
IEEE INTERNET OF THINGS JOURNAL 1

GreenScale: Carbon Optimization for
Edge Computing

Yonglak Son , Udit Gupta , Andrew McCrabb , Young Geun Kim ,
Valeria Bertacco , David Brooks , and Carole-Jean Wu

Abstract—Given billions of mobile users, the environmental
impact of edge computing is significant. To address this, future
applications need to execute computations on a green component
which is fueled by renewable energy sources. However, because
of the intermittent nature of the renewable energy sources,
the carbon intensity of computing components can significantly
vary with location and time of use. This poses a new challenge
for edge applications — deciding when and where to run
computations across consumer devices at the edge and servers in
the cloud. Such scheduling decisions become more complicated
with the amortization of the rising embodied emissions and
stochastic runtime variance. This work proposes GreenScale, an
intelligent execution scaling engine that accurately selects the
carbon-optimal execution target for edge applications in different
runtime environments. Our evaluation with three representative
categories of applications (i.e., AI, Game, and AR/VR) demon-
strate that the carbon emissions of the applications can be
reduced by 35.2%, on average, with GreenScale.

Index Terms—Edge-cloud computing, carbon footprint opti-
mization, computation offloading, reinforcement learning.

I. INTRODUCTION

D IGITAL technology advancement has improved many
dimensions of our lives. Despite the positive societal

impact, the Information and Computing Technology (ICT)
sector has caused significant energy and environmental over-
heads worldwide. As of 2019, estimates show that the carbon
emissions from ICT account for 2% of worldwide emissions,
half that of the aviation industry [1]. It is expected to increase
to 14% of worldwide emissions in the next decade [1].

Recognizing the environmental implications, computing in-
frastructures have been significantly optimized for hyperscale
datacenters [2], [3] in the past decades, primarily focused
on operational efficiency. Further operational efficiency im-
provement is increasingly challenging. In addition to the
efficiency optimization, renewable energy, such as solar and
wind, is increasingly adopted to reduce computing’s carbon
footprint [4]–[6]. However, as renewable energy generation is

Yonglak Son and Young Geun Kim are with the Department of Computer
Science and Engineering, Korea University, Seoul, South Korea (e-mail:
yonglak son@korea.ac.kr; younggeun kim@korea.ac.kr).

Udit Gupta is with the Department of Electrical and Computer Engineering,
Cornell Tech, Roosevelt Island, NY, USA (e-mail: ugupta@cornell.edu).

Andrew McCrabb and Valeria Bertacco are are with the Department of
Computer Science and Engineering, University of Michigan, Ann Arbor, MI,
USA (e-mail: mccrabb@umich.edu; vale@umich.edu).

David Brooks is with the School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA (e-mail: dbrooks@g.harvard.edu).

Carole-Jean Wu is with the AI Research, Meta, Cambridge, MA, USA
(e-mail: carolejean.wu@gmail.com).

intermittent [7], [8], the carbon intensity of computing varies
with location and time of use.

Furthermore, recent works have highlighted a fundamental
carbon bottleneck shift from operational to embodied carbon
emissions [9], [10]. Taking consumer electronics, such as
Google Pixel3 [11], as an example, embodied carbon footprint
accounts for 50.6% of its total carbon footprint while running
state-of-the-art edge applications, outweighing the operational
carbon footprint. To minimize the total carbon footprint of
computing, sustainability-driven optimization techniques must
consider the role of embodied carbon — an important but
overlooked aspect. While carbon modeling tools [10], [12],
[13] and metrics [14] are starting to emerge for software
development [15], [16] and hardware design [17], [18] con-
sidering the embodied emissions, prior works in carbon-aware
scheduling have primarily focused on operational emissions
only [19]–[21].

Recent work has started considering the design space of
total carbon footprint for carbon-aware datacenter manage-
ment [19]–[21], but they have not looked into the carbon
optimization of scheduling for edge computing by considering
both operational and embodied carbon emissions of com-
puting and networking components. While [7], [22] consider
embodied emission for computation shifts across datacenters,
they do not consider the emissions of local edge devices and
network infrastructure — their emissions are also significant
though. Making mobile edge applications green with minimal
carbon impact to the planet matters, especially given its scale
— with billions of mobile users [23], it is expected that the
annual carbon emissions of edge computing will be more than
481.7MtCO2 in 2025 [24]–[30], accounting for 63.0% of the
total ICT emissions.

Existing mobile applications can adopt scheduling policies
to maximize energy efficiency, in order to prolong battery
life while meeting application-specific performance require-
ments. Prior works have considered hardware heterogeneity
on-device [31]–[33] and that across the edge-cloud computing
spectrum [34], [35]. However, these schedulers are not tailor-
designed for carbon optimization which has distinct features
with the energy optimization — i.e., heterogeneous carbon
intensity and embodied emissions. More recently, [36] pro-
posed a carbon-aware scheduler which tries to minimize the
CF of edge computing by considering heterogeneous carbon
intensity. However, [36] does not consider heterogeneous
charging behaviors of edge devices, embodied emissions, and
runtime variance, which also have a significant impact on the
overall CF of edge computing.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 2

In this paper, we propose GreenScale — a reinforcement
learning-based scheduler — that forms the foundation for
green mobile applications. GreenScale minimizes the total
carbon impact for edge computing while meeting application-
specific performance requirements. GreenScale learns and
adaptively acts on (1) varying carbon intensity of energy
sources over time and across different geographical loca-
tions, (2) embodied carbon emissions, and (3) stochastic
performance variance from resource interference and network
instability. In our evaluation, GreenScale improves the carbon
emissions of the important edge application categories — AI,
Game, and AR/VR — by 35.2%, on average, over the state-
of-the-art scheduler. The core contributions of this work can
be summarized as follows.

1) We provide an in-depth characterization of carbon design
space for edge computing. Our exploration demonstrates
that the carbon-optimal execution target for edge com-
puting significantly varies with the impact of runtime en-
vironments and the amortization of embodied emissions
(Section IV).

2) We propose a carbon-aware execution scaling engine,
GreenScale, that accurately selects the carbon-optimal
execution target for edge-cloud applications in different
runtime environments (Section V).

3) To demonstrate the feasibility and practicality of the
proposed execution scaling engine, we implement and
evaluate GreenScale with a variety of edge computing
use cases using real systems and devices (Section VII).

II. BACKGROUND

A. Edge Computing
Applications aiming to run on the client devices at the edge

can exploit distributed heterogeneous computing resources
in the network hierarchy, from the edge to the cloud data
centers [37]. Fig. 1 shows examples of such execution scaling
for edge computing.

Edge devices are the computing resources located at the
edge of the network [37]. Examples of the edge devices
include smartphones, smartwatches, laptops, appliances, and
so on. Traditionally, edge devices acted only as frontend user
interfaces, user-end sensors, or both for edge applications.
Recently, with the advancements in powerful mobile systems-
on-a-chip (SoCs), a varying amount of computations can be
executed locally on edge devices, as shown in Fig. 1(a),
removing the network overhead [38], [39]. .

Edge data center (Edge DC) refers to small-scale data center
co-located with cellular base station (BS) in edge network [37].
Edge applications can offload computations to edge DC with
tolerable data transmission overhead (from 5 ms to 20 ms
depending on its location) [40], as transmission data (e.g.,
input/output of computations) only needs to pass through the
edge network, as shown in Fig. 1(b). However, due to space
and scalability limitations, the servers in an edge DC usually
have less computing capabilities than those in a hyperscale
DC [40].

Data center (DC) refers to the large-scale data center
usually operated by industrial companies or cloud service

Fig. 1. Examples of execution scaling in edge computing.

providers [41]–[43]. DCs usually benefit from economies of
scale for large workloads and co-locations by exploiting a
large number of highly efficient co-processors, such as GPUs.
However, offloading computations to a DC usually incurs
higher network overheads than that to an edge DC, as the
transmission data needs to pass through not only the edge
network but also multiple hops of routers in the core network,
as shown in Fig. 1(c).

Given billions of mobile users, carbon footprint (CF) of
edge computing can be significant. In the next subsection. we
explain the major sources of the CF in edge computing.

B. Carbon Footprint of Edge Computing

The CF of each edge computing component is composed of
the operational (OPCF) and embodied (ECF) emissions [10],
[12], [13]. The former is the emissions from the energy
consumption operating the component, and the latter is the
emissions for manufacturing its hardware (e.g., processor,
memory, storage, etc.). As in [7], [14], the embodied emissions
can be discounted based on the application runtime, T, over the
overall lifetime of the system, LT, and the number of resources
used by the application (e.g., the number of DC HWs allocated
to the application), N, over that of total available resources,
Ntotal. Typically, lifetime of servers and mobile devices is 3-5
years and 2-3 years, respectively [13].

CF = OPCF + ECF → T

LT
→ N

Ntotal
(1)

The OPCF of a component is calculated as the product
of the energy consumed by the component and the carbon
intensity (CI) of the energy [13].

OPCF = Energy → CI (2)

The ECF can be obtained by referring to the environmental
product reports of industrial companies generated by life cycle
analysis (LCA) tools [44], [45], or by using the architectural
carbon modeling tools [10], [12], [13]. The LCA tools quantify
ECF of HW components using coarse-grained information
(e.g., economic cost of electronics and materials). On the other
hand, the architectural tools calculate ECF based on a variety
of parameters (e.g., SoC area, energy per area, yield, raw
materials, etc.), or its relative ratio to OPCF .

