
1

On Safety and Liveness Filtering Using Hamilton-Jacobi
Reachability Analysis
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Abstract—Hamilton-Jacobi (HJ) reachability-based filtering
provides a powerful framework to co-optimize performance and
safety (or liveness) for autonomous systems. Under this filtering
scheme, a nominal controller is minimally modified to ensure
system safety or liveness. However, the resulting controllers can
exhibit abrupt switching and bang-bang behavior, which is not
suitable for applications of autonomous systems in the real world.
This work presents a novel, unifying framework to design safety
and liveness filters through reachability analysis. We explicitly
characterize the maximal set of control inputs that ensures safety
(or liveness) at a given state. Different safety filters can then be
constructed using different subsets of this maximal set along
with a projection operator to modify the nominal controller.
We use the proposed framework to design three safety filters,
each balancing performance, computation time, and smoothness
differently. We highlight their relative strengths and limitations
by applying these filters to autonomous navigation and rocket
landing scenarios and on a physical robot testbed. We also
discuss practical aspects associated with implementing these
filters on real-world autonomous systems. Our research advances
the understanding and potential application of reachability-based
controllers on real-world autonomous systems.

Index Terms—Robot Safety, Reachability Analysis, Safety Fil-
tering.

I. INTRODUCTION

As autonomous systems become integral to our daily lives,
it is crucial to design controllers that are both safe and
performant. Typically, controller design is framed as an op-
timal control problem, balancing performance criteria (e.g.,
minimizing control energy), with safety constraints, such as
obstacle avoidance. The resultant constrained optimal control
problem is solved using a variety of methods ranging from
Model Predictive Control (MPC) [26], [12], [7] and (approx-
imate) dynamic programming [5], [6] to data-driven, rein-
forcement learning approaches [15], [24]. Despite impressive
performance of these methods, ensuring hard safety constraints
for general, nonlinear systems remains a challenge, especially
if the optimal control problem needs to be solved online.

An alternative approach is safety filtering, where a nominal
control (often performance-oriented) is minimally adjusted
(i.e., “filtered”) to satisfy the safety constraint. If the input
is safe, it is used directly; otherwise, it is projected to a set
of safe control inputs. This guarantees safety while optimizing
performance whenever the system safety is not at risk. Akin to
safety filters, one can also design liveness filters, which ensure
that the system reaches a desired set of states (e.g., the landing
pad for a rocket) within a set timeframe while optimizing the
performance (e.g., minimizing the control energy).

*Authors are with the ECE department at the University of Southern
California. This research is supported in part by the DARPA ANSR program,
the NSF CAREER program (award number 2240163), and Universidad de
Santiago de Chile.

A number of approaches have been proposed in literature
to construct safety and liveness filters for dynamical systems,
such as Control Barrier and Control Lyapunov functions,
Hamilton-Jacobi reachability, and MPC. We discuss some of
the relevant approaches here and refer the interested readers
to [14] and [25] for a detailed survey on filtering methods.

Hamilton-Jacobi (HJ) reachability analysis [18], [20] is a
popular mechanism to design these filters due to its ability to
ensure safety and liveness for dynamical systems with general
nonlinear dynamics, control bounds, and disturbances [19],
[3], [4]. In reachability analysis, one is interested in computing
the backward reachable tube (BRT) of a dynamical system,
i.e. the set of all initial states from which the system will
eventually reach a target set, despite the worst case distur-
bance. Thus, if the target set represents the set of desirable
states, the BRT represents the set of states from which liveness
can be guaranteed. Conversely, if the target set represents
the set of undesirable states, the BRT contains states which
are potentially unsafe for the system and should be avoided.
Alongside the BRT, reachability analysis provides a safety
controller (respectively liveness controller) that will provably
steer the system away from the target set (respectively towards
the target set). A simple safety filter uses the BRT and safety
controller: the system employs the nominal controller outside
the BRT and switches to the reachability safety controller
at the BRT boundary, ensuring constant safety. However,
controllers from HJ reachability are often extremum seeking,
resulting in a bang-bang behavior. This behavior along with
a sudden switching between the nominal and reachability
controllers leads to jittery state and control trajectories, which
is often undesirable for real-world autonomous systems [25].

An alternative approach to filtering uses Control Barrier
Functions (CBF) for safety and Control Lyapunov Func-
tions (CLF) for liveness filtering. Both utilize Lyapunov-
like conditions to ensure the forward invariance of a set
[1], which then aids in creating a quadratic program (QP)
for a smooth blending of nominal and safety (or liveness)
controllers. However, despite recent progress [10], [23], [22],
[28], constructing a valid Lyapunov or barrier function for gen-
eral nonlinear systems with control bounds and disturbances
remains a challenge. Some recent studies have addressed this
by framing CBF synthesis as an HJ reachability problem, cap-
italizing on the constructive attributes of reachability methods
for obtaining a valid CBF [10]. The resultant CBF can be
used for smooth, QP-based controller synthesis. However, a
few questions remain: can we derive smooth control laws
directly from reachability analysis without constructing a CBF
first? How do these safety filters compare in performance
and computation? And can we design such control laws for
liveness filtering?
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In this work, we answer the aforementioned questions in
affirmative and introduce a general framework to design safety
and liveness filters using reachability analysis. Under the pro-
posed framework, any safety and liveness filter can be thought
of as a combination of two components: (a) a projection
set – a set of safe or live control inputs that the nominal
controller will be projected to; and (b) a projection operator
to align a nominal control input with this set. Drawing on
this insight, our key idea is to use HJ reachability analysis
to explicitly characterize the set of all possible control inputs
at a state that guarantees system safety or liveness. Various
safety filters can then be obtained by using different subsets
of this maximal safe control set as the projection set, along
with a projection operator, to mathematically characterize the
proposed framework we will use the notation presented in Ta-
ble I. Building upon this approach, we propose three different
safety and liveness filters based on reachability analysis: a
least restrictive safety filter, a smooth least restrictive filter,
and a smooth blending filter. The proposed filters are versa-
tile, applicable to both liveness and safety, accommodating
control bounds, adversarial disturbances, model uncertainties,
and time-specific liveness and safety properties (e.g., reach
the target set within 5 seconds). We further compare these
filters on various metrics including performance, computation
time, controller tuning, and control profile smoothness, as
well as a comparison to CBF methods for the safety filter.
Beyond these specific filters, our approach provides a unifying
framework for existing reachability-based filters and designing
new ones using diverse subsets of the maximal safe set
and projection operators. We showcase our approach in two
different applications inspired by rocket landing within a given
landing window and safe autonomous blimp navigation, as
well as on a physical robot testbed involving a wheeled robot
navigating through a cluttered environment.

II. PROBLEM STATEMENT

Consider an autonomous system with state x ∈ X ⊆ Rn

that evolves according to dynamics

ẋ = f(x, u, d) (1)

where u ∈ U and d ∈ D are the control and disturbance
of the system, respectively. d can represent potential model
uncertainties or an actual, adversarial exogenous input to the
system. We assume the dynamics are uniformly continuous in
u and d, bounded, and Lipschitz continuous in x for fixed
u and d. Finally, let ξu,dx,t (τ) denote the system state at time
τ , starting from the state x at time t under control signal
u(·) and disturbance signal d(·) while following the dynamics
(1). A control signal u(·) is defined as a measurable function
mapping from the time horizon to the set of admissible
controls U , and a disturbance signal is similarly defined. We
additionally assume that the control and disturbance signals
u(·) and d(·) are piecewise continuous in t. This assumption
ensures that the system trajectory ξu,dx,t exists and is unique
and continuous for all initial states [11], [8].

In this work, we are interested in synthesizing potentially
time-varying controllers π : [0, T ] × X → U that steer the

Symbol Definition
n ∈ Z+ Number of states
X ⊆ Rn State space
x ∈ X System state
ẋ Time derivative of state x
U Control space
u ∈ U Control input
D Disturbance space
d ∈ D Disturbance input
f System dynamics
u(·) Control signal (over time)
d(·) Disturbance signal (over time)
ξu,d
x,t (τ) State at time τ starting from state x at time t under control

and disturbance signals u(·) and d(·)
L ⊆ X Target set. Could represent goal or failure states.
l : X →R Target function. Signed distance to the target set.
T Time horizon.
πnom Nominal controller
V (x, t) Value function at state x and time t
DtV (x, t) Time derivative of the value function
∇V (x, t) Spatial derivative of the value function
Glive(t) BRT of the target set in the liveness problem.
π∗

live(x, t) Default liveness controller from the reachability analysis
Ulive(x, t) Set of liveness preserving controls at state x and time t.
h Projection operator for filtering
Ũ Projection set for filtering
γ Constant used in the smooth blending filter.
Gunsafe BRT of the target set in the safety problem.
π∗

safe(x) Default safety controller from the reachability analysis.
Usafe(x) Set of safety preserving controls.

