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Abstract Observational data inherently contain noise which manifests as uncertainties in the measured
parameters and creates positive biases or noise floors in second‐order products like variances, fluxes, and
spectra. Historical methods estimate and subsequently subtract noise floors, but struggle with accuracy. Gardner
and Chu (2020, doi.org/10.1364/AO.400375) proposed an interleaved data processing method, which inherently
eliminates biases from variances and fluxes, and suggested that the method could also eliminate noise floors of
power spectra. We investigate the interleaved method for spectral analysis of atmospheric waves through
theoretical studies, forward modeling, and demonstration with lidar data. Our work shows that calculating the
cross‐power spectral density (CPSD) from two interleaved subsamples does reduce the spectral noise floor
significantly. However, only the Co‐PSD (the real part of CPSD) eliminates the noise floor completely, while
taking the absolute magnitude of CPSD adds a reduced noise floor back to the spectrum when the sample
number is finite. This reduced noise floor can be further minimized through averaging over more observations,
completely different from traditional spectrum calculations whose noise floor cannot be reduced by
incorporating more samples. We demonstrate the first application of the interleaved method to spectral data,
successfully eliminating the noise floor using the Co‐PSD in a forward model and in lidar observations of the
vertical wavenumber of gravity waves at McMurdo, Antarctica. This high accuracy is gained by sacrificing
precision due to photon‐count splitting, requiring additional observations to counter this effect. We provide
quantitative assessment of accuracy and precision as well as application recommendations.

Plain Language Summary Atmospheric waves serve a vital role in global energy and momentum
transportation between the lower and upper atmosphere, driving major atmospheric circulations. These waves
exist across many scales, from large planetary waves to medium‐ and small‐scale gravity waves (GW). GW are a
key factor driving many atmospheric phenomena, but due to their relatively smaller scales, they are difficult to
study. The spectra of GW are important to understanding wave dynamics and informing the development of
atmospheric models, as these spectra contain critical information about how wave‐transported energy is
distributed amongst different temporal and spatial frequencies. A major tool in improving our knowledge and
modeling of GW is their direct observations. Although being powerful wave observation tools, lidar and radar
data contain noise in their measurements which manifests as noise floors, obscuring derived wave power
spectra. These floors cannot be removed by averaging more samples, as is done for other parameters, making it
difficult to accurately interpret the spectra. Pre‐existing techniques can remove this floor, but they struggle with
accuracy, especially in high‐noise conditions. This study introduces and demonstrates the use of an interleaved
method of spectral processing, which eliminates the noise floors altogether, enabling high‐accuracy calculation
of wave spectra.

1. Introduction
The computation of power spectra is an important task to characterize wave dynamics using lidar, radar, and other
remote sensing data over the whole atmosphere as well as geospace. However, as pointed out by Gardner and
Chu (2020), conventional spectral analysis techniques result in noise floors established by the white noise (e.g.,
the lidar photon noise or radar noise power) in the detection processes. Such noise floors could obscure waves
with weak amplitudes, significantly limiting the detectable spectral ranges of atmospheric waves. Similarly, the
computations of other second‐order parameters, such as variances and fluxes, also suffer positive biases induced
by noise. Without proper subtraction or elimination, these noise floors and biases can conceal real geophysical
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features or cause misleading results (Chu et al., 2018; Gardner & Chu, 2020; Gardner & Liu, 2014; Jandreau &
Chu, 2022; Lu et al., 2015).

A novel idea, that is, the interleaved data processing technique, was proposed by Gardner and Chu (2020) to
eliminate biases and noise floors in the second‐order statistics of wave perturbations in observational data. This
interleaved technique separates raw data into two subsamples of the odd and even bins, respectively, then derives
two sets of independent measurements that are basically simultaneous and common‐volume, and finally computes
covariances, cross‐fluxes, or cross‐power spectra between the two measurements, which retain the geophysical
features of variances, fluxes, or power spectra but possess zero biases due to the zero‐mean and uncorrelated noise
from the two independent measurements. In that historic paper, Gardner and Chu (2020) performed the theoretical
analyses of the interleaved principles, demonstrated the bias‐eliminating techniques in the computation of
temperature and lapse rate variances, and provided the equations of interleaved techniques for the computations of
variances, fluxes, and power spectra. Later, the computations of vertical fluxes of sensible heat and meteoric Na,
variances of temperature, vertical wind and Na density, and potential energy of gravity waves using the inter-
leaved techniques, were demonstrated on the lidar measurements over McMurdo, Antarctica, which led to the
discovery of upward sensible heat fluxes in the lower thermosphere (Chu et al., 2022).

It is worth noting that the interleaved approach to noise‐bias elimination is very different from the conventional
correction techniques that compute the second‐order statistics containing the biases or noise floors, then estimate
the biases or noise floors, and finally subtract them from the initial computations. In contrast, the interleaved
techniques eliminate the biases or noise floors from the beginning of calculation, and then average over many
samples to reduce the uncertainties. The resultant variances, fluxes, and power spectra are basically free of biases
and noise floors, that is, very high accuracy, but still contain uncertainties (i.e., imprecisions) induced by noise.
Accuracy and precision are two different concepts in error analysis, but they easily cause confusion. Exact
definitions of these two concepts will be provided in Section 2. Jandreau and Chu (2022) analyzed existing
methods in calculating variances and gravity‐wave potential energy to handle noise‐induced biases in the spatial‐
temporal domain (Chu et al., 2018; Gardner & Chu, 2020; Whiteway & Carswell, 1995), specifically comparing
the two conventional bias‐subtraction methods against the interleaved bias‐elimination method, and finding that
the interleaved method was especially powerful and enabled the use of data which was not useable via the other
existing methods. Certainly, one has the freedom in choosing the technique implementation fashion from the
time‐interleaved method (Chu et al., 2022; Gardner & Chu, 2020) to the altitude‐interleaved method (Jandreau &
Chu, 2022). It is necessary to mention that the interleaved method shares a similar principle as the time‐lagged
method proposed in Gardner and Liu (2014), that is, separating data into two independent subsamples so that
noise from the two subsample measurements is uncorrelated thus eliminated via averaging over many samples. Of
course, the interleaved idea is more elegant than the time‐lagged method on the aspect of minimizing the time or
altitude shift between the two subsample measurements thus achieving the highest possible accuracy (see details
in Section 2).

To date, the computation of power spectra using the interleaved technique has not been demonstrated in literature.
Gardner and Chu (2020) have provided an equation for estimating temporal frequency spectrum—their Equation
28, which involves taking the discrete Fourier transforms (DFT) for deriving spectral amplitudes from the odd‐
and even‐bin measurements, respectively, and then calculating the cross‐spectrum from these two independent
DFT amplitudes, averaging the cross‐spectrum over many samples, and finally computing the absolute magnitude
of the mean cross‐spectrum. However, our studies have shown that Equation 28 in Gardner and Chu (2020) may
not be optimal for computing wave power spectra because the absolute magnitude does not entirely remove bias
under high noise conditions but adds a reduced noise floor back to the spectra (see Section 2.2). In contrast, taking
only the real part of the cross‐spectrum, that is, the coincident‐spectrum (co‐spectrum) as practiced in meteo-
rology studies (Stull, 1999), does eliminate the noise floor entirely; however, this co‐spectrum is slightly smaller
than the true wave power spectrum. Therefore, it is imperative to analyze these two methods—taking the co‐
spectrum or the absolute magnitude of cross‐spectrum—in detail and properly assess the accuracy and preci-
sion of the interleaved power spectra.

To address the above issues, this study focuses on the development of spectral interleaved techniques for
eliminating the noise floors from the computed power spectra while maintaining energy conservation in the
derivation of cross‐power spectra, and on the related error analyses of spectral accuracy and precision, especially
the derivations of spectral uncertainties. This paper compares the interleaved method with the existing methods
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for noise‐bias correction in power spectrum calculations, determines the conditions in which each method should
be used, and investigates how these methods correspond to similar methods applied in the space‐time domain to
correct variances via covariances. This study is done by examining the theories behind the methods, by forward
modeling, and by applications to real data collected during the 10‐year McMurdo lidar observations with an aim
of calculating vertical‐wavenumber spectra of gravity waves observed over McMurdo, Antarctica. While these
techniques are demonstrated using lidar data and discussed in terms of photon counts and lidar terms, it should be
possible to apply the techniques to a wide variety of observational data sets including radar and other remote
sensing and in‐situ observations of the atmosphere and space. The ideas and principles of interleaved techniques
and spectral uncertainty derivations are applicable to various observations within and outside the atmosphere and
space sciences.

2. Interleaved Data Processing Techniques for Deriving Spectra of Waves
Lidar measurements of atmospheric densities are employed in this study to illustrate the various methods in
deriving wave spectra and variances. Statistics performed here have assumed that the atmospheric density ob-
servations as well as measurements of other atmospheric parameters, such as temperatures, winds, species
densities, and backscatter coefficients, etc., are samples of stationary, ergodic random processes (Bendat &
Piersol, 2010; Gardner & Chu, 2020). Therefore, the sample average can be used to approximate the ensemble
average (Bendat & Piersol, 2010; Gardner & Chu, 2020; Jandreau & Chu, 2022) in the limit of a very large
number of samples.

In studying atmospheric wave data of any kind, pushing to higher resolutions of data will always be limited by
some noise limit which is inherent to the photon counting process and cannot be avoided. The shot noise manifests
as a zero‐mean perturbation uncertainty (Δρ) alongside the zero‐mean tracer perturbation (ρ′), in this case at-
mospheric density, as in Equation 1a and due to the linearity of the discrete Fourier transform (DFT), can be
represented as Equation 1b.

ρ′Total(z, t) = ρ′(z, t) + Δρ(z, t) (1a)

DFT(ρ′Total) = DFT(ρ′ + Δρ) = DFT(ρ′) + DFT(Δρ) (1b)

where ρ′Total represents the total perturbation consisting of both wave and noise induced perturbations, and where z
and t are altitude and time, respectively. To simplify expressions, the DFT here refers to a 1‐D Fourier transform,
which could be with respect to z or t.