In edge computing, as shown in Fig. 1, different components
can be used by each user depending on which computing

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 3

component is selected as the execution (or offloading) tar-
get [37]–[39]. For example, if the user device is selected as the
execution target for a user, the device may only be used for
executing the computations, while the rest of the components
are used for the other users (or remain idle). On the other
hand, if one of the remote servers (in either an edge DC or
DC) is selected as the execution target, the server and the
associated network components (e.g., network interfaces of the
mobile device and DC, base station, and/or core routers) may
be used as the computing and communicating components,
respectively, shared across the allocated users. Here, the total
carbon emission of the selected execution target for a user
can be calculated based on the emissions of the associated 1)
computing (CFcomp), 2) communicating (CFcomm), and 3)
idle (CFidle) components, as in (3), where U represents the
number of users co-sharing the components.

CF =
CFcomp

Ucomp
+

CFcomm

Ucomm
+

CFidle

Uidle
(3)

Given significant CF of edge computing, many prior works
have tried to reduce emissions by focusing on minimizing
operational emissions of datacenter [19]–[21] or improving
energy efficiency of mobile applications [34], [35]. Unfortu-
nately, the prior works often fail to fully address the overall CF
of edge computing, which is significantly affected by various
features. In the next section, we explain these features one-
by-one.

III. CHALLENGES OF CARBON OPTIMIZATION

In this section, we introduce various features that affect
the overall CF of edge computing, which makes the carbon
optimization challenging.

A. Heterogeneous Carbon Intensity
The operational carbon efficiency of each edge computing

component depends on the CI of energy sources powering
the component [7], [8], [21]. Renewable energy sources (i.e.,
wind and solar) typically have lower CI than the other energy
sources. Thus, to improve the carbon efficiency of edge com-
puting, it is crucial to run computations on a green component
which is fueled by the renewable energy sources.

Unfortunately, generation of the renewable energy is not
always available at any single location all the time [7], [8],
[21]. For example, solar energy is only available with sunlight
at any location, whereas wind energy is available intermittently
throughout a day. The availability of these energy sources can
even be affected by the location of the power grid and the
climate (e.g., solar radiation, clouds, etc.). As a result, the
overall CI of each power grid significantly fluctuates within a
day [7], [8], [21], and the power grids in different locations
have different CI, as shown in Fig. 2. This may affect the CI of
the components powered by each grid, making it challenging
to find the green components.

To this end, the CI of each component is determined by
when, where, and how the component is charged or powered.
For client devices, the CI is determined by when and how
the users charge the battery [46]. On the other hand, for

Fig. 2. Time-dependent carbon intensity of power grids in different locations
of US. The x-axis shows the time, y-axis shows the power grids in different
locations, z-axis and color represent the CI.

the server systems in a DC, the CI is determined by which
energy source is used to power the DC and the location of the
grid powering the DC [7], [21]. Consequently, to identify the
green component for the execution of the computations, it is
important to consider the heterogeneous CI.

B. Amortization of Embodied Emission
Although it is not possible for edge applications to directly

adjust the embodied emissions of the components, the em-
bodied emissions can be discounted based on the application
runtime over the lifetime of the components, and the number
of resources used by the application over that of the total
available resources [7], [14]. For example, when the compu-
tations of an application are shifted from many user devices
to a DC, the operational emissions can be saved by relying on
more renewable energy available at the DC. However, such
computation shifts may increase the embodied emissions if
more servers are allocated to handle the increased requests
(i.e., rebound effect).

From the global perspective, if we distribute computations
of an application to various targets, we can exploit less-
powerful devices to execute the fragmented computations [16].
This extends the upgrade cycle of the devices, translating to
less embodied CF overall. We can also reduce the number of
servers allocated to an application exploiting user devices. The
servers then can be provisioned to the other applications [7].
This potentially reduces installations of the new servers, trans-
lating to less embodied CF. According to our analysis, if the
lifetime of the components is extended by 1-3 years, the total
CF can be reduced by 44.2%, on average, for various edge
applications. Consequently, when we determine the execution
target of computations, we need to carefully consider the trade-
off between the operational and embodied emissions.

C. Inherent Uncertainty
Execution in edge-cloud environment inherently contains

uncertainty due to its stochastic nature [37]. For example, the
CI of components can fluctuate due to changes in renewable
energy generation. In addition, execution time and energy
consumption can be significantly affected by resource interfer-
ence from co-located workloads and network variability. Such
uncertainty can affect the CF of components, as it is directly
related to both CI and execution time.

1) Carbon Intensity Fluctuation: In the real world, the
generation of renewable energy (e.g., solar, wind, etc.) in
power grids can fluctuate substantially due to climate changes

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 4

Fig. 3. Carbon optimization design space across edge-cloud infrastructure. (a)
shows the normalized energy and performance of execution targets available
for various workloads and (b) shows their normalized CF. Note the energy and
CF are normalized to those of Mobile in each workload, while the performance
is normalized to the performance constraint.

(e.g., clouds, turbulence, solar radiation, etc.) [7], [8], [21].
Furthermore, the generation of other energy sources can
fluctuate during the generation process [47]. As the CI of a
power grid is determined by the amount of energy generated
by each energy source, the CI can also fluctuate frequently
and unexpectedly, along with the varying energy generations.
Given the linear relationship between the CI and the amount
of operational CF, uncertainty in CI can affect the operational
emissions of each component.

2) Runtime Variance: In a realistic execution environ-
ment, there can be several co-located workloads not only on
DCs [48], but also on the user devices [49]. The resource
interference from the co-located workloads can affect the
efficiency of computing components substantially [34], [50].
Network variability stemming from varying wireless signal
strength in edge network and traffic in the core network can
also affect the communication efficiency [51], [52]. Thus, it
is also crucial to consider the stochastic runtime variance for
edge computing.

IV. CARBON DESIGN SPACE FOR EDGE COMPUTING

In this section, we explore the design space of carbon-aware
scheduling for edge computing. The design space includes
the scheduling decisions (i.e., allocations of a user’s requests
across edge-cloud infrastructure) in various environments. We
explore three state-of-the-art edge workloads: artificial intel-
ligence (AI), game, and augmented/virtual reality (AR/VR).
Details of the workloads and edge-cloud execution setup are
explained in Section VI.

A. Carbon Design Space Overview

Fig. 3 shows (a) latency, energy consumption, and (b)
carbon footprint (CF) results of edge applications. The x-axis
shows the available execution targets for each workload.

As shown in Fig. 3, the energy-optimal execution target
(blue star) is different from carbon-optimal one (green star)
— the CF gap between the carbon-optimal target and energy-
optimal one is 27.1%, 35.5%, and 21.1%, for AI, Game, and
AR/VR workloads, respectively. There are two reasons: 1)
the operational CF (solid area in Fig. 3(b)) is different from
the energy consumption (Fig. 3(a)) due to the heterogeneous
carbon intensity (CI) and 2) the amortization of embodied CF
(shaded area in Fig. 3(b)) contributes to the total CF.

Fig. 4. (a) Battery charging patterns of nighttime charger (green area) and
on-demand charger (yellow area) along with the hourly CI of California and
New York, and (b) the overall CI of the two battery charging scenarios in
different locations.

Fig. 5. CF of execution targets running SqueezeNet for users with different
charging scenarios in (a) California and (b) New York. CF is normalized to
that of Mobile in Nighttime Charger.

In Fig. 3, the carbon-optimal execution target also varies
with the computation-communication ratio of the workloads.
For example, in case of AR/VR workload, the carbon optimal
execution target is Mobile due to the smaller computation-to-
communication ratio. On the other hand, in case of AI and
Game workloads, the CF of DCs is the lowest, due to the
larger computation-to-communication ratio which can benefit
from higher computing capabilities of DCs.

Takeaway 1: Carbon optimization is distinct from en-
ergy optimization. The carbon-optimal target depends on
the workload characteristics.

B. Heterogeneous Carbon Intensity

In this subsection, we further explore the impact of het-
erogeneous CI on the operational carbon emissions of each
component. To explore the realistic CI of the components,
we employ the hourly energy generation data of all the
US power grids [53], [54] along with the statistical energy
charging/powering models of the components.

Carbon intensity of mobile: In case of the user devices,
there can be two different battery charging scenarios [55]:
1) nighttime charger who charges the battery at night and
2) on-demand charger who charges the battery on demand
throughout a day. To consider the impact of the battery charg-
ing scenarios, we employ empirical models of users’ battery
charging behaviors [56], [57] (i.e., hourly battery charge rate
trace over the week). Fig. 4(a) shows the two battery charging

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 5

Fig. 6. CF and latency of execution targets running ResNet for users with
different time in (a) California and (b) New York. CF is normalized to that
of Mobile in each time of use.

Fig. 7. CF and latency of execution targets running MobileNet with two
different embodied CF modeling tools. CF is normalized to that of Mobile
with ACT.

scenarios along with the hourly CI of California and New
York. As shown in Fig. 4(b), the CI of the two scenarios can
vary depending on the location of the users. In addition to
the two scenarios, we also consider intelligent chargers who
charge the battery when the renewable energy is available at
the close grid to explore their carbon impact.

Fig. 5 shows the CF of an AI workload (SqueezeNet) with
different charging scenarios for (a) mobile users in California
and (b) those in New York. The x-axis shows the three
execution targets with different battery charging scenarios.

Typically, in case of the Nighttime Charger, the CI of
Mobile is usually high since the battery is charged during the
night when less amount of renewable (i.e., solar energy) is
available. When the charging behavior changes from nighttime
charger to intelligent charger, the CI of Mobile significantly
decreases, saving the overall CF by up to 61.2%. In this case,
the carbon-optimal target shifts to Mobile.

As compared between Fig. 5(a) and (b), even when the users
in California and New York have the same charging behavior,
the carbon-optimal target differs — this is because the amount
of renewable energy generation depends on the location.

Takeaway 2: The carbon-optimal target varies with the
charging behavior of users and their location. Intelligent
carbon-aware battery charging for client devices reduces
CF by up to 61.2%.