TABLE I. A summary of all the symbols used in the paper.

system to reach (liveness) or avoid (safety) a given target
set L ⊆ X , within the time horizon [0, T ]. L can represent
the goal region in the case of liveness or an unsafe region
of the state space in the case of safety, e.g., obstacles for a
navigation robot. Furthermore, we would like our controllers
to consider other performance objectives while guaranteeing
liveness/safety. We assume the performance objectives are
encoded and optimized by an user-defined nominal controller
πnom. However, πnom may not necessarily ensure liveness (or
safety). Our goal is to design π to follow πnom to the extent
possible, while guaranteeing liveness/safety requirement.

One popular mechanism to achieve this goal is liveness
or safety filtering, in which πnom is modified minimally
to ensure system liveness or safety [2], [3]. In this paper,
we will leverage reachability analysis to synthesize such filters.

Running Example (Liveness). We use a rocket landing system
as a running example throughout this paper to demonstrate the
liveness properties of our controllers. The rocket is modeled
as a 6D system with dynamics,

frocket(x, u) =
d

dt


y
z
θ
ẏ
ż

θ̇

 =


ẏ
ż

θ̇
cos(θ)uy − sin(θ)uz

sin(θ)uy + cos(θ)uz − g
αu1

 (2)

Here y, z denotes the horizontal and vertical positions of
the center of mass of the rocket, θ denotes the rocket’s
heading, uy and uz denote the thrust in the y and z direction,
respectively, and g is the acceleration due to the gravity
of Earth. The task of the liveness controller is to generate
thrust inputs u = [|uy| < 250, |uz| < 250] such that
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the system can reach a landing pad (target set) within one
second. The target set is defined as the rectangular area
L = {(y, z) : |y| < 20, 0 < z < 20}. The corresponding target
function is given by l(x) = max{|y| − 20, z − 20,−z}, which
approximates the signed distance to the target set. For this
example, we assume no external disturbances are acting on
the system.

We first synthesize a nominal controller that attempts to
take the system to L. The nominal controller is a sampling-
based model predictive controller (MPC), whose objective is
to minimize the distance between center of mass position and
the boundary of L, and the control energy over the entire
trajectory. Intuitively, the nominal controller can be considered
as a performance control that tends to drive the system state
to L while optimizing the amount of control effort. The MPC
cost to be minimized over the entire trajectory is given as,

min
u

t∑
i=1

|| [uyi
, uzi ] ||2 +

√
(|yi| − 20)2 + (|zi| − 20)2

(3)
Here, the first term penalizes the control cost while the

second term penalizes the distance from the target set. i is the
discrete timestep and ||.||2 is the L2 norm. The MPC controller
is implemented in a receding horizon fashion with a horizon
of 1000 steps. We use a first-order Euler discretization of the
continuous dynamics in (2) with timestep, δ = 0.0005s. In
our simulation studies, we will show that, in this case, such
a nominal controller is insufficient to assure the liveness of
our system. Liveness might be achievable using MPC, but
designing such a controller would require more care and time.
In this work, we will use a liveness filter to refine this nominal
controller and produce a controller with the desired liveness
properties.

III. BACKGROUND: HAMILTON-JACOBI REACHABILITY

Hamilton-Jacobi (HJ) reachability analysis is a formal ver-
ification technique that characterizes the set of states from
which the liveness (or safety) constraints can be satisfied with
some control under the worst case disturbance. In our work,
we will leverage this technique to synthesize liveness (and
safety) filters for the nominal controller. In this section, we
provide a brief overview of HJ reachability analysis.

A. Liveness and Safety Problems in HJ Reachability

In HJ reachability analysis, the liveness and safety problems
are posed as optimal control problems; informally, both prob-
lems intend to find a control signal u(·) that steers the system
as “deep” into or as “far away” from the target set as possible.
To capture this semantic, the minimum distance between the
system and the target set L over the time horizon is defined as
the objective of the optimal control problems. Let l : X → R
be some bounded and Lipschitz continuous function whose
sub-zero level is given by the target set: L = {x : l(x) ≤ 0}.
Here, we present the reachability analysis for the liveness case
and then comment on the safety case. Given l, the liveness

problem is defined in (4):

max
d(·)

min
u(·)

min
τ∈[t,T ]

l(ξu,dx,t (τ))

s.t. ẋ = f(x, u, d)
(4)

where the minimum cost over time for the trajectory
is defined as the cost function J(x, t,u(·),d(·)) =
minτ∈[t,T ] l(ξ

u,d
x,t (τ)). The above optimization problem (4)

finds the minimum distance to the target set over the sys-
tem trajectory, under the optimal control and the worst case
disturbance. Thus, the system can reach the target set if and
only if the minimum distance is less than 0, and this minimum
distance is captured by the value function:

V (x, t) = max
d(·)

min
u(·)

J(x, t,u(·),d(·)) (5)

The value function (5) can be computed using dynamic pro-
gramming, and it satisfies the following final value Hamilton-
Jacobi-Isaacs Variational Inequality (HJI-VI) [20], [17]:

min{DtV (x, t) +H(x, t,∇V (x, t)), l(x)− V (x, t)} = 0

for t ∈ [0, T ] and V (x, T ) = l(x)
(6)

Here, DtV (x, t) and ∇V (x, t) denote the temporal deriva-
tive and the spatial gradients of the value function V (x, t),
respectively. The Hamiltonian encodes how the control and
disturbance interact with the system dynamics and is given
as:

H(x, t,∇V (x, t)) = min
u∈U

max
d∈D

∇V (x, t) · f(x, u, d) (7)

Given the value function, one can also obtain the Backward
Reachable Tube Glive(t) of the system. Since Glive(t) is defined
to be the set of initial states from which the system can reach
the target set within the time horizon (T − t) despite worst-
case disturbance, Glive(t) is the sub-zero level set of the value
function:

Glive(t) := {x : V (x, t) ≤ 0} (8)

Consequently, liveness is guaranteed as long as the system
state is inside Glive(t). Conversely, if the system state is outside
Glive(t), the liveness can’t be ensured despite the best control
effort. Thus, any live controller must maintain the system state
within Glive(t) at all time t.

The HJ reachability analysis for the safety problem is simi-
lar to that for the liveness problem, except that the control tries
to avoid entering L. Thus, the role of control and disturbance
is switched in (4) and (7). The sub-zero level of the value
function gives us the BRT Gunsafe, which represents the set of
all states from which the system is guaranteed to enter the
target set (the unsafe region in this case), despite the best
control effort. Conversely, if the system state is outside the
Gunsafe, there exists a controller that will keep the system safe,
despite worst-case disturbance.

B. Default Liveness (Safety) Controller from HJ Reachability

Along with the value function and the BRTs, reachability
analysis also provides a liveness/safety controller for the
system (referred to as the default liveness/safety reachability
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controller from here on). At state x and time t, the default
liveness reachability controller is given as:

π∗
live(x, t) = argmin

u∈U
max
d∈D

∇V (x, t) · f(x, u, d) (9)

Similarly, the optimal disturbance is given as:

d∗(x, t) = min
u∈U

argmax
d∈D

∇V (x, t) · f(x, u, d) (10)

Intuitively, at any time step, π∗
live(x, t) tries to maximally steer

the system state towards the target set (we omit the state and
time dependencies of the optimal controller and disturbance
onwards for compactness). To understand this, recall that the
value function for the liveness problem (4), V (x, t) represents
the minimum cost the system can achieve over the time
horizon [t, T ], starting from state x and time t under worst
case disturbance. In the liveness problem, we would like the
system to reach a state of lower value. π∗

live seeks to accomplish
this objective by finding a control which steers the system
in the direction of greatest decent on the value function (i.e.
minimizing the dot product between ẋ and the spatial gradient
of the value function ∇V ). Moreover, it can be shown that as
long as the system starts inside Glive(t), it is guaranteed to
eventually reach the target set under π∗

live despite the worst-
case disturbance [3]. This is analogous to the safety case, with
the difference that the controller would try to steer the system
away from the target set.

Even though the default reachability controllers respect
the liveness/safety constraints, they do not consider other
objectives of interests, such as minimizing control energy or
tracking some nominal controller. Thus, a natural solution is
to blend the default reachability controller with a nominal con-
troller that takes these performance criterion into consideration
while respecting safety/liveness constraints, which is the focus
of this paper.