Uncertainties induced by this noise can be minimized through sample averaging for first‐order parameters like
atmospheric temperatures, densities, and perturbations, where the incorporation of additional samples drives the
noise term toward zero. However, in calculating second‐order atmospheric parameters (Equations 2) like vari-
ances, fluxes, and spatial and temporal energy/power spectra, the parameters are positively biased by these noise
effects and additional data averaging does not reduce the bias. This bias is the final term of Equations 2a and 2b, a
positive offset in the variance term, and a noise floor in the spectral one:

Var(ρ′Total) = ⟨[ρ′(z, t) + Δρ(z, t)]2
⟩ = ⟨[ρ′]

2
⟩ + ⟨2ρ′Δρ⟩ + ⟨[Δρ]

2
⟩ = ⟨[ρ′]

2
⟩ + ⟨[Δρ]

2
⟩ (2a)

Power Spectra = ⟨DFT(ρ′Total) DFT(ρ′Total)
∗
⟩

= ⟨|DFT(ρ′)|
2
⟩ + ⟨2DFT(ρ′) DFT∗(Δρ)⟩ + ⟨|DFT(Δρ)|

2
⟩ = ⟨|DFT(ρ′)|

2
⟩ + ⟨|DFT(Δρ)|

2
⟩

(2b)

where Var is the variance operator, DFT denotes a standard discrete Fourier transform operation, the asterisk
indicates a complex conjugate, and the angle brackets denote an ensemble average, that is, the expectation of the
variable. The last equal signs are achieved in Equations 2a and 2b because we realize that the expectations of the
cross terms in Equations 2a and 2b are zero when ρ′ and Δρ as well as DFT(ρ′) and DFT*(Δρ) are uncorrelated.
This conclusion depends on the relations,
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〈Δρ(z, t)〉 = lim
N→∞

1
N

∑
N

k=1
Δρ(zk, t) = 0

(3a)

〈DFT(Δρ(z, t))〉 = lim
N→∞

1
N

∑
N

k=1
DFT(Δρ(zk, t)) = DFT[ lim

N→∞

1
N

∑
N

k=1
Δρ(zk, t)] = DFT(0) = 0

(3b)

and the cross‐terms in Equations 2a and 2b are driven toward zero as more observations are included. The relation
in Equation 3 is true for an average over z or t. This relation is also critical to the performance of the interleaved
method, as will be demonstrated in Section 2.2. Even in the case of minor photon noise, the presence of 〈[∆ρ]2〉 or
〈|DFT(Δρ)|2〉 guarantees a non‐zero noise floor, biasing the variances and spectra positively by some amount. In
cases where the strength of the noise perturbations approach that of the waves interested, the entire signal may be
unusable without correction.

Two techniques which can be used to estimate and subtract the noise bias in the variance domain are referred to as
the variance subtraction technique and the spectral proportion technique with the latter one proposed and
demonstrated in Chu et al. (2018). They are two different approaches used to estimate the 〈[∆ρ]2〉, with the former
relying on analytical equations under certain assumptions of noise distributions and the latter using a graphical
determination of noise floors to estimate the 〈[∆ρ]2〉. Both techniques are summarized and compared in Jandreau
and Chu (2022). Correspondingly, there are two similar techniques in the spectral domain for estimating the 〈|
DFT(Δρ)|2〉 and then subtract the estimated noise floors from the PSD (see a summary in Section 2.1). Certainly,
it is challenging to derive an accurate estimate of 〈[∆ρ]2〉 or 〈|DFT(Δρ)|2〉. The interleaved method addresses this
challenge by systematically eliminating the noise biases or noise floors without the need of estimating the noise
biases/floors (see Section 2.2 for details).

For dealing with the noise floor in spectral analysis, one of two approaches must be taken: Limiting studies to the
range of spectra whose strengths are above the noise floor or removing the noise floor somehow. There have been
a few conventional approaches to removing the noise floor as mentioned above, each is elaborated upon in
Section 2.1. Noise floor correction allows the extension of spectral studies into the higher resolution portion of the
spectrum that was previously obscured by the noise floor yet can be especially critical for results incorporating
higher frequency or larger wave‐number waves, turbulent regimes, or in utilizing data taken under noisy
conditions.

2.1. Previously Available Techniques for Noise Subtraction

Ultimately, the results shown in Section 3 will be those of vertical wavenumber (m) power spectral density (PSD),
scaled from a DFT via the periodogram method as in Dewan and Grossbard (2000) and Heinzel et al. (2002), and
all spectral terms hereafter will be in terms of this PSD scaling. This is calculated for spatial and temporal spectra
as follows

PSDρ(m) =
2Δz

Nunpad

⃒
⃒DFT(ρ(z, t))|2 (4a)

PSDρ(ω) =
2Δt

Nunpad
|DFT(ρ(z, t))|2 (4b)

where ∆z and ∆t are the spatial and temporal resolutions of ρ(z, t). The single‐sided DFT is used in Equations 4a
and 4b, thus the factor of two in their numerators. It is worth noting that if zero‐padding is used in calculating the
DFT, then the unpadded N length, Nunpad, should be used in the PSD scaling to reveal the true wave power that is
given by the integrated area below the PSD envelope. The PSDs in Equations 4a and 4b are shown with an overbar
to denote the sample averaging of multiple spatial/temporal spectra, respectively, together. This is done to
emphasize that with real data, such averaging is necessary to reduce uncertainty, as well as to keep notation
similar to Equations 7a and 7b where such averaging is also used in the interleaved method.
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The first approach to removing the noise floor from the PSD is to calculate the value of the noise floor in
the data based on the photon noise model which traces noise from photon counts directly into its spectral
strength. This method will be referred to as the calculative subtraction method. Gardner et al. (1989) gives
an example of such a PSD correcting equation which yields an estimate of the noise floor based on photon
counts, accounting for certain filtering characteristics. This equation can also be written simply in terms of
the relative parameter uncertainty where Equation 5a shows the noise floor for one‐sided vertical wave-
number spectrum at a given time, and Equation 5b shows the noise floor for a one‐sided temporal spectrum
at a given altitude:

PSDFloor,m =
2Δz
NzNt

∑

Nt

n=1
∑

Nz

k=1
(
δρ(zk, tn)

ρ(zk, tn)
)

2
(5a)

PSDFloor,ω =
2Δt
NtNz

∑

Nt

n=1
∑

Nz

k=1
(
δρ(zk, tn)

ρ(zk, tn)
)

2
(5b)

where the calculation of the δ parameter error term may differ from application to application. The δ error in this
study was calculated as in Chu et al. (2018). Because the photon noise in each resolution cell (i.e., range bin or
time bin) is statistically independent of the photon noise in every other cell, the noise spectrum is white, that is,
constant noise floor at all frequencies and wave numbers, consistent with the expected PSD of the assumed noise
model. This calculative noise‐floor‐subtraction approach is based on the same principle as the variance sub-
traction method mentioned in Section 1 and shares the same drawbacks for spectral analysis as it does in variance/
flux applications. Chu et al. (2018), Gardner and Chu (2020), and Jandreau and Chu (2022) each detail that the
major drawback of this approach is that when the strength of the noise variance approaches that of the wave
variance, often the resulting variance is negative. When discussing wave energies, the wave energy cannot
physically be negative which obviously invalidates this approach for those cases. This issue occurs mainly
because the measurement error terms are estimated from the measured photon counts by linearizing the nonlinear
system equations (Gardner & Chu, 2020). When noise is high, the omitted higher‐order terms (like the second and
third orders) may become comparable to the first‐order linear terms. Coupled with the need for an accurate noise
model, accurate estimates of errors are basically impossible when noise levels are high. This same “negative
energy” result is obtained when applying this method to spectral correction of real data taken under high‐noise
conditions.

The second approach to correct the noise floor of a spectrum is to estimate the noise floor by inspection based
on the shape of the derived spectrum, referred to hereafter in this study as the (noise floor) graphical subtraction
method. This method has been used with success by Wilson et al. (1991) and is comparable to the spectral
proportion technique used by Chu et al. (2018) for correcting noise‐induced variance. Here, a noise floor is
estimated based on the high‐resolution portion of the data's PSD, essentially visually or algorithmically using
the shape of the spectra to identify the noise floor, and this estimate is subtracted from the PSD to remove the
noise floor. Because higher‐order nonlinear terms are naturally included in the formation of the floor, this
graphical subtraction method usually works better than the analytical one above when noise is high. In this
study, the three lowest minima were selected from the last 25% of the uncorrected PSD and their values were
averaged to estimate the noise floor. It was observed that results improved when more samples are averaged
together before applying this floor‐selection algorithm, as this allowed for the floor to “be flattened” before
selection. This noise‐floor selection criterion was selected for use in the spectral proportion after much testing
was done by Jandreau and Chu (2022) and is similar to the noise‐floor‐selection criteria used by Chu
et al. (2018). While this approach could work relatively well in many cases, there may exist certain spectra
which this method struggles with, such as if the true (not‐noise) spectrum was especially flat, the approach
could easily misidentify the noise floor. Generally, spectral shape will not cause issues if the user is cautious
about floor‐selection criteria; however, there will always be difficult‐to‐quantify uncertainties in such a
“manual” method of noise floor estimation. What is more commonly seen is that application to a spectrum
whose floor is not fully developed often results in mis‐estimation of the floor magnitude and thus an incorrect
subtraction, leaving remnants of floor in the spectra and thus overestimating the PSD values at higher
frequencies.
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2.2. Interleaved Techniques

The previous two methods aim to subtract the noise floor from the total spectra that consist of both wave spectra
and noise spectra. In contrast, for the most recently developed approach by Gardner and Chu (2020), the inter-
leaved data processing technique eliminates the noise bias outright, instead of computing a quantity for the bias
and subtracting it, as was done in the two prior methods. This interleaved method takes advantage of the fact that
the noise‐induced perturbations in the measured photons are uncorrelated between two independent samples and
are also statistically independent from the wave induced perturbations in the signal. The interleaved method is
implemented by breaking the photon counts into two subsamples of the odd and even bins, ρA and ρB, and
replacing the variance parameter with a covariance, or in the spectral domain, replacing the PSD with cross‐power
spectral density (CPSD) magnitude or the CPSD real part—coincident‐power spectral density (Co‐PSD). The
definitions of CPSD and Co‐PSD and their relations are given below in terms of the sample average represented
by the overbar.

CPSD(ρ′A,Total, ρ′B,Total) =
2Δz
Nz

DFT(ρ′A,Total)DFT∗ (ρ′B,Total) (6a)

Co‐PSD(ρ′A,Total, ρ′B,Total) = Re[CPSD(ρ′A,Total, ρ′B,Total)] (6b)

Q‐PSD(ρ′A,Total, ρ′B,Total) = Im[CPSD(ρ′A,Total, ρ′B,Total)] (6c)

where the real and imaginary parts of CPSD are termed the Coincident‐PSD (Co‐PSD) and the Quadrature‐PSD
(Q‐PSD), respectively (Bendat & Piersol, 2010; von Storch & Zwiers, 1999; Stull, 1999). There are two options in
the interleaved spectral analysis. One is to take the absolute magnitude of the mean CPSD as suggested in Gardner
and Chu (2020), and another is to take the Co‐PSD, that is, the real part of CPSD, without calculating absolute
magnitudes as explored in this study. In Equation 7, which formulates the interleaved data processing techniques
for variance and spectral analysis, we present the options of Co‐PSD and CPSD magnitude in Equations 7b and
7c, respectively.