Carbon intensity of DCs: In case of DCs, the CI can vary
depending on the location and time. To consider this impact,
we use the location information of cloud services’ DCs [58],

Fig. 8. Impact of CI fluctuations on the scheduling decisions. (a) shows the CI
of the CAISO and (b) shows the CF of execution targets running 1st-Person
Shooting Game at different time. CF is normalized to that of Mobile at 7:00.

Fig. 9. CF and latency of execution targets running Inception with runtime
variance. CF is normalized to that of Mobile with no variance.

[59], and different time of use (daytime and nighttime). Fig. 6
shows the CF and latency of ResNet with different time of
use for users in different locations.

As shown in Fig. 6, CF of the execution targets varies
depending on the time when users use the application — the
carbon-optimal target shifts from closer DC in daytime to Mo-
bile in nighttime for users in California. As compared between
Fig.6(a) and (b), the carbon-optimal target also depends on the
location of users.

Given the time- and location-dependent CI, it is also possi-
ble to consider DCs in different locations — e.g., a farther
DC with plenty of renewable energy [60]–[62] — as the
execution target. In Fig.6, although farther DCs can have lower
CI, offloading to the farther DCs often violates the latency
constraint due to the increased network latency.

Takeaway 3: Scheduling across the components needs
to carefully consider the geographical trade-off between
CI and latency.

C. Embodied Carbon Emission
In this subsection, we explore the impact of embodied CF

on the carbon-aware scheduling, by using two embodied CF
modeling tools, i.e., ACT [13] and LCA [11]1. Fig. 7 shows
the latency and CF (with two different modeling tools) of
execution targets for MobileNet. In Fig. 7, ACT indicates
Mobile as the carbon-optimal target whereas LCA indicates
Edge DC as the optimal one. This discrepancy comes from dif-
ferent patterns of latency (which linearly affect the discounted
embodied CF) and operational energy of the targets. Given
the higher estimation of embodied CF of LCA (compared to
ACT), this result implies rising embodied CF should be further
considered when designing green systems.

1Among the various embodied CF modeling tools, we use ACT and LCA
since they estimate lower and upper bound embodied CF, respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 6

Fig. 10. GreenScale design overview.

Takeaway 4: Giving rising embodied CF of the com-
ponents, amortization of embodied emission should be
carefully considered when designing green systems.

D. Inherent Uncertainty
In this subsection, we explore the impact of inherent uncer-

tainty on the scheduling decisions based on the measurements.
1) Carbon Intensity Fluctuation: To explore the impact of

CI fluctuations, we collect the CI of grids at minute level
intervals [63]. Fig. 8 shows (a) the CI of the grid in California
(i.e., CAISO), and (b) CF results for 1st-Person Shooting
Game at different time. In Fig. 8(a), the CI decreases by
up to 24.2% within 10 minutes, due to a sudden increase of
renewable energy generation. This decreases the CF of DC
by 14.0%, shifting the carbon-optimal execution target for the
Game application, as shown in Fig. 8(b).

2) Runtime Variance: For the interference from co-located
workloads, we measure the computation latency on each com-
ponent while running other workloads simultaneously [34],
[48]. We also measure the network latency under an unstable
network [51], [64], [65]. Fig. 9 shows the CF and latency of
Inception when there is no runtime variance, when there exist
co-located workloads, and when the network is unstable.

When there is no runtime variance, the carbon-optimal
execution target is Edge DC. However, when there exist co-
located workloads, the carbon-optimal target shifts to DC.
This is because the adverse impact of co-located workloads
depends on the computation and memory capabilities of each
component. On the other hand, when either the edge network
or core network is unstable, the carbon-optimal target shifts
to Mobile due to the increased network overhead.

Takeaway 5: Inherent uncertainty, common for edge
computing, can impact the total CF of systems mean-
ingfully, shifting the carbon-optimal execution target.

V. GREENSCALE

In this section, we propose a carbon-aware scheduler,
GreenScale, for edge computing. The objective of the sched-
uler can be formulated as in (4)-(6), where x is the execu-
tion target, X is the set of available execution targets (i.e.,
mobile, edge DC, hyperscale DC), and ω is the performance
constraint, choosing the carbon-optimal execution target for
edge applications in different environments while satisfying
the performance constraint.

x
→
= argmin

x↑X
CFx subject to Tx ↑ ω (4)

CFx =

∑

i↑{comp,comm,idle}

CFi

Ui
, x ↓ X (5)

CFi = OPCF + ECF → T

LT
→ N

Ntotal
(6)

To achieve the objective (minimizing not only the CF of
the local device but also the global CF by considering the
number of allocated HWs), we use a light-weight reinforce-
ment learning (RL) algorithm for GreenScale. RL has the
following advantages [66], compared to heuristic-based [60],
[67], [68] and supervised learning-based [69], [70] techniques
for scheduling: (1) Adaptability - as discussed in Section III
and IV, carbon-aware scheduler needs to adapt to varying
features (e.g., user- and environment-dependent features in
carbon-aware design space). RL has an advantage for learning
and acting to the varying features, (2) Online learning - unlike
an offline learning-based techniques, RL continuously adapt
its decision-making policy online, using system-level feedback
and specialize to the current workload, system configuration,
and user- and environment-dependent features, and (3) Exten-
sibility - unlike heuristic-based techniques, RL can be easily
extended to different types of workloads and devices with
online learning.

A. Design Overview
In this subsection, we explain the design overview of

GreenScale. Fig. 10 shows the overview of GreenScale. For
each execution of the computations for an edge application,
GreenScale observes the current execution state (1↔), including
workload characteristics, carbon intensity (CI), user requests,
and runtime variance. For the observed state, GreenScale se-
lects an action (i.e., execution target for the computations) (2↔)
which is expected to minimize both operational and embodied
carbon emissions meeting the performance requirements. This
selection is based on a lookup table (i.e., Q-table) that contains
the accumulated rewards of previous selections. GreenScale
then executes the computations on the selected target (3↔),
while observing the results (i.e., latency, energy, and carbon
emissions). Based on the results, GreenScale calculates the
reward (4↔), which indicates how much the target improves
carbon efficiency and meets the performance requirements.
Finally, GreenScale updates the Q-table with the calculated
reward (5↔).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 7

TABLE I
STATE-RELATED FEATURES

State Description Discrete values
Workload-related

feature SWorkload
Computation-to-communication ratio

(i.e., FLOPs / transmission data bytes) Small (<10K), Medium (<50K), Large (<100K), Larger (>=100K)

Carbon intensity

SCI Mobile CI of mobile device Small (<50), Medium (<200), Large (<400), Larger (>=400)
SCI Edge DC CI of edge DC Small (<50), Medium (<200), Large (<400), Larger (>=400)

SCI Edge Network CI of edge network Small (<50), Medium (<200), Large (<400), Larger (>=400)
SCI Core Network CI of core network Small (<50), Medium (<200), Large (<400), Larger (>=400)

SCI DC CI of hyperscale DC Small (<50), Medium (<200), Large (<400), Larger (>=400)

Embodied emission SU Edge DC Number of user requests in edge DC Small (<32), Medium (<256), Large (>=256)
SU DC Number of user requests in DC Small (<64), Medium (<256), Large (<1024) Larger (>=1024)

Runtime variance

SCo CPU M CPU utilization of co-running apps on mobile None (0%), Small (<25%), Medium (<75%), Large (100%)
SCo MEM M Memory usage of co-running apps on mobile None (0%), Small (<25%), Medium (<75%), Large (100%)
SCo CPU E CPU utilization of co-running apps on edge DC None (0%), Small (<25%), Medium (<75%), Large (100%)
SCo MEM E Memory usage of co-running apps on edge DC None (0%), Small (<25%), Medium (<75%), Large (100%)
SCo CPU DC CPU utilization of co-running apps on DC None (0%), Small (<25%), Medium (<75%), Large (100%)
SCo MEM DC Memory usage of co-running apps on DC None (0%), Small (<25%), Medium (<75%), Large (100%)
SEdge Network Bandwidth of edge network Regular (>40Mbps), bad (<=40Mbps)
SCore Network Bandwidth of core network Regular (>40Mbps), bad (<=40Mbps)

B. GreenScale RL Design

In this subsection, we explain the design of GreenScale
RL algorithm. Given the resource-constrained edge execution
environment, it is crucial to deploy the RL algorithm with low
runtime overhead (for both training and inference). Among the
various RL algorithms [66], Q-learning has an advantage for
low runtime overhead, as it finds the best action with a lookup
table. Hence, we use Q-learning for GreenScale.

For accurate prediction with the Q-learning, it is crucial to
model the carbon design space into the state-action-reward
space. We tailor-design the state and action based on our
observations in the carbon-aware design space (Section IV).
In addition, we define the reward with the measured latency,
energy, and operational and embodied carbon emissions.
State: We define states that are critical to carbon-aware
scheduling. Table I summarizes the states.

As we explored in Section IV-A, the carbon-optimal target
depends on workload characteristics (i.e., computation-to-
communication ratio). Hence, we define SWorkload with the
number of floating point operations per execution and the size
of transmission data per execution.

In addition, as we explored in Section IV-B, the carbon-
optimal target significantly depends on the CI of the involved
infrastructure components. For the mobile device, the CI is
dependent on the battery charging pattern2 and the location of
the user. Thus, we define SCI Mobile as the function of the two
parameters. For the rest of the components (i.e., edge DC and
DC, and edge and core network), the CI is dependent on the
location and the time of use. Thus, we define SCI Edge DC ,
SCI DC , SCI Edge Network, and SCI Core Network, as the
functions of the location and time. Note it is possible to obtain
the CI information by using carbon APIs (e.g., WattTime [53],
electricityMap [71]) for the power grids, and/or carbon APIs
of the cloud services [72], [73].