Running Example (Liveness). As discussed earlier, in the live-
ness problem, we are interested in computing Glive(t), along
with associated value function. This requires solving the HJI-
VI (6). Traditional methods compute a numerical solution of
the HJI-VI over a state space grid [19]; however, these methods
suffer from the curse of dimensionality and are not suitable
for a 6D system. Instead, we use DeepReach [4] to compute
the value function. Rather than solving the HJI-VI over a grid,
DeepReach represents the value function as a sinusoidal neural
network and learn a parameterized approximation of the value
function. Thus, memory and complexity requirements for
training scale with the value function complexity rather than
the grid resolution. To train the neural network, DeepReach
uses self-supervision on the HJI-VI itself. Ultimately, it takes
as input a state x and time t, and it outputs the value Vβ(x, t),
where β are the parameters of the NN. We refer interested
readers to [4] for further details.

For this system, we use a sinusoidal neural network with
three hidden layers, and 512 neurons per layer. The train-
ing took approximately two hours for 20000 epochs on an
NVIDIA RTX 4090 GPU. Using scenario optimization [16],
we verify the trained neural network by computing a high
confidence error bound over the accuracy of the learned value

Fig. 1. (a) BRT slice for a rocket landing problem in the (y, z) states (all
other states = 0) shown in teal. The target set L is shown in light pink
rectangle. The trajectory followed by the rocket from its initial position (shown
with the black rocket icon) under the default controller is shown in dark blue.
(b) uy and (c) uz controller profiles generated by the default reachability
controller displaying bang-bang behavior.

function. A slice of the obtained BRT projected over the Y Z-
plane is shown in Fig. 1. As long as the system starts inside the
teal region, it is guaranteed to reach the pink region (landing
pad) under π∗

live. The system trajectory under π∗
live for one

such starting state is shown in dark blue in Fig. 1(a) and the
corresponding control profiles are shown in Fig. 1(b), (c).

As expected, the rocket eventually reaches the landing
pad. However, the default liveness controller only chooses
the maximal control authority to steer the system (in this
case, |uy| = |uz| = 250). This is a typical bang-bang
nature of the reachability controllers for systems with control-
affine dynamics and independently bounded control inputs,
that ensures that the value function gradient is always pointing
towards the direction of maximum decent.

However, as we will show in later sections, this approach
results in jittery, high-energy control profiles that do not take
into account any performance criteria, which results in a very
high total cost for this control.

IV. LIVENESS FILTERING USING HJ REACHABILITY

The default controller obtained from the reachability analy-
sis ensures liveness, but it does not consider other performance
objectives. In this section, we first use reachability analysis to
characterize the set of all liveness-ensuring control inputs at a
particular state. We then use this set to design different liveness
filters.

A. Characterizing the set of live controls

At state x and time t, the set of all liveness-ensuring control
inputs (abbreviated as live controls for the remainder of the
paper) is given as:

Ulive(x, t) = {u : ∃ϵ > 0,

V
(
ξu,d

∗

x,t (t+ δ), t+ δ
)
≤ 0 ∀δ ∈ [0, ϵ]} (11)

Here, V represents the value function obtained using the
HJI-VI in (6). d∗ is the optimal disturbance given by (10).
Intuitively, Ulive(x, t) (11) is the set of all controls that
instantaneously keep the next state of the system inside (or
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at the boundary of) Glive, despite the worst case disturbance
d∗. This ensures that the system can still reach the target set
from the next state, thereby ensuring liveness recursively.

We will next use (11) to characterize Ulive(x, t). We assume
that x /∈ L; otherwise, the system state is already within the
target set and no further control action is needed.

Lemma 1: Assume that the value function V (x, t) is differ-
entiable for all x and t. Let x be any state such that x /∈ L
and d∗ ∈ D the optimal disturbance that maximally decreases
liveness. Then the set of live controls at x is given as:

Ulive(x, t) =



U if V (x, t) < 0

{u ∈ U :
DtV (x, t) +∇V (x, t) · f(x, u, d∗) = 0}

if V (x, t) = 0

∅ if V (x, t) > 0
(12)

The proof of Lemma 1 is in the Appendix. Intuitively, (12)
states that Ulive(x, t) is the set of all admissible controls U
when the system state is in the interior of Glive. This makes
sense as the system can apply any control and instantaneously
remain inside Glive for a sufficiently small time step. On the
other hand, when the system state is outside Glive, liveness
can’t be ensured despite the best control effort, resulting in an
empty set. Finally, when the system state is at the boundary
of Glive, Ulive(x, t) is given by the controls that ensure the total
derivative of the value function, d

dtV (x, t), to be 0 (i.e., the
control inputs that keep the system state instantaneously at the
boundary of Glive).

There are a few interesting observations to be made about
the set of live controls in (12):

1) Lemma 1 provides a time-dependent characterization of
the live control inputs, allowing us to capture time-
constrained liveness properties (e.g., reach the target
set within T seconds), as opposed to just asymptotic
liveness.

2) For control and disturbance-affine system dynamics, the
condition of d

dtV (x, t) = 0 is linear in u. To see this,
suppose the system dynamics are given by f(x, u, d) =
f1(x) + f2(x)u+ f3(x)d. Its total derivative d

dtV (x, t),
under the optimal disturbance d∗, is given by:

DtV (x, t) +∇V (x, t) · f(x, u, d∗)
= DtV (x, t) +∇V (x, t) · (f1(x) + f2(x)u+ f3(x)d

∗)

= α+ βu

We can observe that d
dtV (x, t) is now a linear equation

of u, where α = DtV (x, t) + ∇V (x, t) · (f1(x) +
f3(x)d

∗) and β = ∇V (x, t) · f2(x). Thus, Ulive(x, t)
is given by a hyperplane in U (a point if the control
space is one-dimensional), whenever the system state is
at the boundary of Glive(t). As we will see later, this will
make the liveness filter design computationally efficient
for control-affine systems.

3) Control inputs given by the default liveness controller
(9) is always contained within Ulive(x, t). The following
corollary formalizes this result.

Corollary 1: π∗
live(x, t) ∈ Ulive(x, t) ∀x ∈ Glive.

Thus, the default controller can be used to steer the
system to the target set, consistent with our expectation.

The real utility of (12) is that it can potentially provide more
than one liveness-ensuring control inputs, whereas the default
liveness controller can only provide one at a given state x and
time t. We now formally establish that applying any control
inputs from Ulive(x, t) is sufficient to ensure that the system
will eventually reach the target set within the established time
horizon [t, T ].

Lemma 2: Suppose the system starts inside Glive at time t.
If the system applies control u(τ) ∈ Ulive(x(τ), τ) ∀τ ∈ [t, T ],
then ∃s ∈ [t, T ] such that x(s) ∈ L.

Lemma 2 effectively allows us to use any subset of
Ulive(x, t) for the projection of the nominal controller, while
still maintaining liveness. This suggests the following general
structure for liveness filters:

General Liveness Filter. Given a nominal controller, πnom, a
general liveness filter can be formulated as:

π(x, t) = argmin
u

h(u, πnom(x, t))

s.t. u ∈ Ũ(x, t), with Ũ(x, t) ⊆ Ulive(x, t)
(13)

In (13), we refer to h as the projection operator and Ũ as the
projection set. Since Ũ ⊆ Ulive, the above filter makes sure
that π(x, t) ∈ Ulive(x, t), thereby ensuring system liveness at
all times (by Lemma 2). Nevertheless, different choices of h
and Ũ will lead to different trade-offs between performance
and liveness.

To make sure that the optimization problem (13) can be
solved in a computationally efficient manner, it is often desir-
able to use a projection operator and set that are convex in
u for a given x and t. A particularly popular choice in the
literature for h is the l2 distance from the nominal controller,
i.e., h := ||u−πnom(x, t)||22. For the remainder of this section,
we use this l2 projection operator and choose three different
Ũ that result in particularly interesting liveness filters. We will
conclude the section by comparing the resultant filters.

B. Least Restrictive Filter

To blend performance with liveness, the reachability analy-
sis is typically applied in a least-restrictive fashion [3]:

π(x, t) =

{
πnom(x, t) if V (x, t) < 0

π∗
live(x, t) if V (x) = 0

(14)

The least restrictive (LR) filter follows the nominal controller
when the system state x is in the interior of Glive(t) (i.e.
V (x, t) < 0), and it takes corrective actions given by π∗

live(x, t)
when the system is on the boundary of or at the risk of exiting
Glive(t). This ensures that the system never exits Glive(t). The
controller in (14) is least restrictive in the sense that it follows
the given nominal controller that can optimize criteria besides
liveness, and only interferes when the system is at the risk
of breaching liveness. Consequently, the system can optimize
other objectives while progressing towards the goal, but such



6

freedom is not afforded by π∗
live(x, t) as its sole objective is

to ensure system’s liveness.
The LR filter (14) can be obtained using our general

framework (13) by using the following Ũ :

Ũ(x, t) =

{
U if V (x, t) < 0

{π∗
live(x, t)} if V (x, t) = 0

(15)

Thus, Ũ is the set of all permissible controls whenever the
system state is inside Glive(t) and is given by a singleton when
it is at the BRT boundary. It is easy to verify that Ũ(x, t) ⊂
Ulive(x, t) for all x and t. Thus, the system will always remain
live under the LR filter.