Cov[ρ′A,Total (zA), ρ′B,Total (zB)]

= [ ρ′A (zA, t) · ρ′B (zB, t)] + [ ρ′A (zA, t) · ΔρB (zB, t)]

+ [ ρ′B (zB, t) · ΔρA (zA, t)] + [ΔρA (zA, t) · ΔρB (zB, t)]

≃[ ρ′A (zA, t) · ρ′B (zB, t)] = Cov[ ρ′A (zA, t),ρ′B (zB, t)]

(7a)

Co‐PSD(ρ′A,Total, ρ′B,Total) =
2Δz
Nz

Re[ DFT(ρ′A,Total)DFT∗ (ρ′B,Total) ]

=
2Δz
Nz

Re[ (DFT(ρ′A) + DFT(ΔρA))(DFT(ρ′B) + DFT(ΔρB))
∗

]

=
2Δz
Nz

Re

⎡

⎢
⎢
⎢
⎢
⎢
⎣

DFT(ρ′A)DFT∗ (ρ′B) + DFT(ρ′A)DFT∗ (ΔρB)

+DFT(ΔρA)DFT∗ (ρ′B) + DFT(ΔρA)DFT∗ (ΔρB)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≃
2Δz
Nz

Re[ DFT(ρ′A)DFT∗ (ρ′B) ] = Co‐PSD(ρ′A, ρ′B)

(7b)

⃒
⃒
⃒CPSD(ρ′A,Total, ρ′B,Total)

⃒
⃒
⃒ =

2Δz
Nz

⃒
⃒
⃒
⃒DFT(ρ′A,Total)DFT∗ (ρ′B,Total)

⃒
⃒
⃒
⃒ (7c)
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where ρ′A,Total = ρ′A + ΔρA and ρ′B,Total = ρ′B + ΔρB are the total perturbations in the two subsamples of odd‐ and
even‐bin measurements, respectively. Here ρ′A and ρ′B represent the purely wave‐induced tracer perturbations,
and ΔρA and ΔρB are the noise‐induced perturbation uncertainties at the corresponding altitudes zA and zB of the
odd‐ and even‐bin measurements, respectively. Equations 7b and 7c are written for the calculation of vertical
wavenumber spectra, where the Fourier transforms taken are of vertical profiles and the DFT here is one‐sided
(thus the factor of two in the numerator), the Nz is the unpadded length of said vertical profiles, and the reso-
lution Δz is the step size of the spatial series. For calculating a temporal spectrum, the dimensions of the overbar
average would be switched and Nt and Δt used instead.

The interleaved techniques shown in Equations 7a and 7b reveal the true wave‐induced covariance and Co‐PSD
by utilizing the aforementioned statistical independence between two interleaved subsamples (A and B) and
between the wave‐induced and noise‐induced perturbations. The expectations of the cross terms in Equation 7 are
zero:

⟨ ρ′A (zA, t) · ΔρB (zB, t)⟩ = ⟨ ρ′B (zB, t) · ΔρA (zA, t)⟩ = ⟨ΔρA (zA, t) · ΔρB (zB, t)⟩ = 0 (8a)

⟨DFT(ρ′A) DFT∗ (ΔρB)⟩ = ⟨DFT(ΔρA) DFT∗ (ρ′B)⟩ = ⟨DFT(ΔρA) DFT∗ (ΔρB)⟩ = 0 (8b)

The overbars in Equation 7 represent the sample averages, not the ensemble averages required by expectation
operations to drive the cross terms to zero, which explain the approximately equal sign (≃) used in Equations 7a
and 7b. Although these cross terms are not necessarily zero under limited sample averages, they represent un-
certainties to the covariance and Co‐PSD, but they are certainly not the systematic biases as in Equation 2. In
Section 2.3 we will quantitatively consider the number of samples which must be averaged together to achieve a
desired uncertainty.

Gardner and Chu (2020) provide a quantitative analysis on the correction factor between this interleaved method's
covariance and the actual variance of the wavefield, and find that under typical lidar resolutions, the covariance is
only a fraction of a percent smaller than the variance, and thus the covariance can essentially represent the
variance. In the spectral domain, the Co‐PSD can often represent the true wave‐induced PSD because the sum
over all wavenumbers or frequencies of Co‐PSD corresponds to the covariance in the time and spatial domains
(Stull, 1999). The correction factor for the Co‐PSD depends on the shift δz or δt between two subsamples as well
as on the wavenumbers or frequencies of waves considered. It is critical that the splitting of the raw data into the
two subsamples must be done in an “interleaved” manner (Figure 1), keeping the temporal or spatial shift (δz or δt)
between the subsamples to a minimum, in order to maximize the wave coherency between the two samples and
minimize the correction factors. It is this interleaving scheme that sets this approach apart from previous ap-
proaches with similar principles like the “time‐lagged” method proposed by Gardner and Liu (2014) and illus-
trated in Jandreau and Chu (2022). The correction factor will be discussed quantitatively in Section 2.3.

Figure 1 illustrates the implementation of interleaving schemes in both time and altitude domains. The inter-
leaving can be done in either time or altitude domain and must be done such that all the even‐numbered bins are in
one sample and the odd‐numbered ones are in the other sample. The time and spatial spectra can be calculated
similarly regardless of the interleaving scheme, as Figure 1 also shows.

Using Co‐PSD in Equation 7b, instead of the absolute magnitude of sample averaged CPSD as given in Equa-
tion 7c, for the interleaved spectral computation, is a further development from the originally proposed Equation
28 in Gardner and Chu (2020), which is the basis of Equation 7c. Our tests have shown that the approach in
Equation 7c, that is, averaging the instantaneous or point CPSD over many samples and then taking the magnitude
of that mean CPSD, does significantly reduce the noise floor compared to the uncorrected PSD given by
Equation 4; however, taking the magnitude (i.e., the absolute value) adds a new, reduced noise floor back to the
power spectral density. To provide a theoretical explanation, we define the instantaneous or point CPSDinst and its
relationship with the sample‐averaged CPSD in Equation 9:

CPSDinst ≡
2∆z
Nz

(DFTA · DFT∗
B) = Coinst + ∆Coinst + i(Qinst + ∆Qinst) (9a)
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CPSD = CPSDinst =
1
L

∑
L

n=1
[Coinst,n + ∆Coinst,n + i(Qinst,n + ∆Qinst,n)]

= Co + ∆Co + i(Q + ∆Q)

(9b)

Co = Coinst, Q = Qinst, ∆Co = ∆Coinst, ∆Q = ∆Qinst (9c)

where i2 = − 1, Co and Q represent the purely wave‐induced Co‐PSD and Q‐PSD, respectively, and ∆Co and ∆Q
represent the noise‐induced Co‐PSD and Q‐PSD. The subscription “inst” denotes instantaneous or point values,
and the overbars represent taking the average over L number of samples. The absolute magnitude of CPSD and the
Co‐PSD are expressed as:

|CPSD| =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Co + ∆Co)
2 + (Q + ∆Q)

2
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Co2 + Q2 + 2Co∆Co + 2Q∆Q + (∆Co)
2 + (∆Q)

2
√

(10a)

Co‐PSD = Re(CPSD) = Co + ∆Co (10b)

With a finite number (L) of samples, ∆Co ≠ 0 and ∆Q ≠ 0; therefore, the terms of (∆Co)2 + (∆Q)2 in Equa-
tion 10a induce a new but reduced noise floor to the CPSD magnitude (reduced significantly from the original
noise floor caused by (∆Coinst)

2 + (∆Qinst)
2), while the two cross terms (2Co∆Co + 2Q∆Q) in Equation 10a

induce reduced uncertainties to the CPSD magnitude but not biases. Equation 10a proves that the CPSD
magnitude contains a non‐zero noise floor at a finite number of samples.

By contrast, when considering only the CPSD real part, that is, the Co‐PSD given by Equation 10b, the only noise
term left (∆Co) represents a reduced uncertainty but not a bias. Because the noise term is not squared and it can be

Figure 1. Diagram of the interleaved method being applied in both time interleaving and altitude interleaving, as well as a
demonstration of how all spectra can be derived from either method. Typical δt and δz are small, for example, 4.5 s and 24 m
in Chu et al. (2022) and Gardner and Chu (2020) or 1 min and 48 m in Jandreau and Chu (2022) and this study. Typical Δt and
Δz are much larger, for example, 2.5 min and 960 m in Chu et al. (2022) or 1 hr and 480 m in this study.
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negative and positive, this noise term causes only oscillations around the true values of wave spectra, not a bias,
and thus a line fit to the Co‐PSD profile should reasonably approximate/estimate the wave spectra. We show an
example in Figure 2 to demonstrate the ideas stated above (The results of Figure 2 come from a forward model
which will be described later in Section 2.4.). Because the Co‐PSD (solid green curve) shows both positive and
negative values in the linear scale plot (Figures 2b and 2c) when approaching high wavenumbers, a line fitting to
the Co‐PSD delineates an estimate of the power spectral density (dotted green curve) that closely resembles the
forward‐modeled true wave PSD (dashed cyan curve).

In comparison, the absolute magnitude of CPSD (|CPSD|, red curve) stays positive at all wavenumbers and shows
a reduced noise floor above the true wave PSD, which is obvious at high wavenumbers. This reduced noise floor
(solid red curve), although being much smaller than the original PSD noise floor (black curve), can still mislead
the extraction of the spectral slope over a large range of wavenumbers (dotted red line) or limit the slope
extraction to a much‐narrower range (solid pink line) above the reduced noise floor in the log‐scale plot
(Figure 2a). In stark contrast, the Co‐PSD slope (dotted green line) follows the modeled spectral slope nicely
throughout the high wavenumber range (limited by the Nyquist criterion). This Co‐PSD slope is obtained from the

Figure 2. A demonstration of the two CPSD products, Co‐PSD and |CPSD|, where 600 samples of the model were used for
this plot (see Section 2.4). The plots show that both methods reduce the noise floor from the PSD (black line), but the |CPSD|
has a reduced positive bias on it due to the nature of taking the absolute magnitude. The Co‐PSD shows negative points;
however, this noisy profile is centered on the modeled spectra thus the dashed‐green fit line reasonably approximates the
modeled spectra. Figures 2b and 2c show the same data, where 2c is zoomed in on the higher m range. Figure 2a shows three
fit lines, the green‐dashed line is fit to the Co‐PSD and the red‐dashed line is fit to the |CPSD| over the same range, showing a
shallower slope. The pink line in 2a shows the range over which a slope could reasonably be fit to the |CPSD|, which is much
smaller than the range of Co‐PSD fitting.
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aforementioned fitting in the linear scale (Figures 2b and 2c). The stunning results in Figure 2a are not surprising
because taking the CPSD magnitude constitutes a loss of information about part of the spectra, for example, the
negative ∆Co and ∆Q, leading to a reduced but non‐zero bias as discussed above using Equation 10a. This
reduced bias may be understood through an analogy of fluctuations ∆x around a mean x when taking the square

operation:
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x+∆x)

2
+(x− ∆x)

2

2

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x)
2 + (∆x)

2
√

. The Co‐PSD eliminates the noise floor entirely as shown in
Figure 2 because it avoids the operation of taking squares, allowing the negative and positive noise to cancel out
each other thus revealing the true spectral slope. However, this complete elimination of spectral noise floor by
taking the Co‐PSD comes with a drawback—the energy in the neglected Q‐PSD imposes a correction factor of
Co‐PSD from the true wave PSD, and the correction magnitude depends on the shift between two subsamples.
Furthermore, because of the splitting in photon counts, the interleaved techniques suffer larger uncertainties than
the original PSD. Both points will be addressed in Section 2.3.