As we explored in Section IV-C, the carbon-optimal target
can also depend on the amortization of embodied emission.
Assuming that the number of server resources allocated to
an application (which affects the embodied CF) is adjusted

2In off-the-shelf smartphones, it is possible to track the battery charging be-
havior of the user, by using the battery monitoring APIs (e.g., BatteryManager
API in Android OS and BatteryState API in iOS).

by the provisioning techniques (e.g., AWS Provisioning and
Orchestration, Azure AD Provisioning, etc.) depending on the
number of user requests and costs, we define SU Edge DC and
SU DC to represent the number of user requests in the edge
and hyperscale DC, respectively — this potentially affects the
allocations of user requests, changing the number of server
resources and avoiding rebound effect on DCs [21].

As we explored in Section IV-D, the efficiency of the targets
highly depends on the existence of co-running workloads.
Since the intensity of resource interference from the co-
running workloads varies with their resource utilization3, we
identify SCo CPU and SCo MEM , which represent the CPU
and memory utilization of co-running workloads, respectively,
for each target. We also model the network instability with
SEdge Network and SCore Network to represent the network
bandwidth of edge and core networks, respectively.

To convert the continuous features into discrete values for
constructing the Q-table, we apply a clustering algorithm to
each feature [34], [76]; it determines the optimal number
of clusters for the given data. The last column of Table I
summarizes discrete values for each state — note these values
can be adjusted by the clustering algorithm depending on the
specifications of infrastructure components.
Action: We define the actions as the available execution targets
(i.e., mobile device or servers in different locations) in the
edge-cloud infrastructure. The set of actions can be augmented
by considering other control knobs, such as dynamic voltage
and frequency scaling and batch executions. For example, as
long as the performance constraint is satisfied, it is possible
to reduce the frequency of processors reducing the operational
emissions. It is also possible to improve the throughput of an
execution target with batching.
Reward: To model the optimization objective with the reward,
we encode three rewards: Rperf , Renergy , and RCF . Rperf is
the measured performance for a selected action. Renergy and
RCF are the estimated energy consumption of the selected
action and its carbon emissions, respectively — note, since

3It is possible to monitor the resource utilization of the virtualized server in-
stances using resource monitoring tools (e.g., stats of docker [74], CloudWatch
of AWS [75], etc.). If the resource monitoring is not available, GreenScale
can estimate the intensity of resource interference based on a ratio of the
currently measure latency to the average latency.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 8

TABLE II
NN INFERENCE WORKLOADS

Category NN FLOPs Params
Input/
Output

(KB)

Perf.
Req.
(ms)

Vision

MobileNet 0.3G 3.5M 150.5

33.3

SqueezeNet 0.8G 1.2M 150.5
ResNet 4.1G 25.6M 150.5

MobileNet-
SSD 0.8G 6.8M 270

Inception 5.7G 23.8M 268.2
Text BERT 25.3G 17.5M 1 100

the energy estimation is based on the measured latency, the
mean absolute percentage error of the energy estimation is
7.3%. To ensure GreenScale selects an execution target that
minimizes global carbon emission (and local energy consump-
tion) while satisfying the performance constraint, the reward
R is calculated as in (7), where ε and ϑ are the weights of
performance and energy4, respectively.

if Rperf < Performance Constraint,

R = ↗RCF + εRperf ↗ ϑRenergy

else

R = ↗RCF ↗ ϑRenergy

(7)

The reward is calculated depending on whether the perfor-
mance constraint is satisfied or not. In (7), Renergy and RCF

are multiplied by -1 to increase the reward for lower values.

C. Algorithm Details

In this subsection, we provide a detailed explanation of
GreenScale’s Q-learning algorithm. To avoid local optima,
GreenScale deals with the exploitation versus exploration
dilemma, by employing the epsilon-greedy algorithm — the
epsilon-greedy algorithm chooses the action with the highest
reward or a uniformly random action based on an exploration
probability.

In Q-learning, the value function Q(S,A) takes state S and
action A as parameters. At the beginning, the Q-learning
algorithm initializes the Q(S,A) in the Q-table with random
values. At runtime, the algorithm observes S for each workload
execution by checking the workload characteristics, carbon
intensity, user requests, and runtime variance. For the observed
S, it generates a random value and compare it with ϖ (i.e., 0.1
by referring to previous works in this domain [34], [76]). If
the random value is smaller than ϖ, the algorithm randomly
chooses A. Otherwise, it chooses A with the largest Q(S,A).

The algorithm then executes the workloads on the target
defined by A. During the execution, the algorithm measures
Rperf and estimates Renergy and RCF . Based on these values,
the algorithm calculates the reward R, as in (7). It then
observes new state S’ and chooses A’ which has the largest

4We set 0.1 for ω and ε based on the sensitivity analysis — this exhibits the
best CF while satisfying the performance constraint. In general, the increase
of the ω generally reduces the performance of the workloads (by using the
maximum frequency) at the expense of the energy and CF. On the other hand,
the increase of ε generally improves the energy and CF with DVFS but hurts
QoS.

Q(S’,A’). The algorithm updates the Q(S,A) as in (8), where ϱ

and µ are hyperparameters representing the learning rate and
the discount factor, respectively — we set ϱ and µ as 0.9 and
0.1, respectively, based on a sensitivity test.

Q(S,A) = Q(S,A) + ϱ[R+ µQ(S
↓
, A

↓
)↗Q(S,A)] (8)

After the learning is completed (i.e., the largest Q(S,A) value
for each state S is converged), the Q-table is used to select A
which maximizes Q(S,A) for the observed S.

D. Transfer Learning
The training of GreenScale needs to be performed on-

device to learn the user- and device-dependent features. Given
the resource-constrained edge execution environment, it is
important to reduce the training overhead. To expedite the on-
device training minimizing its overhead, developers can pre-
train the Q-table, and transfer the pre-trained model to the
devices [77] (results are presented in Section VII-B).

VI. EVALUATION METHODOLOGY

A. Workloads
To evaluate GreenScale, we use three state-of-the-art work-

loads: artificial intelligence (AI), game, and augmented/virtual
reality (AR/VR) summarized in Table II, III, and IV. We
explore AI workloads as they are widely used in many
of recent intelligent services [78]. In addition, we explore
game applications as they dominate 63.5% of the application
market [79]. We also explore AR/VR applications, as they have
gained recent traction in both consumer and research com-
munities [80] thanks to the advances in efficient computing
technologies, high-speed networks, and specialized hardware.

For the AI workloads, we run the inference of neural
networks (NNs) which are widely used in mobile intelligent
services [81]. The TFLite runtime [82] implemented in an
Android application is used to run inference on mobile. For
DCs, TensorFlow runtime [83] is used for inference execution.
Here, the migration overhead is measured with the transmis-
sion latency and energy for the input/output.

For the game workloads, we run three types of games which
are widely used by mobile users [84]. For mobile, we run
the Android game applications to measure the latency, FPS,
and energy. For DC, we consider the cloud gaming service
scenario [84], [85] where the backend computations run in
the cloud based on frontend user interactions gathered on
the smartphone display. We run NVIDIA Geforce Now [85]
on mobile for measuring the performance and energy of the
frontend including the transmission overhead. We also measure
the energy consumption of the backend by running the desktop
games on the server.

For the AR/VR workloads, we use four workloads from
ILLIXR [86] and XRBench [87]. AR/VR workloads have three
sub tasks: 1) Input which reads inputs from sensors, 2) Percep-
tion which understands the current surrounding environment,
3) Visual/Audio which combines the virtual information with
the physical world, and renders the final frame. We use the
OpenXR-based ILLIXR framework [86] to run the per-frame

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 9

TABLE III
GAME WORKLOADS

Category Name Input/
Output (MB)

FPS
Req.

Latency
Req. (ms)

1st-Person
Shooting Game Fortnite 3.2 60 100

3rd-Person
Role Playing

Game

Genshin
Impact 3.0 60 500

Omnipresent
Strategy

Team Fight
Tactics 1.9 60 1,000

TABLE IV
AR/VR WORKLOADS

Category Name Tasks
Input/
Output

(KB)

Perf.
Req.
(ms)

VR
3D World 1) Input

540.5 33.33D Material 2) Perception
3D Cartoon 3) Visual/

AR AR Demo Audio

tasks on either mobile devices or servers. Here, the migration
overhead includes the transmission latency and energy for
input/output.

To ensure that different targets run the same input for the
interactive workloads (i.e., game and AR/VR workloads), we
pre-encoded a series of inputs [80], [88].

We determine the latency target of each workload by
referring to the user study and QoS analysis works for each
workload. For the AI workloads, we use 30 FPS and 100 ms
for the vision NNs and text NN, respectively, by referring
to [89]. For the game workloads, we use two performance
requirements: FPS for the smoothness and end-to-end latency
for the responsiveness. We use different requirement values for
different classes of games by referring to a prior study on game
performance [90] (Table III). For the AR/VR workloads, we
use the 30FPS of end-to-end latency requirement by referring
to ILLIXR [86] and XRBench [87].

B. Edge-Cloud Infrastructure
We base our experiments on the edge-computing infrastruc-

ture: mobile, edge DC, DC, edge network, and core network.
Table V summarizes how we build our study.

We use an off-the-shelf Android smartphone for the AI
and game workloads, Pixel 3 [11], which is equipped with
a Snapdragon 845 SoC [91], 4GB RAM, and 128GB storage.
For the AR/VR workloads, we use an NVIDIA Jetson device
equipped with NVIDIA Volta GPU, 64GB RAM, and 32GB
storage — the workloads do not run on Android devices. We
measure the latency of the workloads directly on the devices,
while measuring their power consumption using an external
power measurement device [92].

