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Abstract

To understand the formation and evolution of massive cosmic structures, studying them at high redshift, in the
epoch when they formed the majority of their mass, is essential. The One-hundred-deg2 DECam Imaging in
Narrowbands (ODIN) survey is undertaking the widest-area narrowband program to date, to use Lyα-emitting
galaxies (LAEs) to trace the large-scale structure (LSS) of the Universe on the scale of 10–100 cMpc at three
cosmic epochs. In this work, we present results at z= 3.1 based on early ODIN data in the COSMOS field. We
identify protoclusters and cosmic filaments using multiple methods and discuss their strengths and weaknesses.
We then compare our observations against the IllustrisTNG suite of cosmological hydrodynamical simulations.
The two are in excellent agreement, identifying a similar number and angular size of structures above a specified
density threshold. We successfully recover the simulated protoclusters with log(Mz=0/Me) 14.4 in ∼60% of the
cases. With these objects, we show that the descendant masses of our observed protoclusters can be estimated
purely based on our 2D measurements, finding a median z= 0 mass of ∼1014.5Me. The lack of information on the
radial extent of each protocluster introduces a ∼0.4 dex uncertainty in its descendant mass. Finally, we show that
the recovery of the cosmic web in the vicinity of protoclusters is both efficient and accurate. The similarity of our
observations and the simulations implies that our structure selection is likewise robust and efficient, demonstrating
that LAEs are reliable tracers of the LSS.

Unified Astronomy Thesaurus concepts: High-redshift galaxy clusters (2007); Large-scale structure of the universe
(902); Lyα galaxies (978)

1. Introduction

According to the hierarchical theory of structure formation,
matter is organized into a cosmic web, comprised of linear
filaments intersecting at nodes of high density surrounded by
vast voids (J. R. Bond et al. 1996; V. Springel et al. 2005;
M. Boylan-Kolchin et al. 2009). This large-scale structure
(LSS) determines how much cold gas is available to a galaxy
and the likelihood of a merger or interaction with another
galaxy, thereby acting as one of the fundamental drivers of
galaxy evolution.

Out to z≈ 1.5, redshift surveys and other observational
techniques have enabled the selection of samples of galaxies
inhabiting clusters, groups, and filaments (e.g., P. R. M. Eisenhardt
et al. 2008; Y. Koyama et al. 2014; E. S. Rykoff et al. 2014, 2016;
E. Tempel et al. 2014; L. E. Bleem et al. 2015; N. Malavasi
et al. 2017; M. Hayashi et al. 2018; A. H. Gonzalez et al. 2019).
These studies show that galaxies in cluster or group environ-
ments tend to be older and more massive, and are more likely
to have ceased star formation than those in the field (e.g.,
Y.-j. Peng et al. 2010; R. F. Quadri et al. 2012; R. F. J. van der
Burg et al. 2013). Filaments may have a weaker but similar
effect and may be responsible for preprocessing galaxies that
are falling into cluster or group environments (e.g., F. Sarron
et al. 2019; J. M. Salerno et al. 2019).
At Cosmic Noon (z 2), when the global star formation rate

reached its peak (P. Madau & M. Dickinson 2014), these
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environmental effects are predicted to be even more dramatic.
In the high-density regions within the LSS, the accretion rates
of infalling gas and the incidence of galaxy interactions are
expected to be greatest (see discussion in B. C. Lemaux et al.
2022, and references therein), fostering both enhanced in situ
star formation and black hole activity. A popular hypothesis is
that highly dissipative gas-rich mergers help the efficient
feeding of gas into the central black hole and trigger active
galactic nuclei (AGNs), which may ultimately quench the star
formation activity (e.g., P. F. Hopkins et al. 2006). These
expectations are indeed in line with the heightened SF and AGN
activities found in a handful of protocluster systems (e.g.,
C. M. Casey et al. 2015; H. Umehata et al. 2015; T. Wang et al.
2016; I. Oteo et al. 2018; Y. Harikane et al. 2019; B. C. Lemaux
et al. 2022) as well as the emergence of quenched galaxies in
such environments (e.g., K. Shi et al. 2021; K. Ito et al. 2023).

Yet, the role that the LSS environment plays in galaxy
formation at Cosmic Noon remains underexplored. Our limited
knowledge is due to a combination of factors, including the
observational limitations of measuring precise redshifts of faint,
high-redshift galaxies, the inherent scarcity of massive cosmic
structures, and our incomplete grasp of the indicators for the
locations of these structures. The lack of readily identifiable
signatures—such as a hot intracluster medium and/or a
concentration of quiescent galaxies—in young, yet-to-be-
virialized structures of mostly star-forming galaxies leads to a
strong reliance on spectroscopy for finding protoclusters. While
the lack of large, statistical samples prevent us from
disentangling the effects of cosmic variance from general
properties of protocluster galaxies, studies from heteroge-
neously selected samples can lead to seemingly conflicting
conclusions. Although cosmic filaments connected to these
protoclusters likely play a vital role in replenishing fresh gas
for sustained star formation, such medium-density features are
even more difficult to discern than dense protocluster cores.

The One-hundred-deg2 DECam Imaging in Narrowbands
(ODIN; K.-S. Lee et al. 2024) survey is designed to obtain large
and uniformly selected samples of protoclusters and filaments at
three cosmic epochs (z= 2.4, 3.1, and 4.5) using Lyα-emitting
galaxies (LAEs) as tracers of underlying matter distribution. As
the most common electron transition in the universe, Lyα
emission traces ionized and/or excited gas from star formation,
black hole activity, and the gravitational collapse of dark matter
halos. A large fraction of low-luminosity star-forming galaxies
(which dominate the cosmic star formation rate density;
N. A. Reddy & C. C. Steidel 2009) show Lyα emission

(D. P. Stark et al. 2010). These LAEs tend to have lower stellar
masses, younger population ages, and less internal extinction
than systems selected via their broadband colors, and low
galaxy bias (E. Gawiser et al. 2007; H. Kusakabe et al. 2018;
L. H. Weiss et al. 2021; M. White et al. 2024). These traits
make LAEs a most efficient tracer of the underlying dark matter
distribution, one that can be used to constrain cosmology (e.g.,
K. Gebhardt et al. 2021; M. White et al. 2024) and the most
massive cosmic structures (A. Dey et al. 2016; Y. Huang et al.
2022). Upon completion, ≈600 protoclusters are expected to be
discovered by ODIN, which will facilitate robust statistical
investigations of the cosmic evolution of protoclusters and their
galaxy inhabitants.
In this paper, we use the early ODIN data in the COSMOS

field to present our selection of protoclusters and cosmic
filaments. Building on the results presented in V. Ramakrish-
nan et al. (2023), we calibrate and fine-tune our LSS detection
methods by carrying out careful comparisons with cosmologi-
cal hydrodynamical simulations. The outline of this paper is as
follows. In Section 2, we give details of the observational and
simulation data. In Sections 3 and 4, we describe how we
construct LAE surface density maps and how we use them to
detect protoclusters and filaments. We validate our procedures
and interpret the results using the mock data created from the
simulations in Section 5. Finally, the properties of our
observationally selected structures are discussed in Section 6
followed by a summary of our findings in Section 7.
Throughout this paper, we assume a Planck cosmology (Planck
Collaboration et al. 2016): ΩΛ= 0.6911, Ωb= 0.0486,
Ωm= 0.3089, H0= 100 h km s−1 Mpc−1 and h= 0.6774. Dis-
tances are given in units of comoving Mpc (cMpc) unless noted
otherwise.

2. Observational and Simulation Data

2.1. The ODIN Survey

The ODIN survey is conducting the widest-area deep
narrowband imaging program to date, using three custom
narrowband filters (N419, N501, and N673) to identify
redshifted Lyα emission. In this work, we make use of the
year 1 ODIN data taken with the N501 filter (λC/Δλ=
5014/75Å; z̄/Δz= 3.12/0.06) in the extended COSMOS
field. The data have a resolution of 0 27 pix−1 and a 5σ
magnitude limit of 25.4 AB over a total area of ∼9 deg2,
allowing us to detect Lyα emission down to a line flux of
∼2.1× 10−17 erg s−1 cm−2. As shown in Table 1, our

Table 1
Existing Samples of z = 3.1 LAEs

Sample No. of Fields Total Area Depth EW0 Δz No. of LAEs Surface Density
(deg2) (erg s−1) (Å) (arcmin−2)

This work 1 9.0 1.9 × 1042 20 0.059 5691 0.21
R. Ciardullo et al. (2002) 1 0.13 4.5 × 1042 20 0.045 9 0.02
T. Hayashino et al. (2004) 1 0.21 4.0 × 1042 38 0.063 283 0.37
C. Gronwall et al. (2007) 1 0.28 1.3 × 1042 20 0.024 259 0.26
M. Ouchi et al. (2008) 1 0.98 1 × 1042 64 0.061 356 0.10
Y. Matsuda et al. (2009) 1 0.20 1.3 × 1042 20 0.061 127 0.18
R. Ciardullo et al. (2012) 1 0.28 2.4 × 1042 20 0.047 199 0.20
T. Yamada et al. (2012) 4 2.42 1.5 × 1042 46 0.063 2161 0.25
R. M. Bielby et al. (2016) 5 1.25 1.0 × 1042 65 0.063 643 0.14
J. Matthee et al. (2017) 1 0.85 1.0 × 1043 12 0.082 65 0.02
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narrowband data are similar in depth to the deepest surveys
undertaken at similar redshifts while being ∼4 times or more
larger in area. For more details about the survey fields and
observing strategy, we refer interested readers to K.-S. Lee
et al. (2024).