2.3. Accuracy and Precision Assessments for Interleaved Methods

An important distinction here is that, inherently, the results of Equations 7a and 7b are bias‐free and contain no
noise bias/no noise floor but suffer a higher level of uncertainty than a non‐interleaved approach due to the split of
photon counts. On this sense of bias versus uncertainty, are accuracy and precision defined as two different
concepts. The accuracy refers to biases caused by systematic errors, that is, how close the experimental results are
to the true values, while the precision refers to uncertainties caused by random errors, that is, how well the results
have been determined, without reference to its agreement with the true values (e.g., Bevington & Robinson, 2003;
Taylor, 1997—referring to Figures 4.1 and 4.2 of that book; Bendat & Piersol, 2010—referring to Figure 1.18 of
that book). Of course, the more independent samples which are averaged, the further that the cross‐terms in the
interleaved techniques are driven to zero and the uncertainties in the interleaved products are decreased.
Incorporating sufficient data to achieve a higher precision will help reveal the high accuracy of the interleaved
methods.

2.3.1. Accuracy Assessment

In the very ideal case, for example, simultaneous and common‐volume observations made with two lidars provide
two independent measurements with zero shift (δz = 0 and δt = 0), the Q‐PSD is zero, that is, Q = 0; therefore, the
Co‐PSD = Co + ∆Co = PSDWave + ∆Co. That is, the Co‐PSD under this ideal case will represent the full PSD
induced by waves (still with uncertainties). However, with a single lidar using the interleaved data processing
technique to provide two independent measurements, there is always a finite shift (δz ≠ 0 or δt ≠ 0). Even when
L → ∞, ∆Co → 0 so Co‐PSD → Co, the Co‐PSD obtained from the interleaved method will statistically un-
derestimate PSD due to the finite shift δz or δt between the two subsamples, which introduces non‐zero Q‐PSD.
Thus, it is necessary to assess the offset between the Co‐PSD of the two subsamples and the true wave‐induced
PSD of the total samples, that is, to assess the accuracy of Co‐PSD. When considering the PSD as calculated in
Equation 4, the purely wave‐induced perturbations |DFT(ρ′)|

2 = DFT(ρ′) DFT∗ (ρ′) , like the first term on the
RHS of Equation 2b, will perfectly auto‐correlate with itself, yielding the full energy of the waves. When
calculating the Co‐PSD as in Equation 7b, the phase shift between two interleaved samples results in the ideal Co‐
PSD (i.e., the purely wave‐induced Re[DFT(ρ′A) DFT∗ (ρ′B) ] ≤ |DFT(ρ′)|

2) underestimating the true energy in
the waves being measured, just as with the covariance derived in Gardner and Chu (2020).

We follow the procedure in Bendat and Piersol (2010) to derive the correction term for the Co‐PSD from the
definition of a time/space shifted Fourier transform (Bendat & Piersol, 2010; von Storch & Zwiers, 1999).
Because the two interleaved subsamples can be regarded as identical series which are shifted by δt or δz, we have:

F[x(t)] = X(ω) = ∫

∞

− ∞
x(t) e− iωtdt (11a)

F[y(t) ≡ x(t − δt)] = Y(ω) = ∫

∞

− ∞
x(t − δt) e− iωtdt = e− iωδt∫

∞

− ∞
x(u) e− iωudu = e− iωδtX(ω) (11b)

PSDxx(ω) = 〈X(ω) X(ω)
∗〉, CPSDxy(ω) = 〈X(ω) Y(ω)

∗〉 = eiωδtPSDxx(ω) (11c)
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PSDxx(m) = 〈X(m) X(m)
∗〉, CPSDxy(m) = 〈X(m) Y(m)

∗〉 = eimδzPSDxx(m) (11d)

where F[x(t)] is the Fourier transform of x(t) and ω is angular frequency. The angle brackets in Equations 11c and
11d represent the expectations, that is, taking the ensemble averages. We are interested in finding the percentage
by which Co‐PSD underestimates, so we solve for the correction as

PSDwave(ω) − Co‐PSD(ω)

PSDwave(ω)
=

PSDwave(ω) − Re[CPSD(ω)]

PSDwave(ω)
= 1 − Re(eiωδt) = 1 − cos(ωδt) (12a)

PSDwave(m) − Co‐PSD(m)

PSDwave(m)
=

PSDwave(m) − Re[CPSD(m)]

PSDwave(m)
= 1 − Re(eimδz) = 1 − cos(mδz) (12b)

where PSDwave denotes the purely wave‐induced power spectral density. Equations 11d and 12b are derived for
spatial spectra by substituting ω and δt in Equations 11c and 12a with m and δz. It is worth noting that the
correction factors are frequency or wavenumber dependent; that is, under the same shift δt or δz, lower frequency
or wavenumber waves will experience smaller correction factors than waves with higher frequencies or wave-
numbers. Such a result is expected because the same shift δt or δz comprises a smaller portion of the wave period
or vertical wavelength thus introducing smaller phase shift between two interleaved subsamples for waves with
longer periods or vertical wavelengths. For example, the University of Colorado Na Doppler lidar has its raw
photon count data acquired at resolutions of δt = 4.5 s and δz = 24 m, and then data are processed using a time
interleaved method, so the time shift is small δt = 4.5 s (Chu et al., 2020, 2022; Gardner & Chu, 2020). The
correction term, given by Equation 12a, is ∼0.44% for waves at the buoyancy frequency (nearly the highest
frequency for gravity waves with the corresponding period of ∼5 min) and ∼0.003% for waves with a period of an
hour. The Fe Boltzmann lidar used in this study has its raw data taken at δt = 1 min and δz = 48 m and then
processed using an altitude interleaved method, so the spatial shift δz = 48 m (Chu et al., 2011a, 2011b; Jandreau
& Chu, 2022). The correction term, given by Equation 12b, is ∼4.5%, ∼1.1%, ∼0.18%, and ∼0.01% for waves
with vertical wavelengths of 1, 2, 5, and 20 km, respectively. In both examples, the correction factors are
negligibly small except for the 1‐km waves with a 48‐m shift (nearly 5%). It is clear from the demonstrations
above that waves with the highest frequencies or wavenumbers suffer the largest correction factors; therefore, the
subsamples should be interleaved as closely as possible to maintain coherence in the wave terms between the two
subsamples and minimize the correction factors. We may understand Equation 12 as multiplying the true wave
PSD with a filter function which attenuates the high frequencies and wavenumbers the most. Equations 12a and
12b can be used to compensate the higher frequency and wavenumber spectra for such attenuation, or to design
the data acquisition by choosing δt or δz sufficiently small so that the attenuation is negligible.

It is worth pointing out that the only way to eliminate (∆Co)2 + (∆Q)2 biases from the CPSD magnitude is to
average over infinite number of independent samples. When L → ∞, ∆Co = 0 and ∆Q = 0 in Equation 10a.
Consequently, the expectation of the CPSD magnitude

〈|CPSD|〉 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Co2 + Q2
√

= 〈PSD〉, at ∆Co = 0 and ∆Q = 0 (13)

Interestingly, with no noise, the CPSD magnitude would always equal the PSD, regardless of the shift between the
two interleaved subsamples; therefore, the inaccuracy would be zero. This is an interesting aspect of spectral
analysis that is different from the computations of variances and fluxes in time or spatial domain. That is, the
energy that goes into the Q‐PSD due to the shift between two subsamples can be recovered via taking the CPSD
magnitude in the spectral domain if the data is noise‐free (∆Co = 0 and ∆Q = 0). Indeed, this unique feature of
spectral analysis may be a way to fully recover the variance from covariance, that is, Fourier transform the
covariance to the spectral domain and recover the full energy from the real AND imaginary portions of CPSD, and
then inverse Fourier transform back to the time‐spatial domain to recover the variance consisting of the full wave
energy. However, with noise, the reduced noise floor (∆Co)2 + (∆Q)2 remains in the CPSD magnitude, making
the Co‐PSD a more viable approach for deriving noise‐floor‐free spectra.
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2.3.2. Precision Assessment

While this method of Co‐PSD calculation can yield negative values, unlike negative values derived from the
calculative subtraction method in Section 2.1, these negative values are simply due to uncertainties which will be
driven toward zero with the incorporation of sufficient samples (e.g., a longer time/spatial series, or the incor-
poration of more observations, or both). Therefore, the interleaved method is viable in conditions where the
calculative subtraction method fails. Additionally, this uncertainty should be centered on the true spectra, so even
with a noisy Co‐PSD, trends and slopes can still be inferred from its profile as demonstrated in Section 2.2
(Figure 2). Uncertainty caused by the cross terms seen in Equations 7 and 8 are driven toward zero as more
samples are incorporated because the noise terms are independent of the wave signals and of each other and are
thus uncorrelated. Again, these cross terms will only truly become zero in the case of an infinite‐length signal, but
the averaging of additional samples allows these cross‐terms to approach zero. Given the inherently less precise
(but more accurate) nature of the interleaved method caused by the split of photon counts, it is worth quantita-
tively considering the number of samples which must be averaged together to achieve a desired uncertainty. This
is obviously related to the SNR of the signal, where higher noise will require more samples to defeat. In
Equation 14, we provide a relation to determine the number (N) of independent samples which must be averaged
together to reduce the uncertainty contributed by the cross terms to a desired amount (Δρ/ρ′)desired:

N ≥ (
2Δρ/ρ′

(Δρ/ρ′)desired
)

2
(14)

where the ratio Δρ/ρ′ is a representative ratio of a density error estimate to the density perturbation strength for a
single full sample (on the statistical sense). Here Δρ refers to a full sample error, while the interleaved subsample
error

⃒
⃒ΔρA

⃒
⃒ =

⃒
⃒ΔρB

⃒
⃒ =

̅̅̅
2

√
|Δρ| statistically due to the splitting of photon counts. Equation 14 is derived by taking

Figure 3. A forward model showcases the interleaved method's convergence toward the modeled spectra with the
incorporation of additional samples. The power units here are arbitrary, but the x‐axis is that of vertical wavenumber and the
spectra was scaled to resemble the real data. The first and second rows show the PSD of the subsamples A and B,
respectively, and the third row shows the Co‐PSD of the two subsamples. The column title designates the number of
simulated spectra which were averaged together to generate the displayed plot.
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the ratio of the three cross‐terms in Equation 7a to the wave term ρ′A ρ′B and approximating the relation to the first
order. For example, in our winter data at resolutions of 1 hr and 0.5 km, looking at an altitude of 45 km, we often
see a ratio of Δρ/ρ′ = 0.2–0.4, which means that we must accumulate ∼16–64 independent samples to achieve a
desired error (Δρ/ρ′)desired ≈ 10% or ∼64–256 samples for reducing to 5% desired error. For summer data taken
under full sunlight, where Δρ/ρ′ can be as large as 0.75–1.25, we must acquire ∼225–625 independent samples to
reduce the cross‐term uncertainty contribution to 10%. Due to the linearity of the Fourier transform, these ap-
proximations should hold similarly true for the cross‐terms of Co‐PSD and CPSD magnitude in Equations 7b and
7c. Based on these approximated ratios, the summer cross‐term reduction seen in Figure 4 (Section 3) using
∼2,500 samples of lidar observations in Antarctica is down to about ∼5% of the wave amplitude.