Running Example (Liveness). We now demonstrate the LR
filter (14) on the running example. The corresponding system
trajectory and the control profile (for u1) are shown in purple
in Fig. 2 and Fig. 3, respectively. As expected, the LR filter
chooses between π∗

live and πnom to steer the system towards the
target set. However, as discussed earlier, using π∗

live results in
bang-bang behavior (as evident from the spikes in the control
profile for the LR filter in Fig. 3) and high control energy. In
the next subsection, we propose a smoother version of the LR
filter to overcome this challenge.

Remark 1: Upon careful observation, one might note that
the LR filter does not take the system fully inside the target
set within the time horizon T (the purple trajectory is slightly
outside the target set in Fig. 2). This discrepancy between
theory and practice is due to the effect of using a discrete-
time simulation of a continuous-time system, which sometimes
causes a slight delay in the switching between the nominal and
the default controller. We will discuss this aspect more as well
as a few potential solutions in Sec. VII.

C. Smooth Least Restrictive Filter

While the LR filter (14) accounts for performance and
liveness, it still switches to a high energy, bang-bang policy
π∗

live at the boundary of Glive. To overcome this challenge, we
propose an alternative liveness filter that uses the full control
authority available to the system as the projection set, rather

Fig. 2. System trajectories under the nominal and filtered liveness controllers
for the rocket landing system. Pink region represents the target set.

Fig. 3. Control profiles for u1 for different liveness filters. The nominal
controller is shown in dashed gray.

than just {π∗
live}:

π(x, t) = argmin
u∈U

||u− πnom(x, t)||22
s.t. u ∈ Ulive(x, t)

(16)

i.e., Ũ(x, t) = Ulive(x, t) for all (x, t). Intuitively, the above
optimization problem computes a control input at each time
instant that is “closest” to the nominal controller, yet is within
the set of live controls. Furthermore, since Ulive = U whenever
V (x, t) < 0, we can simplify the filter in (16) as:

π(x, t) =

{
πnom(x, t) V (x, t) < 0

π+(x, t) V (x, t) = 0
(17)

where π+(x, t) is obtained by solving the following optimiza-
tion problem:

min
u∈U

||u− πnom(x, t)||22
s.t. DtV (x, t) +∇V (x, t) · f(x, u, d∗) = 0

(18)

where d∗ is the optimal disturbance given by (10). We refer to
the controller in (17) as the smooth least restrictive (smooth
LR) filter. Similar to the LR filter (14), the smooth LR filter
(17) follows πnom when the system state is in the interior of
Glive(t). However, when the system state is at the boundary of
Glive(t), rather than using π∗

live(x, t), it chooses a live control
that is closest to the nominal control by solving a Quadratic
Program (QP), thus allowing for a smoother control profile.

Remark 2: The objective of the optimization problem (18)
need not to be quadratic. As long as the objective is convex in
u, the optimization problem in (18) remains convex in u for
control-affine systems and can be solved efficiently online.
Running Example (Liveness). The trajectory and control
profile corresponding to the smooth LR filter are shown in
orange in Fig. 2 and 3. We observe that the smooth LR filter
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effectively “smoothes” out the bang-bang behaviors that the
LR filter displayed; control profile now follows a gradual curve
dictated by the QP formulation. This results in lower control
energy and less jittery behavior of the resulting system when
compared to the original LR controller.

D. Smooth Blending of Performance and Liveness

The LR and smooth LR filters employ live controls as a
last-minute resort when the system is at the risk of breaching
liveness. Despite its simplicity, this sudden and inconsistent
switching to a liveness controller has a few drawbacks: (a)
switching at the BRT boundary can still result in a jittery
control profile if the nominal control is far from the set of
live controls; (b) a last-minute switching can lead to liveness
violation upon the slightest delay in switching. To remedy
these drawbacks, we take inspiration from the CBF literature.
Specifically, we introduce a “CBF-like” constraint to define the
projection set that encourages the filtered control to be “more”
liveness-ensuring as the system approaches the boundary of
Glive(t):

Ũ(x, t) ={u ∈ U :

DtV (x, t) +∇V (x, t) · f(x, u, d∗) ≤ −γV (x, t)}
(19)

where γ is a tunable parameter that determines how quickly a
control is permitted to drive the systems towards the boundary
of Glive(t). The left hand side of the constraint in (19) is the
total derivative of V (x, t) evaluated at state x and time t. Thus,
intuitively, the above constraint limits the rate at which the
value function can increase, i.e., how quickly is the system
allowed to approach the boundary of Glive(t), at any given
state x. When the system is on the boundary of Glive(t), we
have −γV (x, t) = 0, and the controller must output a control
that would drive the system to a state that has same value.
Specifically comparing with the LR and smooth LR filters
in this section, the projection set in (19) blends πnom with
π∗

live in such a way that the system can take gradually more
stringent corrective actions as the system becomes more at risk
of breaching the liveness, resulting in less jerky controls.

The behavior of the control constraint in (19) is quite similar
to that of the CBF constraint in CBF-QP [2], as γ determines
how quickly the value function can change. However, it can
be difficult to find a valid CBF function in the presence of
control bounds and disturbances, requiring online tuning of γ
to make sure that the constraint remains feasible at all times,
which can be quite challenging in practice. On the other hand,
the reachability-based controller in (19) is always live and
feasible, as we prove next, bypassing the need of tuning γ
to ensure liveness.

Lemma 3: Let x be any state such that V (x, t) ≤ 0 and
x ̸∈ L. Define Ũ(x, t) = {u ∈ U : DtV (x, t) + ∇V (x, t) ·
f(x, u, d∗) ≤ −γV (x, t)}. Then (a) Ũ(x, t) is non-empty, and
(b) Ũ(x, t) ⊆ Ulive(x, t) for all γ ≥ 0.
Intuitively, Lemma 3 states that (a) using the projection set
in (19) always results in a feasible filtering problem, and (b)
liveness is always guaranteed under the resultant control input,
regardless of the value of γ. An alternative interpretation of

Lemma 3 is that, as long as the value function V (x, t) is
differentiable, it acts as a robust CBF for any value of γ and
can be used to synthesize CBF-like controllers. Even though a
number of works have synthesized CBFs using the reachability
analysis (e.g., [10]), these methods need to explicitly select a
value of γ during the value function computation, making it
challenging to tune γ online. In contrast, Lemma 3 indicates
that γ can in fact be chosen online, independent of the value
function computation.

Nevertheless, the value of γ still affects the blending of
πnom and π∗

live. Specifically, as γ → ∞, the constraint in
(19) no longer limits the rate of change in the value function
and the blending controller starts behaving like the smooth
LR filter (17). Thus, the system prioritizes the performance
until the liveness is at risk. On the other hand, as γ → 0,
the constraint in (19) becomes very stringent and does not
allow value function to increase. Consequently, the blending
controller starts behaving like the default liveness controller in
(9), prioritizing the system liveness over performance. Thus,
by choosing γ in between the two extremes, we are effectively
blending these two controllers, creating different trade-offs
between liveness and performance.

Running Example (Liveness). We show the smooth blending
filter for different values of γ. The trajectories are shown
in different shades of cyan in Fig. 2. In the first case with
γ = 0.05, the system’s behavior is very similar to the default
reachability controller, where the system is very cautious and
avoid moving towards the BRT boundary. However, from the
corresponding control profile in Fig. 3, we notice that the
controller follows a slightly smoother version of the bang-
bang behavior that we saw in Fig. 1 and the control applied is
not always the maximal control, especially towards the later
times. On the other hand, using γ = 50, the system goes very
close to the boundary of the BRT, behaving similarly to the
smooth LR filter, as expected.