The positions of the ODIN LAEs are shown in the left panel
of Figure 1. The method for selecting these LAEs is detailed in
N. M. Firestone et al. (2024). Briefly, we identify LAEs as
N501-detected sources exhibiting a narrowband excess over the
continuum, corresponding to a rest-frame equivalent width of
20Å. The continuum magnitude is calculated as a weighted
combination of the magnitude in two broadband filters (g and r
for N501 LAEs). We reject sources flagged for saturated pixels
or other image defects and those close to bright stars, with the
total excluded area being ∼1.5 deg2. The resultant gaps left in
the LAE source distribution are highlighted in Figure 1. The
largest of these is ∼144 arcmin2 in area, but there are only two
such holes in the field. The remainder are much smaller
(36 arcmin2). The continuum is estimated using broadband
data from the Hyper Suprime-Cam Subaru Strategic Program
(HSC-SSP; H. Aihara et al. 2018a, 2018b) second data release
(H. Aihara et al. 2019).

The final LAE sample comprises 5691 sources over
≈7.5 deg2, corresponding to a surface density of 0.21 arcmin−2.
This is comparable to other narrowband surveys with similar
filter widths and narrowband depths (see Table 1). Spectroscopic
follow-up efforts for ODIN LAEs are ongoing, but sufficient
spectra have been taken to obtain a preliminary estimate of the
purity of our LAE sample. Of the sources that yielded a redshift,
≈97% are confirmed as LAEs (V. Ramakrishnan et al. 2024, in
preparation).

2.2. Building Mock ODIN Observations with TNG

To build a concrete framework in which we can interpret our
observations, we use the IllustrisTNG300-1 simulation (here-
after TNG300; A. Pillepich et al. 2018a, 2018b; D. Nelson et al.
2019) and define our mock LAE samples. TNG300 provides the
largest volume (302.6 cMpc on a side) of all available
simulations of the IllustrisTNG suite. Given the rarity of
massive galaxy (proto)clusters, this is especially crucial for our
work. All TNG simulations assume the Planck cosmology
(Planck Collaboration et al. 2016). The surface area viewed
along the X-, Y-, or Z-direction is ≈90,000 cMpc2, well matched
to the angular extent of the ODIN data in the COSMOS field,
≈120,000 cMpc2, and the simulation box is several times larger
than the ODIN radial extent of ∼60 cMpc at z= 3.1. TNG300
has a baryon mass resolution of 1.1× 107Me and a dark matter
mass resolution of 5.9× 107Me. In our analysis, we employ
galaxies with stellar mass greater than 107Me, corresponding to
a halo mass of 109Me; as we do not use any stellar or gas
physics in our analysis, the resolution is sufficient for our
purposes.
In constructing mock LAE samples, our primary goal is to

mimic the spatial distribution of the ODIN LAEs as closely as
possible so that we can evaluate their utility as tracers of the
LSS. Understanding the complex behavior of Lyα radiative
transfer requires vastly higher resolution simulations and thus
is outside the scope of this work. Our selection of mock LAEs
from among the TNG galaxies is hence based only on their
stellar mass; we do not attempt a selection based on the star
formation rate or modeled Lyα flux or equivalent width as in,
e.g., M. Dijkstra & E. Westra (2010) and J. Ravi et al. (2024).
We describe our procedure in detail below.

Figure 1. Positions of the observed ODIN LAEs (left panel, see text in Section 2.1) and the mock LAEs from a randomly chosen slice of TNG300 (right panel, see
text in Section 2.2). In the left panel, the holes left by bright stars are shown by red circles.
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First, we match the 75Å (60 cMpc at z= 3.1) full width at
half-maximum of N501 by creating cosmic “slices” from the
TNG z= 3 snapshot with ≈80 cMpc in line-of-sight thickness.
The filter and thus the window function are not a perfect top hat
in shape. To emulate this effect, we assign the LAE selection
probability to match the shape of the filter transmission
function. In all things being equal, the probability of being
selected as a mock LAE is 1, 0.5, and 0 at the distance of 0, 30,
and 40 cMpc from the center of the slice, respectively. In
practice, the probability of an LAE being detected at a given
position along the redshift direction also depends on its line
luminosity, as bright LAEs are more likely to be detected when
they fall on the wings of the filter than fainter ones, and hence
are detected over a larger volume. However, since we are
interested only in the average number density of all LAEs,
irrespective of line luminosity, this does not significantly affect
our analysis.

Second, we aim to reproduce the small- and large-scale
clustering of LAEs. The galaxy bias for z∼ 3 LAEs is
relatively low at b 2 (E. Gawiser et al. 2007; M. Ouchi et al.
2008; M. White et al. 2024), suggesting that LAEs have low
stellar mass content and are hosted by low-mass halos (e.g.,
L. Guaita et al. 2010; H. Kusakabe et al. 2018). To match the
small-scale clustering, we must simultaneously match the LAE
overdensity distribution across the field; the details of this
measurement are presented in Section 3. Motivated by the
findings of A. Hagen et al. (2014), we select the mock LAEs
such that their stellar masses obey a lognormal distribution: i.e.,

*M Mlog  is a Gaussian function, with mean and standard
deviation (μ, σ). Lowering μ values would shift the host halos
to lower masses (thus lower bias). A larger scatter σ (while
fixing μ) would permit both higher- and lower-mass halos to
host LAEs, thereby changing how LAEs trace these halos. We
find that μ= 8.75 and σ= 0.75 yield the best fit to our surface
density measurements. This choice nearly perfectly reproduces
the observed distribution of LAE surface density values, as we
show in Section 5.1. Our best-fit parameters are fully consistent
with the stellar mass distribution of LAEs based on reported by
A. Hagen et al. (2014) by fitting their spectral energy
distributions, log (M*/Me)= -

+8.97 0.71
0.60. They are also similar

to the result of C. J. Vargas et al. (2014), who find log
( ) = -

+
*M M 8.45 0.67

0.72
 for LAEs at z= 2.1.

Finally, we match the measured sky density of LAEs. The
N501 LAE surface density is 0.21 arcmin−2 (see Section 2.1).
In comparison, the number of TNG galaxies selected based on
the above criteria is typically 10 times greater. Additionally, we
assume 10% of our LAEs may be contaminants. This number is
based on the fraction of our spectroscopic targets in the two
faintest bins (N501= 24.5–25.0 and 25.0–25.5 AB) that
yielded a redshift, which is 94.3% and 85.9%, respectively
(V. Ramakrishnan et al. 2024, in preparation). By doing so, we
are assuming that all sources that did not result in a redshift are
interlopers. Our spectroscopic success rate (i.e., the fraction of
sources that yield a redshift for which it is within the expected
range) is 97%, so our estimate is conservative. Changing it to
5% does not change our results. From the selected TNG
galaxies, we randomly choose a subset whose number is equal
to 90% of the LAE density; assuming that LAE sample
contaminants are unclustered, the remaining 10% is drawn as a
purely random distribution within the same region.

To compare directly with our observations, we utilize the
progenitors of 30 of the most massive galaxy clusters in the

final simulation box of TNG300, ranked based on their total
stellar mass. The stellar mass, halo mass, and group ID of these
clusters at z= 0 are found in M. Andrews et al. (2024). We
identify the protoclusters by tracing the main progenitor branch
of the merger trees of the z= 0 clusters to their z= 3
predecessors. The descendant masses of the protoclusters range
from 1.5× 1015Me for the most massive system to 2× 1014Me
for the least massive. We generate cosmic slices, aligning the
midpoint of each with that of a protocluster using the periodic
boundary conditions of the simulation. Slicing the TNG
volume along the X-, Y-, and Z-axis produces 90 slices for
comparison. In a given slice, typically, a few other proto-
clusters from the top 30 most massive sample are included
although, depending on their positions in the redshift direction,
they may be only partially represented. The positions of the
mock LAEs in a randomly chosen slice are shown in the right
panel of Figure 1.

3. Tracing Large-scale Structure

This section aims to delineate the LSS in our observations by
constructing the LAE surface density maps. We employ two
methods: first, smoothing over the LAE positions with a fixed
Gaussian kernel; and second, constructing the Voronoi diagram
of the LAEs. These two methods are summarized below but are
discussed in more detail in V. Ramakrishnan et al. (2023).