More comprehensive assessment of the measurement precision requires the derivations of spectral uncertainties
caused by the random errors, which must systematically consider both the statistical errors and the photon‐noise‐

Figure 4. 10‐year average vertical wavenumber (m/2π) spectra from 30 to 50 km derived from atmospheric density using data
at a resolution of 1 hr and 0.48 km. See text for details about lines plotted. On the third row, Winter includes May, June, July,
and August; Spring/Fall includes September, October, March, and April; Summer includes November, December, January,
and February. The hour number in each plot denotes the amount of data used in the sample average for each plot.
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induced errors. Uncertainties caused by the cross terms discussed above represent the photon‐noise‐induced
errors, which could dominate data with low signal‐to‐noise ratios (SNRs), for example, the daytime or sum-
mer lidar data in polar regions under the full sunlight or near the edges of atmospheric layers (like the upper
portion of Rayleigh scattering or the bottom and top edges of metal layers in the MLT) where photon noise can be
significant (e.g., Δρ/ρ′ ∼ 1 or higher). However, even in an ideal case where the photon noise is minimal, like
nighttime or winter lidar data in polar region under dark skies or near the peak of atmospheric layers, or in an
extreme case of zero instrumental errors (Δρ = ΔρA = ΔρB = 0) so that the cross terms vanish, there are still
uncertainties to the measured Co‐PSD and PSD, which are caused by the statistical errors (Bendat & Pier-
sol, 2010; Gardner & Yang, 1998). Statistical errors are uncertainties that stem from the inability of a finite
number/length of samples to fully estimate the measured variable of a random process. For relatively high SNR
data, the spectral uncertainties are usually dominated by the statistical errors, not photon noise, because the
correlation time τC of the ρ′ or T′ spectra is usually longer than the correlation time of photon noise. The cor-
relation time (also sometimes called the decorrelation time) is the length of time over which a signal self‐
correlates to a significant degree. The photon noise of every bin is uncorrelated to the next or other bins; thus,
the photon noise correlation time equals the observation resolution ∆t. Under the same observational time τobs, the
numbers of statistically independent samples are nd = τobs/τC and np = τobs/Δt for the statistical errors and for the
photon‐noise‐induced errors, respectively. When τC ≫ Δt, nd ≪ np so the statistical error reduction is much
slower than the photon‐noise error reduction.

Appendix A provides a detailed procedure of the derivations of spectral uncertainty equations for the Co‐PSD and
PSD, along with the computation of correlation times. Our derivations are based on the book “Random Data” by
Bendat and Piersol (2010). The approaches in their Chapter 9 of “Statistical Errors in Advanced Estimates” are
adopted and modified to derive the spectral uncertainties introduced by random errors that include both the
statistical error and instrumental noise. The uncertainties for the m‐spectral Co‐PSD and PSD are given as

ΔCo‐PSD(m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τC

τobs
Co‐PSD2

ρ′A,totalρ′B,total
(m) −

τC

2τobs
Q2

ρ′A,totalρ′B,total
(m)

+
Δt
τobs

Co‐PSDρ′A,totalρ′B,total (m) PSDΔρint
(m) +

∆t
2τobs

PSD2
Δρint

(m)

√
√
√
√
√
√
√
√

(15a)

ΔPSD(m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τC

τobs
Co‐PSD2

ρ′A,totalρ′B,total
(m)

+
2Δt
τobs

Co‐PSDρ′A,totalρ′B,total (m) PSDΔρ(m) +
Δt
τobs

PSD2
Δρ(m)

√
√
√
√
√
√
√
√

(15b)

where the uncertainty Δρint (which represents ∆ρA or ∆ρB) of interleaved ρ′A and ρ′B is larger than the uncertainty
Δρ of non‐interleaved ρ′, ⟨

⃒
⃒∆ρint

⃒
⃒⟩ =

̅̅̅
2

√
〈|Δρ|〉, due to the photon count split. Consequently, PSDΔρint = 2PSDΔρ.

Here PSDΔρ can be calculated as PSDΔρ = PSDρ′total
− Co‐PSDρ′A,totalρ′B,total

. More details can be found in Appen-

dix A. From Equation 15, the reduction of the statistical error goes by
̅̅̅̅̅̅̅̅̅̅
1/ nd

√
; therefore, at least nd ∼ 25 is needed

to drive the spectral uncertainty to ∼20% of Co‐PSD. As shown in Appendix A, the correlation time for ρ′

spectrum measured by lidar is about 1–2 hr. Consequently, at least 25–50 hr of lidar measurements are required.
As lidar observational window length is usually around 8–25 hr at McMurdo, beating down the statistical error
requires at least 2–7 different observation periods. Certainly, for low SNR data as mentioned above, the reduction
of spectral uncertainties also requires beating down the photon noise. This is especially true in the high wave-
number or frequency regime where the power spectral density decreases nearly exponentially, so photon noise
makes significant contributions to the spectrum uncertainties, which require more samples to reduce.

2.4. Forward Modeling to Demonstrate Interleaved Method

The derivation of an unbiased spectrum via the interleaved method and the reduction of uncertainty through the
incorporation of additional samples is demonstrated through a simple forward model shown in Figures 2 and 3.
The model spectrum used here is based on a spectrum commonly adopted for vertical wavenumbers in the ocean
and atmosphere (Desaubies, 1976; Senft & Gardner, 1991; Smith, 1987; Van Zandt, 1982):
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F(m) =
F0( m

m∗)
s

1 + ( m
m∗)

(3+s) (16)

where F0 is a scaling constant, m is the vertical wavenumber, m* is the characteristic wavenumber, s is a source‐
dependent parameter for which s = 1 is a typical assumption for these types of waves (Senft & Gardner, 1991). A
key part of this model is that the spectra at high‐m values (m > m*) is proportional to m− 3, as indicated by the three
in the denominator. This model generally reflects the average behavior of the gravity waves observed in the
McMurdo lidar campaign. The modeling procedure follows that of Tsuda et al. (1989) and Owens (1978) where
the desired spectra are given a random 0− 2π phase shift and transformed to a 1‐D spatial series using an inverse‐
Fourier transform. The phase shift allows the generation of many unique spatial series which share the same
underlying spectra to which random, zero‐mean Gaussian noise is added. In this model, we split the noisy spatial
series into two subsamples, A and B, in an interleaved fashion via Section 2.2 and bin the series to replicate the
binning of the real data. We then use Equation 4 to calculate the PSD of subsample A and subsample B, but we
also calculate the Co‐PSD of the two subsamples via Equation 7b. The two PSDs are plotted in the first two rows
of Figure 3 and the Co‐PSD is plotted in the third row. Column 4 displays the same data as column 3 but on a
linear scale to emphasize the noise floor. Figure 3 demonstrates how the PSD and Co‐PSD values respond to
various sample sizes, clearly showing how additional samples evolve the noise floor in the PSD while showing
there is no noise floor in the Co‐PSD. It is also clear from the third row that the Co‐PSD has increased uncertainty
levels and, with the lower sample sizes of column 1 and 2, has many negative points. Because negative values
cannot be shown in the log‐scale plots of panels (i) and (j), these positive‐only log‐scale plots are somewhat
misleading. Once plotted in the linear scale, it is clear that the Co‐PSD fluctuates/oscillates with both negative and
positive values around the true (modeled) wave spectra, similar to the demonstration in Figures 2b and 2c. As the
large uncertainties and negative bins of Co‐PSD induced by statistical and photon noise are minimized with the
incorporation of additional samples, the Co‐PSD converges toward the modeled spectra (Figures 3k and 3l). This
same model was also used to generate Figure 2 and compare the two CPSD products (i.e., |CPSD| and Co‐PSD).

3. Demonstration Using McMurdo Lidar Observations and Data Handling Details
The University of Colorado lidar group has been running an Fe Boltzmann lidar from Arrival Heights Obser-
vatory (77.84ºS, 166.67ºE) near McMurdo, Antarctica since Dec 2010 via collaboration between the United
States Antarctic Program and Antarctica New Zealand (Chu et al., 2011a, 2011b). Operating at 372 and 374 nm,
this lidar measures the atmospheric density and temperature from 30 up to ∼70 km via Rayleigh lidar techniques
(e.g., Chu et al., 2002) and the meteoric Fe‐layer density and temperature above 70 km to the thermosphere via the
resonance fluorescence and Boltzmann techniques (Chu, Yu, et al., 2011; Chu & Papen, 2005; Gelbwachs, 1994).
The measurement ranges, resolutions, and precisions largely depend on the operation conditions (Chu
et al., 2002), for example, nighttime versus daytime, with the nighttime data extended into much larger detection
ranges and higher resolutions/precisions than those of the daytime (Chu et al., 2011a, 2011b, 2020; Chen
et al., 2016; Zhao et al., 2017; Li et al., 2020). The raw photon counts were collected in resolutions of 48 m and
1 min in both channels. The 10 years of the 374‐nm channel Rayleigh scattering data from Dec 2010 through Oct
2020 are used in this study for demonstration of the interleaved data processing techniques in the gravity wave
spectral analyses.

