by matrix algebras or op-
erator algebras. Mathematically, they are continuous semigroup of completely positive
trace preserving map. Quantum Markov semigroups satisfy what is known as a GKLS
equation or master equation as in [16], and they model the Markovian time evolution of
an open quantum system. There is considerable interest in quantum information theory
on the convergence rate of quantum Markov semigroup. Thanks to [27,39], it is known
that if a quantum Markov semigroup on matrix algebra M, is symmetric with respect
to the matrix trace, then it admits the following Lindbladian form,

St = eLt : Mm — Mm ) E(p) = Z[aj7 [ajvp]L
j=1

where a; are some self-adjoint matrices. As an application of Corollary 1.2, we obtain a
uniform lower bound of CMLSI constants for quantum Markov semigroups induced by
the sub-Laplacian £ = X2 + Y2 via Lie algebra representations of su(2).

Corollary 1.3. There exists a positive constant A such that for any Lie algebra homomor-
phism ¢ : su(2) = i(My,)s.q. into a matriz algebra M,,,, the quantum Markov semigroup

S, = eXot i M, — M,
Ls(p) = [¢(X), [¢(X), pl] + [6(Y), [6(Y), pl]

satisfies CMLSI (A).

Motivated by the application of L?-gradient estimate (4) to CMLSI, we also investigate
whether L!-gradient estimate

VPN < COPIV(S)I (5)

can be used to derive a CMLSI. Let p; be the heat kernel measure corresponding to the
semigroup P; at time t. In the scalar-valued case, it is known that (5) implies that the
corresponding heat kernel measure satisfies a LSI with the constant given by

¢
T :/C(S)st.
0

This corresponds to the associated Ornstein-Uhlenbeck semigroup O, = e®**, where

L; = —V*V is the symmetric generator on L?(dp;). Our last result shows this approach
works for CMLSI on Lie groups.

Theorem 1.4 (Theorem /.1). Let G be a locally compact Lie group equipped with a left-
invariant metric. Let H, = e®t be the heat semigroup and denote by p; the heat kernel
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measure. Then the Ornstein—Uhlenbeck semigroup O, = e*Lt satisfies %—CMLSI, where
L, = V*V is the generator of this semigroup symmetric with respect to the measure fu;.

The rest of the paper is organized as follows. In Section 2, we review some preliminaries
on CMLSI and sub-Laplacians. In Section 3 we prove our main Theorem 3.6 and apply
it to SU (2). Section 4 discusses a CMLSI for the heat kernel measures on Lie groups. We
end the paper with some discussion on connections of our results to quantum Markov
semigroups and list some open questions.

Note 1.5. After submission of this paper, L. Gao, M. Junge, N. LaRacunte and H. Li gave
a version of Theorem 1.1 in a preprint [21] using a completely different approach. They
showed that a one point ultra-contractivity and a Poincaré inequality imply a CMLSI,
which applies to a large class of examples.

Notation. Throughout the paper, we denote by (2, 1) a measure space equipped with
a probability measure, and by LP(2) the corresponding LP-space of complex-valued
functions for 1 < p < oco. Then || f ||, is the standard LP-norm and (f,g) = fQ fadp is
the L?-inner product. By M,, we denote the space of n x n complex matrices and by tr
the standard matrix trace. The identity elements, which is the constant function 1 for
n = 1 and the identity operator in M,,, is denoted by 1, and the identity map between
spaces is denoted as id.

Acknowledgment

L.G. is grateful to Marius Junge and Melchior Wirth for helpful discussions.
2. Preliminaries
2.1. Logarithmic Sobolev inequalities

We first recall logarithmic Sobolev inequalities for Markov semigroups and its matrix-
valued extension. Let (£2, 1) be a measure space equipped with a probability measure pu.
We say that P : L>®(Q) — L*°(Q) is a Markov map if

i) P(1) =1 (mass conservation);
i) P(f) = 0if f > 0 (positivity preserving);

A Markov semigroup (Py)i>0 : L>(2) — L>°(Q) is a family of Markov maps satisfying

i) Py =id and Ps o P, = P,y for s,t > 0 (semigroup property);
ii) For every f € L2, P,f converges to f in L?) as t — 0 (continuity property).
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The generator of P; is given by

Lt
7Pt:e )

£f = lim 2 =T
t—0 t

with the domain dom(L) being the space of functions such that the above limit exists.
Throughout the paper, we consider the semigroups which are symmetric with respect to
a unique invariant measure p, i.e. (Py(f), 9)r2(u) = (f; Pt(9)) L2(y) for any ¢ > 0. Namely,
each P, is a symmetric operator on L?(2) and hence [, Pi(f)dp = [, fdu. In this case,
L is a negative operator on L?(2) and P, is equivalently determined by its Dirichlet form

E(f.9)= | fL(g)dp
/

whose domain is dom(€) = dom((—L£)"/?).
Definition 2.1. For A > 0, a Markov semigroup P, = e'* is said to satisfy
i) A-Poincaré inequality PI (M) if for any f € dom(&)
M =Eufll2<28(1, 1), (6)
where E,. f = [, fdu.

ii) A-logarithmic Sobolev inequality LSI(X) if for any f € dom(E),

[1seglsan= | [1sPauog | [1fPaun ] < S @
Q Q Q

iii) A-modified logarithmic Sobolev inequality MLSI (A) if for any positive g € dom(L),

1
/glogg dp — /g du | log /g dp | < ﬁ/(—ﬁg)loggdu- (8)

Q Q Q Q

The A-Poincaré inequality is equivalent to that the negative generator (—L£) has a
spectral gap A. The LSI is an equivalent formulation of hypercontractivity stating that

||Pt||L2(Q)4)LP(Q) <1 for t<1+ 2t
The MLSI is known to describe the entropy decay

Ent(P.g) < e Ent(g), (9)
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where Ent(f) = /f log fdp is the entropy functional. Note that the right side of (8),
Q

d
I(g) == —/ (Lg)logg dp = — pr Ent(P:g)
t=0

is called the Fisher information (also called entropy production), as it is the negative
derivative of entropy along the time t.