3.1. Gaussian Smoothing

The simplest approach to measure the surface density across
a field involves smoothing over the positions of the galaxies
within it using a fixed-size kernel. We employ a 2D Gaussian
kernel with FWHM 10 cMpc. This FWHM is decided
following the methodology of T. Bădescu et al. (2017), also
utilized in V. Ramakrishnan et al. (2023). The kernel size is
chosen such that the resultant surface density map maximizes
the total probability at the positions of the LAEs in the real
data. This is achieved through a leave-one-out cross-validation,
where the likelihood of finding a point at the location rj of the
jth data point is estimated as

( ) ( ) ( )å
ps s

=
- -

¹

r
r r

p
1

2
exp

2
. 1j

i j

i j
2

2

The optimum σ value is the one that maximizes ∏jp(rj).
Before creating the LAE surface density map, we fill in the

holes left by removing the sources near bright stars and image
defects with uniformly distributed random points with surface
density matched to that of the LAEs. We do not find significant
differences between the surface density maps produced before
and after carrying out this procedure. After convolving with the
kernel, the overdensity map is computed by dividing the ΣLAE
map by the mean surface density, S̄LAE:

( ) ¯ ( )d+ =
S
S

1 . 2LAE
LAE

LAE

The mean and standard deviation are determined by fitting the
LAE surface density distribution with a Gaussian function,

[ ( ) ]s- S - Sexp 2LAE LAE
2 2 . The fit is restricted to within

±1.5σ (after iterative σ-clipping) to ensure that our estimate is
not biased by the presence of multiple high LAE overdensities,
which show up at the high (1+ δLAE) end of the distribution.
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The left panel of Figure 2 shows the resultant (1+ δLAE)
map, which we will refer to as the Gaussian smoothed (GS)
map, hereafter. It shows overdense regions that are both
strongly clustered and highly irregular in shape, consistent with
expectations from the hierarchical theory of structure forma-
tion, in which smaller structures continuously merge to form
larger ones, a phenomenon supported by hydrodynamical
simulations (e.g., M. Boylan-Kolchin et al. 2009). The three
most prominent overdensity complexes, highlighted by red
boxes and labeled as complexes A, B, and C, were discussed in
detail in V. Ramakrishnan et al. (2023).

Smoothing with a fixed kernel is most effective at identifying
structures with a size and shape similar to that of the kernel
itself. Thus, the Gaussian smoothing method may not
adequately capture nonisotropic features, potentially resulting
in an underestimation of the significance of many observed
structures. To address this, we explore tessellation-based
methods in Section 3.2.

3.2. Voronoi Tessellation

Tessellation-based density estimates offer the advantage of
being scale-independent and do not assume any specific shape
or size for the underlying structures. The two algorithms most
commonly used in the literature are the Voronoi tessellation
(VT; e.g., A. Dey et al. 2016; O. Cucciati et al. 2018;
B. C. Lemaux et al. 2018; D. Hung et al. 2020) and the
Delaunay tessellation (e.g., N. Malavasi et al. 2021; F. Sarron
& C. J. Conselice 2021). B. Darvish et al. (2015) find, through
analysis of a simulated data set, that the Delaunay tessellation
fares more poorly at estimating the “true” surface density value
at a given point as compared to the VT. Additionally, the
method tends to overestimate the surface density in overdense
regions. Considering these results, we opt for the VT algorithm
as outlined below.

In a 2D case, the VT divides a plane into distinct cells based
on the positions of a set of generating points, e.g., the sky
locations of LAEs. The Voronoi cell of each generating point
includes all regions in the plane that are closer to it than to any
other generating point. Consequently, the area of each cell is a
measure of surface density: cells associated with LAEs in
overdense regions will be small due to the proximity of
numerous other LAEs, whereas those in underdense regions
will be larger. Since each cell contains a single LAE, its LAE
surface density Σi is given by

( )S =
A
1

3i
i

where Ai is the area of the ith cell. As before, the masked
regions are filled in before constructing the Voronoi diagram.
In Figure 2, we show the VT (1+ δLAE) map together with

the GS map. While both maps detect the most significant
structures, the VT method detects them at higher significance.
As expected, the method also identifies a greater number of
overdensities by capturing irregular or anisotropic features.

4. Features of the LSS in Observations: Protoclusters and
Filaments

Galaxy protoclusters represent some of the most striking
features of the LSS at high redshift and are expected to
be observed as significant galaxy overdensities spanning
≈10 cMpc in scale (Y.-K. Chiang et al. 2013). According to
the hierarchical theory of structure formation, massive halos
hosting protoclusters are connected to filaments of the cosmic
web (e.g., U. Kuchner et al. 2022) along which pristine gas is
being accreted to feed star formation. Indeed, these predictions
align qualitatively with the features observed in our (1+ δLAE)
map. Multiple overdensities with angular scales of 5–10 cMpc
are evident in Figure 2 (right), frequently clustered together to

Figure 2. Left: Gaussian smoothed (GS) LAE surface density map. Black, green, white, and cyan contours indicate LAE overdensities of 2σ, 3σ, 4σ, and 5σ
significance respectively; the corresponding values of (1 + δLAE) are marked on the color bar. The three largest overdensity complexes are highlighted in red. Right:
VT-based density map. White contours indicate overdensities of 3σ significance. The LSS revealed by the surface density maps is highly clumpy and irregular.
Nonspherical/irregular overdensities are better delineated at fixed significance in the VT map than in the GS map. The clover shape of the surface density maps arises
from the HSC-SSP data, which consists of four Deep and one central UltraDeep pointing in the COSMOS field.
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form complexes comprising two to five adjacent overdensities.
Additionally, regions of high overdensity, where (1+ δLAE)
> 3, are interconnected by more moderate “bridges” with
(1+ δLAE)= 2–3. Several features show a distinctly linear
morphology, reminiscent of cosmic filaments (for example, the
northwestern corner of “complex A” and the southeastern
corner of “complex C,” see V. Ramakrishnan et al. 2023, for
more detail).

Motivated by these observations, our next objective is to
pinpoint the locations of protoclusters and filaments of the
cosmic web using LAEs as tracers. By directly comparing our
observations with predictions based on the TNG300 mock
LAEs, we will also test how robust our protocluster candidates
are and measure their key properties.

4.1. Selecting Protoclusters from Density Maps

Protoclusters are generally defined as regions that will
evolve into virialized structures with masses 1014Me by z= 0
(e.g., R. A. Overzier 2016). In distant look-back times,
protoclusters are loosely bound regions comprised of multiple
dark matter halos. This poses a challenge in measuring their
physical extent. In this study, we define a protocluster as a
region exhibiting significant size and overdensity, unlikely to
occur by chance alone, and containing sufficient mass that
could plausibly collapse to form a single halo with mass greater
than or equal to 1014Me by z= 0.

According to this operational definition, selecting proto-
clusters entails identifying contiguous regions above a preset
overdensity threshold and minimum area. This procedure
mirrors source detection in pixelated astrophysical images.
Therefore, adopting approaches similar to those outlined by
B. C. Lemaux et al. (2018), D. Hung et al. (2020), and
F. Sarron & C. J. Conselice (2021), we utilize source detection
software on our density maps for protocluster selection.

We begin by pixelating the surface density maps by
interpolating them over a 2D grid of positions with pixel size
3 6. Our grid size, corresponding to 115 ckpc at z= 3.1, is
small enough to clearly delineate the boundaries of the
structures, as it is 2 orders of magnitude smaller than the
typical size of a protocluster. For source detection, we use SEP
(K. Barbary 2016), a Python implementation of the SEXTRAC-
TOR (E. Bertin & S. Arnouts 1996) software. The number of
detected structures depends strongly on the detection threshold
(DETECT_THRESH) and minimum area (DETECT_MI-
NAREA). Our goal is to optimize these parameters to maximize
the identification of robust candidates while minimizing the
inclusion of spurious objects resulting from chance alignments
of LAEs.

To assess contamination, we randomly select a subset of all
continuum and line-emitting sources detected within the N501
image, matching the number and narrowband magnitude
distribution of LAEs in the field. We then generate GS and
VT maps for these random points following the same procedure
as for the LAE surface density maps. Since these points are
distributed across a wide range of redshift, any overdensity
observed in these “random maps” is unlikely to be genuine but
rather the result of chance alignments. Hence, the contamination
fraction for a specific set of detection parameters can be
approximated by dividing the number of sources detected in the
random map by the number detected in the LAE surface density
map. This evaluation is depicted in the top and bottom right

panels of Figure 3 for the VT and GS map, respectively, with
the contamination fraction averaged over 30 iterations.
For the GS-selected protoclusters, the contamination fraction

is low for all sets of detection parameters used. Our fiducial
setup, DETECT_THRESH of 3σ and DETECT_MINAREA of
4600 pixels (;60 cMpc2), yields a contamination fraction of
<0.1% where σ is the (σ-clipped) standard deviation of δLAE.
Compared to the GS map, the pixel-to-pixel density fluctua-
tions are much greater in the VT map, introducing much higher
noise in structure detection. This likely indicates that the scale
at which the statistics are being sampled is too small. We
mitigate this effect by smoothing the map with a 5 cMpc
FWHM Gaussian kernel. On average, this kernel interpolates
over ∼4 LAEs. It is thus large enough to reduce the noise but
small enough to avoid adjacent structures blending into one
considering that a typical diameter of a protocluster at z∼ 3 is
10 cMpc. We choose DETECT_THRESH of 4.5σ and
DETECT_MINAREA of 3000 pixels (;40 cMpc2), yielding
the contamination rate of 20%.
Figure 4 (top and middle rows) shows the protoclusters

identified from the GS and VT-based maps within the
highlighted complexes A, B, and C. The GS map predomi-
nantly captures the largest structures, with smaller and more
irregular formations remaining undetected; nonetheless, the
identified structures exhibit high robustness. In contrast, the VT
map reveals numerous structures overlooked by the GS map
but is also subject to higher noise levels and is more susceptible
to chance alignments of LAEs. The detailed comparison of
different detection methods is presented in Section 6.