3.1. Data Handling and Processing Details

Antarctic winter/summer experiences full darkness/full daylight, while spring and fall go through day‐night
transitions at McMurdo. Because of the solar background variations, the SNRs of lidar data are in general
highest and lowest in winter and summer, respectively, and medium in spring and fall. To compare the effec-
tiveness of the three methods on noise floor corrections, we choose June, October, and January to represent the
highest (winter), medium (spring and fall), and lowest (summer) SNR cases in this study. Over the 10‐year data
collection period, extensive good data were collected in June in nine of the 10 years (except June 2018 due to bad
weather) and in October and January in all 10 years. Our definitions of seasons are that winter includes May, June,
July, and August; spring/fall includes September, October, March, and April; summer includes November,
December, January, and February.
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We limit this comparison to the altitude range of 30–50 km so that performance of the methods on the winter and
summer data can be directly compared (some daytime data cannot be reliably retrieved above 50 km). The
resolutions utilized here are 1 hr time bins and 0.48 km altitude bins. These bins were selected to provide a good
balance of SNR, while still extending far enough into the high‐wavenumber range to demonstrate the noise floor
methods well. The relative wave perturbations were calculated from atmospheric density by subtracting the time‐
averaged density‐profile from the array at each altitude, dividing the density perturbation field by that profile, and
then subtracting the vertical‐mean perturbation profile to remove spatial trends due to the long‐wavelength waves
such as tides and planetary waves.

Great care should be taken to ensure that the PSDs calculated are not affected by specifics of the spectral processing
to allow comparison with theoretical spectral models and other measurements. The PSDs shown are calculated by
zero‐padding the spatial series to a length of 128 points. Before padding, the data series is multiplied by a Hann‐
window in order to reduce spectral leakage in the high‐wavenumber amplitudes (Blackman & Tukey, 1958). The
final PSD and Co‐PSD are then calculated as in Equation 4 and 7b, and to undo the power loss due to the windowing
process, the PSD/Co‐PSD is divided by the square of the mean of the window function. The calculation of the PSDs
must be done properly such that the zero‐padding does not affect the derived power of waves, which is given by the
integrated area below the PSD envelope. The proper approach is to scale the PSDs from the DFT square using the
unpadded number of data points as in Equation 4, instead of scaling by the padded number.

The spectra are compared on three levels: A single month, an average of 10 months, and a seasonal average
(∼40 months). All averages are weighted by observation lengths. Using the Co‐PSD given in Equation 7b as we
do here in Figure 4, the Co‐PSD can be averaged together and the cross‐term induced uncertainties will continue
to decrease. If one were to use the |CPSD| as in Equation 7c, the results with the minimum bias would result from
averaging as much data together as possible before taking the absolute magnitude to allow for the maximum
cross‐term reduction. To facilitate the demonstration of the interleaved techniques, the comparison of two con-
ventional noise‐floor‐removal methods with the interleaved method is given in Appendix B. The graphical in-
spection method is uniquely sensitive to the spectra which is “inspected.” As additional spectra are averaged
together, the uncertainty in the resultant spectrum decreases and becomes smoother, making it easier for the floor‐
finding algorithm to identify the floor. For this reason, in each subplot of Figure B1, the graphical inspection
method is applied to the uncorrected spectra at that level of averaging, as this practice ensures the algorithm had
the best chance of finding the proper floor. The calculative noise‐subtraction method is not sensitive to application
order (subtracting the floor of individual observations has similar effectiveness as averaging many observations
and their individual noise floors and then subtracting this floor) as long as the averaging is handled properly.

3.2. Results of Spectral Interleaving

In Figure 4, the results from the interleaved method are plotted against the uncorrected spectrum for vertical
wavenumber calculations in three scenarios (winter, spring/fall, and summer representing three different levels of
data SNRs), each with a different amount of data (a single month, 10 months, and 10 seasons) included in the
average in order to demonstrate the effect of incorporating more data. The interleaved Co‐PSD shows multiple
instances of negative power in Figures 4b and 4c where the sample size is small and the inflated uncertainties
inherent to the method have yet to be defeated. Section 2.2 demonstrates that while these negative points should
still be centered on the wave spectrum, it is difficult to visually assess the spectrum with the negative points
present. The larger sample sizes for the spring/fall and summer results show great improvement compared to
Figures 4b and 4c due to the larger sample size. This Co‐PSD, for the reasons discussed in Section 2.2 and 2.3,
should be the most accurate of the three methods introduced in Section 2.1, though its precision may be lower than
the other methods under certain conditions.

In Figure 5, we demonstrate ΔCo‐PSDρ′A,totalρ′B,total
and ΔPSDρ′tot

. The uncertainties are calculated via Equations 15a
and 15b where a correlation time of τC ≅ 1.7 hr is used for the density perturbations (estimation of correlation time
is provided in Appendix A).

4. Conclusions and Recommendations
Based on the original proposal by Gardner and Chu (2020), we have investigated the interleaved data processing
techniques for spectral analysis of atmospheric waves through theoretical studies, forward modeling, and
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demonstration with lidar observational data from Antarctica as well as through comparison to two existing noise‐
subtraction methods. Our results have clearly demonstrated that calculating the cross‐power spectral density
(CPSD) from two interleaved subsamples does reduce the spectral noise floor significantly. However, only the
Co‐PSD, that is, taking the real part of CPSD, eliminates the noise floor completely, while the method of taking
the CPSD magnitude adds a reduced noise floor back to the power spectral density when the number of samples is
finite. The reason is that the Co‐PSD does not take any absolute magnitude or square, avoiding loss of the in-
formation on the negative and positive signs of noise‐induced ∆Co and ∆Q. However, a drawback of taking the
Co‐PSD is the slight loss of energy induced by the non‐zero imaginary part of CPSD, that is, the Q‐PSD, which is
caused by the non‐zero shift (δz or δt) between two subsamples. Accuracy assessment has shown that the
correction term of Co‐PSD from the purely wave‐induced PSD is wavenumber or frequency dependent, with
higher wavenumber or frequency waves suffering larger energy loss. Such correction term can be minimized by
minimizing the shift between two interleaved subsamples. In an ideal situation of simultaneous and common‐
volume observations using two lidars, the shift between two independent samples (now from two independent
lidars) can be made zero (δz = 0 and δt = 0), then Q‐PSD = 0, that is, the Co‐PSD does not have energy loss
anymore while the noise floor is still eliminated completely. This is because the noise terms from two independent
lidar samples are uncorrelated, and they are also uncorrelated to the wave perturbations.

Although a reduced noise floor is inherent to the method of taking the magnitude of sample averaged CPSD, this
noise floor can be further minimized through averaging over more observations. This situation is completely
different from the traditional PSD calculations whose noise floor cannot be reduced by incorporating more
samples. Additionally, the CPSD magnitude contains the full wave energy (with reduced noise power as well)
regardless the shift between two interleaved subsamples. For instance, if the shift corresponds to an exact 90‐deg
phase shift, the Co‐PSD = 0 but the Q‐PSD carries the full wave energy, so the CPSD magnitude still contains the

Figure 5. Demonstration of the uncertainty calculation of the vertical wavenumber (m/2π) spectra of each season. The top row
shows one month of data, while the lower row shows the 10‐year seasonal means. This figure shows both the increase in error
of the interleaved method, but also the decreasing uncertainty as additional samples are incorporated. It should be noted that
in the logarithmic scale of the y‐axis, negative values cannot be plotted thus some points are omitted from Figure 5b.
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full wave energy. Indeed, this unique feature of cross‐spectrum may be a way to fully recover wave‐induced
variance from covariance, that is, Fourier transform the covariance to the spectral domain and recover the full
energy from the real and imaginary portions of cross‐spectrum, and then inverse Fourier transform back to the
time‐spatial domain to recover the variance consisting of the full wave energy. This suggestion is beyond the
scope of this study but deserves a future study.

Both the CPSD magnitude and Co‐PSD methods of the interleaved data processing techniques experience larger
photon‐noise‐induced uncertainties than the traditional noise‐floor‐subtraction methods, due to the split of photon
counts during the interleaving process. We have provided a comprehensive assessment of the measurement
precision that details the derivations of spectral uncertainties caused by random errors. Our derivations of un-
certainty equations are based on the book “Random Data” by Bendat and Piersol (2010) but we modify their
approach to derive the spectral uncertainties introduced by both the statistical error and photon noise. The number
of statistically independent samples and observational time length required to reduce the spectral uncertainties are
determined from these equations.

Overall, our recommendations to users are as follows. If the noise‐floor‐free spectra are the top requirement under
finite number of samples, the Co‐PSD interleaved method is the preferred approach; but if a reduced noise floor is
acceptable, especially in the case of large sample shift δz or δt, the method of taking the CPSD magnitude is still a
good approach. Users can assess their required accuracy and precision along with their data conditions (like the
minimum achievable δz or δt and the number of samples) to determine the best choice for their applications. It is
worth noting that an inherent problem associated with noise‐floor‐subtraction methods is that it is impossible to
know errors exactly (otherwise, they were no longer errors as we could subtract the “exact” errors from mea-
surements and obtain accurate results without errors). The spectral interleaved technique is a significant
advancement over the traditional noise‐floor‐subtraction methods because it does not rely on an accurate estimate
of the error to subtract the noise‐floor from the spectra as do the pre‐existing methods, instead using the statistical
properties of the signal and noise to inherently eliminate this noise floor. This feature removes the subjectivity of
floor identification and does not rely on assumptions in the noise calculation, improving overall confidence of the
results. It is worth noting that computing power spectra from interleaved data is most useful for data exhibiting
pink, white, or even blue spectra (such as gravity‐wave‐induced vertical wind perturbations), where it would be
difficult to isolate the noise floor in the computed spectra. While this study showcases the interleaved methods as
applied to lidar‐observed atmospheric density, the interleaved techniques are readily applicable to a wide variety
of observational data sets including lidar, radar, other remote sensing and in‐situ observations of the atmosphere
and space as well as of other fields.

Appendix A: Derivations of Spectral Uncertainties and Correlation Times
The derivations of spectral uncertainties are based on the book “Random Data” by Bendat and Piersol (2010). The
approaches in their Chapter 9 of “Statistical Errors in Advanced Estimates” are adopted and modified to derive the
spectral uncertainties introduced by random errors that include both the statistical error and instrumental noise
(e.g., photon noise).

A1. Deriving A General Solution of the Co‐Spectral Uncertainty of Noisy Signals

We define two data series, which are individual samples of stationary and ergodic random processes, as

xtotal(z, t) = x(z, t) + Δx(z, t) (A1a)

ytotal(z, t) = y(z, t) + Δy(z, t) (A1b)

where each term consists of a signal component, x and y, and a noise component, Δx and Δy. Note that t represents
time, and z represents altitude of these temporospatial variables and that these signal and noise components are
independent Gaussian distributions with zero‐mean. We then define the complex spatial DFT of these individual
data series as the instantaneous spatial DFTs XTotal and YTotal:

DFT[xtotal(z, t)] = XTotal(m, t) = XR(m, t) + XΔR(m, t) + i[XI(m, t) + XΔI(m, t) ] (A2a)
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DFT[ytotal(z, t)] = YTotal(m, t) = YR(m, t) + YΔR(m, t) + i[YI(m, t) + YΔI(m, t) ] (A2b)

where the subscriptions R and I as well as ∆R and ∆I denote the real and imaginary components of the signal DFT
and noise DFT, respectively. It is critical to note that the indices (m, t) of these spectral terms represent spectra
calculated from x and y over an altitude (z) range at an instant in time (t) and that future instances of X and Y terms
will possess an implied (m, t) even if not written as such. Due to the linearity of the DFT, all components in
Equation A2 are independent, normally distributed, and zero‐mean.