The exponential entropy decay (9) in particular implies mixing time in L' via Pinsker’s
inequality (cf. [49, Appendix])

5 17~ 1IR< VEni(F)

It is well-known (cf. [3, Theorem 5.2.1]) that A-LSI implies A-MLSI, and they are equiv-
alent if the semigroup is diffusive. Recall that a carré du champ operator or the gradient
form of L is

L(f,9) = 5(£(f9) ~ F(Lg) ~ (£S)o)

or weakly defined as (h,I'(f,9)) = 3(E(hf,g) + E(f,gh) — E(h, fg)). We will often use
the short notation I'(f) := T'(f, f). P is called diffusive if the gradient form satisfies the
following product rule that

[(fg,h) = fT(g,h) +T(f,h)g .

In this paper, we study MLSIs for matrix-valued functions. This is motivated by the
study of quantum Markov semigroups in the noncommutative analysis and quantum
information theory. Both LSI and MLSI enjoy the tensorization property, e.g. [3, Section
7.6.3]: if two Markov semigroups T; and S; both satisfy (M)LSI, so does their tensor
product semigroup T3 ® S;. More precisely, if we denote Apsy (resp. Ampsi) for optimal
constant such (7) (resp. (8)) holds, then tensorization property states that

Arst(Ty ® Sy) = min{Arsr(7%), Ausi(St) }

and the similar equality holds for Aypsi.

Nevertheless, in the noncommutative setting when the semigroup describes a quantum
system modeled by matrix algebras or operator algebras, tensorization property fails for
non-primitive semigroup (non-unique invariant states [11]) and is largely unknown for
primitive cases (see [9,35] for positive results on 2-dimensional matrices). It turns out
the above tensorization property in noncommutative setting hold for a stronger version
of MLSI that is uniform for all its matrix-valued amplification T} ® idpg,, . Here and in
the following, we denote by M, of n x n complex matrix algebra and tr for the standard



L. Gao, M. Gordina / Journal of Functional Analysis 287 (2024) 110453 9

matrix trace. We say f : Q — M, is a matrix-valued density if at each w € Q, f(w) >0
is positive semi-definite and [, tr(f)dp = 1.

Definition 2.2. We say a Markov semigroup T3 : L>®(2) — L°°(2) satisfies a complete
modified logarithmic Sobolev inequality CMLSI (X) with A > 0 if

/ tr(f log f)dy — tr (IEM flog(E, f)) < % / tr ((idMn ®L)f log f)du (10)
Q

for all n € NT and matrix-valued density f.

Here E, f = fQ fdp € M, is the matrix-valued mean, and flog f is interpreted as
the matrix-valued function that at each point w € Q, flog f(w) = f(w)log f(w) is the
pointwise functional calculus of f(w) (similarly for E,flogE,f). In other words, T}
satisfies CMLSI (\) if for all n > 1, the matrix-valued semigroup T; ® idyy, satisfies
A-MLSI. The left-hand side in (10) is the relative entropy of f to its matrix-valued mean
E,.f as a constant function

DIES) = [t (£lo8 s ~ Euflos(E,f))dn = [ DUWIIEL (), (11)
Q

Q

which is a mixture of classical relative entropy D(f||g) = [ flog f — flog g dp for density
function f,g € L'(Q) and quantum relative entropy D(p||c) = tr(plnp — plno) for
density operators p,o € M,,. The right-hand side of (10) is again the Fisher information

1(7) i= = 5 D((idve, ST I f)leo = — [ 15 (G, 90) Flog F)

Note that here E, f as a constant matrix-valued function is invariant under the amplified
semigroup T; ® idyp,,. Then (10) is equivalent to the convergence of T;f to E,f as an
equilibrium state in terms of entropy

D((Ty ® idw, ) fIIEwf) < e X D(fI|Enf) -
2.2. Sub-Laplacians
Let (M,g) be a d-dimensional Riemannian manifold without boundary and H =
{X;}k_ | with k& < d be a family of vectors fields. Let du = pdvol be a probability
measure with smooth density p w.r.t. the volume form. Denote V = (X3,---, X}) and

by X} the adjoint of X; on L?(M,du). The sub-Laplacian

L= _V'V = — in*xi - ZXZ + div, (X:)X;
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is a symmetric generator on L?(M, u). Here div,(X) is the divergence of X w.r.t. to u
and £ depends both on the family H and the measure u. The horizontal gradient form
is

T(f,9) =Y (Xif, Xig) , T(f):=T(f, /) =D |Xif | = |V

It follows from the product rule that I' is diffusive, and the Fisher information can be
rewritten as

IVfI2

1(f) = / (Lf)log f du= (Vf,V log f) = /

Q

where we used the chain rule V(log f) = f~1(Vf). Throughout the paper, we will use
the short notation Lf for (£ ® idpy, ) f for the matrix-valued function f, and similarly
for V and P; = e®?. Recall the noncommutative chain rule that for a positive operator
A and derivation ¢

d(log A) = / (A+51)"15(A)(A+ s1) ds , (12)
0

where 1 is the identity operator. Then for a matrix-valued density f, the entropy pro-
duction can be rewritten as

1) == [ () 108 £) = (V1.V 108 Sy = [(V1,(7 450 (TN +51) s
0

Here and in the following, we denote by (-, )¢, the integral-trace inner product for two
families of matrix-valued functions (f;) and (g;)

() 0 =Y / r(fg:)dp (13)
=1

The identity element 1 € L*°(M,M,,) is the constant function on M of the identity
matrix, and (f + s1)~! is the pointwise inverse matrix.