For edge DC and hyperscale DC, we use the AWS instances
of p3.2xlarge (equipped with Xeon E5-2686 v4, NVIDIA
Tesla V100, 64GB RAM, and 4TB SSD) and p4d.24xlarge
(equipped with Xeon P-8275CL, 8 NVIDIA A100 GPUs,
1152GB RAM, and 8TB SSD), respectively, which have
similar specifications to the ones used in [93]. We also measure
the latency of the workloads directly on the instances, while

TABLE V
EDGE-CLOUD INFRASTRUCTURE

Component Measurement
-based

Model
-based

Edge
Computing

Infrastructure

Mobile
Devices

Latency ↭
Energy ↭

Edge
Network

Latency ↭
Energy ↭ [96]

Edge DC Latency ↭
Energy ↭ ↭ [94]

Core
Network

Latency ↭
Energy ↭ [97]

DC Latency ↭
Energy ↭ ↭ [94]

Carbon
Intensity

Power Grid ↭
Mobile Battery ↭ [57]

Uncertainty ↭ [98], [99]
Embodied

CF
LCA ↭ [44]

Architectural Model ↭ [13]

Runtime
Variance

On-device
Interference

Mobile ↭
Server ↭

Network
Variability

Edge
Network ↭ ↭ [51]

Core
Network ↭ ↭ [65]

estimating the power consumption based on a frequency- and
utilization-based power model5. Since the game workloads do
not run on Linux, we use a Windows server (equipped with
AMD Ryzen 7 5800X, Geforce RTX 3080 Ti, 64GB RAM,
and 1TB SSD) having similar specifications to the ones used in
NVIDIA Geforce Now [85]. Note we assume the average PUE
of 1.6 and 1.1 for edge DCs [95] and DCs [2], respectively.

For BSs of edge networks, we use the macro-scale BS
whose TDP is 1000W [96]. We calculate the single-user power
consumption based on the number of users who can be served
by the macro-scale BS [96]. We measure the signal strength-
dependent wireless network latency on the mobile device [34],
while adjusting the signal strength by its locations [51].
For the core network, we use the TDP and bandwidth of
Cisco routers [97]. We also measure the distance-dependent
propagation latency along with the number of associated core
routers by connecting the mobile devices with the instances in
different locations in the US.

The measured latency and power consumption of the de-
vices are used for calculating their operational emissions. In
addition, the specifications of the devices are used to calculate
the embodied emissions with LCA and ACT [13], [44].

C. GreenScale Evaluation

To evaluate the effectiveness of GreenScale, we compare
it with three baselines on our edge-cloud infrastructure with
an average number of mobile app users [100]: Mobile, which
always runs the workloads on the mobile device; DC (Best),
which runs workloads on the most carbon efficient DC; and
Opt, an oracular design that always runs the workloads on
the carbon-optimal target. We also compare GreenScale with
a state-of-the-art energy-aware edge-cloud scheduler [34].

To validate the adaptability of GreenScale to heterogeneous
carbon intensity, we use the hourly energy generation data of

5We construct the power model by measuring the power consumption
of local servers which have the similar specifications with the virtualized
instances — similar practice has been used in previous works [94].

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 10

Fig. 11. CF result of GreenScale compared to the baselines. CF is normalized
to that of Mobile in each workload, and x above the bar indicates that the
selected execution target does not satisfy the performance constraint.

Fig. 12. CF, energy, CDP and CEP results of execution targets available
for (a) a user in California and (b) a user in New York. Each metric is
normalized to that of Mobile and the stars above the bars indicate the optimal
execution target identified by each metric. GreenScale selectes the carbon
optimal execution target whereas AutoScale [34] selects the energy optimal
execution target.

all the US power grids [53], [54] along with the empirical
energy charging/power models of the components [56], [57]
(i.e., hourly battery charge rate trace over the week for the two
scenarios). We train GreenScale with the 2020 hourly energy
generation data and test it with the 2021 data.

We also emulate the realistic runtime variance. In case of
resource interference from co-running workloads, we inject
its impact (measured degradation depending on the resource
utilization of co-running workloads) according to the mobile
application (i.e., web browser and music player) usage [34]
and typical server utilization patterns [48], [50]. In addition,
since the wireless network signal strength is usually modeled
with Gaussian distribution [51], we randomly inject the impact
of signal strength variability following the Gaussian distribu-
tion — we use our measurements (i.e., measured edge network
latency depending on signal strength and empirically collected
daily signal strength variations) for mean and standard devia-
tion of the distribution. On the other hand, the wired network
variability is inherently included in the measured distance-
dependent latency [101].

For evaluating the effectiveness of transfer learning, we pre-
train the Q-table for each workload by using the rest of the
workloads, assuming that the developer can pre-train the Q-
table with existing workloads and deploy it [34], [76].

Fig. 13. CF result of GreenScale compared to the baselines with different
batter charging models. CF is normalized to that of Mobile in each workload.

Fig. 14. CF result of GreenScale compared to the baselines with users from
different location at (a) daytime and (b) nighttime. CF is normalized to that
of Mobile in each workload.

VII. EVALUATION RESULTS

Fig. 11 shows the average carbon footprint (CF) normalized
to Edge when there is no runtime variance — x above the
bars indicates the performance constraint violation. Overall,
GreenScale improves the average CF by 25.8% and 46.9%,
compared to Mobile and DC (Best), respectively, satisfying the
performance constraint. Across diverse workloads, GreenScale
accurately predicts the carbon-optimal execution target. As
a result, GreenScale achieves almost the same CF as Opt;
the difference is only 2.8%. GreenScale also improves the
average CF over the state-of-the-art scheduler, AutoScale [34],
by 35.2%. This is because carbon optimization is distinct
from conventional energy optimization, due to the time- and
location-dependent carbon intensity and the amortization of
embodied CF.

Fig. 12 shows the CF, energy, CDP (Carbon Delay Product),
and CEP (Carbon Energy Product) of various execution targets
available for (a) a user in California and (b) a user in New York
running an AI Workload. As shows in Fig. 12, GreenScale
selects the most carbon efficient execution targets, whereas
AutoScale selects the most energy efficient (yet carbon inef-
ficient) execution target. As a result, GreenScale significantly
improves the CF of the execution, compared to AutoScale. In
Fig. 12, CDP does not seem to be a good indicator for the
carbon optimization, as it gives weight to the latency — as
long as the latency constraint is satisfied, the actual latency
value is not much critical though. On the other hand, CEP
can be used to balance between the overall CF and the energy
consumption of the local device.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 11

Fig. 15. CF result of GreenScale compared to the baselines with runtime
variance. CF is normalized to that of Mobile in each workload.

TABLE VI
ABLATION STUDY RESULTS

GreenScale Features Accuracy
W/o Runtime Variance Features 59.9%
W/o Embodied Emission Features 62.1%
W/o Carbon Intensity Features 68.2%
W/o Workload Features 79.2%
All Features (Ours) 96.8%

A. Adaptability Analysis

In this subsection, we demonstrate the GreenScale’s adapt-
ability to various execution environments.
Adaptability to Mobile Heterogeneity: Fig. 13 shows the
average CF (y-axis) normalized to Mobile for different battery
charging scenarios (x-axis). As GreenScale explicitly con-
siders the heterogeneous carbon intensity (CI), it finds the
carbon-optimal execution target for all types of scenarios. As
a result, it improves their average CF by 33.4%, 49.5%, and
41.7%, compared to Mobile, DC (Best) and AutoScale [34],
respectively — it shows a 5.6% difference with Opt.
Adaptability to Location and Time of Use: Fig. 14 shows
the average CF (y-axis) normalized to Mobile for the users in
different states (x-axis) in (a) daytime and (b) nighttime. Since
GreenScale can adapt to the location- and time-dependent CI,
it accurately selects the carbon-optimal target regardless of
users’ location and time of use, improving the average CF by
23.3%, 48.4%, and 36.6%, compared to Mobile, DC (Best),
and AutoScale [34], respectively.
Adaptability to runtime variance: Fig. 15 shows the average
CF normalized to Mobile in the presence of runtime variance
(which happens more frequently than CI changes). Since
GreenScale can adapt to the runtime variance along with
the heterogeneous CI and the embodied CF, it improves the
average CF by 29.4% and 49.8%, compared to Mobile and
DC (Best), respectively, meeting the performance constraint.
GreenScale also shows 29.1% better CF than AutoScale [34],
on average — this result implies AutoScale, which optimizes
the energy efficiency adapting to runtime variance, is not
sufficient for carbon optimization.

B. Accuracy and Overhead Analysis

In this subsection, we provide the accuracy and overhead
analysis results.
Accuracy: To analyze the prediction accuracy of GreenScale,
we compare its decision to the optimal one. GreenScale

Fig. 16. Execution target selections of GreenScale with (a) different battery
charging models, (b) users from different locations, and (c) runtime variance.
Note that the color represents the selection rate.

achieves 97.1% and 96.8% accuracy even in the presence of
varying carbon intensity and runtime variance, respectively.

Fig. 16 shows the detailed execution target selections of
GreenScale depending on the execution time. GreenScale
accurately selects the most carbon-efficient execution target,
effectively adapting to the execution environment — the selec-
tion difference between GreenScale and Opt is less than 0.2%.
For example, GreenScale successfully adapts to the charging
behaviors of users, as shows in Fig. 16(a) — it mostly selects
DCs for nighttime chargers, while dominantly selecting the
mobile device for intelligent chargers. GreenScale also adapts
to the user locations, as shown in Fig. 16(b) — the CI of
the execution targets can significantly vary across locations.
GreenScale’s selections also vary depending on the runtime
variance as shown in Fig. 16(c) — it mostly selects DCs when
there is on-device interference, whereas dominantly selecting
the mobile device when there is network variability. Note,
even when GreenScale selects sub-optimal target, it does not
degrade the overall CF compared to Opt. This is because the
CF of the selected sub-optimal target is still similar to that of
the optimal one — the CF difference is only less than 1%.