Effect of γ. To illustrate the effect of γ, we plot the overall
trajectory cost (given by (3)), normalized by the cost of the
default controller for different values of γ in Fig. 4. As
evident from the figure, the choice of γ can significantly affect
the performance of the smooth blending filter. Specifically,
as γ approaches 0, the system behaves more and more like
π∗

live, keeping stringent liveness characteristics. This liveness,
however, comes at the cost of a drop in performance (the
controller cost is very high for small γ). On the other hand, as
we increase γ (till around γ = 1), we see a proclivity towards
using a controller that is close to the nominal controller while
encouraging liveness. This results in a significant decrease in
the trajectory cost. However, beyond a certain γ (γ = 1 in this
case), the cost is again seen to rise slightly. This is because,
for such a high γ, the controller is allowed to behave more and
more like the smooth LR filter. The blending filter chooses the
nominal controller as long as the system remains live; however,
this choice leads the system closer to the BRT boundary, and
the controller has to revert to a high-cost control in order to
keep the system live, ultimately raising the overall controller
cost. Hence, for high γ, the smooth-blending controller has a
similar cost as the smooth LR controller.
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Fig. 4. Overall (normalized) trajectory cost for variations in γ.

E. Comparison of Different Liveness Filters

We now compare the performance of different liveness
filters across five metrics:

1) minimum distance to the target set, measuring the live-
ness of each filter;

2) total cost accumulated over the trajectory, measuring the
performance of each filter;

3) computation time per step, measuring the filter latency;
4) control energy, measuring control authority used;
5) jerk energy, measuring the jerk in the control profile.

The obtained results are summarized in Fig. 5.
First, we note that despite a poor nominal controller, all

liveness filters steer the system very close to the target set
(minimum distance to the target close to zero). However, most
filters have a small non-zero distance to the target set. This
is because in our simulation we use a small but non-zero
timestep, which introduces a small delay in the application of
the filtered policy, resulting in the system state being outside of
the BRT momentarily. We discuss this aspect further, as well as
potential remedies in Sec. VII-A. The exception is the smooth
blending filter with small γ, as it very closely behaves like
the default controller sacrificing performance almost entirely
to reach the target. In terms of performance, we note that π∗

live
results in a very high trajectory cost, mostly due a high control
energy cost expected of its bang-bang nature. In contrast,
liveness filters balance liveness with performance, resulting in
a lower trajectory cost. In this case, we observe that smoother
control profiles typically equate to lower trajectory costs,
resulting in a better performance by smooth blending filter
followed by smooth LR filter followed by LR filter. We further
note that for γ = 50, the performance of the smooth blending
and smooth LR filters is very close, as expected. However,
as γ decreases, the smooth blending filter prioritizes liveness
over performance, resulting in an increased trajectory cost. We
see a very similar pattern in the control energy plots.

Next, we compare the computation time of different con-
trollers. Here, the default controller emerges as the fastest
option, as it only requires computing π∗

live, which typically is
very fast, especially when the value function is represented as
a neural network. In fact, in this case, computing the nominal
controller is more expensive than computing π∗

live. For the same
reason, the LR filter is faster than the MPC method, as it
resorts to π∗

live when the system state is at the BRT boundary.
Compared to the aforementioned controllers, the smooth LR
and smooth blending filters leads to a higher computation time,
as they require solving an optimization problem additionally

Fig. 5. Comparison of different liveness filters across performance, com-
putation time, and smoothness of the control profile. MPC is the nominal
controller. LR and SLR stand for the least-restrictive and the smooth least-
restrictive filters. SB stands for smooth blending.

to computing the nominal MPC controller. Moreover, the
smooth LR filter has a lower computation cost among the
two because it only solves an optimization problem when the
system state is at the BRT boundary. In general, the better the
nominal controller is at maintaining liveness, the smaller the
computation time for the smooth LR filter.

Finally, we measure the average jerk in the control trajecto-
ries generated by different filters. Despite its extremum seek-
ing behavior, the default controller in this case has a low jerk,
as the controller does not switch between the two extremes
often. In contrast, the LR filter leads to a sudden switch from
the nominal controller to π∗

live at the BRT boundary, leading
to a chattering and high jerk. The smooth LR and smooth
blending filters smooth out these transitions between the two
controllers, leading to lower jerks.

Overall recommendation. Upon comparing different liveness
filters, we recommend to use the smooth blending controller
with a high value of γ, as it nicely trades off performance
and liveness trough the tuning of γ, while maintaining a low
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jerk. At the same time, it allows to pick a large γ to spare the
user from tuning while keeping a considerable performance
increase as seen in Fig. 4. A close second choice is the smooth
least restrictive filter, which also shares the above advantages.
In addition, it has a lower computation latency, making it
particularly suitable for real-world robotic systems.

V. SAFETY FILTERING USING REACHABILITY ANALYSIS

We now turn our attention to safety filtering. One important
difference to note is that the value function often converges
for the safety problem, i.e. Gunsafe stops growing after some
amount of time, beyond which the system has enough time
to avoid the target set despite the worst case disturbance.
Consequently, we can use the converged value function V (x),
which is no longer a function of time t, to synthesize safety
controllers, and the resulting controllers are time-invariant and
can be expressed as:

π∗
safe(x) = argmax

u∈U
min
d∈D

∇V (x) · f(x, u, d) (20)

Nevertheless, the proposed filters can easily be extended to
incorporate time, similar to liveness filters. To demonstrate its
effectiveness, we introduce the following example case.
Running Example (Safety). Consider a 4D system model of
a blimp with state x = (x, y, z, θ), with control over the rate
of change of altitude and yaw angle, as described by the fol-
lowing dynamics:

ẋ = v cos(θ) + d1

ẏ = v sin(θ) + d2

ż = u1

θ̇ = u2

(21)

where x, y and z denote the X,Y and Z positions of the
center of mass of the system, respectively, and v is the speed
of the system on the XY plane. The control inputs are the
vertical velocity in the Z direction and the rate of change of
heading. In addition, there are velocity disturbances in the X
and Y directions. We consider a 10m x 10m x 5m position
state space (Fig. 6) where the objective is to reach a target
area of radius R = 0.5m located at (x, y, z) = (7, 7, 3)m
(pink sphere) while avoiding collision with the obstacle set
L that corresponds to a collection of spheres of various sizes
spread across the position state space (gray spheres). In this
case, the implicit obstacle function is defined as the signed
distance to the closest gray sphere, l(x) = mini d(x, Si) where
d(x, Si) =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 −Ri is the

distance from state x to the sphere Si of radius Ri centered
at (xi, yi, zi). In (21) v = 2m/s is the velocity in the
XY plane, the control and disturbance bounds are given as
u1 ∈ [−1, 1]m/s, u2 ∈ [−π, π]rad/s and ||

[
d1 d2

]⊤ ||2 ≤
0.5m/s.

For this example, to illustrate that the proposed method is
agnostic to how the value function is obtained, we leverage
the Level Set Toolbox [21] and its reachability helper library
HelperOC [9] to compute a numerical approximation of the
BRT. Level-Set methods solve the HJB-VI numerically over
a uniformly discretized state space grid. We use a 4D grid of

Fig. 6. A xyz-slice (for θ = 0) of the BRT, Gunsafe, for the safety example is
shown in blue. The gray spheres inside the BRT correspond to the obstacles
(the target set in this case) and the pink sphere represents the set of goal
states. The system trajectory under the default safety controller is shown in
dark blue and the corresponding controller profiles are shown in the inlets.

81× 81× 41× 21 points for our computations. The solution
of the HJB-VI provides us with the value function, V (x, τ),
which can be used to extract the Gunsafe similar to (8). In this
case, the value function converges after 0.5 seconds; thus, we
consider the time converged Gunsafe. A 3D slice of Gunsafe for
a fixed value of θ = 0 is presented in Fig. 6. The expansion
of the BRT can be seen in the opposite direction, as states
oriented this way will inevitably collide with obstacles if they
start too close. By definition of the BRT, as long as the
system starts outside the blue region, it is guaranteed to remain
safe under the default safety controller π∗

safe (20). The system
trajectory under π∗

safe starting at a state outside the BRT and the
corresponding control profiles are shown in Fig. 6. The system
remains safe under the default safety controller as expected;
however, the default safety controller steers the system as far
away from the obstacles as possible, disregarding any other
performance criterion the system might have (such as reaching
the pink goal region). Moreover, the control profile is jittery,
which is typically undesirable for real-world applications.