Throughout the paper, we will assume that the family of vector fields of H = {X;}¥_,
satisfies Hormander’s condition, that is, at every point x € M the tangent space at x is
spanned by the iterated Lie brackets of X;s

T, M = span{[X;,, [X;

PR

? [Xin—l ) Xin“L 1 < ?:17 i2 e Zn g k:}'

By compactness we can assume there is a global constant [x such that for every point
x € M, we only need at most [ xth iterated Lie bracket in above expression.
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It follows that ker £ = {C1} and p is the unique invariant measure such that
J P.f du= [ f dp. Moreover, by a celebrated theorem of Hérmander, £ is hypoelliptic.
Indeed, we have the following Sobolev-type inequality (see e.g. [40, Lemma 2.1])

Iflle < CULE P+ 1F12) (14)

where ¢ = —d%il)_‘2

of semigroups, this implies the following ultra-contractivity property for P, = e

> 2. By Varopoulos’ Theorem (see [48, Chapter 2]) on the dimension
Lt

Pt (ad ) sroo(ar g < CET™ 2 for 0 <t < 1, (15)

where m = dl,. The Sobolev-type inequality (14) and the ultra-contractivity (15) were
used in [40] to prove that every sub-Laplacian £ = — ), X X; with Hérmander condition
on a compact manifold satisfies LSI (hence equivalently MLST). Their proof relies on the
Rothaus lemma

Ent(f?) < Ent(f2) +2 || {13,

where f = f —E,f is the mean zero part of f, which is a standard tool to improve a
defective logarithmic Sobolev inequality to a standard one. Nevertheless, the Rothaus
lemma is known to fail for matrix-valued functions [20, Section 7.5], hence such an
argument does not apply to the matrix-valued case.

3. Gradient estimates and Fisher information
3.1. Complete gradient estimates

Let (M, g) be a Riemannian manifold. We consider a sub-Laplacian £ = — Zle XX,
where {Xi,..., X3} satisfy Hormander’s condition. Denote P; := e** and V(f) :=
(X1f, -+, Xif). The key tool in our argument is the following L2-gradient estimate

VP[P <CHOP(IVI?) . fe M) (16)
for some function C(¢). In terms of the gradient form, (16) can be rewritten as

L(Pf, P f) <CH)PI(f, f) - (17)

This is closely related to the Bakry-Emery curvature-dimension condition. It was shown
in [1] that if the Ricci curvature tensor of (M, g) has a uniform lower bound A € R, then
(17) is satisfied with C(t) = e~2*. In the sub-Riemannian case, although the Ricci tensor
should be interpreted as being —oo at the points where L is degenerate, the gradient

estimate (17) might hold for a function C(t) other than the exponential function e~**.
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Our first result shows that the gradient estimate (17) automatically extends to matrix-
valued functions. We denote by C°(M,M,,) the space of smooth M,-valued functions
with compact support. For f,g € C*(M,M,,), f > g means that at each point x € M,

f(x) —g(x) € (M)
Proposition 3.1. Let (M, g) be a Riemannian manifold with a sub-Laplacian operator

L=— Zle X;X; and let P : L>®(M,du) — L (M,dp) be a Markov map preserving
. Suppose for some constant C and all scalar-valued functions f € C°(M)

L(Pf,Pf) < CPL(f,f) .
Then
i) for any family of scalar-valued functions {f1,--- , fa} C C°(M),
(TP PA)]; ) < CLPT(fis fi)]7 = -

Here [I'(Pf;, Pf;)]i,; and [PT(f;, fj)li,; are viewed as elements in C2°(M,M,,).
ii) Let 0 < s < 1. For any matriz-valued function f, A, B € C*(M,M,,) with A,B > 0,

(VPf, A*(VPf)B"*) < C(Vf,(PTA*(Vf)(PTB)"* ),

where Pt is the adjoint map of P on L*(M,dy), and (-,-)y is the inner product
defined by (13). In particular, for any f = (fi;)7 ;=1 € C°(M, M,),

T(Pf,Pf) < CPI(f, f).
Here T(f, f) = [ S1ey D(fui. £17)],; € C2°(M,M.,) and similarly for (P, PY).

Proof. We use the standard bra-ket notation |h) for a vector in C™ and (h| for the
dual vector. Let {|i)}_; be an orthonormal basis of C". For i), we have for any vector

by = 3, huli) € C7,

(Wl [L(Pfi, PI)]IA) = hibiD(Pfi, Pf;) = T(Pfu, Pfy)

0,J
<SCPT(fn, fn) = C Y hihyPT(fi, f;) = C(R|[PT(f;, f;)]|h),
4,J
where f, =3, h;f; € C°°(M) and the inequality holds pointwise for each « € M. For

ii), we write A* = >, - A7 ;(z)|i)(j| and Bl=s = Dkl Bijs(x)|l<:><l| Note that A7 ;(z)
is the coefficient function for A® not the s-power of A; ;(x).
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For f =3, ; fi;li)(j| we have that for each x € M

tr ((VPf(a:))*AS(J;) (fo(x))BH(x))
=33 A (2)Br (@) U(Xm P f ()" |1) (G| (X P f () |F)

m 1,5,k,l
_Z Z A5 5(2) By (2) X P fia(2) Xon P f () (18)
m 1,5,k,l
= > A (2)Bi(@)T(Pfig, Pfik) (@)
i,7,k,l
<C Z A3 Bllks (@) P (fiu, fin) (@) (19)
i,7,k,l

where the equality (18) follows from the fact that the evaluation (i| - |j) is a linear
functional, hence commutes with V and P. Since B and B'~* are pointwise positive in
C>(M,M,,), we have B;;S(x) = Bl{gs(w) for every x. Then the inequality (19) follows
from the assumption that

[F(Pfi,lypfj,k)]il’jk < [Pr(fi,l,fj,k)}im

and [Af7jBll7;S] is a positive matrix in terms of indices (il, jk). Let

- / F(w)dm(z,y)
M

be the kernel representation. The adjoint is then PT(f =[S a f(@)dm(z,y). Integrat-

il jk

ing (19) over M, we have

(VPF), A*(VPf)B =), = / i ((VPf()" A°(@) (VP F(2)) B () ) diu(x)

M
<C [ 3 A5,@) B @ P o 1) (@)duta)
M i,5,k,l
— [ 3 Pz B s ) (o)
M bdikl
> / / (@) B @)dm(e,y) ) Dfias £ () du(y)

—c / / (V) A° () (V1 () B () dm(, ) ) ()
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<C [ & (V5w (P AW (VW) (P B)* )duy

=C{Vf,(PTA(V))(P'B)'~*)u,
where the last inequality used the Lieb concavity in [38] for the function
(A, B) — tr(K*A*KB'™*)

is joint concave for (A, B) € M,,. The last assertion follows from choosing s = 0 or
s=1. 0

Lemma 3.2. Under the assumptions of Proposition 3.1, if in addition [P, L] = 0, then for
any matriz-valued density p

I(PTp) < CI(p) . (20)

Proof. Recall that for a matrix-valued function f € C*(M,M,,)

k
Vf=(Xif)iy € @@L (M, My) = L=(M, &1, M,) |

i=1

where the inner product is defined as

ATy [ (6 @) (Xig) ) ute).

