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Chapter 4 ®
Modeling Soft Robots Shhae

Isuru Godage and Hunter Gilbert

Abstract This chapter explores the evolving landscape of soft robotic kinematic
and dynamic modeling, organized into four distinct sections to encompass a broad
spectrum of methodologies. The first section investigate into Continuous Curvature
Models, addressing the challenges associated with the inherently continuous and
deformable nature of soft robots. Various approaches within continuum mechanics
and finite element analysis are discussed, highlighting the complexities involved in
capturing the intricate motion and shape changes exhibited by these systems. The
second section focuses on Lumped Parametric Models, providing insights into tech-
niques that discretize soft robots into simpler, interconnected elements. This section
explores the advantages and limitations of such models, emphasizing their efficacy in
simulating the dynamic behavior of soft robots with reduced computational complex-
ity. The third section introduces Hybrid Models, which amalgamate the strengths of
continuous curvature and lumped parametric models. This approach seeks to strike a
balance between accuracy and computational efficiency, offering a versatile frame-
work for modeling soft robotic systems in various applications. The fourth section
explores Learning-Based Models, a burgeoning field leveraging machine learning
and data-driven approaches to model the complex kinematics and dynamics of soft
robots. The chapter provides an overview of neural networks, reinforcement learn-
ing, and other learning-based techniques, showcasing their potential in capturing
intricate soft robotic behaviors and adapting to real-world scenarios. The chapter
concludes by addressing the critical question of “How to Select Suitable Models”
for soft robotic applications. It offers guidance on the criteria for model selection,
taking into account factors such as system complexity, computational efficiency, and
the availability of training data. By providing a comprehensive overview of these
modeling approaches, this chapter aims to equip researchers, engineers, and practi-
tioners with a nuanced understanding of the diverse methodologies available for soft
robotic kinematic and dynamic modeling, paving the way for advancements in the
field.
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4.1 Introduction

In this chapter, we delve into the diverse landscape of soft and continuum robot
modeling approaches, exploring four distinct paradigms that have shaped the field’s
evolution. We begin by unraveling the intricacies of continuous curvature models,
which focus on capturing the gradual, seamless deformations of soft robots through
mathematical representations of curvature and torsion. Next, we venture into the
realm of lumped parametric models, where complex structures are approximated
through discrete elements and simplified parameters, offering analytical insights
into deformations and forces. Shifting gears, we delve into data-driven or learning
models, which harness the power of machine learning and neural networks to predict
the behavior of soft robots from empirical data, bridging the gap between theory and
experimentation. Finally, we explore the synthesis of these modeling approaches in
hybrid models, where analytical, data-driven, and empirical methods harmonize to
provide a comprehensive understanding of soft robot dynamics and control.

Although there is no unanimous consensus on the precise definitions, the phrase
“continuum robot” is generally used to indicate motion that occurs without iden-
tifiable kinematic pairs. Conversely, the term “soft robot” implies a greater degree
of mechanical compliance, which is defined as the ratio of displacement to force.
This compliance is more pronounced in soft robots than in traditional approaches
to robotic interaction, as they are able to respond more effectively to environmental
forces. Soft robots are typically composed of soft materials, which can be character-
ized by material parameters such as the modulus of elasticity. In contrast, continuum
robots made of harder materials can be designed to exhibit high or low mechanical
stiffness in response to external forces, depending on their specific design features.

Continuum robots are a type of flexible robotic manipulator composed of a long,
flexible, and continuous structure, often modeled after biological organisms like
elephant trunks or octopus tentacles, which can be bent, twisted, or elongated to
perform a wide range of tasks in various environments. Unlike traditional rigid
robots, continuum robots can adapt to their surroundings and conform to complex
shapes, making them ideal for applications in areas such as medicine, manufacturing,
and exploration. Some examples of continuum robots in the literature are shown in
Fig. 4.1.