A. Characterizing the set of safe controls

Similar to liveness filtering, we will first characterize the
set of all safe control inputs for the system, and then use it
to design various safety filters. To ensure safety, we would
like the system to stay out of the Gunsafe at all times. Thus,
intuitively, the set of safe control Usafe(x) at a state x are the
control inputs that instantaneously keep the system state out-
side Gunsafe, thereby ensuring recursive safety. Mathematically,

Usafe(x) =



U if V (x) > 0

{u ∈ U : ∇V (x) · f(x, u, d∗) = 0}
if V (x) = 0

∅ if V (x) < 0

(22)

The proof of (22) follows similarly to that for the liveness case,
except that we do not need to account for the time-derivative
of the value function in the controller expression, since the
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value function has converged. The set of safe controls is U ,
when the system state is outside Gunsafe. When the system state
is at the boundary of Gunsafe, the set of safe controls are those
that keep the state instantaneously at the boundary of Gunsafe.
Finally, safety cannot be ensured under any control input if the
system state is inside Gunsafe. An explicit characterization of
Usafe suggests the following general structure of a safety filter:
General Safety Filter. Given a nominal controller, πnom, a

safety filter can be constructed as:

π(x, t) = argmin
u

h(u, πnom(x, t))

s.t. u ∈ Ũ(x, t), with Ũ(x, t) ⊆ Usafe(x)
(23)

Similar to liveness filters, we refer to h as the projection
operator and Ũ as the projection set. Since Ũ ⊆ Usafe, the
above filter makes sure that the system remains safe at all
times.

B. Least Restrictive Safety Filter

The set of safe controls can be used to design a least
restrictive safety controller for the system:

π(x, t) =

{
πnom(x, t) V (x) > 0

π∗
safe(x) V (x) = 0

(24)

Similar to the liveness case, the least restrictive safety con-
troller follows the nominal controller when the system is not
risk of breaching safety, and it switches to π∗

safe(x) (20) when
the system is on the boundary of the BRT. The LR safety filter
in (24) can be obtained using our general framework in (23)
by using the following Ũ :

Ũ(x, t) =

{
U if V (x) > 0

{π∗
safe(x)} if V (x) = 0

(25)

Running Example (Safety). For this running example we
use an MPC-based nominal controller, whose objective is to
minimize distance between the system and the target area,
subjected to the system dynamics and the control bounds. To
highlight the impacts of safety filtering, the nominal controller
is built such that it does not consider obstacle avoidance in its

Fig. 7. Trajectories for the nominal control, the proposed safety filters, and
a CBF-based filter.

Fig. 8. Control profiles for u1 (z-velocity) for the nominal controller (gray
dashed line), the proposed safety filters, and a CBF-based filter.

objective. The system state trajectories and control profiles
under the nominal controller are shown in grey in Fig. 7 and
Fig. 8 respectively. As expected, the nominal controller fails
to satisfy the safety constraint (i.e. avoiding the obstacles).

We next demonstrate the least restrictive safety filter acting
over the nominal controller. The corresponding system trajec-
tory and control profiles (for u1) are shown in Fig. 7 (purple)
and Fig. 8 respectively. This filtering technique allows the
system to avoid collision with obstacles, but it comes with
the shortcoming of an overly aggressive control profile at the
boundary of the unsafe set near the obstacles, as the controller
switching and the bang-bang nature of π∗

safe results in a jittery
control profile that jumps to the limits of the control authority.

C. Smooth Least Restrictive Safety Filter

Some of the shortcomings of the least restrictive filter can
be addressed by the smooth least restrictive filter:

π(x, t) =

{
πnom(x, t) V (x) > 0

π+(x, t) V (x) = 0
(26)

where π+(x) is obtained by solving the following optimization
problem:

min
u∈U

||u− πnom(x, t)||22
s.t. ∇V (x) · f(x, u, d∗) = 0

(27)

The smooth least restrictive filter can readily be obtained using
our general filtering framework by selecting Ũ = Usafe, i.e.,
using the maximal safe control set at all times.

Compared to the least restrictive filter, the smooth least
restrictive filter allows the system to take a control action that
is “closest” to the nominal control, yet keeping it safe at all
times, leading to a smoother control profile. Note that we have
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dropped the Dt term from the constraint in (27) because we
assume the usage of the converged value function.

Running Example (Safety). The results of applying a smooth
least restrictive filter to the running example is shown in
orange in Fig. 7 and its control profiles in Fig. 8. Wherever
possible, the controller avoids the bang-bang nature of π∗

safe
by allowing the selection of controls that are close to the
nominal controller, yet guaranteed to be safe. This smooths
out an overly aggressive control profile generated by the least
restrictive filter at the boundary of Gunsafe.

D. Smooth Blending of Performance and Safety

Again quite similar to its liveness counterpart, the smooth
blending safety filter utilizes the CBF-like constraint to blend
the safety and performance objectives.

min
u∈U

h(u, πnom(x, t)) = ||u− πnom(x, t)||22
s.t. ∇V (x) · f(x, u, d∗) ≥ −γV (x)

(28)

Similar to the least restrictive and smooth least restrictive
filters, the smooth blending filter allows the system state to
move towards the boundary of Gunsafe (i.e., the value function
can decrease), but unlike the aforementioned controllers, it
limits the rate (determined by the user-defined coefficient γ
and the value of the current state x) at which the value function
is allowed to decrease. This phenomenon (a) avoids a sudden
switching to π∗

safe(x), leading to a smoother profile; and, (b)
encourages the system to maintain a non-zero distance from
the BRT boundary at all times.

The smooth blending filter can be obtained by using
Ũ(x, t) = {u ∈ U : ∇V (x) · f(x, u, d∗) ≥ −γV (x)}
within the proposed general safety filter framework. Similar
to Lemma 3, it can be shown that Ũ(x, t) ⊆ Usafe(x) for all
γ ≥ 0.

Running Example (Safety). Resulting state trajectories of
applying the smooth blending filter for two different values of
γ are shown in blue and light blue in Fig. 7, and their control
profiles are shown in Fig. 8. As evident from the control
profiles, the smooth blending controllers do not produce any
sudden switching since they are free to select controls closer
to the nominal controls as long as the decrease in value is
bounded by the prescribed rate. This rate is adjusted through
the parameter γ, which determines how “confident” the system
feels moving toward the unsafe states at a given value level.
For this example we used values of γ = 4 and γ = 0.75. A
larger value of γ allows the system trajectory to move closer to
the obstacles (increasingly behaving like a smooth LR filter),
while a smaller value results in a more conservative behavior
(behaving similar to the default safety controller). This can
also be seen from the system trajectory corresponding to
γ = 0.75, wherein the safety filter is pushing the system away
from the obstacles to ensure that the value function doesn’t
decrease too much (similar to the default safety controller),
resulting in a very curvy and inefficient trajectory to the goal.
In contrast, the trajectory corresponding to γ = 4 ventures
fairly close to the BRT boundary. These trajectories highlight
a critical characteristic of smooth blending filter – the system

Fig. 9. Comparison between the baseline MPC controller, proposed safety
filters and a CBF-based filter.

performance can heavily depend on γ. Thus, a proper tuning
of γ is needed to obtain a satisfactory behavior.

Even though the proposed filter ensures safety for any value
of γ ≥ 0, we do not study mechanisms to compute an appro-
priate γ in this work. An appropriate value of γ will depend
on how the user characterizes performance, safety conserva-
tiveness, and the compromise between them. The choice of
gamma further depends on the system dynamics, failure set,
control and disturbance bounds, and the nominal controller.
For our running example, we simulated various values of γ
and picked two values to highlight the extreme behaviors that
γ can cause in the filtered trajectory.

E. Comparison of Different Controllers
In this section, we present a comparison between the

proposed filtering schemes across five metrics: total cost
accumulated over the trajectory, minimum distance to the
obstacle set, the controller computation time per step, control
energy, and control jerk energy. The control profiles for u1

are shown in Fig. 8 and the metrics for both u1 and u2 are
presented in Fig. 9.

The baseline MPC controller does not consider any ob-
stacles, thus getting the most negative signed distance as
it penetrates through them; for all other metrics, it will be
considered as the base case we will use for comparison.
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Fig. 10. (Left) Trajectories for the Turtlebot safely navigating through the obstacle field to reach the goal area under different safety filters. A sampling-based
MPC method is used as a nominal controller. Inlet plots consider the robot as a point entity and inflated obstacles, blue trajectories indicate the nominal
controller is in operation, while red indicates that the safety filtered control is being applied to the robot. (Right) Comparison of different safety filters across
performance, controller smoothness, computation time, and safety metrics.

Considering the smooth blending filter’s CBF-inspired na-
ture, we also implement a CBF-based safety filter applied to
the same baseline MPC controller. Since the dynamical system
defined by (21) is control-affine and the relative degree of l(x)
to the dynamics is one, we can use the approach presented in
[27] to use it as a High Order CBF. We choose the hyperpa-
rameters for this approach such that the CBF covers Gunsafe,
and the hyperparameter that corresponds to our parameter γ
is set to 4 for a fair comparison.