= 1M

Given a matrix-valued density function p, define the operator

M, : L*(M, @ M,) — L*(M, 05 M,,),

1 k
M, ((fi)k) = /Psfiplfsds ;
0 i=1

K, =V*M,V : L*(M,M,) — L*(M,M,,).

For simplicity, we assume that p € C°° (M) satisfies 21 < p < p11 for some 0 < pg < po.

Then 1 id < M, < p2 id is a bounded positive operator on L?(M, &F_M,,). In this case,
K, has the same domain and kernel as L = —=V*V. Then Prop031tion 3.1 implies that

P'K,P < CKps, (21)

as a positive operator on L?(M, M,,). Note that here Kpi, is a positive operator because
the adjoint PT is also a positive map. Thus we can define the inverse Kp_1 as a densely
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defined operator on the support ker(L)t = {f —E,f | f € L>(M,M,)}. Then, since
P(ker(L)*) C ker(L)* (namely, P(1) =
[44, Lemma 2]

1) we have that the following equivalence from

P'K,P < CKpi, (22)
e K,!?P'K,PK,!* < C (23)
= |K, 2P} |< VT

1/2 pt 7o — 1/2
> K)*P'K,} PK})?<C

< PK,| PP <CK," (24)

Recall that we can represent M,(f) as the double operator integral

1 00 00
M0 = [oar s = [ [ S dBA ) B
0 0 0

where E)(p) is the spectral resolution of p. Then

log A — 1 r
// 08 - Og'udE( / +51) " f(p+s1) " tds.
0

Therefore by the noncommutative chain rule (12)
K,(Inp) = V*M,V(Inp) = V*M,M,'V(p) = —L(p).
Then for mean zero elements —Lp € ker(L)* we have

((=Lp), K, (—Lp))er
=((=Lp), K le(lnp)m
=(—=Lp,In p)i

=I(p) .

Similarly, since [P,—L] =0

((=Lp), PK i PT(=Lp))
=(—LPYp,Kp! (~LPTp))
=I(Pp).

Thus by (22) we have
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I(PYp) < CI(p) -
That completes the proof. O

We now show that the Fisher information inequality in Lemma 3.2 is generally suffi-
cient to derive an CMLSI.

Theorem 3.3. Let (M,g) be a Riemannian manifold, L = —Zle XX, is a sub-
Laplacian and Py = e'* is a symmetric Markov semigroup on L2 (M, u) with the
infinitesimal generator L. Suppose there exists a positive function C : [0,00) — Ry

such that

i) for all scalar-valued functions f € dom(I") and t > 0,

L(Pf, P f) < C(t)PI(f, f) (25)

ii) k:= [ C(s)ds < 0.

Then P; satisfies CMLSI (A\) with A\ = 5~

2Kk °

Proof. Assumption i) allows us to apply Proposition 3.1 and Lemma 3.2 to see that for
any bounded and invertible matrix-valued density function p,

I(Pyp) < C(HI(p) -

Then, using the identity
d
I(Pip) = — 2 (D(PpI[E,p)

and FPy(p) = p, lim Fi(p) = E,.p,

/tr(p logp —E,plogE,p)du = D(p||E.p)

Q
= [1epar< [ et =),
0 0

This proves CMLSI for bounded and invertible p. The general case follows by approxi-
mation, see e.g. [11, Appendix]. O
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Theorem 3.3 can be regarded as a matrix-valued extension of Bakry-Emery’s ap-
proach. Indeed, in [1] they proved that if Ricci > A then for a scalar-valued function

F(Ptfa Ptf) g 672Atpt1"(f7 f)a
and therefore

I(P.f) < e ?MI(f).
Thus P; satisfies CMLSI (\), where

00 -1

2
A=2=2 /e—mdt
K
0

This approach works if and only if e=2* is integrable, in other words, the lower curvature
bound A is positive. Recently this method has been extended to a non-positive curvature
regime, where

I(P,f) < e2MI(f) for some A > 0,

and the upper bound is not integrable. The idea is to use L*°-mixing time defined for
0<exl1

t(E) = inf{t >0: ||Pt - IEHHLl(Q)*)Loo(Q) < E}.

The L*°-mixing time approach was used in [18] to prove an LSI via hypercontractivity. It
was proved in [11] that at time ¢(¢), for any matrix-valued density p the relative entropy
(11) from Py.)p to the mean [, p is at most € times the initial relative entropy, i.e.

D(Pye)pl|Enp) < eD(p|[Epp) - (26)
Using this, we have the following version of Theorem 3.3.

Theorem 3.4. Let (M,g) be a Riemannian manifold with a sub-Laplacian £ =
*Zle X;X; and let P, = et be the symmetric Markov semigroup generated by L.
Suppose

i) for some 0 < e < 1, the L*>®-mixing time is finite
t(E) = inf{t >0: ||Pt — IEH”Ll(Q)*)Loo(Q) < 6} < oQ.

ii) there exists a positive function C : [0,t(e)) — R4 such that for all scalar-valued
functions f € dom(T") and 0 < t < t(e),
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L(P.f,P.f) < Ct)PI(f. f) (27)

t(e)
and K¢ := / C(s)ds is finite.
0

1 —
Then P, satisfies CMLST(\.) with A — . 5 2
Re

Proof. The proof is similar to the proof of Theorem 3.3. Note that by (26), we have

D(pl|Epp) = D(Pye)plEpp) = (1 =€) D(p|[Epp).