4.2. Selecting Protoclusters with HDBSCAN

Density-based clustering techniques, as a subset of unsu-
pervised machine learning algorithms (H.-P. Kriegel et al.
2011), discern clusters by identifying regions of high point
density in data space, set apart by areas of low density. These
methods can be applied to pinpoint protoclusters from the
clustering of the LAEs. Here, we employ the hierarchical
density-based spatial clustering of applications with noise
(HDBSCAN) algorithm (R. J. G. B. Campello et al. 2013).
HDBSCAN offers the advantage of detecting clusters with
varying densities, regardless of their shape, provided they
exceed a specified size threshold. Briefly, this algorithm
measures density at each location, finding clusters as peaks in
the density distribution separated by troughs. Density estima-
tion is based on the distance to the Kth nearest neighbor.
In HDBSCAN, each point is classified into clusters or noise

based on two parameters: the Kth nearest neighbor distance and
the minimum cluster size. The latter dictates the minimum
number of data points constituting a cluster. In the Python
implementation of the HDBSCAN algorithm (hdbscan;
L. McInnes et al. 2017), these parameters are denoted as
min_samples and min_cluster_size, respectively. In
our setup, we opt for values of 15 and 10, respectively (i.e., a
minimum cluster size of 15 LAEs and the 10th nearest neighbor
distance; see Appendix A). Additionally, we require that each
cluster exhibits a median surface density above a specified
threshold. This surface density is calculated as the number of
LAEs divided by the enclosed area, computed as the sum of the
areas of all Voronoi cells encompassing the cluster members.
We set the threshold at 0.23 arcmin−2 (i.e., 1σ above the
field mean calculated from the VT map), which yields a
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contamination rate of ≈20% similar to that for the VT sample.
The HDBSCAN-detected protoclusters are illustrated in the
bottom row of Figure 4. Symbols of the same color denote
membership within the same structure, while gray circles
represent LAEs outside of protoclusters. They are also shown in
Figure 5.

4.3. Cosmic Filaments with DisPerSE

The cosmic web at low redshift (z 1) has been investigated
in detail through multiple surveys (e.g., M. Alpaslan et al.
2014; E. Tempel et al. 2014; N. Malavasi et al. 2017). These
studies have yielded valuable insight into the complex interplay
of filaments and the clusters at the nodes of the cosmic web.
Notably, F. Sarron et al. (2019) and J. M. Salerno et al. (2019)
found evidence that galaxies infalling into clusters along
filaments have a higher passive fraction than those being
accreted from other directions. Moreover, several studies
observed that, on scales of 5–10 cMpc, massive and quiescent
galaxies are preferentially located closer to filaments than low-

mass and star-forming galaxies (K. Kraljic et al. 2017;
N. Malavasi et al. 2017; C. Laigle et al. 2018). This indicates
that filaments may be preprocessing the galaxies being accreted
along them. At higher redshift, however, the role of the cosmic
web on galaxy formation remains largely observationally
unconstrained. Motivated by the discernible presence of
filamentary structures in the LAE surface density map, we
aim to detect cosmic web filaments in our observations in this
section. We explore the reliability of our filament detection in
Section 5.3.
To identify cosmic filaments, we use the Discrete Persistent

Structure Extractor (DisPerSE; T. Sousbie 2011; T. Sousbie
et al. 2011), a widely utilized tool in both observational (e.g.,
N. Malavasi et al. 2017, 2020; F. Sarron et al. 2019) and
simulation studies (e.g., C. Byrohl & D. Nelson 2023; S. H. Im
et al. 2024). DisPerSE utilizes the Delaunay Tessellation Field
Estimator (W. E. Schaap & R. van de Weygaert 2000; R. van
de Weygaert & W. Schaap 2009; M. C. Cautun & R. van de
Weygaert 2011) to create a discrete representation of the
density field based on a given set of points. It then locates

Figure 3. Number of candidates and contamination fraction for protoclusters selected from the VT map (top) and GS map (bottom), for different density thresholds
and minimum areas. The density threshold is expressed in units of Nσ above the field surface density. White stars indicate the detection settings adopted for this work.
While the VT map suffers from higher contamination than the GS map, it also detects far more candidates.
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critical points within this density field approximation and
defines filaments as arcs connecting saddle points to maxima.
The filaments are constructed by creating short segments
tangent to the gradient of the density field at each point. To
account for data noise, DisPerSE employs the concept of
persistence, which measures the density contrast between
critical points defining a filament. Persistence represents the
range of density thresholds over which a filament connecting
two critical points remains significant relative to the noise. This
significance is expressed in units of σ, where an Nσ filament
corresponds to a probability under a 1D Gaussian distribution.
We stress that this method of measuring the persistence level

does not imply the use of a Gaussian distribution within
DisPerSE but rather is purely an expression of the likelihood of
the filaments arising from noise. For example, a persistence
level of 3σ (2σ) means that the extracted filament has a 99.7%
(95.5%) probability of being a true feature.
After filling in the voids left by star masks, we run DisPerSE

on the positions of the LAEs with a persistence of 2σ. We note
that there is no significant difference between the filaments
recovered with and without filling in the voids, as shown in
V. Ramakrishnan et al. (2023). The resultant filament network
is illustrated in the bottom right panel of Figure 5 as red curves
superimposed on the VT density map in gray scale. The figure

Figure 4. Protocluster candidates selected from the GS map (top row), the VT map (middle), and with HDBSCAN (bottom). Red crosses indicate the geometric
centers of the selected overdensities. Yellow swathes indicate the extent of the protoclusters in the upper two rows. In the bottom row, colored points indicate LAEs
classified as belonging to a cluster by HDBSCAN, enclosed by an ellipse for clarity, while gray points are classified as noise.
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reveals a complex web extending over the entire field. Several
previously noted linear overdensities (e.g., within complexes A
and C) are part of this network. Moreover, the filaments appear
to converge at the locations of the extended complexes,
interconnecting the individual protoclusters within. Indeed,
every protocluster is connected to at least one filament, with
several positioned at the convergence of multiple filaments.
Our findings are fully consistent with the hierarchical picture
wherein protoclusters occupy the nodes of the cosmic web.

Given that the line-of-sight window function set by the N501
filter is substantially larger than the dimensions of individual
protoclusters and cosmic filaments, our 2D-based detection
algorithm is expected to include false positives arising from
random noise fluctuations. In Section 5.3, we show that, while
false detection—in particular, of filaments—does indeed occur,

all filaments around overdense protoclusters are robustly
identified. Protocluster detection is even more secure.

5. Cosmic Structures in Simulations: Building Expectations
with TNG

Cosmological hydrodynamical simulations, such as
TNG300, offer invaluable insights not readily accessible
through direct observations. By facilitating connections of
observable traits of protoclusters and cosmic filaments with
more fundamental attributes and allowing us to track their
evolution across cosmic time, simulations provide a crucial
context in which we understand our data. In this section, we
compare the ODIN protocluster and filament samples with
those derived from the TNG300 simulation to gain an

Figure 5. Protoclusters selected from the GS map (top left), VT map (top right), with HDBSCAN (bottom left) and filaments identified with DisPerSE with a
persistence threshold of 2σ (bottom right) overlaid on the VT map. The red dashed region in the bottom left panel highlights a structure that is missed by the VT and
GS maps but is detected with HDBSCAN. The filaments correspond to regions of moderate (∼2σ–3σ) overdensity, and connect protoclusters together.
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understanding of the physical properties of the structures
detected in Section 4.

5.1. Comparison of Observations and Simulations

In the left panel of Figure 6, we compare the LAE surface
density distribution of the real data with the TNG300 slices. As
detailed in Section 2.2, the latter are constructed from TNG300
and are designed to match the ODIN filter transmission as well
as the LAE surface density and clustering bias. Multiple
realizations are averaged over to result in the surface density
distribution shown for the simulation. The high-end tail of the
LAE surface density distribution, which represents the field’s
highest-density regions corresponding to protoclusters and
filaments, is nearly perfectly reproduced.

In Figure 7, we show the VT map of both data and one z= 3
TNG300 slice side by side. The displayed slice is chosen at
random and is centered on a massive protocluster with a
descendant mass of 5.5× 1014Me (group ID= 13 at z= 0:
cyan cross). It also contains five additional structures (yellow
crosses) that will evolve into a cluster with mass greater than
2× 1014 by z= 0, as well as several objects that will evolve
into less massive clusters (green crosses). Indeed, the majority
of the largest overdensities seen within the slice are associated
with protoclusters. The two maps are remarkably similar in that
both display structures of similar sizes and irregular morphol-
ogies, arranged into extended complexes. We highlight three
such similar regions (complexes A1, B1, and C1 in the real
data, and A2, B2, and C2 in the simulations, shown by dashed-
line boxes). These mock structures are also connected by
cosmic web filaments.

The distributions of the total transverse area and median
LAE surface density of protoclusters detected in real data and
simulation span a similar range, demonstrating good agreement
given the constraints of modeling. This is illustrated in
Figure 6. The median number of protoclusters (averaged over
90 TNG slices) is 37 compared to 33 detected in our data.
They correspond to the protocluster surface density of
(4.1± 0.6)× 10−4 and (3.3± 0.6)× 10−4 cMpc−2, respec-
tively. The uncertainties represent the shot noise only and thus
should be considered as a lower limit.