Often referred interchangeably, soft robots are a type of continuum robot that uti-
lizes soft and flexible materials, such as elastomers, hydrogels, and fabrics, in their
design and construction to achieve a range of functionalities and movements like
those of biological organisms. In the literature, comparted to systems referred to as
continuum robots, soft robots often refer to physical systems with lower stiffnesses.
Soft robots can deform and change shape in response to external stimuli, such as
changes in temperature or pressure, allowing them to interact with their environment
in unique ways. Due to their flexibility and adaptability, soft robots have applications
in fields such as healthcare, agriculture, and search and rescue, where they can per-
form delicate and complex tasks that are difficult for traditional rigid robots. Some
examples of soft robots are shown in Fig. 4.2.
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Fig. 4.1 Various Types of Continuum and Soft Robots. a OC Robotics—Series 11, X125 snake-arm
robot at UCL [3], b continuum manipulator [4], ¢ tendon-driven continuum robot [15], d Tendon-
actuated soft robot, e joystick-controlled concentric robot [29], f variable length multi-section
pneumatic soft robot [9], g The Bionic Handling Assistant by Festo, showcasing a biomimetic
design inspired by the elephant’s trunk, h Concentric agonist-antagonist robot [25], i three-segment
continuum robot [26], j continuum robot [31], k Honeycomb pneunets robot [37], 1 autonomous
robotic catheter blazes trail [30], m discrete wire-driven continuum robot arm [41], n ‘Octarm’
continuum manipulator [23], 0 origami continuum robot [44], p 2D robotic manipulator [22], q
magnetic soft robot [17]

Fig. 4.2 a Soft robotic glove [28], b 3D-printed soft robotic hand [32], ¢ gecko-inspired soft robot
[33], d soft elbow exosuit [38], e Meter-scale soft hexapod robot [18], f Soft biomimetic fish robot
[35], g Soft tetrahedral robot [27], h Sorx: soft pneumatic hexapedal robot [19], i Electronics-free
soft-legged robot [6], j Wheelless soft robotic snake [2], k Multigait soft robot [34], 1 pressure-
operated soft robotic snake [20]

This chapter examine the current state-of-the-art in mathematical modeling of
continuum manipulators that possess at least one “long” aspect in their shape. Such
manipulators, also referred to as slender, are characterized by beam-like or bending
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deformations that dominate their motion. The purpose of these models is to establish
a relationship between the motion of the robot and the actuator variables, boundary
conditions, and sensor measurements. However, they do not typically address other
essential factors in robot design and analysis, such as repeatability, wear, and safety.
Slender designs include “arms,” “snakes,” and individual “fingers” of a multi-fingered
hand. Designs composed of individual components with this property, such as con-
centric tube robots or multi-backbone continuum robots, are natural extensions of this
classification. Even for robots made of softer materials like the STIFF-FLOP designs,
which exhibit localized deformations that may be complex, the dominant behavior
remains beam-like. This chapter aims to discuss different modeling approaches at
depth and present an assortment of methods reported in the literature using a common
notation.

4.1.1 Preliminaries

Before embarking on the journey of understanding and exploring the modeling
approaches for continuum and soft robots, it’s essential to establish a foundational
understanding of key terms and concepts that will pave the way for a deeper com-
prehension of the subject matter. This subsection serves as a crucial stepping stone,
offering readers a concise yet comprehensive introduction to the preliminary terms
that will frequently emerge throughout our exploration. These terms, ranging from
elasticity and stress-strain relationships to kinematics and finite element analysis,
provide the conceptual scaffolding upon which our discussions will rest. By famil-
iarizing ourselves with this essential vocabulary, we equip ourselves with the tools
necessary to navigate the intricate landscape of soft and continuum robot modeling
with confidence and clarity.