Then

(1 —e)D(pl[E.p) < D(pl|E.p) — D(Pye)plIE.p)
#(e)
= / I(P,p)dt

0

t(e)
< / COI(p)dt = K1 (p),

which proves the claim. O

The L°°-mixing time t(¢) is finite whenever the semigroup satisfies a Poincaré in-
equality (PI) and ultracontractivity.

||Pt - E;LHLQ(Q,M)—)LQ(Q,N) < ei‘\{t (PI (7))

1 Pio |1 (2, )— Lo (2,) < C' for some to > 0. (Ultracontractivity)

Indeed, for t > tq

1P — Epull 21 (9, — Lo (,0)
<P llrmrz - 1Pitg = Epllzzr2 - [[Prg L2 poe

< ||Pt0||L1~>L°° . ||Pt7to - E#||L2~>L2 < Ce_y(t_t0)~

Therefore, t(e) < % + to.

We now show that under Hérmander’s condition, the gradient estimate (17) for any
short period of time ¢ is sufficient for CMLSI. We recall a lemma from [22, Lemma 2.1
& Lemma 2.2].
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Lemma 3.5. Let p,o € L>®°(M,M,,) be two matriz-valued density functions. Denote the
multiplication operator M;l 2 L®(M,M,,) — L*(M,M,,) and the associate weighted
L?-norm as follows

(oo}
/p—l—sl ) f(p4s1)"tds
0

1= (e Py = M = [t (£G4 51) 7 o4 s1) s
0

Then,

i) if p<Co, C|fllp-1=|fllo—
i) D(pl|Eup) <llp—EuplE,,—

Proof. The proof is almost identical to the finite-dimensional matrix case in [22]. O

Theorem 3.6. Let (M,g) be a Riemannian manifold with p being a smooth probability
measure. Let L = — Zle X7 X; be a sub-Laplacian and denote by P, = etr the symmet-
ric Markov semigroup generated by L. Suppose

i) {X;}E_, satisfies Hormander’s condition.
ii) there exists some 0 <ty < 1 and a positive function C : [0,t9) — Ry such that for
all scalar-valued functions f € dom(T") and 0 < t < to,

L(Puf, Pef) < CQOPL(S, f) (28)

to

and K = /C(s)ds is finite.

0

Then Py satisfies CMLSI.

Proof. By Varopoulos’ dimension condition, we have that for any positive scalar func-
tion f

B <IPifll1<CE™ [fi1=C™E,f, 0<t<1

for some C and m. Then Ct™™E, — P; is a positive map from L (M) to L*>(M).
Note that any positive map onto L (M) is automatically completely positive, be-
cause positivity in L>°(M,M,,) is a.s. pointwise positive. Then, for any matrix-valued
density p
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Pp<CtT™Ep)1,0<t<1

as matrix-valued functions in L*°(M,M,,), where the right-hand side stands for the
constant function of the value E,p = | P dp. For a matrix-valued density p such that
D(p||€up) < 00, we denote p; := Pyp. Then for any 0 <t < 1

D(pt||Epp) < |l pt — Eppllg, p1 (29)
1
<L 1Vl (30)
.
<Vl = LT (31)
\C’)’ Pt ot T C’Y Pt)-

Here (29) uses part ii) of Lemma 3.5, (30) uses the spectral gap v and (31) uses part i)
of Lemma (3.5) and p; = P;p < Ct~"™E, p. Denote h(t) = D(p:||E,p). Then the above
inequality shows that

tm
h(t) < ——h(t),0<t<1
(1) <~ ()
Consider the differential equation
$(t) = ——s(t)
= ,
whose solution is
tm+l

s(t) = e @m0 5(0).
Thus by Gronwall’s inequality
At
D(p|[Epu(p)) = h(t) < e 0 h(0) = D(p||[Eu(p)) , 0 <t < 1.

This implies that for any matrix-valued density p

D(AIIE,(p)) — D(pio|[Ew(p) > (1 — e~ 70 ) D(pl[E,u(p)-

Then using assumption (28),

t'm+ 1

(1 —e 7@ ) D(pl[E,.(p)) <(D(pl[E.(p)) = D(p1ol[En(p))

/I(Pt)dt

N

(=)
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(=)

=rl(p)

which proves CMLSI (A) with

1 __mHl
A=Kk (1—e 7c@F0) . O

3.2. Applications to the sub-Laplacian on SU (2)

We now apply our results to the canonical sub-Laplacian on the special unitary group
SU (2). Recall the skew-Hermitian matrices

Ol,Y:qZ,Z:ZO‘
-1 0 1 0 0 —i

span its Lie algebra over R. The group G = SU (2) is isomorphic to 3-sphere S3 via the

X =

following parametrization
G={cl+a2X+yY +2Z:2+2°+9y*+2°=1,2,y,x,c € R}.
The Lie algebra is g = spang{X,Y, Z} with Lie bracket rules as
[X,Y] =27 [V, Z] = 2X ,[Z,X] =2V . (32)

Suppose that g is equipped with the left-invariant metric such that {X,Y, Z} C g forms
an orthonormal basis, the corresponding Laplacian (Casimir operator) is

A=X24+Y?%24+ 22

It is known that SU (2) has the constant Ricci curvature 2. Then by the complete Bakry-
Emery theorem [31, Theorem 3.4] the heat semigroup Ty = e~ satisfies CMLSI (2).

We are interested in the sub-Riemannian setting. The canonical sub-Riemannian
structure is given by H = {X,Y} as a generating set of g since [X,Y] = 2Z satis-
fies Hormander’s condition. The horizontal sub-Laplacian is

L=X%2+Y2

The semigroup P; = e** on SU (2) has been intensively studied. In particular, Baudoin
and Bonnefont in [5] proved that for all p > 1, the following LP-gradient estimate holds
for all scalar-valued function f,
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b

D(Pif, Pof)s < Cpe ' PD(f, )%), (33)
where C), is a constant depending on p. Applying our Theorem 3.3 for p = 2, we obtain

Theorem 3.7. The semigroup P, = e~ generated by the sub-Laplacian £L = X2 + Y?
satisfies CMLSI (%), where Cy is the constant in (33) for p = 2.