This appendix adopts a different notation system for spectral terms than the main text to simplify the following
derivations that contain many terms. We let G̃xy(m,t) represent the instantaneous CPSD (equivalent to Equa-
tion 9a), where the over‐tilde denotes an instantaneous spectral sample.

G̃xtotal ytotal(m, t) =
2
L

[XTotal(m, t) Y∗
Total(m, t) ] (A3a)

C̃oxtotal ytotal(m, t) = Re[G̃xtotal ytotal(m, t)] =
2
L

Re[XTotal(m, t) Y∗
Total(m, t) ] (A3b)

Q̃xtotal ytotal
(m, t) = Im[G̃xtotal ytotal(m, t)] =

2
L

Im[XTotal(m, t) Y∗
Total(m, t) ] (A3c)

G̃xtotalxtotal(m, t) =
2
L

[XTotal(m, t) X∗
Total(m, t) ] (A3d)

where G̃xtotal ytotal
is an instantaneous observation of the cross‐spectrum, C̃oxtotal ytotal

is the instantaneous Co‐spectrum,
Q̃xtotal ytotal

is the instantaneous Q‐spectrum, and G̃xtotalxtotal
is an instantaneous auto‐spectrum which is a special case

of G̃xtotal ytotal
. Again, the label of instantaneous indicates a spatial spectrum at an instant in time. Here, L represents

the data length in space of the individual observation which is Fourier transformed, such as L = 20 km for a
spectrum taken of a lidar profile from 30 to 50 km.

These instantaneous spectra are drawn from a process whose ensemble mean spectrum is Gxy. The sample average
Gxy of these instantaneous samples is denoted with an overbar. We use the following definitions:

Gxtotal ytotal(m) = lim
nd→∞

1
nd

∑

nd

k=1
[
2
L

XTotal (m, tk) Y∗
Total (m, tk)] (A3e)

Gxtotal ytotal(m) =
1
nd

∑

nd

k=1
[
2
L

XTotal (m, tk) Y∗
Total (m, tk) ] (A3f)

where the variable nd denotes the number of statistically independent samples of the spectra being investigated. It
is worth noting that the number of independent samples is not necessarily equal to the number of profiles being
averaged due to the correlation time of the random process, a concept which is elaborated upon further on in this
appendix. For readability in this derivation, all indices like m and t are dropped, and X and Y variables are always
instantaneous.

Ultimately, we are interested in calculating the uncertainty of the Co‐spectrum and of the auto‐spectrum induced
by random errors (including both the statistical error and photon‐noise‐induced error). We use the following
definition of the uncertainty, based on the variance, where 〈∙〉 represents an expectation operation:

ΔC̃oxtotal ytotal
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var(C̃oxtotal ytotal )

√

(A4a)

Var(C̃oxtotal ytotal ) = ⟨C̃o
2
xtotal ytotal

⟩ − ⟨C̃oxtotal ytotal ⟩
2

(A4b)

Earth and Space Science 10.1029/2023EA003499

JANDREAU AND CHU 19 of 26

 23335084, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023EA

003499, W
iley O

nline Library on [10/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Thus, we must solve for the two variance components of Equation A4b to
compute the uncertainty. We derive a general form of the variance from
which the uncertainties of both the interleaved Co‐spectrum and the auto‐
spectrum can be inferred.

We start by solving for a general solution of ⟨C̃oxtotal ytotal ⟩
2
. Expanding

Equation A3b using Equation A2 yields,

C̃oxtotal ytotal
=

2
L

Re(XTotal Y∗
Total) =

2
L

Re{[XR + XΔR + i(XI + XΔI)] [YR + YΔR − i(YI + YΔI)]}

=
2
L

(XR YR + XR YΔR + XΔR YR + XΔR YΔR + XI YI + XI YΔI + XΔI YI + XΔI YΔI) (A5)

The expectation operation can be distributed to each term:

⟨C̃oxtotal ytotal ⟩ =
2
L

⎡

⎢
⎢
⎣

〈XR YR〉 + 〈XR YΔR〉 + 〈XΔR YR〉 + 〈XΔR YΔR〉

+ 〈XI YI〉 + 〈XI YΔI〉 + 〈XΔI YI〉 + 〈XΔI YΔI〉

⎤

⎥
⎥
⎦ (A6)

Table A1 defines the expectations of all possible products of these DFT components, which follow from
combining Equations A2 and A3. In Table A1, the property that a true random variable (RV) will be equally
symmetric and asymmetric results in equal auto‐spectra of the real and imaginary components. Any combination
of terms not listed in the table has an expectation of zero.

Applying these definitions to Equation A6 yields

⟨C̃oxtotal ytotal ⟩ =
2
L

⟨
L
4

Coxy +
L
4

Coxy +
L
4

CoΔxΔy +
L
4

CoΔxΔy⟩ = Coxy + CoΔxΔy (A7)

which enables a general solution for the second term of Equation A4b

⟨C̃oxtotal ytotal ⟩
2

= (Coxy + CoΔxΔy)
2 = Co2

xy + 2CoxyCoΔxΔy + Co2
ΔxΔy (A8)

We then solve for a general solution for the first term of Equation A4b, ⟨C̃o
2
xtotal ytotal

⟩ . We expand this using the

RHS of A5:

⟨C̃o
2
xtotal ytotal

⟩ =
4
L2⟨(XR YR + XR YΔR + XΔR YR + XΔR YΔR + XI YI + XI YΔI + XΔI YI + XΔI YΔI)

2
⟩

=
4
L2 ⟨

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

XRXR YR YR + 2XRXR YR YΔR + XRXR YΔR YΔR + 2XRXΔR YR YR + 4XRXΔR YR YΔR

+ 2XRXΔR YΔR YΔR + 2XRXI YR YI + 2XRXI YR YΔI + 2XRXI YΔR YI + 2XRXI YΔR YΔI + 2XRXΔI YR YI

+ 2XRXΔI YR YΔI + 2XRXΔI YΔR YI + 2XRXΔI YΔR YΔI + XΔRXΔR YR YR + 2XΔRXΔR YR YΔR + XΔRXΔR YΔR YΔR

+ 2XΔRXI YR YI + 2XΔRXI YR YΔI + 2XΔRXI YΔR YI + 2XΔRXI YΔR YΔI + 2XΔRXΔI YR YI + 2XΔRXΔI YR YΔI

+ 2XΔRXΔI YΔR YI + 2XΔRXΔI YΔR YΔI + XIXI YI YI + 2XIXI YI YΔI + XIXI YΔI YΔI + 2XIXΔI YI YI

+ 4XIXΔI YI YΔI + 2XIXΔI YΔI YΔI + XΔIXΔI YI YI + 2XΔIXΔI YI YΔI + XΔIXΔI YΔI YΔI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⟩

(A9)

When taking the expectation of each term in Equation A9, we can apply the identity for such an expectation of the
product of Gaussian RVs: 〈abcd〉 = 〈ab〉〈cd〉 + 〈ac〉〈bd〉 + 〈ad〉〈bc〉 (Bendat & Piersol, 2010; Gardner &
Yang, 1998). In the expanded result, which is not explicitly given here for brevity as it contains over 100 terms
(64 × 3 = 192 terms), we again apply the relations in Table A1. These steps yield the general solution for the first
term of Equation A4b:

Table A1
Expectations of Nonzero Products of DFT Components

〈XRXR〉 = 〈XIXI〉 = L
4Gxx 〈XΔRXΔR〉 = 〈XΔIXΔI〉 = L

4GΔxΔx

〈YR YR〉 = 〈YI YI〉 = L
4Gyy 〈YΔR YΔR〉 = 〈YΔI YΔI〉 = L

4GΔyΔy

〈XR YR〉 = 〈XI YI〉 = L
4Coxy 〈XR YI〉 = − 〈XI YR〉 = L

4Qxy

〈XΔR YΔR〉 = 〈XΔI YΔI〉 = L
4CoΔxΔy

Earth and Space Science 10.1029/2023EA003499

JANDREAU AND CHU 20 of 26

 23335084, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023EA

003499, W
iley O

nline Library on [10/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



⟨C̃o
2
xtotal ytotal

⟩ =
4
L2

L2

16

⎡

⎢
⎢
⎣

2GxxGyy + 6Co2
xy − 2Q2

xy + 2GxxGΔyΔy + 2GyyGΔxΔx

+ 12CoxyCoΔxΔy + 2GΔxΔxGΔyΔy + 6Co2
ΔxΔy

⎤

⎥
⎥
⎦

=
1
2

[GxxGyy + 3Co2
xy − Q2

xy + GxxGΔyΔy + GyyGΔxΔx + 6CoxyCoΔxΔy + GΔxΔxGΔyΔy + 3Co2
ΔxΔy]

(A10)

Plugging in the general solutions from Equations A8 and A10 into Equation A4b, we obtain a general solution for
the variance of Co‐spectrum estimated from an instantaneous sample (i.e., A4b):

Var(C̃oxtotal ytotal ) =
1
2

⎡

⎢
⎢
⎣

GxxGyy + Co2
xy − Q2

xy + GxxGΔyΔy + GyyGΔxΔx

+ 2CoxyCoΔxΔy + GΔxΔxGΔyΔy + Co2
ΔxΔy

⎤

⎥
⎥
⎦ (A11)

The corresponding uncertainty (i.e., Equation A4a) is given by taking the square root of Equation A11:

∆(C̃oxtotal ytotal ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

⎡

⎢
⎢
⎣

GxxGyy + Co2
xy − Q2

xy + GxxGΔyΔy + GyyGΔxΔx

+ 2CoxyCoΔxΔy + GΔxΔxGΔyΔy + Co2
ΔxΔy

⎤

⎥
⎥
⎦

√
√
√
√
√ (A12)