Deformation: In soft and continuum robotics, deformation—often structural—
refers to the changes in the shape and size of the robot’s structure as it undergoes exter-
nal forces or movements. This type of deformation is typically caused by the inherent
compliance and flexibility of the materials used in soft and continuum robotics. Struc-
tural deformation can have a significant impact on the performance and behavior of
soft and continuum robots. For example, in a soft gripper designed to grasp objects,
the deformation of the gripper’s structure can affect the force and grip strength applied
to the object. Similarly, in a continuum robot designed to move through complex envi-
ronments, the structural deformation of the robot’s flexible structure can affect its
ability to navigate and manipulate objects. To account for deformation in soft and
continuum robotics, researchers often use appropriate models—often motivated by
the robot design—that describe the robot’s behavior as a function of its material
properties and geometry. Understanding and modeling structural deformation is an
essential aspect of soft and continuum robotics, as it enables researchers and engi-
neers to design and control robots that can move and interact with their environment
in a safe and effective manner.
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Backbone Curve: The backbone curve in continuum robotics is a term used to
describe the overall shape and geometry of a continuum robot [39]. It refers to the line
that runs through the center of the robot’s flexible structure and defines the robot’s
bending characteristics. The backbone curve is an important concept in continuum
robotics because it determines the robot’s motion and deformation properties. For
example, the curvature of the backbone curve can affect the robot’s ability to bend
and twist, while the length and shape of the curve can influence the robot’s reach
and dexterity. Designing and modeling the backbone curve is a critical step in the
development of continuum robots, as it requires careful consideration of factors
such as the robot’s intended application, the materials used in its construction, and
the desired motion and deformation characteristics. A variety of techniques have
been developed to model the backbone curve, including finite element analysis and
optimization algorithms.

Framed Curve: The concept of framed curve in continuum robotics involves
the attachment of a triad of reference vectors at each point along the curve. These
vectors are used to describe the orientation and shape of the robot at that particular
point, allowing for precise control over its motion and deformation. Typically, the
three vectors attached to each point on the framed curve include one that is tangent
to the curve itself, and two that span the cross sections of the robot at that point. This
triad of vectors allows researchers and engineers to fully describe the orientation and
shape of the robot at any given point, which is essential for controlling its motion and
deformation. For instance, in the context of Homogeneous Transformation Matrices
(HTM), the rotation matrix can be considered as a framed curve that serves to model
deformation along the length of the robot. This framed curve helps track various
factors such as bending, torsion, and other shear phenomena, ultimately contributing
to a more accurate and comprehensive modeling approach.

Constant Curvature Shapes: Constant curvature modeling is a method used
to model the kinematics of continuum robots [40]. This approach assumes that the
robot’s backbone curve has a constant curvature, meaning that the curve does not
change its curvature along its length. Under the constant curvature model, the robot’s
motion and deformation can be described using a set of equations that relate the cur-
vature of the backbone curve to the motion of the robot’s end effector. This approach
allows for precise control over the robot’s motion, and it has been used in a wide range
of applications, including medical robotics and industrial automation. However, the
constant curvature model does have some limitations. In particular, it assumes that
the robot’s deformation is dominated by bending, rather than stretching or other
types of deformation. This may not be the case for all types of continuum robots,
particularly those made of very soft materials or those with complex geometries.

Finite Approximations: Finite approximations are a commonly used technique
for modeling continuum robots [14]. Continuum robots are robots that use soft,
flexible materials to achieve their motion, which makes them highly adaptable and
able to move through complex, curved spaces. However, this flexibility also makes
them challenging to model accurately using traditional mathematical methods. Finite
approximations address this challenge by breaking the continuous motion of a con-
tinuum robot into a series of discrete segments. These segments are modeled using
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finite element analysis, which is a numerical method for approximating solutions to
partial differential equations. In practice, this means that the robot is divided into
small sections, and the behavior of each section is modeled using a set of equations
that describe its deformation and motion. These equations are solved numerically,
and the solutions are then combined to provide a complete model of the robot’s
motion. Note that finite approximations are still an approximation, and there may be
limitations to the accuracy of the model depending on the complexity of the robot

Configuration: Configuration refers to the positions that a mechanical system’s
parts can be in. Thus, configuration refers to the arrangement of all the robot’s degrees
of freedom (DOFs) that define its state. For example, in a simple planar robot arm,
the configuration might include joint angles, while in a more complex robot, it could
involve joint angles, translations, and orientations.