To further analyze the impact of each GreenScale feature
on its accuracy, we conduct the ablation study. Table VI
shows the ablation study results. As shown in Table VI,
excluding each feature significantly degrades the GreenScale
accuracy, demonstrating the importance of the features in the
optimization of carbon-aware scheduling.
Training overhead: When training the Q-table, the reward
converges after 100-110 workload runs, on average (Fig. 17).
Before convergence, GreenScale exhibits 21.7% lower average
carbon emission than Opt — it still shows 19.8% lower carbon
emission compared to Edge, on average. The training overhead
can be alleviated with the transfer learning (Section V-D)
— the reward converges more rapidly reducing the average
training time overhead by 40.3%.
Runtime overhead: To validate the viability of the mobile
deployment of GreenScale, we implement it as a part of an

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 12

Fig. 17. Comparison of reward between Scratch (orange) and Transfer
(green) over the number of executions. The dashed line marks the number
of executions when the reward first reaches its maximum value.

Android application. The runtime overhead of RL algorithm
in GreenScale is, on average, 25.4µs for training, excluding
the time for workload execution. It corresponds to the 1.5%
of execution time per frame. In addition, after the training, the
overhead of the RL inference execution is reduced to 7.3µs
which accounts for 0.4% of the frame time. The memory
requirement of GreenScale is 0.4 MB, which corresponds to
0.01% of the 3GB DRAM capacity of a typical mobile device.

C. Uncertainty Analysis

Although we follow the practice used in many prior
works, inputs of the GreenScale have an inherent uncer-
tainty [10]. The sources of uncertainty include the mea-
surement noise [102], uncertainty in estimation models (for
DC power [94] and embodied CF [13]), and environmen-
tal variance. To verify the effectiveness of the GreenScale
even in the presence of such uncertainty, we conduct the
uncertainty analysis with Monte Carlo approach [103], [104].
Given that the sources of uncertainty are modeled by the
Gaussian distribution [102], we generate a sufficient number of
random numbers (1,000,000) for each input with the Gaussian
distribution of N(µ,ς

2
), where µ and ς are the mean and the

standard deviation. We use our measurements and estimations
for µ, while varying ς from 10% to 30% of µ.

Figure 18 shows the uncertainty analysis results with differ-
ent degrees of the uncertainty (i.e., ς). As shown in Figure 18,
the execution target selected by GreenScale does not change
when the ς is less than and equal to 10% of µ. This means that
the conclusions in Section VII remain the same. Even with the
20% and 30% ς, the execution target does not change within
the 97.9% and 90.7% confidence intervals, respectively. Note,
even when the target is changed, GreenScale still reduces the
CF by 28.6% compared to [34], on average — this is because
even severe uncertainty does not change the overall CF trends.

VIII. RELATED WORK

Carbon modeling tools: Given the increasing CF of ICT,
academia and industry have proposed a number of tools to
quantify carbon emissions across the hardware life cycles.
LCA tools quantify the CF of components using coarse-
grained information (e.g., economic cost of electronics and
materials, etc.) [44], [45]. Although product environmental
reports published by industry have been based on the LCA
tools [11], [105], they have not been used for comparative
analyses between hardware components to guide design space
exploration. Complementing the above tools, architectural

Fig. 18. Uncertainty analysis of GreenScale with different degrees of ϑ.

modeling tools were proposed to consider the direct CF from
hardware manufacturing and operational use of systems [10],
[12], [13]. ACT calculates the embodied CF based on a
variety of parameters (e.g., SoC area, energy per area, raw
materials, etc.) [13]. Given that such parameters have inherent
uncertainty, FOCAL estimates the embodied CF based on its
relative ratio of the operational CF [10]. By exploiting the
above tools, this work quantifies the CF of edge computing,
and first explores the optimization space of carbon-aware
scheduling considering its unique features.

Optimization for edge computing: User-centric optimiza-
tions have primarily focused on minimizing the energy con-
sumption of the device satisfying the user-specified perfor-
mance constraint, by considering hardware heterogeneity on-
device [31]–[33] and that across the edge-cloud comput-
ing infrastructure [34], [35]. However, as we demonstrate
in Section IV, carbon optimization is distinct from energy
optimization due to varying CI and embodied CF.

On the other hand, DC-centric optimizations have tried to
maximize the operational efficiency of DC infrastructure by
splitting the computations across edge-scale and hyperscale
servers [40], [69], [70], meeting the service level agreement
(SLA). Several techniques further consider the varying re-
newable energy availability at DCs. For instance, [60]–[62]
tried to switch computations between DCs in different places
considering their CI, whereas [19]–[21] temporally shift batch
jobs considering the renewable energy availability within a
DC. However, the above techniques have not considered the
embodied CF and runtime variance in edge computing. [7],
[22] first considered embodied CF when scheduling computa-
tions across DCs. However, they do not consider local devices
as the scheduling decisions even when they are the most
carbon-efficient execution target. In addition, they also do not
consider the runtime variance in edge computing.

More recently, as the sustainability of computing has been
receiving more attentions, several works have tried to further
optimize the CF in edge computing. [36] tried to enable effi-
cient data collecting and select the carbon-efficient execution
target in edge computing by considering the location and
time dependent CI. [106] tried to improve the accuracy of
battery model using a reinforcement learning algorithm for
better exploiting edge DCs. However, the recent techniques
also do not consider heterogeneous charging behaviors of edge
devices, embodied emissions, and runtime variance, which also
has a significant impact on the overall CF of edge computing.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 13

IX. CONCLUSION

Given billions of mobile users, it is crucial to design
green applications which can improve the carbon-efficiency
of edge computing. In this paper, we propose GreenScale
which accurately selects the carbon-optimal execution target
for edge computing with a lightweight reinforcement learning
algorithm. Through the in-depth carbon characterization of
state-of-the-art applications across edge-cloud infrastructure,
we demonstrate that the carbon optimal scheduling decision
depends on various features, such as time and location-
dependent carbon intensity, the amortization of embodied
carbon emissions, and runtime variance. In our evaluation,
GreenScale improves the CF of the edge applications by
35.2% compared to a state-of-the-art edge-cloud scheduler.
We believe GreenScale can be a viable solution to enable
sustainable executions of the green applications at the edge.

X. ACKNOWLEDGMENTS

This work was supported in part by the National Research
Foundation of Korea (NRF) Grant funded by the Korea
government (MSIT) under RS-2023-0021271, the Institute
of Information & communications Technology Planning &
Evaluation (IITP) Grant funded by MSIT under RS-2024-
00398353, the IITP-ITRC(Information Technology Research
Center) Grant funded by MSIT under IITP-2025-RS-2023-
00260091, the IITP-ICT Creative Consilience Program Grant
funded by the MSIT under IITP-2025-RS-2020-II201819, and
the National Science Foundation (NSF) under CCF-2324860.
(Corresponding author: Young Geun Kim)

REFERENCES

[1] L. Belkhir and A. Elmeligi, “Assessing ict global emissions footprint:
Trends to 2040 & recommendations,” Journal of Cleaner Production,
vol. 177, pp. 448–463, 2018.

[2] Google, “Data centers - efficiency,” https://google.com/about/
datacenters/efficiency.

[3] Meta, “Software, servers, systems, sensors, and science: Facebook’s
recipe for hyperefficient data centers,” https://tech.fb.com/engineering/
2020/01/hyperefficient-data-centers/.

[4] AWS, “Sustainability - carbon-free energy,” https://sustainability.
aboutamazon.com/climate-solutions/carbon-free-energy?energyType=
true.

[5] Meta, “Sustainability - energy,” https://sustainability.fb.com/energy/.
[6] Google, “Data centers - 24/7 carbon-free energy by 2030,” https://www.

google.com/about/datacenters/cleanenergy/.
[7] B. Acun, B. Lee, K. Maeng, M. Chakkaravarthy, U. Gupta, D. Brooks,

and C.-J. Wu, “A holistic approach for designing carbon aware data-
centers,” in Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2023.

[8] A. Souza, N. Bashir, J. Murillo, W. Hanafy, Q. Liang, D. Irwin, and
P. Shenoy, “Ecovisor: A virtual energy system for carbon-efficient
applications,” in Proceedings of International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2023.

[9] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y. Wei,
D. Brooks, and C.-J. Wu, “Chasing carbon: The elusive environmental
footprint of computing,” in Proceedings of IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2021, pp.
854–867.

[10] L. Eeckhout, “Focal: A first-order carbon model to assess processor
sustainability,” in Proceedings of ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2024, pp. 401–415.

[11] Google, “Google pixel 3 product environmental report,” https://
sustainability.google/reports/pixel3-productenvironmentalreport/.

[12] D. Kline Jr, N. Parshook, X. Ge, E. Brunvand, R. Melhem, P. K.
Chrysanthis, and A. K. Jones, “Greenchip: A tool for evaluating holistic
sustainability of modern computing systems,” Sustainable Computing:
Informatics and Systems, vol. 22, pp. 322–332, 2019.

[13] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee, D. Brooks,
and C.-J. Wu, “Act: Designing sustainable computer systems with and
architectural carbon modeling tool,” in Proceedings of International
Symposium on Computer Architecture (ISCA), 2022.

[14] G. S. Foundation, “Software carbon intensity specification,” https:
//github.com/Green-Software-Foundation/sci/blob/main/Software
Carbon Intensity/Software Carbon Intensity Specification.md.

[15] S. Kannan and U. Kremer, “Towards application centric carbon emis-
sion management,” in 2nd Workshop on Sustainable Computer Systems
Design and Implementation (HotCarbon 2023), 2023.

[16] J. Switcher, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard com-
puting: Repurposing discarded smartphones to minimize carbon,” in
Proceedings of ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2023,
pp. 400–412.

[17] E. Brunvand, D. Kline, and A. K. Jones, “Dark silicon considered harm-
ful: A case for truly green computing,” in Proceedings of International
Green and Sustainable Computing Conference (IGSC), 2018.