We note that this is the first example that CMLSI is obtained for sub-Laplacians. The
CMLSI constant for sub-Laplacians has direct applications to quantum Markov semi-
group via its representations. The representation theory of SU(2) gives the well-known
spin structure of quantum mechanics, where any irreducible representation of SU(2) is
indexed by an integer m € NT. Let ¢, : su(2) — i(M,,)sa be the Lie algebra homo-
morphism induced by the m-th irreducible representation, and let {|j)|j =1, -+ ,m} be
the orthonormal basis consisting of eigenfunctions 7,,(Z). Denote X,, := ¢, (X), and
similarly for Y,,, and Z,,. Under the normalization of (32),

Xolf) =G -Dm—j+D)j—1)—VG+Dm—j—1)]j+1),
Vali) =iv/G—-Dm—j+ 1)1 +i/Gi+1)(m—j—-1)]j+1),
Zmlj) = (m =25+ 1) 7).

We consider the quantum Markov semigroup

Sy = eﬂmt : My, — M, s
Lin(p) = [Xon, [Xin, pl] + [Yon, [Yin, pl]-
This semigroup can be viewed as a representation of classical Markov semigroup P; :

L>*(G) — L*(G). Indeed, let 7, : G — M, be the mth irreducible representation of
G = SU (2). The following transference diagram holds

L°(G, M) % p00 (. M)

QT QT (34)
M, — 2t s M,,

where the map « is given by
a: M, = L=(G,M,,) ,
a(p)(g) = mm(9)(p)m(9)"

Note that « is an algebra homomorphism, which is an embedding of the matrix algebra
M, into the matrix-valued functions L>°(G,M,,) on G. Under this embedding, the
quantum Markov semigroup S; is exactly the restriction of the matrix-valued extension
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P,®idpg,, on the image of a(M,,). Such a transference relation holds for any (projective)
unitary representation, which yields the following dimension-free CMLSI estimate.

Theorem 3.8. Let S; = et : M, — My, , Lo (p) = [Xon, [Xoms p]] + [Yon, [Yim, p]] be the
transference semigroups above. Then for all m > 1, S; satisfies CMLSI (%)

Proof. This follows from the diagram (34) as in [20, Section 4]. O

The above example was first studied by Li, Junge and LaRacuente [31] with a
dimension-dependent CMLSI constant. It is clear from the diagram (34) that CMLSI
constant for matrix-valued functions in L*°(G,M,,) is crucial for the transference to
quantum Markov semigroup on matrix algebras, while only the LSI or MLSI for the
scalar-valued functions is not enough.

4. Ornstein—Uhlenbeck semigroup on Lie groups

In this section, we discuss matrix-valued modified Log-Sobolev constants for the heat
kernel measures on Lie groups. Before the matrix-valued case, we first review a standard
approach for scalar-valued functions. Let (M, g, d,) be a Riemannian manifold with the
volume form dg and let V and A = V-V be the gradient operator and Laplace-Beltrami
operator respectively. Denote by H; = e”! the heat semigroup. Recall that Bakry and
Emery in [1] proved that Ricci(M) > X for some A € R if and only if the following p = 1
gradient estimate

\VH,f| < CO)H,(|Vf]), for all f € CX(M),t >0 (35)

holds for C(t) = e=*. Let u? be the heat kernel measure at some point = € M such that
H f(x) = /fduf .
M
It is well known that the gradient estimate (35) for p = 1 implies the LSI for puf

[ 7708 2t - ( / f2duf) log ( / f2duf) <o [ 1vsPaus (36)

with the constant x = fg C(s)?ds. This further implies an MLSI, namely, that for g > 0

/gloggduf - (/gdut> log </gdut) < t/%dut- (37)

In terms of the semigroup, (36) and (37) are equivalent to respectively hypercontractivity
and exponential entropy decay for the Ornstein—Uhlenbeck semigroup
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Py =el5 Ly = V"V,

where V* is the adjoint of V in L?(duf) and L, is symmetric with respect to the
measure [ty .

The proof of (36) and (37) from (35) is now standard (cf. [2, Theorem 6.1]). Indeed,
(37) follows from the function inequality at point x € M,

Hy(glog g) — Hy(g)log Hi(g) < gHt (%) : (38)

Fix t > 0, and for g € C°(M) we define
G:[0,t] = C®(M), G(s) = Hy(H;_sglog H,_.g).
Note that
Hy(glogg) = G(t) ,Hy—sglog H;_sg = G(0) .

Then

t

Hi(glogg) — Higlog Hig = G(t) — G(0) = /BSG(s)ds .
0

The derivative is given by

0sG(s) =AH (H;—sglog Hy—sg) — Hs (AH;—s)glog Hy—sg) — Hs(AH;s9)
=H, (A(H¢-sglog Hy—s9) — (AH,—sg) log Hi—sg — AH;—,g)
=H (A(H;-sglog Hi—sg9) — (AH;—sg)log Hy—sg — AH;—s9)
=2H; (VH;—sg - V(log H;—s9g))

2
:2Hs <|VHtsg > ,
Ht—sg

where we used the product rule for A=V -V

A(flog f) = A(f)log f + fA(log f) +2V fV(log f) .
Here comes the step using the gradient estimate for p = 1 which gives that for any s > 0,

Hs 2 Hs 2 2
|V g| < s 2 (|v9|) < 0(5)2H5(|v9|

Hyg (s) Hyg g ) (39)

12

where the second inequality uses the joint convexity of the bivariate function (z,y) — R
Then (38) follows immediately from the semigroup property
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t t
H,_.q|? 2
Hy(glogg) — Hyglog Hyg gg/HS (M) ds@C(S)Q/HHHS <|Vg )d
0 0

Ht—sg g

[Vgl|?

—2/0 2ds)Hy(NI0).

To summarize, the key consequence the gradient estimate (35) for p = 1 used above is
that

|VHt9|
Hg

[Vgl|?

IVH f| < COH(IVf]) = SC)PH(—) . (40)

This approach can be used to recover Gross’ LSI for the Ornstein—Uhlenbeck semigroup
on R™ as well as the Heisenberg group in [2] in the sub-Riemannian setting, for which
the gradient estimate (35) for p = 1 was proved by H.-Q. Li in [37] with C(¢) = C being
constant.