Configuration Space: Configuration space (C-space) is a mathematical space in
which each point corresponds to a unique configuration of the robot. In a C-space,
each dimension represents a different degree of freedom (DOF) of the robot. For
instance, in a 3-DOF robot, the C-space would be three-dimensional. The entire C-
space encompasses all possible combinations of joint values or robot states that
the robot can achieve without violating any constraints. Also, the configuration
space takes into account all kinematic, geometric, and other constraints that the
robot must satisfy. For example, it considers joint limits, collision avoidance, and
workspace boundaries. Constraints in C-space restrict the robot’s motion to feasible
and collision-free configurations.

Joint Space: In robot modeling, joint space refers to a specialized coordinate
system used to describe the configuration or state of a robot. This coordinate system
is particularly focused on representing the positions and orientations of the robot’s
individual joints. Each joint contributes to the overall configuration of the robot,
and joint space provides a convenient way to define and control these configura-
tions. In joint space, the parameters typically include joint angles, joint velocities,
and possibly other joint-specific parameters, depending on the robot’s design and
complexity. By defining the robot’s state in joint space, it becomes easier to plan and
execute robot movements, perform kinematic and dynamic analyses, and develop
control algorithms. Joint space representations are particularly useful in robotics for
tasks such as path planning, inverse kinematics, and trajectory control, as they allow
engineers and researchers to work directly with the robot’s articulation.

Task Space: Task space provides a vital perspective for describing the actions
and behaviors of robots. It represents a higher-level coordinate system focused on
the position and orientation of a robot’s end-effector, such as its gripper or tool, in
relation to a reference frame. Task space simplifies the planning and control of robotic
tasks by specifying where the end-effector should be and how it should be oriented
to achieve particular objectives. This approach allows engineers and programmers
to design robots that interact effectively with their environment, from picking and
placing objects to performing complex assembly tasks. Solving for the joint angles
necessary to achieve desired end-effector poses in task space, known as inverse
kinematics, plays a central role in robot modeling and control.
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Generalized Coordinates: Generalized coordinates are a vital concept in the
realm of mechanics and dynamics. They represent a set of parameters that compre-
hensively describe the configuration of a system. These coordinates are not merely
numerical values but serve as the coordinates of a singular point within an abstract
space known as “configuration space.” Generalized coordinates can take two primary
forms: absolute and relative. Absolute coordinates are referenced with respect to an
unchanging inertial frame, providing a fixed point of reference. In contrast, rela-
tive coordinates are defined concerning a co-moving frame, which moves in tandem
with the system under consideration. This distinction in reference frames allows for
a versatile and adaptable means of characterizing the configuration and motion of
dynamic systems.

4.2 Continuous Curvature Models

Continuous curvature approaches are mathematical techniques used to model the
shape and behavior of soft and continuum robots. These robots are made of flexi-
ble materials, allowing them to move and deform continuously rather than in dis-
crete steps, which is characteristic of traditional rigid robots. Continuous curvature
approaches aim to capture and describe the complex and continuous deformations
that soft and continuum robots can achieve.