[18] M. Elgamal, D. Carmean, E. Ansari, O. Zed, R. Peri, S. Manne,
U. Gupta, G.-Y. Wei, D. Brooks, G. Hills, and C.-J. Wu, “Carbon-
efficient design optimization for computing systems,” in Workshop on
Sustainable Computer Systems (HotCarbon), 2023.

[19] P. Wiesner, I. Behnke, D. Scheinert, K. Gontarska, and L. Thamsen,
“Let’s wait awhile: How temporal workload shifting can reduce carbon
emissions in the cloud,” in Proceedings of International Middleware
Conference (Middleware), 2021, pp. 260–272.

[20] W. A. Hanafy, Q. Liang, N. Bashir, D. Irwin, and P. Shenoy, “Carbon-
scaler: Leveraging cloud workload elasticity for optimizing carbon-
efficiency,” in Proceedings of International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS), 2023.

[21] W. A. Hanafy, Q. Liang, N. Bashir, A. Souza, D. Irwin, and P. Shenoy,
“Going green for less green: Optimizing the cost of reducing cloud
carbon emissions,” in Proceedings of ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2024, pp. 479–496.

[22] Y. Jiang, R. B. Roy, B. Li, and D. Tiwari, “Ecolife: Carbon-aware
serverless function scheduling for sustainable computing,” in SC24:
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 2024, pp. 1–15.

[23] Ericsson, “Mobililty reports,” https://www.ericsson.com/en/
reports-and-papers/mobility-report/reports.

[24] Statista, “Forecast number of mobile users worldwide from
2020 to 2025,” https://www.statista.com/statistics/218984/
number-of-global-mobile-users-since-2010/.

[25] J. Malmodin, N. Lövehagen, P. Bergmark, and D. Lundén, “Ict sector
electricity consumption and greenhouse gas emissions–2020 outcome,”
Telecommunications Policy, vol. 48, no. 3, p. 102701, 2024.

[26] Z. Tu, H. Cao, E. Lagerspetz, Y. Fan, H. Flores, S. Tarkoma, P. Nurmi,
and Y. Li, “Demographics of mobile app usage: Long-term analysis
of mobile app usage,” CCF Transactions on Pervasive Computing and
Interaction, vol. 3, pp. 235–252, 2021.

[27] Statista, “Most popular apple app store categories as of 3rd quarter
2022, by share of available apps,” https://www.statista.com/statistics/
270291/popular-categories-in-the-app-store/.

[28] ——, “Time spent with nonvoice activities on mobile phones every
day in the united states from 2019 to 2024.” https://www.statista.com/
statistics/1045353/mobile-device-daily-usage-time-in-the-us/.

[29] Market.us., “Ai in mobile apps market: Revolutionizing user
experience and innovation,” https://www.linkedin.com/pulse/
ai-mobile-apps-market-revolutionizing-user-experience-innovation-mn99f.

[30] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[31] M. Han, J. Hyun, S. Park, J. Park, and W. Baek, “Mosaic:
Heterogeneity-, communication-, and constraint-aware model slicing
and execution for accurate and efficient inference,” in Proceedings of
the International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2019, pp. 165–177.

[32] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “ulayer: Low la-
tency on-device inference using cooperative single-layer acceleration

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 14

and processor-friendly quantization,” in Proceedings of the European
Conference on Computer Systems (EuroSys), 2019.

[33] S. Wang, A. Pathania, and T. Mitra, “Neural network inference on
mobile socs,” IEEE Design & Test, 2020.

[34] Y. G. Kim and C.-J. Wu, “Autoscale: Energy efficiency optimization
for stochastic edge inference using reinforcement learning,” in Proceed-
ings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 1082–1096.

[35] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017, pp. 615–629.

[36] Z. Song, M. Xie, J. Luo, T. Gong, and W. Chen, “A carbon-aware
framework for energy-efficient data acquisition and task offloading in
sustainable aiot ecosystems,” IEEE Internet of Things Journal, 2024.

[37] W. She, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[38] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[39] A. Hazra, A. Kalita, and M. Gurusamy, “Meeting the requirements of
internet of things: The promise of edge computing,” IEEE Internet of
Things Journal, vol. 11, no. 5, pp. 7474–7498, 2024.

[40] A. Ali-Eldin, B. Wang, and P. Shenoy, “The hidden cost of the edge:
A performance comparison of edge and cloud latencies,” in Proceed-
ings of International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021.

[41] Amazon, “Aws,” https://aws.amazon.com.
[42] Microsoft, “Azure: Cloud computing services,” https://azure.microsoft.

com.
[43] Google, “Cloud,” https://cloud.google.com/.
[44] C. M. U. G. D. Institute, “Economic input-ouput life cycle assessment

(eio-lca),” http://www.eiolca.net.
[45] Sphera, “Life cycle assessment software,” https://gabi.sphera.com/

america/index/.
[46] D. Patterson, J. M. Gilbert, M. Gruteser, E. Robles, K. Sekar, Y. Wei,

and T. Zhu, “Energy and emissions of machine learning on smartphones
vs. the cloud,” Communications of the ACM, vol. 67, pp. 86–97, 2024.

[47] Q. Geng and C. Liang, “Research on the method of suppressing
power fluctuation of hydro generator unit based on vortex elimination
technology,” Energy Reports, vol. 7, pp. 1038–1046, 2021.

[48] C. Jiang, Y. Qiu, W. Shi, Z. Ge, J. Wang, S. Chen, C. Cérin, Z. Ren,
G. Xu, and J. Lin, “Characterizing co-located workloads in alibaba
cloud datacenters,” IEEE Transactions on Cloud Computing, vol. 10,
pp. 2381–2397, 2022.

[49] D. Shingari, A. Arunkumar, B. Gaudette, S. Vrudhula, and C.-J. Wu,
“Dora: Optimizing smartphone energy efficiency and web browser
performance under interference,” in Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), 2018, pp. 64–75.

[50] S. Chen, C. Delimitrou, and J. F. Martinez, “Parties: Qos-aware
resource partitioning for multiple interactive services,” in Proceedings
of International Conference on Architecturla Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[51] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice,
“Characterizing and modeling the impact of wireless signal strength
on smartphone battery drain,” in Proceedings of the International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), 2013, pp. 29–40.

[52] A. Sridharan et al., “On the impact of aggregation on the performance
of traffic aware routing,” Teletraffic Science and Engineering, vol. 4,
pp. 111–123, 2001.

[53] Watttime, “Grid emissions intensity by electric grid,” https://watttime.
org/explorer/.

[54] EIA, “Hourly electric grid monitor,” https://www.eia.gov/electricity/
gridmonitor/dashboard/electric overview/US48/US48.

[55] A. Kerai, “2023 cell phone usage statistics: Mornings are for notifica-
tions,” https://www.reviews.org/mobile/cell-phone-addiction/.

[56] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: A study of battery life,” Pervasive Computing,
pp. 19–33, 2011.

[57] E. A. Oliver and S. Keshav, “An empirical approach to smartphone
energy level prediction,” 2011, pp. 345–354.

[58] Google, “Distributed cloud,” https://cloud.google.com/
distributed-cloud.

[59] Amazon, “Aws global infrastructure,” https://aws.amazon.com/
about-aws/global-infrastructure/?nc1=h ls.

[60] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew,
“Geographical load balancing with renewables,” ACM SIGMETRICS
Performance Evaluation Review, vol. 39, no. 3, pp. 62–66.

[61] R. Bianchini, “Leveraging renewable energy in data centers: Present
and future,” in Proceedings of International Symposium on High-
Performance Parallel and Distributed Computing, 2012, pp. 135–136.

[62] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “Spoton:
A batch computing service for the spot market,” in Proceedings of
ACM Symposium on Cloud Computing (SoCC), 2015, pp. 329–341.

[63] C. ISO, “Today’s outlook,” https://www.caiso.com/todays-outlook/
supply.

[64] M. Iorio, F. Risso, and C. Casetti, “When latency matters: Measure-
ments and lessons learned,” ACM SIGCOMM Computer Communica-
tion Review, vol. 51, no. 4, pp. 2–13, 2021.

[65] U. Bauknecht and T. Enderle, “An investigation on core network
latency,” in 2020 30th International Telecommunication Networks and
Applications Conference (ITNAC), 2020.

[66] S. Pagani, S. Manoj, A. Jantsch, and J. Henkel, “Machine learning for
power, energy, and thermal management on multicore processors: A
survey,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 1, pp. 101–116, 2020.

[67] Y. Zhang, X. Chen, Y. Chen, Z. Li, and J. Huang, “Cost efficient
scheduling for delay-sensitive tasks in edge computing system,” in
Proceedings of IEEE International Conference on Service Computing
(SCC), 2018.

[68] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
“Keids: Kubernetes-based energy and interference driven scheduler for
industrial iot in edge-cloud ecosystem,” IEEE Internet of Thins Journal,
vol. 7, no. 5, 2020.

[69] R. Mo, F. Dai, Q. Liu, W. Dou, and X. Xu, “Multi-objective cross-layer
resource scheduling for internet of things in edge-cloud computing,”
in Proceedings of IEEE International Conference on Cloud Computing
(CLOUD), 2020.

[70] S. Tuli, G. Casale, and N. R. Jennings, “Mcds: Ai augmented workflow
scheduling in mobile edge cloud computing systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 33, no. 11, 2022.

[71] electricityMaps, https://www.elertricitymaps.org.
[72] Microsoft, “Calculating my carbon footprint,” https://www.microsoft.

com/en-us/sustainability/emissions-impact-dashboard.
[73] AWS, “Customer carbon footprint tool,” https://aws.amazon.com/

aws-cost-management/aws-customer-carbon-footprint-tool/.
[74] Docker, “Docker container stats,” https://docs.docker.com/reference/cli/

docker/container/stats/.
[75] AWS, “Amazon cloudwatch,” https://aws.amazon.com/cloudwatch.
[76] Y. Choi, S. Park, and H. Cha, “Optimizing energy efficiency of

browsers in energy-aware scheduling-enabled mobile devices,” in Pro-
ceedings of the International Conference on Mobile Computing and
Networking (MobiCom), 2019.