Given Theorem 3.6 using the gradient estimate for p = 2, it is natural to consider
whether the gradient estimate for p = 1 can be used to tackle the matrix-valued case.
However, there are two obstructions. First, it is not clear whether p = 1 gradient estimate
extends to matrix-valued cases as in Proposition 3.1. Note that for a matrix A, the
absolute value |A| should be interpreted as v/ A* A using functional calculus for positive
operators. For a matrix-valued function f € C°(M), we have the gradient vector Vf =
(Xif,, Xpf) and |Vf] = /3, (Xif)*(Xif). Secondly, we also lack of (40) in the
matrix-valued case as an analog of Lemma 3.2 for p = 2. These observations make it
unclear whether (35) implies a CMLSI for the Ornstein-Uhlenbeck semigroup.

In the following, we shall show that the above approach partially works for matrix-
valued case if we have the exact commutation relation

VH,f =e MH, VY. (41)

Equation (41) is also called an intertwining relation. It was first introduced by Carlen
and Maas in [14] as a sufficient condition to derive the entropic Ricci curvature condition.
Here we present a different use of it. The natural example of spaces for which (41) holds
are groups. Let G be a Lie group equipped with a left-invariant metric. Let Xq,---, X,
be a O.N.B of the Lie algebra of left invariant vector field. It is well known that the
Casimir element A =", X2, which is also the Laplace-Beltrami operator, is a central
element for the Lie algebra. Thus for the gradient operator V = (X1, -, X,,)

VAf=AVf,VH f=HNVf, VfeCX(M), (42)

which is an intertwining relation (41) with A = 0.
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Theorem 4.1. Let G be a locally compact Lie group equipped with a left-invariant metric.
Let Hy = e®t be the heat semigroup and denote p; as the heat kernel measure (for the
identity element). Then for any positive matriz-valued function g € C°(G, M,,)

e ]
tr Hy(glogg) — tr(Hyglog Hyg) < 2t tr Hy /Vg (g+71)~ (Vg)(g+r1)_1d7“),
0

where 1 is the constant matriz-valued function of identity operator. In particular, the
Ornstein—Uhlenbeck semigroup P, = e’t* satisfies ——CMLSI where Ly = V*V is the
generator symmetric on L*(dpy).

Proof. Let g € C°(G, M,,) be a matrix-valued function on G and g(z) > 0 for all x € G.
For the ease of notation, we write Hyg := (H; ®idyy, )g and Ag = (A®idyy, )g. Fixt > 0
and define the function

G: 0,4 — C=(M), G(s) = tr (HS(Ht,Sglog Ht,sg)).

Then

t

tr H, (g1og g) — tr(Hyglog Hyg) = G(t) — G(0) = / 0.G(s)ds
0

Recall that for a smooth scalar function ¢ : (a,b) — R on a interval (a,b) and matrix-
valued function s — g(s) with specg(s) C (a,b),

L tx(0(9(5))) = tr('(9(5))g/(5) (43)
The derivative with respect to s is given by
8,G(s) :AHs(tr (Hy—sglog Hy_yq) ) + H, (tr(fAHt_sg(log Hy sg+ 1)))
:Hs(tr (A(H;—sglog Hy—sg) — A(Hy—sg)log Hy—sg — A(Htfsg))> ,

where we used (43) with ¢(x) = zlogx and the fact that H; tr = tr H; commute (more
precisely, Hy tr = tr(H; ® idyy, ). By the product rule for A =V -V,

A(flog f) =A(f)log f + fA(log f) + 2V fV(log f).

Using the noncommutative derivative,

V(log f) = /f+r1 (VA(f +r1) ar,
0
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V((f+r)™) ==(f+r1)"Y(V)(f+r1)7",

we have
Alog f) =9+ ([ (7m0 V(S +r1))
0
/f+r1 (Af)(f +r1)tar
0
= / (f + ) XN + ) X+ )
L)
Then

tr (A(flog ) = (Af)log f — Af)
tr ( FA(log f) + 2V fV(log f) — A f)

= ([ £+ AN ) ar)
0

—tr (Af).

The first and the last term cancel out

27

(44)

7f (f+r1) "L (AF)(f+r1) 1dr — tr /ch (f+r1) = (f+r1)~ 1dr)Af>:tr<Af),
0 0

where we used the tracial property tr(AB) = tr(BA) and the integral identity

(A+r1) PA(A+r)dr =1

for a positive operator A. Also, the second term is always negative. Note that for positive

f, (Xif)* = X f is self-adjoint. Then for any s > 0,
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tr (S0 + ) XN +r) T X+ 1))
=t (F2(f + ) XS + 1) XSS+ 1) L)
—tr (20 + 1) K 1) D) (4D &+ 1) 7)) > 0.
Applying the above estimate to f = H,_.g, we see that

tr (A(Htfsg IOg Htfsg) - A(Htfsg) 1Og Htfsg - A(Htfsg))

<2 Ztr (/(Xth_sg)(Ht_sg + Tl)*l(Xth_Sg)(Ht_sg + rl)*ldr)

:2tr<

(—1)2tr<

(VHo9)(Hyosg + 1) (VH,og)(Heog + 1) "dr)

(Hu oV 9)(Hyog + 1)~ (Hy- Vg)(Hy—og + 11) " dr)

0\8 0\8

<2Ht s tT /Vg (g+7r1)” (Vg)(g—i—rl)_ldr).
0

Here, (1) uses the commutation relation VH;g = H;Vg, and (2) uses the joint convexity
of the trace function (see cf. [44, Eq. (7)])

(A,B) € (M) x (My,)4 tr /A (B+7r1)"'A(B +r1)*1dr).
0

Finally, using the semigroup property we see that

t

tr Hy(glog g) — tr(Higlog Hig) = /@G(s)ds (45)
0
<2/H3Ht_str / g+rl)” (Vg)(g—l—rl)*ldr)ds

0

t o]
:Z/Httr</ Vg)(g+rl)” (Vg)(g—H"l)*ldr)ds
0

:2ttrHt( (Vg)(g+ 1) (Vg)(g+r1) 1dr) . (46)
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To see that this implies a CMLSI, we note that H;f(e) = E,, f at the identity element
e and the Fisher information for a positive matrix-valued function g € C°(G, M,,) is