4.2.1 Curve Parametric Models

Curve parametric (CP) modeling is a fundamental approach that revolves around the
utilization of mathematical curves and parameters to describe the form and actions
of soft robots. One of the notable strengths of curve parametric modeling in the
realm of soft robotics is its capacity to accurately capture the intricate deformations
and motions exhibited by these robots. In addition, curve parametric approaches
offer numerous other advantages in soft robot modeling. Firstly, they excel in accu-
rately representing the intricate and nonlinear deformations of soft robots, even when
subjected to substantial loads and constraints. This precision arises from their capa-
bility to capture the spatial distribution of material properties and interactions within
the robot’s structure. Secondly, these approaches exhibit computational efficiency,
proving effective for complex soft robot geometries. Curve parametric models are
flexible and adaptable, accommodating a wide range of soft robot geometries, includ-
ing continuum, articulated, hybrid, and surface robots. In this section, we will utilize
the pneuamtically actuated multisection continuum arm shown in Fig. 4.3.
Consider the schematic of any continuum arm shown in Fig. 4.4. Without losing
generality, the three variable length actuator configuration is considered and the
actuators are fixed to a circular rigid frame at a radius, r from the center and ZT” rads
apart. Hence, the actuators are operated at a distance r, aligned with the neutral
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Fig. 4.3 Multisection
Continuum Arm with
Pneumatic Muscle

Actuators [8]. The arm
consists of three serially
attached continuum sections,
each actuated by three
extending-mode numeric
muscle actuators
symmetrically attached.
Differential pressures in the
pneumatic muscle actuators
create circular arc shapes in
the sections, while
common-mode pressure
causes extension. Note that
some prototypes may use : A
more than three actuators, . I -
such as four, and may D I Sta \ »
incorporate different types of
actuators that can extend,
compress, or both during
operation

Neutral axis

Fig. 4.4 Joint-space of a
continuum/soft robotic
section

axis, which is an imaginary line running from the center along the length of the
continuum robot. Let the initial length of each actuator is L whose change is in
l; € Rwherel;.min < 1;(t) < l;.max fori € {1, 2, 3};i and t denote the actuator number
and time, respectively. Therefore, L;(t) = L + [;(¢) calculates the actuator length
at any time and the vector of joint variables of the continuum robot is defined as

q=1[L@), L), 1" e R3.
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Due to the constrained actuator arrangement, when the robot is actuated, it either
demonstrates straightforward linear motions (expansion or contraction) or curves
into a circular arc. Thus, assuming there are no substantial external forces, the spatial
alignment of the robot can be entirely defined as a circular arc with variable curvature
radius and length. The arc is defined by three spatial parameters; radius of curvature
A € (0, 0o0) with instantaneous center C, angle subtended by the bending arc ¢ €
[0, 27], and angle of the bending plane with respect to the +X axis, 6 € [—n, ].

4.2.1.1 Deriving Curve Parameters in Joint Space Variables

Let the origin of the task-space coordinate frame {O;} coincide with the center of

the base plate, where O,—A)l defines the X; axis. The actuator attachment points
form an equilateral triangle with sides of length r,+/3 at each end of the contin-
uum section. The coordinates of the actuator attachment points are A; = [r;, 0, 0]7,
Ay = ’—2"[—1, V3,017, and A; = —%[1, V/3,0]7. The instantaneous center of the
bent arm’s circular arc shape is represented as C;. In Fig. 4.5, you can observe the

actuator base points, Aj, Ay, and As, projected onto O;C;, where they intersect at
x}, x5, and x3. The respective distances between O; and these intersection points are

O;x{ = r; cosb;
. 2
0,‘X2 = r; COS ? - 9,‘ (41)

. 4
O;x3 = r; cos EN 0;

The actuator lengths form radii of three concentric circular arcs at O;C; (see Fig.
4.5). Employing the arc geometrical relationship where arc length is equal to the
curvature radius times the subtended angle, the actuator lengths are related to curve
parameters as follows:

Fig. 4.5 Orthographic
projection of the moving
coordinate frame, {0’}
along the neutral axis and the
normalizing scalar, & shown
on the bending plane (i.e.,

z; 0; C; plane)

Zi A

Lis(t)

e xiyi plane

0, Ai C

A
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Lio+ it = (A — Oix}) s
= {A; —ricos (60;)} &; 4.2)

Lio+1ii = (& — Oix3)¢;

1 3
= )u,‘ + —r; COSQ,‘ — £7‘,’ Sil’l@[ ¢[ (43)
2 2
Lio + iy = (L — 0ix3)¢;
1 3
= (Ai + Er,- cos0; + %_ri sin 9[> o; “4.4)