The least restrictive filter maintains safety and only gets
minimum penetration over obstacles; this slight penetration
is due to the switching happening not strictly at V (x) = 0
but when the value function is negative due to finite grid and
time step resolution. The safety enforcement increases the total
cost over the trajectory compared to the base MPC controller,
because when safety is at risk, it steers the system away
from unsafe states which conflicts with the baseline controller
objective. The least restrictive filter is the fastest to implement
among all safety filters as the default safety controller can
be computed quickly using the BRT, without requiring to
solve any optimization problem, unlike other safety filters. The
downside lies in high energy and high jerk in the controls due
to the bang-bang nature of the default safety controller.

The smooth least restrictive filter also suffers from some
penetration over obstacles because it uses the same switching
condition as the regular least restrictive filter, but presents
improvements both in the energy and jerk of the controls as
it no longer relies on purely bang-bang safety controller, with
the drawback of increased computation time per step as (27)
needs to be solved each time that safety is at risk.

The final three controllers correspond to smooth blending of
performance and safety for two γ values and the CBF-based
filter. Inclusion of the −γV (x) term in the safety filter allows
the system to reason about safety before reaching the boundary
of the unsafe set, allowing the system to maintain a positive
signed distance to obstacles over the whole trajectory. This
comes at the expense of an increased mean calculation time,
especially for the case with smaller γ as the more conservative

constraint in (28) is slightly harder to solve. The characteristics
mentioned so far are shared with the CBF-based filter, where
we observe very similar results to that of a smooth blending
filter with γ = 4. This is expected since we are essentially
solving an equivalent optimization problem. We also observe
some increased cost for the CBF-based filter, as it leads to a
more conservative unsafe set compared to the BRT, which cor-
responds to the minimal unsafe set. The behavior of the CBF-
based safety filter becomes even more conservative or overly
optimistic if the hyperparameter during the CBF synthesis is
not properly tuned. Thus, the safety and conservativeness of a
CBF-based filter are directly affected by its synthesis, which
can be challenging in practice for general nonlinear systems.
It is also worth noting that a high γ behaves quite similarly
to the smooth LR filter, without its downside of accidentally
penetrating the obstacle due to a last-minute switching.
Overall recommendation. Similar to the liveness case, we
recommend to use the smooth blending safety filter with a
high value of γ, as it nicely tradeoff performance and safety,
while maintaining a low jerk. At the same time, using a very
high γ can bypass the need for tuning it.

VI. HARDWARE EXPERIMENTS

We next apply the proposed safety filters on a Turtlebot4, a
Dubins-like robotic platform (see Fig. 10). The robot needs
to reach a goal position in an area situated with multiple
obstacles. To complete this task, we use a shooting-based MPC
nominal controller that does not consider obstacle avoidance in
its objective. We choose this nominal controller on purpose to
highlight the effect of safety filtering. The nominal controller
will be filtered using the techniques presented in Section V to
guarantee safety while navigating towards the goal.

We model the dynamics of the system as a Dubins car with
V = 0.3 m/s and u ∈ [−0.75, 0.75] rad/s where the state
x = [x, y, φ]T represents the x and y positions and the heading
of the robot:

ẋ = V sinφ; ẏ = V cosφ; φ̇ = u (29)
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Fig. 11. Control profiles for different safety filters obtained during our
Turtlebot experiments. Black points in the Least Restrictive and Smooth Least
Restrictive filters indicate that the filter is activated. They are omitted for the
Smooth Blending filter as the filter is always active.

The BRT for this experiment is calculated on a [x, y, φ] grid
of [101; 281; 181] points, which gives a resolution of 2cm in
position over the experiment space and 2◦ in orientation. The
BRT was computed until convergence (in this case, the BRT
converges after a horizon of 1s). The converged value function
is then used to synthesize various safety filters.

We assume perfect state measurement during our exper-
iments. The system state is obtained through the robot’s
internal pose estimation capability given by a combination of
measurements from an IMU, optical floor tracking sensor, and
wheel encoders. To avoid accidental breach of safety in least
restrictive and smooth least restrictive filters due to limited grid
resolution and discrete timestep (see Sec. V-B), we use a non-
zero threshold to activate the safety controller. Specifically,
we use the condition V (x) = ϵ (instead of V (x) = 0) to
trigger switching to π∗

safe. A value of ϵ = 0.05 was used in the
experimental results shown.

The robot trajectories corresponding to different safety
filters are shown in Fig. 10. The corresponding control tra-
jectories are shown in Fig. 11. We also compare different
safety filters across various metrics. These results are shown
in Fig. 10 (right). With this information, we highlight the core
characteristics of each safety filter:

Least Restrictive Filter: Even though the least restrictive
filter keeps the system safe with fast queries of the default
safety controller, the bang-bang nature of the safety controller
forces the system to take the sharpest turn possible as it only
reasons about maximally increasing safety. Additionally, it
results in high energy control inputs. Together, these results in
a high accumulated cost over the robot trajectory.

Smooth Least Restrictive Filter: Similarly to the previously
presented simulation results, this method shows improvements
compared to the least restrictive filter, both in the total energy

and jerk of the control profile. It also keeps lower accumulated
cost as the safe control is trying to align with the underlying
nominal controller. The drawback comes in the form of an
increased computation time per step, as (27) must be solved
each time the system safety is at risk. It is also worth noting
that using a non-zero threshold to activate the QP-based safety
controller in (26) avoids any accidental collision with the
obstacles, unlike our simulation results.

Smooth Blending of Performance and Safety: The final two
trajectories show filtering with the smooth blending filter with
γ = 2 and γ = 0.5. The use of the filter on every time
step of the trajectory (rather than just at the BRT boundary)
allows the system to stay further away from the obstacles. The
drawback is the requirement to solve (28) on each step, which
results in an increase in the mean step computation time. The
computation time, however, is still low enough to have any
significant impact on robot operation. We also observe that a
smaller value of γ leads to a more cautious robot behavior,
reflected in the largest separation to obstacles among all safety
filters (see Fig. 10). This comes at the cost of an increased
control energy, control jerk, and an overall higher accumulated
cost, as compared to γ = 2.

VII. DISCUSSION OF THE THEORY-PRACTICE GAP

A. Effect of a finite simulation timestep

The filters designed in this paper are based on the assump-
tion that the control input can be applied to the system in a
continuous time fashion. However, controller implementation
on a real system often involves a zero-order hold, leading to a
non-zero simulation timestep δ. If δ is too large, the proposed
controllers may no longer be able to ensure liveness/safety
for the underlying continuous time system. For example, a
least restrictive filter ensures liveness by switching to π∗

live
at the boundary of the BRT. However, under a finite δ, π∗

live
may no longer be able to keep the system state within the
BRT, as the liveness is only guaranteed under a continuous
time, state feedback reachability controller. This discrepancy
between the continuous-discrete structure is demonstrated in
Fig. 12, where we show the trajectory variations generated by
the least restrictive filter for different values of δ.

Fig. 12. Effect of discretization timestep (δ). With all other parameters kept
the same, the trajectories followed by the system under the same LR controller
differ with different δ (blue δ = 0.1, yellow δ = 0.10, and pink δ = 0.0005
trajectories). Using a modified version of the LR controller (δ = 0.0005, ϵ =
−0.1), the system reaches the goal (green trajectory).
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Such effects are more pronounced in the least restrictive
filters since there, the system evolves along the BRT boundary.
If our simulation timestep is too high, it is highly possible that
our system temporarily escape the BRT and enter the unsafe
region. One possible solution could be a faster feedback with
gradually decreasing δ as the system approaches the BRT or
adaptive δ depending on the value function. One can also
use a discrete-time variant of the BRT computation itself.
Alternatively, instead of the switching at the BRT boundary
(V (x) = 0) as seen in Eqn. (24), we can choose to switch
with some ϵ margin from the boundary. This slightly modifies
the least restrictive controller as follows,

π(x, t) =

{
πnom(x, t) if V (x, t) < ϵ

π∗
live(x, t) if V (x) ≥ ϵ

(30)

An example corresponding to ϵ = −0.1, δ = 0.0005 is shown
with the green line in Fig. 12. As evident from the figure, this
strategy is able to maintain liveness at all times and eventually
reaches the target set (unlike the pink trajectory using the
same δ = 0.0005, but ϵ = 0). This strategy was also employed
during our hardware experiments to avoid accidental collisions
with the obstacles. Nevertheless, a thorough analysis of the
effect of a finite simulation timestep on system liveness/safety
would be a promising future research direction.

B. Non-differentiable value functions

The proposed controllers in this paper rely on differentia-
bility of the value function, which may not always be the
case [13], [20]. To discuss the impact of non-differentiability
of the value function on the proposed controllers, consider
the Dubins car dynamics in (29). Moreover, we consider the
smooth least restrictive safety filter for our illustration. This
requires solving an optimization problem where we find the
closest control to the nominal control, such that the condition
⟨∇V (x), f(x, u, d∗)⟩ = 0 with u ∈ U is met.