Such uncertainty of Co‐spectrum “rawly” estimated from an instantaneous sample is usually unacceptably large
and must be reduced by averaging over many statistically independent samples. The variance of the mean
spectrum of n statistically independent samples should scale with 1

n (Bendat & Piersol, 2010—see Chapter 9
“Statistical Errors in Advanced Estimates”). Note that the variance of a first‐order sample mean scales with 1

n, but
the variance of a mean sample variance scales with 2

n (Gardner & Chu, 2020; Bendat & Piersol, 2010—see
Chapter 8 “Statistical Errors in Basic Estimates”). On the aspect of uncertainty analysis, the variance of a mean
sample spectrum should be quite different from the variance of a simple sample mean, but more comparable to the
sample variance as both spectrum and variance are second‐order statistics. However, it is necessary to consider
that the DFT is a complex number, consisting of the real and imaginary parts. Because the real and imaginary parts
are uncorrelated random variables with zero means and equal variances (Bendat & Piersol, 2010), each DFT
calculation adds two statistical degrees of freedom to the estimate; therefore, the variance of the mean sample
spectrum scales with 2

2n = 1
n. This situation may be understood through an analogy: An amplitude A is split into

a + ib, where a = b = A
2; consequently, the square of amplitude becomes a2 + b2

= A2

4 + A2

4 = A2

2 , that is, half of
the original amplitude square. Two variables nd and np are used to denote the numbers of statistically independent
samples for the statistical error and photon‐noise‐induced error, respectively, when averaging over the same many
individual samples, due to the different correlation times of these two processes. We incorporate nd into Equa-
tion A13 on the signal‐driven terms (such as Gxx, Gyy, Co2

xy, and Q2
xy), and np on photon‐noise‐driven terms (such

as GΔxΔx, GΔyΔy, and CoΔxΔy). Both nd and np are elaborated upon in the subsection of correlation times. We then
reach the general equation for the uncertainty of a sample‐averaged Co‐spectrum

(ΔCoxtotal ytotal )general ≃

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

2nd
(GxxGyy + Co2

xy − Q2
xy)

+
1

2np
(GxxGΔyΔy + GyyGΔxΔx + 2CoxyCoΔxΔy)

+
1

2np
(GΔxΔxGΔyΔy + Co2

ΔxΔy)

√
√
√
√
√
√
√
√
√
√
√
√
√

(A13)

A2. Deriving Specific Uncertainties From the General Solutions

To derive a solution specific for an interleaved Co‐spectrum, we recognize that the subsample noise does not
correlate, making CoΔxΔy = 0, so obtain the Co‐spectral uncertainty for interleaved data:
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(ΔCoxtotal ytotal) ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

2nd
(GxxGyy + Co2

xy − Q2
xy)

+
1

2np
(GxxGΔyΔy + GyyGΔxΔx + GΔxΔxGΔyΔy)

√
√
√
√
√
√
√
√

(A14)

For the auto‐spectrum, we adopt the special case that X = Y resulting in Qxx = 0, Coxx = Gxx, and CoΔxΔx = GΔxΔx,
giving the specific solution for the uncertainty of an auto‐spectrum:

ΔGxtotalxtotal
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nd

G2
xx +

1
np

(2GxxGΔxΔx + G2
ΔxΔx)

√

(A15)

A3. Applying These Equations to Interleaved Spectra

We now relate this derivation back to the interleaved method of the main text. Note that the uncertainty Δρint

(which represents ∆ρA or ∆ρB) of interleaved ρ′A and ρ′B is larger than the uncertainty Δρ of non‐interleaved ρ′,
statistically ⟨

⃒
⃒∆ρint

⃒
⃒⟩ =

̅̅̅
2

√
〈|Δρ|〉, due to the splitting of photon counts. To apply Equation A14 using parameters

derived from interleaved and non‐interleaved products, we make a few approximations indicated in Equa-
tion A16, where → indicates which main‐text variables can be used in place of these appendix variables:

Gxx = Gyy ≈ Coxtotal ytotal
→ Co‐PSDρ′A,Totalρ′B,Total

= Re(CPSDρ′A,Totalρ′B,Total ) (A16a)

Qxtotal ytotal
= Im(Gxtotal ytotal) → Q‐PSDρ′A,Totalρ′B,Total

= Im(CPSDρ′A,Totalρ′B,Total ) (A16b)

GΔxΔx = GΔyΔy ≈ 2(Gxtotalxtotal
− Coxtotal ytotal) → PSDΔρint = 2(PSDρ′Total

− Co‐PSDρ′A,Totalρ′B,Total ) (A16c)

where the factor of two in Equation A16c reflects the doubled noise variance due to the splitting of photon counts
inherent to the interleaved method. Equation A15 can be expressed similarly using the following terms in
Equation A17:

Gxx ≈ Coxtotal ytotal
→ Co‐PSDρ′A,Totalρ′B,Total (A17a)

GΔxΔx ≈ (Gxtotalxtotal
− Coxtotal ytotal) → PSDΔρ = (PSDρ′Total

− Co‐PSDρ′A,Totalρ′B,Total ) (A17b)

where Equation A17b does not possess the factor of two of Equation A16c as the auto‐spectrum is calculated
using all available photons. Despite the two GΔxΔx in Equation A16c and A17b appearing identical, they represent
two different noise levels (due to the photon count splitting) shown by their RHS differing by a factor of two.

Equations A16 and A17 enable:

ΔCo‐PSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nd

Co‐PSD2
ρ′A,Totalρ′B,Total

−
1

2nd
Q‐PSD2

ρ′A,Totalρ′B,Total

+
1
np

Co‐PSDρ′A,Totalρ′B,Total
PSDΔρint +

1
2np

PSD2
Δρint

√
√
√
√
√
√
√
√

(A18a)

ΔPSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
nd

Co‐PSD2
ρ′A,Totalρ′B,Total

+
2
np

Co‐PSDρ′A,Totalρ′B,Total
PSDΔρ +

1
np

PSD2
Δρ

√

(A18b)

Here, PSDΔρint = 2PSDΔρ

A4. Estimation of Correlation Times

The final step of deriving Equations A18a and 18b is to define the numbers of independent samples nd and np by
calculating the correlation times of the respective spectra. If successive samples of an atmospheric signal

Earth and Space Science 10.1029/2023EA003499

JANDREAU AND CHU 22 of 26

 23335084, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023EA

003499, W
iley O

nline Library on [10/10/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



correlate, then they cannot be considered as independent samples for statistical purposes. We define τC as the
correlation time (also sometimes called the decorrelation time) of the atmospheric waves, which is the length of
time over which the signal self‐correlates to a significant degree. Similarly, the noise has a correlation time equal
to the resolution Δt, as each instantaneous sample of the noise will be independent from each other. Thus, the true
number of independent samples is nd =

τobs
τC

for signal‐driven terms, and np =
τobs
Δt for photon‐noise‐driven terms,

where τobs is the total observation time included in the sample average. For example, 2,000 hr of observations of a
process with a correlation time of 2 hr would yield 1,000 independent samples. For the noise spectra, where the
signal can be approximated as white noise, the correlation time equals the sampling time, Δt. This fact ultimately
means that the uncertainty is generally dominated by the statistical error but not the photon‐noise‐induced error.

The correlation time τC can be found using the autocorrelation function (acf) of the time series (Bendat &
Piersol, 2010; Conan et al., 2000; O’Neill et al., 2004) or the spectra of the time series (Gardner & Chu, 2020;
Gardner & Yang, 1998). A relatively simple approach using the acf is to calculate the time corresponding to the
shift at which the acf has its first zero‐crossing, which can be interpreted as a measure of the time over which the
function self‐correlates (Hinze, 1975). We employ this acf approach to estimate τC using a time series of density
perturbations and average numerous estimates together to approximate a reasonable correlation time. The acf is
calculated using a standard definition:

acf (k) =

1
N

∑
N− k

n=1
[x(tn) − x] [x(tn + k) − x]

(x − x)
2

(A19)

where x is the density perturbation series, x is the mean of x, N is the length of the series, and k is the time lag. The
correlation time found using this method is ∼1.4 hr in the winter when inspecting data with a time resolution of
1 hr and 0.48 km and ∼1.25 hr at a resolution of 0.5 hr and 0.96 km and are relatively stable with altitude from 30
to 50 km. Alternative methods to find this correlation time using the spectra themselves are provided by Gardner
and Yang (1998) (see their Equations A15 and A16) and Gardner and Chu (2020) (see their Equation A5), and
yield correlation times which are generally similar to but slightly longer than the acf results: ∼2.2 and ∼1.6 hr of
each of the aforementioned resolutions, respectively. In general, we would comfortably state that the correlation
time is on the higher end of 1–2 hr, so we select 1.7 hr for our calculations.

Overall, given the independent sample numbers nd and np calculated using the different correlation times of the
wave and noise derived above, we arrive at the final equations of spectral uncertainties used in the main text:

ΔCo‐PSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τC

τobs
Co‐PSD2

ρ′A,Totalρ′B,Total
−

τC
2τobs

Q‐PSD2
ρ′A,Totalρ′B,Total

+
Δt

τobs
Co‐PSDρ′A,Totalρ′B,Total

PSDΔρint
+

Δt
2τobs

PSD2
Δρint

√
√
√
√
√
√
√
√

(A20a)

ΔPSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
τC

τobs
Co‐PSD2

ρ′A,Totalρ′B,Total
+

2Δt
τobs

Co‐PSDρ′A,Totalρ′B,Total
PSDΔρ +

Δt
τobs

PSD2
Δρ

√

(A20b)

These equations are derived for the vertical wavenumber m‐spectrum uncertainty. In principle, the ω‐spectrum
uncertainty can be derived similarly as demonstrated in Bendat and Piersol (2010). However, the relations among
the time‐series window length, correlation time, and the number of statistically independent samples must be
carefully considered.

Appendix B: Comparison of Noise Floor Removal Methods
While Section 3.2 demonstrates the application of spectral interleaving methods to the derivation of a spectrum
free of noise floor, it is valuable to compare the performance with the other noise‐floor‐removal methods pre-
sented in Section 2.1.
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Assessing the calculative subtraction method (solid purple line) of Figure B1, we see that the method is able to
identify a noise floor (dashed purple line) reasonably well in the winter, though spring/fall and summer show an
overestimation of noise floor compared to how it would be visually identified. This results in the PSD corrected
via this method yielding lower values than the other two methods in the m‐regions affected by the noise floor. The
summer results from this method show large overestimation, where Figures B1f and B1i even estimate a noise
floor larger than the PSD entirely. This is likely a symptom of nonlinearities in the uncertainty definition used to
calculate the floor, and while higher‐order uncertainty estimates may improve its performance, the possibility of
this behavior highlights the drawbacks of this method under a low‐SNR. The graphical subtraction method (solid
red line) yields results that largely agree with those of the interleaved method in most seasons in this test, though
as previously mentioned, this depends on the method by which the noise floor is graphically determined.

Data Availability Statement
The data shown in this work can be downloaded in MatLab data format from Mendeley Data repository https://
data.mendeley.com/datasets/b2r4dt3kf2/4 (Jandreau & Chu, 2024).

Figure B1. Same plot as Figure 4, but with the inclusion of the other noise‐floor calculation methods as described in
Section 2.1.
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