[77] Y. Wang, Y. Liu, W. Chen, Z.-M. Ma, and T.-Y. Liu, “Target transfer
q-learning and its convergence analysis,” Neurocomputing, vol. 392,
pp. 11–22.

[78] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu,
L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang,
Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine
learning at facebook: Understanding inference at the edge,” in Pro-
ceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019, pp. 331–344.

[79] Statista, “App - worldwide,” https://www.statista.com/outlook/dmo/app/
worldwide.

[80] S. Zhao, H. Zhang, C. S. Mishra, S. Bhuyan, Z. Ying, M. T. Kandemir,
A. Sivasubramaniam, and C. Das, “Holoar: On-the-fly optimization of
3d holographic processing for augmented reality,” in Proceedings of
International Symposium on Microarchitecture (MICRO), 2021.

[81] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter,
P. Micikevicius, D. Patterson, G. Schmuelling, H. Tang, G.-Y. Wei, and
C.-J. Wu, “Mlperf: An industry standard benchmark suite for machine
learning performance,” IEEE Micro, 2020.

[82] TFLite, “Ml for mobile and edge devices,” https://www.tensorflow.org/
lite.

[83] Tensorflow, “An end-to-end open source machine learning platform,”
https://www.tensorflow.org/.

[84] T. Liu, S. He, S. Huang, D. Tsang, L. Tang, J. Mars, and W. Wang, “A
benchmarking framework for interactive 3d applications in the cloud,”

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 15

in Proceedings of International Symposium on Microarchitecture (MI-
CRO), 2020.

[85] NVIDIA, “Geforce now,” https://www.nvidia.com/en-us/geforce-now/.
[86] M. Huzaifa, R. Desai, S. Grayson, X. Jiang, Y. Jing, J. Lee, F. Lu,

Y. Pang, J. Ravichandran, F. Sinclair et al., “Illixr: Enabling end-to-
end extended reality research,” in Proceedings of IEEE International
symposium on Workload characterization (IISWC), 2021.

[87] H. Kwon, K. Nair, S. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song,
P. Capak, P. Zhang, P. Vajda, C. Banbury, M. Mazumder, L. Lai,
A. Sirasao, T. Krishna, H. Khaitan, V. Chandra, and V. J. Reddi,
“Xrbench: An extended reality (xr) machine learning benchmark suite
for the metaverse,” in International Conference on Machine Learning
and Systems (MLSys), 2023.

[88] Y. G. Kim, M. Kim, and S. W. Chung, “Enhancing energy efficiency
of multimedia applications in heterogeneous mobile multi-core proces-
sors,” IEEE Transactions on Computers, vol. 66, no. 11, pp. 1878–
1889, 2017.

[89] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, G. Diamos, J. Duke, D. Fick, J. S. Gardner,
I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John, P. Kanwar,
D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Mcikevicius,
C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeria, A. Sirasao,
F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu, K. Yamada,
B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf inference
benchmark,” arXiv:1911.02549, 2019.

[90] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, 2006.

[91] Qualcomm, “Snapdragon 845 mobile platform,” https:
//www.qualcomm.com/products/snapdragon-845-mobile-platform.

[92] Monsoon, “High voltage power monitor,” https://www.msoon.com/
high-voltage-power-monitor.

[93] MLCommons, https://mlcommons.org/.
[94] X. Zhang, Z. Shen, B. Xia, Z. Liu, and Y. Li, “Estimating power

consumption of containers and virtual machines in data centers,” in
Proceedings of IEEE International Conference on Cluster Computing
(CLUSTER), 2020.

[95] X. Zhao, Y. Lu, Z. Li, J. Tan, Y. Feng, and Y. Tao, “Explicitly consider
server-attached fans for thermal modeling in edge data centers,” in Pro-
ceedings of ACM International Conference on Future Energy Systems
(e-Energy), 2020.

[96] A. Gupta, I. Jain, and D. Bharadia, “Multiple smaller base stations are
greener than a single powerful one: Densification of wireless cellular
networks,” in 1st Workshop on Sustainable Computer Systems Design
and Implementation (HotCarbon), 2022.

[97] Cisco, https://www.cisco.com/c/en/us/products/collateral/routers/
8000-series-routers/datasheet-c78-742571.html.

[98] F. Y. Ettoumi et al., “Statistical analysis of solar measurements in
algeria using beta distributions,” Renewable Energy, vol. 26, no. 1,
pp. 47–67, 2002.

[99] A. N. Celik, “A statistical analysis of wind power density based on
the weibull and rayleigh models at the southern region of turkey,”
Renewable energy, vol. 29, no. 4, pp. 593–604, 2004.

[100] buildfire, “Mobile app download statistics & usage statistics (2023),”
https://buildfire.com/app-statistics/.

[101] S. A. Stoev, G. Michailidis, and J. Vaughan, “Global modeling and
prediction of computer network traffic,” arXiv:1005.4337v1.

[102] H. Castrup, “Distributions for uncertainty analysis,” in Proceedings of
International Dimensional Worklshop (IDW), 2001.

[103] R. Hanhan, E. Garzon, Z. Jahshan, A. Teman, M. Lanuzza, and
L. Yavits, “Edam: Edit distance tolerant approximate matching content
addressable memory,” in Proceedings of International Symposium on
Computer Architecture (ISCA), 2022.

[104] V. Tsoutsouras, O. Kaparounakis, B. Bilgin, C. Samarakoon, J. Meech,
J. Heck, and P. Stanley-Marbell, “The laplace microarchitecture for
tracking data uncertainty and its implementation in a risc-v proces-
sor,” in Proceedings of International Symposium on Microarchitecture
(MICRO), 2021.

[105] Dell, “Life cycle assessment of dell r740,” https://www.
delltechnologies.com/asset/en-us/products/servers/technical-support/
Full LCA Dell R740.pdf.

[106] H. Liao, G. Tang, D. Guo, Y. Wang, and R. Cao, “Rethinking low-
carbon edge computing system design with renewable energy sharing,”
in Proceedings of the 53rd International Conference on Parallel
Processing, 2024, pp. 950–960.

Yonglak Son received his BS degree in software en-
gineering from Soongsil University. He is currently a
integrated Ph.D student in the Division of Computer
and Communication Engineering, Korea University.
His research interests include energy efficient design
and efficient systems for machine learning.

Udit Gupta is currently an assistant professor in
electrical and computer engineering at Cornell Tech,
Roosevelt Island, NY, 10044, USA, and a visiting
research scientist at Meta AI Research. His research
interests include improving the performance, effi-
ciency, and sustainability of computer systems and
architectures by co-designing solutions across the
computing stack.

Andrew McCrabb received the bachelor’s degree
in electrical engineering at Auburn University, in
Auburn, Alabama, and the MS degree in computer
science and engineering from the University of
Michigan, Ann Arbor, Michigan, in 2016 and 2019,
respectively. He is currently working toward the PhD
degree in the Computer Science and Engineering
department at the University of Michigan. His re-
search interests include hardware acceleration, graph
analytics, big data analysis, artificial intelligence,
semi-structured data, and near-memory computing.

He received the Towner Prize for Distinguished Academic Achievement by
the University of Michigan, Ann Arbor, Michigan, in 2020.

Young Geun Kim is currently an assistant pro-
fessor in the Department of Computer Science and
Engineering, Korea University. His research focus
lies in the domain of computer system architecture
with particular emphasis on energy efficient and low-
power systems. His research has pivoted into design-
ing efficient systems for machine learning execution
at the edge. He received his BS and Ph.D. degrees
in the Department of Computer Science from Korea
University in 2014 and 2018, respectively.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 16

Valeria Bertacco received the Laurea degree in
computer engineering from the University of Padova,
Italy, and the MS and PhD degrees in electri-
cal engineering from Stanford University, Stanford,
California, in 2003. She was at Synopsys, Inc.,
Mountain View, California, before joining the Uni-
versity of Michigan, Ann Arbor, Michigan, where
she is currently Arthur F. Thurnau professor of
computer science and engineering and vice provost
for engaged learning. She is also the director of
Applications Driving Architectures (ADA) Center,

a JUMP center co-sponsored by SRC and DARPA. Her research interests
include computer design, with emphasis on specialized architecture solutions
and design viability, in particular reliability, validation and hardware-security
assurance. She has received the IEEE CEDA Early Career Award, served as
chair of the DAC program committee, and track-chair of the DATE program
committee.

David Brooks received the B.S. degree in electrical
engineering from the University of Southern Cali-
fornia, Los Angeles, CA, USA, in 1997, and the
M.A. and Ph.D. degrees in electrical engineering
from Princeton University, Princeton, NJ, USA, in
1999 and 2001, respectively. He is currently the
Haley Family Professor of computer science with
the School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA. His cur-
rent research interests include resilient and power-
efficient computer hardware and software design for

high-performance and embedded systems. Dr. Brooks was a recipient of
several honors and awards, including the ACM, Maurice Wilkes Award and
ISCA Influential Paper Award.

Carole-Jean Wu is an Adjunct Professor at Arizona
State University and is currently a Research Director
at Meta AI Research. Her research lies in the domain
of computer systems. Her recent research focuses on
designing systems for machine learning execution at-
scale and on tackling system challenges to enable
efficient AI execution in a responsible way. Wu
received a B.Sc. degree from Cornell University, and
M.A. and Ph.D. degrees from Princeton University.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3555153

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Cornell University Library. Downloaded on April 26,2025 at 00:42:33 UTC from IEEE Xplore. Restrictions apply.