One caveat is that the possible effects of radiative transfer on
the observability of LAEs are ignored. In practice, the presence
of dense gas and dust, particularly in the cores of protoclusters,
may hide the LAEs in these regions (e.g., R. Shimakawa et al.
2017; R. Momose et al. 2021; Y. Huang et al. 2022). This
might lead us to either underestimate the LAE surface density
in the cores of our observational protocluster candidates or
incorrectly pinpoint their centers. Since the median densities of
the observed and simulated LAEs are similar, we expect that
any underestimation of LAE surface density is relatively small.
However, we cannot rule out the possibility of mislocating the
centers, and there is some evidence suggesting discrepancies
between the locations of overdense regions identified by LAEs
and those identified by Lyman Break galaxies (e.g., K. Shi
et al. 2019). Nevertheless, the excellent agreement between our
data and simulations suggests that the massive cosmic
structures identified with current and future ODIN data are
robust.

5.2. Calibration of Descendant Mass Estimate

Estimations of the descendant mass allow us to establish
direct connections between high-redshift protoclusters and
present-day galaxy clusters, thereby tracing the evolution of
massive cosmic structures and their galaxy populations across
cosmic time. Following the methodology outlined by C. C. Ste-
idel et al. (1998), we compute the descendant mass of ODIN
protoclusters by assuming that the mass contained within the
overdensity region will collapse into a cluster-sized halo by
z= 0, with a total mass Mz=0 given by

( ) ( )r r d= = +=M V V1 4z m z m0 PC 0, PC

where ρm and δm are the density and overdensity of matter,
respectively. VPC is the protocluster volume, and ρ0,z is the
mean density of the Universe at redshift z. If the galaxy bias,
bg, is known, Equation (4) becomes

( )⎜ ⎟⎛⎝ ⎞⎠d
r= +=M

b
V1 5z

g

g
z0 0, PC

Figure 6. Left: LAE surface density distribution of the TNG300 slices, in comparison to that of the observed LAEs. The red line shows the median distribution across
all 90 slices while the shaded region shows the spread. The observed and simulated LAE distributions are very similar, particularly at the high end, which represents
massive structures. Middle and right: area and median LAE overdensity (δLAE) for the protocluster candidates detected in the 90 TNG300 slices compared to those of
the observationally detected protocluster candidates. Blue/red vertical lines indicate the median value for the ODIN data/TNG300. The properties of the structures are
similar in the observations and simulation.
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where δg is the galaxy overdensity. We assume bg= 1.8
(E. Gawiser et al. 2007; M. White et al. 2024) and fix δg to the
median LAE overdensity within the protocluster region. Since
we do not have any redshift information for the majority of our
LAEs, we assume that the size of a protocluster in the line-of-
sight direction is similar to that in the transverse direction and
approximate the volume of a protocluster from its area (APC) as
VPC= APC

1.5: i.e., the shape of a protocluster is approximated as a

cube. Mz=0 is then estimated as

( )⎜ ⎟⎛⎝ ⎞⎠d
r= +=M

b
A1 . 6z

g

g
z0 0, PC

1.5

The relation =V APC PC
1.5 is a good estimate for an isotropic

structure. As we have already seen, many of our protoclusters
are strikingly nonspherical in shape, and thus, the above
relation may be a poor approximation. If a protocluster is

Figure 7. VT-based surface density map of our observed LAEs vs. that of a 80 cMpc thick slice of the TNG300 simulation box at z = 3. The positions of individual
LAEs/mock LAEs are shown in Figure 1. Red lines in the top panels represent filaments selected with DisPerSE with a persistence threshold of 2σ. The cyan cross in
the top right panel indicates the position of the massive protocluster on which the slice is centered (group ID = 13 at z = 0), while yellow crosses show the other
massive protoclusters in the same volume (group IDs = 1, 2, 7, 11, 23 at z = 0). Green crosses show the progenitors of less massive clusters within the slice. Some
overdensity complexes (A1, B1, C1; A2, B2, C2) are highlighted and zoomed in on the bottom panels. The two maps show visible similarities.
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extended in the transverse dimension, it would be observed as a
more modest overdensity with a larger angular extent.
Conversely, a structure stretched along the line-of-sight
direction is expected to be more compact with a larger
overdensity. Using TNG-detected structures, we quantify the
detection rate and the uncertainty in mass estimates due to the
lack of information in the third dimension.

Figure 6 shows that there is a good agreement between
TNG-selected and observational protoclusters for both angular
sizes (middle) and median LAE overdensity (right). We also
assess the likelihood of the 30 most massive cluster progenitors
to be selected as a protocluster candidate when viewed along
the X-, Y-, and Z-directions. To this end, we only consider the
structures for which (i) the measured (angular) position center
lies within 10 cMpc of the true center; and (ii) the line-of-sight
position center is within 25 cMpc of the center of a given TNG
slice. For reference, the FWHM of all slices is 60 cMpc, and a
typical size of a protocluster is ≈10 cMpc.

Based on this definition, the median recovery rate of the
protoclusters is 60%. The progenitor of the most massive
cluster is always detected while the progenitors of the next four
most massive clusters are detected >90% of the time. As
expected, the likelihood of finding smaller structures depends
on the sightlines being favorable or adverse to robust detection.
If we lower the threshold for our VT-based protocluster
selection from 4.5σ to 3.5σ, the recovery rate of the
protoclusters increases to 80%. The higher success rate comes
at the price of much greater contamination of ∼45%, compared
to ≈20% for our fiducial setup.

In the left panel of Figure 8, we compare the estimated and
true descendant mass, Mest,z=0 and M200,z=0 for the recovered
clusters in the 90 slices, where M200 refers to the mass
contained within a spherical region whose mean density is 200
times the critical density of the Universe. The figure illustrates
that Mest,z=0 tends to underestimate the true mass about 80% of
the time. The median Mest,z=0/Mtrue,z=0 ratio is 0.35-

+
0.23
0.67, as

indicated by the solid black line. This implies that the cosmic

volume that ends up in a galaxy cluster by z= 0 is much
greater than what we identify in the data as significant galaxy
overdensities likely associated with a protocluster.
Our findings are consistent with the results from

Y.-K. Chiang et al. (2013), who, based on the semianalytical
models implemented in the Millennium simulations, found that
about 40% of the total mass at z= 0, Mtoday is enclosed within
a 6 (8) cMpc radius sphere for Virgo- and Coma-sized
protoclusters with Mtoday= (3–10)× 1014Me and >1015Me,
respectively. In comparison, the median effective radius of our
simulated protoclusters (computed as (APC/π)

0.5) is ∼5 cMpc.
To account for this effect, we correct the estimated masses by a
factor of 0.35.
Figure 8 shows that the 2D-based mass estimates yield a

considerable scatter of 0.49 dex. The most extreme outliers
arise from cases where two or more protoclusters are merged
together during detection, particularly for the protoclusters with
M200,z=0� 1014.5Me; these points are highlighted with a black
outline in Figure 8. Even excluding these cases, the scatter
remains high at ∼0.44 dex. We ascertain that the scatter is a
result of the loss of information in the z-direction as follows.
We perform the 3D VT of the 3D volume centered on the 30
massive clusters, this time using all the galaxies with
Mstar> 107Me. Using the subhalo merger trees of the z= 0
cluster members, we also identify the “member galaxies” in the
z= 3 snapshot. The LAE overdensity and the protocluster
region are computed similarly to the 2D case, but Voronoi cells
are now 3D polyhedra instead of 2D polygons, while galaxy
overdensity is measured as the median LAE overdensity of the
Voronoi cells containing member galaxies. VPC is obtained by
summing over these Voronoi cells.
The resultant mass estimate is shown in the right panel of

Figure 8. As expected, the scatter of the 3D z= 0 mass
estimates is considerably smaller, at ∼0.15 dex, than in the 2D
case, once we have eliminated all uncertainties regarding the
cluster membership and the information on the third dimension.
The estimated descendant mass is also significantly less

Figure 8. Mz=0 values estimated from Equation (6) compared to the true values for the progenitors of the 30 most massive clusters in the TNG300 box. The left panel
(blue points) indicates the masses estimated from the 2D projection of the LAE overdensity corresponding to the protocluster, with the LAEs matched in number
density to observations. The dashed line indicates a one-to-one relation between estimated and true descendant masses, while the solid line indicates a relation of Mest,

z=0 = 0.35M200,z=0. Highlighted points show cases where the protocluster was merged with another, more massive object by the detection. The right panel (red points)
indicates the masses estimated from the 3D positions of the cluster members (see Section 5.2 for more details). Shaded regions indicate the range of the 1σ and 2σ
scatter of the estimated masses. While the 2D mass estimate is subject to considerable scatter, primarily arising from the loss of information in the z-direction, it
correlates well with the true descendant mass.
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underestimated than in the 2D case, being ∼85% of the true
value. It is noteworthy that the intrinsic scatter of 0.15 dex is
comparable to 0.2 dex estimated by Y.-K. Chiang et al. (2013)
in converting galaxy overdensity measured within a (15 cMpc)3

cubic window into descendant mass.
When we compare the “true” volume found with the 3D VT

to that derived from the projected protocluster area, we find that
the scatter of the latter (≈0.52 dex) is sufficient to account for
the entirety of the uncertainty in the mass estimate. This
suggests that the uncertainty in Mz=0 is dominated by the
volume estimation and that the isotropic assumption is less than
ideal for protoclusters at high redshift. This result is not
surprising, but it does quantitatively demonstrate the need for
large-scale spectroscopic follow-up of protocluster candidates.
However, we also emphasize that the 2D mass estimation is
correct in an average sense, and statistical analyses for a large
sample of protocluster candidates that make use of this mass
estimate will be robust.