First we consider the scenario where the value func-
tion is being numerically calculated using a grid based ap-
proach [9],[21]. The goal region and the obstacle are shown
in light pink and gray respectively in Fig. 13(left). The nominal
planner, unaware of the environment obstacle, plans a straight
path to the goal region (blue trajectory).

Correspondingly, the safety controller engages when the
system state reaches the BRT boundary (purple point). The
value function has a kink at this state, wherein the system has
two equally viable option (hard left-turn or hard right-turn)
to barely avoid the obstacle. However, at this state, the value
function gradient in the theta direction does not exist, as is
evident from the inlet in Fig. 13(left) showing the variations
on value around this point as a function of θ . Thus, one can
no longer use the safety filters that rely on the value function
gradient (such as a smooth least restrictive filter or a smooth
blending filter). One approach to avoid this issue could be to
use one-sided gradient of the value function to construct the
safety filter. The result of using a left-sided or a right-sided
approximation of the gradient is shown in green trajectories in
Fig.13(left). Both approximations are able to keep the system
safe while steering it to its goal location.

Fig. 13. (Left) BRT slice for θ = π/2. The value function computed using
a grid-based approach exhibits non-differentiability at the purple point. Inlet:
the value function plot at the purple point as a function of theta. The value
function exhibits a kink at θ = π/2. The green trajectories are computed using
one-sided gradients. (Right) A smooth approximation of the value function
computed using a learning-based method (the black dashed line is the BRT
corresponding to the grid-based approach). The value function now changes
smoothly as a function of θ at the purple point.

A second approach is to obtain a conservative approxima-
tion of the value function that is differentiable and then con-
struct safety/liveness filters using this approximation. For il-
lustration, here we use a learning-based method, DeepReach,
to approximate the value function using neural network rep-
resentations that are differentiable by construction [4], [16].
In Fig.13(right), we show a comparison of the BRT obtained
through DeepReach and the previously discussed grid-based
method. The inlet in Fig. 13(right) shows how the learned
value function is differentiable at the tip of the BRT, unlike
the grid-based value function. Moreover, the BRT obtained
through the learning method encompasses the numerically ap-
proximated value function, which keeps all the safety guaran-
tees intact at the expense of a slightly more conservative BRT,
for completeness the smooth least restrictive filtered trajectory
using this differentiable representation is shown in green.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we explicitly characterize the set of all live
and safe controls for a dynamical system using Hamilton-
Jacobi reachability analysis. Leveraging these maximal sets,
we introduce a general framework for designing safety and
liveness filters for the system. We propose three distinct
safety/liveness filters, balancing performance, control smooth-
ness, and latency, allowing to select based on system needs.

While these filters integrate safety/liveness and perfor-
mance, they modify the nominal controller only at the current
timestep, unaware of the long-term effects of its action. This
might result in myopic controllers. Second, the discrete time
nature of actual hardware implementations of these controllers
might pose a challenge to the guarantees proposed. Third,
we currently assume that the target set is known and does
not change online. However, that may not be the case for
many robotics applications and an online adaptation of the
reachability analysis and safety filters might be required. We
aim to tackle these challenges in future works. Finally, we
currently rely on the differentiability of the value function to
construct safety and liveness filters. A theoretical analysis of
filter design using subgradients or one-sided gradients of the
value function is another important future research direction.
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APPENDIX

A. Proof of Lemma 1

Case 1: V (x, t) < 0. Since the value function is continuous in
state and time, and the system trajectory itself is continuous
in time, the value function is continuous along the system
trajectory. Thus, we can always pick a small enough δ such
that V

(
ξu,d

∗

x,t (t+ δ), t+ δ
)

< 0. That is, we can keep
the system momentarily inside the BRT for any u. Thus,
Ulive (x, t) ≡ U .

Case-2: V (x, t) = 0. Since by assumption the value function
is differentiable for all x and t, for sufficiently small δ > 0,
we can rewrite the value function using Taylor expansion:

V
(
ξu,d

∗

x,t (t+ δ), t+ δ
)

≈ V (x, t) +
∂V

∂t
δ +

∂V

∂x
· f (x, u, d∗) δ

= δ

[
∂V

∂t
+

∂V

∂x
· f (x, u, d∗)

]
where the equality follows because V (x, t) = 0. Thus, to
ensure that V

(
ξu,d

∗

x,t (t+ δ), t+ δ
)
≤ 0, we must have[

∂V

∂t
+

∂V

∂x
· f (x, u, d∗)

]
≤ 0

Since x /∈ L, l(x) > 0. It follows immediately that l(x) −
V (x, t) = l(x)− 0 > 0. Thus, according to the HJI-VI in (6),
we must have:

∂V

∂t
+min

u

∂V

∂x
· f (x, u, d∗) = 0

≡ ∂V

∂t
+

∂V

∂x
· f (x, u, d∗) ⩾ 0 ∀u ∈ U

Thus, the only feasibility for ensuring liveness is[
∂V

∂t
+

∂V

∂x
· f (x, u, d∗)

]
= 0

which corresponds to V
(
ξu,d

∗

x,t (t+ δ), t+ δ
)
= 0

Case-3: V (x, t) > 0. In this case, the set of live controls is
trivially an empty set, as per the definition of a BRT.

B. Proof of Corollary 1

Suppose the value function V (x, t) is differentiable at all x
and t. Take x ∈ Glive. We split into the following two cases.
Case 1: V (x, t) < 0. Since π∗

live(x, t) ∈ U , we also have
π∗

live(x, t) ∈ Ulive(x, t) as U ≡ Ulive(x, t) in this case.

Case 2: V (x, t) = 0. According to the HJI-VI in (6), we must
have:

∂V

∂t
+min

u

∂V

∂x
· f (x, u, d∗) = 0

By the definition of the default controller, it achieves the
minimum in the above equation, i.e.,

∂V

∂t
+

∂V

∂x
· f (x, π∗

live(x, t), d
∗) = 0

Thus, π∗
live(x, t) ∈ Ulive(x, t) by the definition of the set of live

controls.

https://github.com/HJReachability/helperOC
https://github.com/HJReachability/helperOC
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C. Proof of Lemma 2

We will prove this result by contradiction. Suppose the
system never reaches the target set in the time interval
[t, T ]. Then we must have V (x(T ), T ) > 0 (if not, then
V (x(T ), T ) = l(x(T )) < 0 and we are done).

Since V (x(t), t) < 0 and the value function is continuous,
we must have that V (x(t̃), t̃) = 0 for some t̃ ∈ (t, T ).
Moreover, for state x(t̃), the set of live controls is given by
(Eq. (12)

∂V

∂t
+

∂V

∂x
· f (x, u, d∗) = 0

It follows immediately that dV
dt = ∂V

∂t + ∂V
∂x · f (x, u, d∗) = 0.

Thus, we must have: V (x(τ), τ) = 0 ∀τ ⩾ t̃ This contradicts
our initial hypothesis that V (x(T ), T ) > 0. Hence, the system
must reach the target set at some point in the time interval
[t, T ].

D. Proof of Lemma 3

Case 1: V (x, t) = 0. In this case,

Ũ(x, t) = {u ∈ U : DtV (x, t) +∇V (x, t) · f(x, u, d∗) ≤ 0}

However, as per the HJI-VI in (6), we have

DtV (x, t) +∇V (x, t) · f(x, u, d∗) ≥ 0 ∀u ∈ U

Thus, Ũ(x, t) can be equivalently written as

Ũ(x, t) ={u ∈ U : DtV (x, t) +∇V (x, t) · f(x, u, d∗) = 0}
= Ulive(x, t)

Moreover, since π∗
live(x, t) ∈ Ulive(x, t) by Corollary 1, we

have that π∗
live(x, t) ∈ Ũ(x, t). Thus, Ũ(x, t) is non-empty.

Case-2: V (x, t) < 0. In this case, Ulive(x, t) = U so Ũ(x, t) ⊆
Ulive(x, t) trivially.

To prove that Ũ(x, t) is non-empty, let α = −γV (x, t).
Thus, Ũ(x, t) = {u : DtV (x, t)+∇V (x, t)·f(x, u, d∗) ≤ α}.
Note that since V (x, t) < 0, α > 0. Moreover, since for the
default liveness controller, we have that DtV (x, t)+∇V (x, t)·
f(x, π∗

live(x, t), d
∗) = 0 < α, π∗

live(x, t) ∈ Ũ(x, t). Thus,
Ũ(x, t) is non-empty.
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