I(g) = /tr (7(%])(9 +r1)‘1(V9)(g+r1)‘1d7")dpt.
0

G

Then (45) at the identity element z = e gives

D(g||Ep,g) = / tr(glog g) — tr(E,,glogE,, g)dp:

=tr Hy(glogg) — tr(Higlog Hig)|z=e

o0

<L2ttr H; ( /(Vg)(g +71)"H(Vg)(g + rl)—ldv") lo=c
0

2t [ [Va)g+r1) (Voo + 1) ar)dy
=2tIG(g) : 0

That completes the proof. O

Remark 4.2. Comparing to the scalar-valued case (37), our constant differs by a factor
of 2. This is because for a scalar-valued function f, we can find (44) explicitly

oo

- 2(/00f(f+r1)‘3|Vf|2dr) - 2(/(f+r1)_2|Vf|2dr)
0

0
=~ [V +2f VP = VP,

which gains a factor of 2 compared to the matrix-valued case.
5. Final discussion

We end our discussion with some remarks on connection to the noncommutative
setting and extendability of our results.

The assertion (i) in the key Proposition 3.1 is closely related to the I'y-condition intro-
duced by M. Junge and Q. Zeng [33] for noncommutative symmetric Markov semigroup.
In particular, they showed that if a Riemannian manifold has its Ricci curvature bounded
below by A, then the heat semigroup T; satisfies

[F(thithfj)]i,j < e—2>\t [Ttr(f% fj)]i,j . (47)
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Part i) in Proposition 3.1 extends this to the sub-Laplacian case for a single Markov map
P. Although (47) gives a matrix-valued version of Bakry-Emery’s curvature-dimension
condition, it is not clear whether (47) in the matrix-valued case or noncommutative
setting implies a MLSI. On the other hand, part ii) of Proposition 3.1 for matrix-valued
function f

(VT f, A (VTLf)B ) < e 2V f(T] A (V)T B) ), (48)

is more related to complete gradient estimates studied by Wirth and Zhang [51]. Their
complete gradient estimates were inspired by the entropic Ricci curvature lower bound
introduced in the work of E. Carlen and J. Mass [14], and N. Datta and C. Rouzé in
[17], which are powerful tools in deriving modified log Sobolev inequalities for quantum
Markov semigroups [10,11]. It is clear that (48) is more general than (47) by choosing
A = B and s = 0, and they coincide when reduced to scalar-valued functions. They
differ in matrix-valued cases because the matrix multiplication is not commutative, and
there are various ways to multiply a matrix A by X, such as AX, XA and ASXA'~5,
Proposition 3.1 basically shows that for sub-Laplacians, (47) and (48) are equivalent and
both reduce to Bakry-Emery’s curvature dimension condition for scalar-valued functions

D(T,f, T f) < e *MT,I(f, f) - (49)

One can consider whether the above equivalence holds beyond the sub-Laplacian
case. Indeed, the equivalence between (47) and (49) holds with for all symmetric Markov
semigroup with the same argument as used in Proposition 3.1. The equivalence between
(47) and (48) is more involved. To formulate (48) for a general symmetric generator
P, = elt 1 L®(Q) — L*>(Q), one needs a densely defined closed derivation operator
§ : L*(Q) — H such that L = —§*§, where H is a Hilbert module or more specifically
L?-space. It was proved in a preprint by M. Junge, E. Ricard and D. Shlyahktenko
[32] that every symmetric (quantum) Markov semigroup admits such a derivation on
a noncommutative L2-space L?*(M) of some von Neumann algebra (see also the more
recent preprint [50] for the strongly continuous semigroup). The proof for part ii) of
Proposition 3.1 works as long as the range of ¢ commutes with the functions in L>(Q),
which is obvious for sub-Laplacians because the range of V. = (X, --,X}) can be
viewed as the diagonal matrices in C*° (M, My,). Nevertheless, in a private communication
Melchior Wirth pointed out to us that this is unlikely to hold for quantum Markov
semigroups.

Our main Theorem 3.6 states that any sub-Laplacian £ = — Zle XX, generated
by a collection of vector fields satisfying (i) Hormander’s condition and (ii) the gradient
estimates

L(Pf, P f) < CH)PI(f, f) (50)
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for some integrable function C(t), satisfies a CMLSI. Up to the writing of this paper, such
estimates were obtained for SU (2) in [5] and for nilpotent Lie groups in [41] including
Heisenberg group in [19]. An interesting question is to explore whether (50) holds for a
larger class of sub-Laplacians on Lie groups, which by our results will imply a CMLSI
and a dimension-free estimate for the corresponding quantum Markov semigroups as
discussed in Section 3.2. On the other hand, such results were achieved by Gao, Junge,
LaRacunte and Li in a preprint [21], which proves that one point ultra-contractivity plus
spectral gap implies CMLSI. Their results in particular give CMLSI for sub-Laplacians
of any Hérmander system on a compact manifold.
The intertwining relation

VP.f=eMPVf (51)
is obviously a stronger condition than Bakry-Emery’s curvature-dimension inequality
IVEfI < C()P(IVf]), forany f e CZ(M),t>0, (52)

hence can be used to derive an CMLSI for the semigroup P; itself. Indeed, the Ornstein—
Uhlenbeck semigroup on R™ satisfies VP, f = e~*P;V f with A = 1, which is an alterna-
tive approach to a CMLSTI for the Gaussian measure in [31]. In the sub-Riemannian set-
ting, (51) is never satisfied because of lack of curvature lower bound. So our method here
does not apply to Ornstein—Uhlenbeck semigroup on Heisenberg group studied in [2,37],
for which the standard (scalar-valued) log Sobolev inequality can be obtained from (52).
In that sense, finding a CMLSI for the sub-Laplacian Ornstein—Uhlenbeck semigroup on
the Heisenberg group remains an open question. For the more applications of intertwining
relations to CMLSIs in the noncommutative setting, see [10,11,14,15,17,31,51,52].

Data availability
No data was used for the research described in the article.
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