5.3. The Fidelity of Filament Recovery

At high redshift, active star formation and galaxy growth
taking place in protoclusters are likely supported by cool gas
transported along filaments of the cosmic web (e.g., A. Dekel
et al. 2009; E. Daddi et al. 2021). The wide area coverage of
ODIN presents a unique opportunity to study protoclusters in
concert with the surrounding cosmic web, provided that we can
accurately recover the filaments. As they are even more
extended structures than protoclusters, the effect of projection
along the line of sight on filament recovery must be considered
separately. In this section, we use the TNG300 slices to
examine how well the observed 2D filament network
corresponds to the true underlying 3D network. We focus
specifically on filaments in the vicinity of protoclusters, to
understand how likely it is for a filament that appears near a
protocluster in projection to be physically connected to the
protocluster.

We make use of the 90 slices of the TNG300 full box at
z= 3 described in Section 2.2. For each slice, we use DisPerSE
to extract filaments using the positions of the mock LAEs
matched to ODIN, projected along the slice axis. This is

henceforth referred to as the “2D skeleton” or “2D filaments.”
To create a comparison set of filaments that represents the
“true” cosmic web, we also run DisPerSE on the 3D positions
of the slice galaxies with 107Me < M* < 1012Me, henceforth
referred to as the “3D skeleton” or “3D filaments.” We use a
persistence threshold of 2σ to extract the 2D skeleton, identical
to that used on the observed LAEs. For the 3D skeleton, we use
multiple persistence thresholds of 5σ, 6σ, and 7σ to compare
the 2D skeleton against 3D features of varying significance.
How well does the 3D skeleton traced by galaxies

correspond to the underlying distribution of dark matter?
S. H. Im et al. (2024) quantitatively analyze this question for
the Horizon Run 5 simulation. They find that, while the
filaments outlined by all the simulated galaxies are less detailed
than the filaments traced by dark matter, the former never-
theless aligns closely with the latter. Although we do not
attempt to replicate the full analysis of S. H. Im et al. (2024),
we find similar behavior in TNG300, as demonstrated in
Figure 9 where we show the filaments traced by dark matter
and the 3D skeleton traced by galaxies in a randomly chosen
slice.
In Figure 10, we show the dark matter distribution in one of

the TNG300 slices overlaid with the 2D and 3D skeletons. The
similarity between the DisPerSE filaments (both 2D and 3D)
and the underlying dark matter distribution is clear, as is the
fact that the 2D and 3D skeletons mirror each other closely.
However, the 2D skeleton does not perfectly reproduce the true
3D cosmic web. To quantify the extent to which the cosmic
web can be recovered by our observational data, we compare
the 2D filaments to the 3D skeleton. We do this following a
similar procedure to F. Sarron et al. (2019; see also C. Laigle
et al. 2018; U. Kuchner et al. 2022), by matching the individual
segments out of which DisPerSE constructs the 2D and 3D
skeletons (see Section 4.3) to each other. We measure the
(projected) separation between the midpoints of each segment
of the 2D skeleton and those of the 3D skeleton. We denote the
minimum distance from a segment of the 2D filament network
to a segment of the 3D network as d2d→3d, and the inverse as
d3d→2d. This mapping is illustrated in the left panel of
Figure 11. The former measurement enables us to determine
which of the 2D filaments represent true features of the 3D

Figure 9. Left: distribution of dark matter in a randomly chosen TNG300 slice. Middle: the filament network identified with DisPerSE, using 0.1% of the dark matter
particles and with a persistence threshold of 6σ. Right: the filament network identified with DisPerSE using galaxies (red), again with a persistence threshold of 6σ,
overlaid on that traced by dark matter. Although the former is less detailed than the latter, there is excellent correspondence between the two.
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cosmic web, while the latter allows us to determine which
features of the underlying filament network are successfully
recovered by observations.

In the top right panel of Figure 11, we show histograms of
d2d→3d for the three persistence thresholds. Hydrodynamical
simulations have found that the typical radius of a filament at
z∼ 3 is 2–3 pMpc (8–12 cMpc; W. Zhu et al. 2021; see also
S. H. Im et al. 2024). The median values of d2d→3d are well
below this range, being 2.0, 2.7, and 4 cMpc respectively for
the 3D skeletons found with persistence 5σ, 6σ, and 7σ. The
values are less than 5 cMpc (1.25 pMpc) for the majority of the
2D segments. We refer to the segments with d2d→3d< 5 cMpc
as “matched 2D segments,” meaning that they have a “match”
in the 3D skeleton. The fraction of matched segments decreases
with increasing persistence threshold, from ∼80% for a

persistence threshold of 5σ to ∼60% when the persistence
threshold is 7σ. This is reasonable; as the persistence threshold
is raised, the extracted network is increasingly restricted to only
the most significant filaments, and finer features are lost,
leading to a greater number of 2D segments going unmatched.
Irrespective of the adopted persistence value, 55% of the 3D
segments have 2D matches within d3d→2d< 5 cMpc. We
conclude that the 2D skeleton serves as a good representation
of the underlying cosmic web even though it faithfully recovers
the individual features ≈55% of the time.
Next, we examine whether the fraction of matched 2D

segments depends on the persistence threshold used to extract
the 2D skeleton. If the matched fraction increases substantially
with increasing persistence threshold, it would indicate that our
chosen persistence threshold is too generous. Reassuringly, we

Figure 10. Top left: the dark matter distribution for a randomly selected slice, centered on a protocluster with descendant mass log (M200/Me) = 15.18 (red cross;
group ID = 0 within the z = 0 TNG300 simulation box). Top right: the filaments (pink lines) extracted by DisPerSE for this slice are based on the mock LAE
positions, which are shown by black dots. This network is comparable to the cosmic web selected with ODIN data. Bottom: the filaments extracted by DisPerSE for
the same slice using the 3D positions of the slice galaxies with 107 Me < M* < 1012 Me, with varying persistence thresholds. The filaments are color-coded by their
separation from the center of the slice along the line-of-sight direction. At large distances from the slice center, the filaments are truncated by the slice boundaries. The
number of such truncated filaments reduces at higher persistence thresholds.

14

The Astrophysical Journal, 977:119 (24pp), 2024 December 10 Ramakrishnan et al.



find that the matched fraction only rises marginally with the
persistence threshold, increasing by 5% from a persistence
threshold of 2σ to 5σ. This is visualized in Figure 12, where we
show the 2D skeletons extracted with persistence thresholds of
2σ, 3σ, and 5σ in comparison to the dark matter distribution
and the 3D skeletons. The majority of the 2D filaments
extracted with a lower persistence threshold, which do not
appear with a higher one, can be visually matched to the true
features of the 3D skeleton.

Intriguingly, the fraction of matched 2D segments increases
with increasing surface density for all cases, as shown in the
top panel of Figure 13, suggesting that the higher the observed
LAE surface density is, the more likely the detected filament is
to be an accurate representation of the 3D cosmic web. We also
examine the converse, i.e., the probability that a filament within
an overdense region is recovered by observations. On
considering the 3D skeleton within 10 cMpc of a massive
protocluster, we find that the fraction of matched 3D segments

Figure 11. Left: an example comparison of the 2D and 3D skeletons, illustrating how d2d→3d and d3d→2d are measured. Right: comparison of the 2D and 3D skeleton
using the separation of the segments, d2d→3d (top) and d3d→2d (bottom). The separations are calculated across all 90 slices of 80 cMpc thickness from the z = 3
TNG300 simulation. In the majority of cases, both d2d→3d and d3d→2d are less than 5 cMpc, regardless of the specific persistence threshold.

Figure 12. Similar to Figure 10, but showing the 2D skeletons extracted with multiple persistence thresholds.
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is considerably higher than in average regions, increasing from
a median of ∼55% to a median of ∼86% in all three
persistence cases. The matched fraction is even higher if we
restrict the region under consideration to within 5 cMpc of the
protoclusters, being 100% in the majority of slices.

In the bottom panel of Figure 13, we show d3d→2d as a
function of the (2D) LAE surface density in the slices. To avoid
confusion, we only show the result for the 5σ threshold
skeleton, as the remaining two persistence thresholds give
nearly identical results. With increasing LAE surface density,
d3d→2d decreases rapidly; i.e., in dense protocluster regions, not
only is the recovery rate of the 3D skeleton considerably higher
but also the 2D skeleton resembles the 3D skeleton more
closely. This is illustrated in Figure 14 where we show the 2D
and 3D skeletons for the same slice as in Figure 10 but zoom in
on the massive protocluster. These results show that the ODIN
data will be capable of studying protoclusters within the
context of the surrounding cosmic web.

6. Discussion

6.1. Comparison of Structure Detection Methods

In Section 4, we based our protocluster selection on the GS
and VT maps and the HDBSCAN algorithm. These methods
resulted in 9, 33, and 47 structures, respectively. We now wish
to evaluate the similarities and differences between these
methods.
The false positive rate in the GS method is very low for all

sets of detection parameters and is ∼0 for our fiducial criteria.
The nine GS-based protoclusters may thus be considered the
most secure candidates. All GS structures are present in the VT
sample with similar morphologies. In all cases, the separation
between the centers determined by the GS and VT method is
within 2.5 cMpc. For all but one that is present in both GS and
VT samples, the measured area is slightly greater (by a factor of
∼1.1–1.8) in the latter. This is because irregular overdensities
are generally detected at higher significance in the VT map.
All structures in the GS sample are also present in the

HDBSCAN sample. One is split into two structures by
HDBSCAN as shown in the middle column of Figure 4. For
the remaining eight, the structures have similar morphologies in
both the GS and HDBSCAN analyses; however, the measured
area in HDBSCAN is larger than that estimated from the GS
method by a factor of ∼2–5.
More interesting is the comparison between the structures

detected from the VT map and using HDBSCAN. Figure 5
shows the locations of the VT (upper right) and HDBSCAN
samples (lower left). Only two of the 33 protocluster candidates
in the VT sample are not detected by HDBSCAN. As for the
remaining 31, one is recovered as two separate objects and two
are merged into a single structure. For all the protoclusters
detected by both the VT and HDBSCAN methods, the latter
yields larger measured areas than the former, typically by more
than a factor of 2.
Why are the VT-based structures smaller and fewer in

number compared to the HDBSCAN-selected ones? Visual
inspection of Figure 5 suggests that many HDBSCAN-selected
structures with no VT counterpart are more elongated and
filamentary. In particular, the filamentary arm previously
highlighted in complex A is identified by HDBSCAN (high-
lighted in red in the figure) but not from the VT map. If we
relax the overdensity threshold for the VT detection from 4.5σ
to 3.5σ, the number of HDBSCAN-selected protoclusters that
overlap one or more VT-based ones increases from 30 to all 47.
The areas of the two sets of protoclusters become more similar.
However, the downside of lowering the detection threshold for
the VT map is the increased contamination rate. We conclude
that HDBSCAN fares better in recovering lower surface
density features with a more elongated morphology, but with
the downside that it is more difficult to ascribe a physical
meaning to the detection parameters for this method (Kth
nearest neighbor and minimum cluster size) than for those for
the GS and VT methods (minimum area and density threshold).

6.2. Descendant Masses of the Protocluster Candidates

The number densities of the VT and HDBSCAN protocluster
samples (which we expect to be more complete than the GS
sample) are 5.5× 10−6 cMpc−3 and 7.9× 10−6 cMpc−3,
respectively. The number density of clusters at z= 0 in
TNG300 is 1.2× 10−5 cMpc3, implying that our protocluster

Figure 13. Top: the fraction of 2D filament segments with a match with the 3D
skeleton (detected with various persistence thresholds), as a function of the
LAE surface density at the position of the filament segment. Regardless of the
persistence threshold used to select the 3D skeleton, the fraction of matched 2D
segments increases with increasing surface density. Bottom: d3d→2d as a
function of the (2D) LAE surface density for the 5σ threshold 3D skeleton; the
other two skeletons give virtually identical results. The solid line indicates the
median value while the shaded region indicates the spread as measured from
the 16–84 percentile scatter.
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sample has a completeness of ∼50%. Purely based on the
comoving number density, i.e., by assuming that each of our
protocluster candidates evolves into an independent galaxy
cluster by z= 0, the descendant masses are estimated to be
2× 1014Me and 1.6× 1014Me, respectively. In practice,
some of our structures will likely merge into a single more
massive cluster. Thus, the masses quoted above represent a
lower limit.

We now estimate the descendant masses of individual
protocluster candidates. We showed in Section 5.2 that, for our
choice of protocluster detection parameters, Equation (6)
underestimates the descendant masses of the structures selected
from the VT map by a factor of ∼3. A similar analysis for the
GS and HDBSCAN methods (see Appendix B) shows that the
masses of the former are underestimated by a factor of ∼2, and
those of the latter are underestimated by a factor of ∼1.15. In
Figure 15, we show histograms of the descendant masses after
making the appropriate corrections. The median masses are

( ) ==M Mlog 14.35z 0  , 14.75, and 14.52 for the VT,
HDBSCAN, and GS protoclusters, respectively, suggesting

that our protocluster candidates will evolve into moderately
massive “Virgo-type” clusters (Y.-K. Chiang et al. 2013). The
median values and the overall range spanned by the descendant
masses are in reasonable agreement with the lower limits
inferred from the number density. This again highlights the
completeness of our protocluster sample.

6.3. Comparison with Other Works

Several studies have made use of LAEs to trace the LSS at
z∼ 2–4 (e.g., T. Hayashino et al. 2004; T. Yamada et al. 2012;
K.-S. Lee et al. 2014; T. Bădescu et al. 2017; S. Kikuta et al.
2019; Y. Huang et al. 2022). ODIN reaches a comparable Lyα
line flux to these past surveys (∼1–9× 10−17 erg s−1 cm−2),
but over a considerably larger contiguous area—T. Yamada
et al. (2012) and S. Kikuta et al. (2019) have the largest area
coverage at 1.38 and 1.1 deg2, respectively, while the remainder
survey areas of ∼0.2–0.5 deg2. ODIN is also unusual in that
our protocluster candidates are discovered blindly, with no
prior information available; T. Bădescu et al. (2017) and

Figure 14. As Figure 10, but zoomed in on the region surrounding a massive protocluster.
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S. Kikuta et al. (2019) target the vicinity of a pair of Lyα
nebulae and a hyperluminous QSO, respectively, while
T. Hayashino et al. (2004), T. Yamada et al. (2012), K.-S. Lee
et al. (2014), and Y. Huang et al. (2022) used narrowband
imaging to follow up on previously identified galaxy
overdensities.

It is worth noting that the structure studied by T. Yamada
et al. (2012), located at z= 3.09 in the SSA22 field, is
strikingly similar in its size and clumpy morphology to our
complex A. The entirety of the 1.38 deg2 region they survey
is overdense in LAEs, of which a region of ∼60 cMpc2

was previously studied by C. C. Steidel et al. (2000) and
T. Hayashino et al. (2004) and comprises the core of the
protocluster. The core region has been shown to host multiple
extended and luminous Lyα nebulae (Y. Matsuda et al. 2004),
a trait shared by complex A (see V. Ramakrishnan et al. 2023),
suggesting that the two systems are similar.

The protocluster studies using different techniques include
J. Toshikawa et al. (2016), who used u-dropout galaxies to
identify five protoclusters at z∼ 3 over 4 deg2 of the fields
covered by the Canada–France–Hawaii Telescope Legacy
Survey (M. Sawicki et al. 2019) and J. Toshikawa et al.
(2018), who used g-dropout galaxies to find 216 protoclusters at
z∼ 3.8 over the 200 deg2 of the HSC-SSP Wide fields. These
samples have number densities of ∼1× 10−7 and 1.5× 10−6,
respectively. Y.-K. Chiang et al. (2014) use galaxies with
photometric redshifts from the COSMOS/UltraVISTA catalog to
find 26 protoclusters at 1.6 < z < 3.1 over an area of ∼1.2 deg2,
corresponding to a number density of 1.2× 10−6 cMpc−3. These
works identify overdensities of similar sizes (5–15 cMpc) and, in
the case of J. Toshikawa et al. (2018), similar descendant mass
(∼1–2× 1014Me). However, the redshift uncertainty for the
tracers used by these works is much larger than that of our LAEs.
This may lead to density peaks being diluted by interlopers,
resulting in lower number densities.

7. Conclusions

The ODIN survey is the largest-area deep field narrowband
survey undertaken to date. By enabling the selection of LAEs,
which are low-mass, star-forming galaxies and are well
localized in redshift space over a wide contiguous area, ODIN
makes it possible to comprehensively trace the LSS at high

redshift. In this paper, we have used the early ODIN data taken
in the COSMOS field with the N501 filter to compile a sample
of protoclusters and cosmic filaments.
We create LAE surface density maps using two methods—

by smoothing over the LAE positions with a fixed-size
Gaussian kernel (GS map, Section 3.1) and by constructing
the Voronoi diagram of the LAEs (VT map, Section 3.2). We
select protocluster candidates from the surface density maps
(Section 4.1) and by applying the density-based clustering
algorithm HDBSCAN to the LAE positions (Section 4.2). We
also select filaments of the cosmic web (Section 4.3). We assess
the reliability of our structure detection by comparing our
observations against the results obtained with a carefully
created mock sample of LAEs from the IllustrisTNG300-1
hydrodynamical simulation (Section 5). Our main results and
conclusions are as follows:

1. The LSS revealed by our surface density maps is
distinctly clumpy and irregular, with overdense regions
clustered together in extended complexes. The VT map
identifies filaments as regions of moderate LAE over-
density ((1+ δLAE) = 2–3) connecting the regions of
highest density ((1+ δLAE) > 3). These features are in
line with the expectations of hierarchical structure
formation.

2. The three methods of identifying protoclusters that we
explore all have their strengths and weaknesses. The VT
map identifies a greater number of objects but also suffers
from a higher contamination rate than the GS map. The
GS map recovers only the most significant overdensities
but is almost free of interlopers. The HDBSCAN map
recovers the maximum number of structures; however,
the input parameters are less straightforward to interpret
or assign physical meaning to than for the surface
density maps.

3. The surface density maps of the z= 3 TNG300 simula-
tion box display remarkably similar features to those seen
in the observations. The number and size of the
overdensities selected with our fiducial detection para-
meters are likewise similar in the two. As shown in
Figure 7, many of the prominent overdensities in the
TNG300 surface density maps correspond to the
progenitors of z= 0 clusters.

Figure 15. Descendant masses of the individual protoclusters for all three samples, after applying appropriate corrections to the mass calculated with Equation (6).
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4. The simulation shows that we can successfully recover
∼60% of the protoclusters with a descendant mass
2× 1014Me. We find that the descendant mass of the
simulated protoclusters can be estimated purely based on
their area and LAE overdensity measured in 2D. The lack
of information in the redshift direction introduces a
scatter of ∼0.4 dex on the measurement.

5. By comparing the filaments identified in 2D and 3D in
TNG300, we show that, despite projection effects, the
cosmic web recovered in 2D is a close representation of
the true LSS in regions with high LAE surface density. In
the vicinity of protoclusters, the 3D filament network is
almost perfectly recovered.

6. On estimating the descendant masses of our observed
protocluster samples, we find that they span the range log
(Mz=0/Me)∼ 14.0–15.0, with the median of the VT, GS
and HDBSCAN samples being 14.35, 14.52, and 14.75
respectively. The majority of our protoclusters are thus
likely to evolve into intermediate-mass “Virgo-type”
clusters.

Our results establish the robustness of our protocluster and
filament samples and demonstrate that LAEs are reliable and
efficient tracers of LSS at high redshift. Upon completion, the
ODIN survey will allow us to select secure samples of massive
structures that are nearly 10 times larger than those presented
here and span three cosmic epochs. ODIN will thus be well
placed to grant insight into the formation and evolution of
cosmic structures near Cosmic Noon.
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Appendix A
Parameter Selection for HDBSCAN

As stated in Section 4.2, HDBSCAN is a density-based
clustering algorithm that separates points into “clusters” and
“noise.” HDBSCAN performs this classification by estimating
the density at each data point from its Kth nearest neighbor
distance, referred to as the “core distance.” Points in dense
(sparse) regions will have relatively small (large) core
distances, and the core distance of a data point is thus inversely
proportional to its density.
HDBSCAN is an extension of the DBSCAN algorithm.

DBSCAN selects clusters by imposing a user-defined density
threshold. This is implemented by placing a ceiling on the core
distance/Kth nearest neighbor distance, that is, by requiring
that there be K points within a distance ò or less of a given
point. DBSCAN begins with a point that satisfies the
requirement of having a core distance less than or equal to ò
and classifies it and its neighbors within ò as a single cluster. If
any of these neighbors also pass the density criterion, their
neighbors within ò are assigned to the same cluster as well. This
continues until there are no more points within the cluster that
have a core distance less than ò, at which point the cluster is
closed. DBSCAN then selects an unassigned point with K or
more neighbors within ò and repeats the process. This continues
until no points that pass the density threshold remain, at which
juncture all remaining data points are classified as noise.
The approach of DBSCAN, of applying a constant density/

core distance threshold, is restrictive. The optimal value of ò is
difficult to identify and can vary from region to region within
the data. HDBSCAN circumvents the difficulty of selecting a
single density threshold by making use of hierarchical
clustering; that is, it creates a hierarchy of clusters by applying
successively higher-density thresholds and then selects the
optimal set of clusters from this hierarchy. This makes it ideal
for selecting clusters of varying density from a single data set,
as in our case.
As it constructs a cluster hierarchy, HDBSCAN does not

require the user to supply the parameter ò. Instead, the parameters
that govern the cluster selection are K, as before (which
determines how density is measured) and an additional parameter,
the minimum cluster size. HDBSCAN uses the minimum cluster
size to condense the cluster hierarchy—any cluster in the
hierarchy that has fewer points than this size is discarded. This
is shown in Figure 16 for a sample data set. From this condensed
hierarchy, HDBSCAN selects the final set of clusters.
The HDBSCAN library provides two ways of selecting the

final set of clusters. The first method, the “excess-of-mass”
method, selects the most stable set of clusters, defined as those
that persist for the greatest range of density thresholds. The
second method, the “leaf” method, selects the smallest
surviving clusters in the hierarchy. These two methods are
illustrated in Figure 17 for the same sample data set.
Based on the above description, there are two main

parameters that govern the clustering based on HDBSCAN,
namely, K and the minimum cluster size. By determining
which nearest-neighbor distance will be used for estimating the
density, K controls how finely the density distribution is
sampled, in essence acting as a kind of smoothing scale.
Changing the minimum cluster size affects the condensed
cluster hierarchy by changing the number of points required to
be considered a cluster, that is, more points are discarded as
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Figure 16. The cluster hierarchy (middle panel) and condensed cluster hierarchy (right panel) constructed by HDBSCAN for a sample data set (left panel). The sample
data set contains three regions of densely clustered points along with random noise. The cluster hierarchy is constructed by applying successive density cuts. Each
branch of the tree represents a cluster of points selected above some density cut. The condensed cluster hierarchy shows the cluster hierarchy after clusters smaller than
the minimum cluster size are discarded.

Figure 17. The selection of clusters from the condensed cluster hierarchy with the excess-of-mass (EOM, top row) and leaf (bottom row) methods. Selected branches
of the cluster hierarchy are circled in red in the left panels, and the corresponding set of cluster points are shown in color in the right panel, while noise points are gray.
The EOM method selects the clusters that persist for the greatest range of density cuts, while the leaf method selects the “leaves” of the cluster hierarchy, i.e., the
smallest surviving clusters.
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noise, and the cluster selection is more conservative. Setting
either of these parameters to too low a value will result in many
noise peaks being erroneously selected as clusters, whereas
setting them to be too large may result in structures being
blended together. Our key consideration in choosing the
parameters is ensuring that nearby structures are separated to
the extent possible, which we enforce as described below.

We run HDBSCAN on the positions of the LAEs with
min_samples and min_cluster_size both in the range
10–30. We observe that the excess-of-mass method tends to
blend structures irrespective of the specific parameter values
used; thus, we choose to use the leaf method in our cluster
selection. As discussed in the main text, we additionally require
that the clusters be above a surface density threshold determined
such that the contamination fraction is 0.2. We estimate the
mean area of the structures selected for each combination of
parameters, as shown in Figure 18. With increasing values of
min_samples and min_cluster_size, the mean area
of the detected structures increases, indicating that smaller
structures are indeed being blended. We select our
final parameters to be min_cluster_size= 10 and
min_samples= 15, which as shown in Figure 18 yields a

protocluster sample with a mean area of ∼200 cMpc2. This
choice is based on the physical motivation that the scale of a
protocluster is expected to be∼10–15 cMpc (Y.-K. Chiang et al.
2013), corresponding to a projected area (for an isotropic
structure) of ∼100–225 cMpc2. We make use of a value of
min_samples on the larger end of the allowed range because,
while oversmoothing the density distribution is undesirable, it is
equally undesirable for the distribution to be too finely sampled
as it becomes very noisy.

Appendix B
Calibration of the Mass Estimation for GS Map and

HDBSCAN

In Section 5.2, we evaluated the reliability of the estimated
descendant masses for individual protocluster candidates
selected from the VT map. We found that the descendant
masses were on average underestimated by a factor of ∼3,
which we attributed to the underestimation of the protocluster
volume by our detection algorithm. Here, we similarly examine
the accuracy of the descendant mass estimates for the
protocluster candidates selected from the GS map and with
HDBSCAN.
We once again use the 90 slices constructed in Section 2.2.

Analogously to the middle and right panels of Figure 6, we
compare the properties of the structures selected with
HDBSCAN (selected from the GS map) from these slices to
those of the observed protoclusters in the top (bottom) panel of
Figure 19. The structures remain similar in projected area and
median LAE overdensity between theory and simulations,
reaffirming the fact that our observational protocluster
candidates are reasonable.
As in Section 5.2, for each slice, we consider those of the 30

massive cluster progenitors lying within the slice, which are
successfully recovered. The recovery rate of the HDBSCAN is
∼70%, slightly higher than that of the VT map. This is in
accordance with the fact that the HDBSCAN candidates are the
most numerous. By contrast, the recovery rate of the GS map is
very low, ∼20%, in line with our observation that only the
most prominent structures are recovered.
We compare the estimated and true descendant masses for

recovered clusters for both methods in Figure 20. We find that
the descendant masses of the protoclusters are underestimated
by a factor of ∼2 with the GS method, and by a factor of ∼1.15
with HDBSCAN. In both cases, the scatter is similar to that
observed with the VT map, ∼0.5 dex.

Figure 18. Average area of the structures detected by HDBSCAN, for
various combinations of the Kth nearest neighbor used to measure
density (min_samples) and minimum number of points to constitute a
cluster (min_cluster_size). The expected area of a protocluster is ∼100–
200 cMpc2; areas much larger than this suggest that multiple structures are being
blended together by the algorithm.
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Figure 19. Area and median LAE overdensity (δLAE) for the structures selected with HDBSCAN (top) and from the GS map (bottom) in the TNG300 slices compared
to those in observations. Solid lines indicate the median values of each property. As with the structures selected from the VT map, the properties of the objects in the
simulation and observations are similar.
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