These relationships are now manipulated to derive curve parameters in joint space
variables. Summing up Egs. (4.2), (4.3), and (4.4) yields

3hi¢i =3Ljo+ s +1in + i3

1
¢ = 5= GLio+ln +12 +1n) .5)

Subtracting Eq. (4.3) from Eq. (4.4) and rearranging the terms produces

liz —lip = (‘/gri sin 91‘) o

. liz — i
sin 6; = (4.6)
V3rig
Similarly, rearranging Eq. (4.2) gives
rigi — (Lio +1;
cos; = i — (Lio +1i1) @7

ri¢i

Applying Eqs. (4.6) and (4.7) to the trigonometric identity sin” 6; + cos? 6; = 1,
to remove 6; from the relationship, results in

liy —1n\* <)»i¢i — (Lijo + lil))2
2 =1 4.8
(x@ri@) * rii *8)

Substituting ¢; from Eq. (4.5) into Eq. (4.8) and solving for A; € R gives

h (4:) = (BLio +lin +lio + 1i3) 1y
21 + By + 1 — il — Ilis — Ly

(4.9)



4 Modeling Soft Robots 95

The result given by Eq. (4.12) is then substituted into Eq. (4.5) to solve ¢; as

2+ + 15 — Il — Linlis — lnlis
i (q;) = \/ 1

4.10
37‘,‘ ( )
Dividing Eqgs. (4.6) by (4.7) yields 6; as
V3 (i — 1)
6 (q;) =tan™! [ —2 == 4.11
(@) (liZ + i3 — 2l @1

Substituting ¢; from Eq. (4.5) into Eq. (4.8) and solving for A; € R* gives

2 () = BLio+ 1l +lia+13)ri
2\/1521 + 15+ 15 = Ll = lnlis — linlis

4.12)

The result given by Eq. (4.12) is then substituted into Eq. (4.5) to solve ¢; as

2\/11'21 5+ 15 = Il — lnlis — lnlis
i (q;) =

4.13
31",' ( )
Dividing Egs. (4.6) by (4.7) yields 6; as
V3l — 1)
6 (g;) =tan™' | ————~ 4.14
(ql) an (llz + lj} _ 2111 ( )

4.2.1.2 Deriving the Homogeneous Transformation Matrix (HTM)
for a Single Continuum Section

For complete kinematic modeling, it is essential to accurately calculate both the posi-
tion and orientation of all joints and links in a robotic system. Due to the substan-
tial inherent mechanical flexibility, continuum sections exhibit varying orientations
along their length, necessitating the representation of this variation using a continuous
homogeneous transformation matrix (HTM). We define a moving coordinate frame
denoted as {O'} is established (refer to Fig. 4.4), and a scalar parameter & € [0, 1] is
introduced. This parameter allows for the movement of { O’} from the base (§ = 0) to
the tip (§ = 1) along the neutral axis of the continuum section. Accordingly, homo-
geneous translational and rotational transformations based on curve parameters can
be derived as



96 1. Godage and H. Gilbert

T(q.8) = Rz(O)Px (LRy(9)Px(=2)Rz(—0)

_ | R(q.%) p(q.%)
_[ 0.1 1 ] (4.15)

where Rz and Ry are homogeneous rotation matrices about +Z and +Y axes
and Py, is the homogeneous translation matrix along +X axis. Additionally, ¢ =
[A, ¢, 017 € R? is the curve parameter vector, R € SO 3), p =[x, y, z]T e R3
are the rotational and translational matrices of the robot.

4.2.1.3 Constant-Length System Modeling

Noting that the bending of the soft module is critical to the robot locomotion, under-
standing the relationship between the PMA lengths and the curve parameters is
important as controlling the PMA lengths enables the control of module shape and
robot locomotion. The PMA lengths can be related to the curve parameters as given
in [8] as (Fig. 4.6).

L+lji={f—rcos(%(z’—l)—@)}q&j
J

lj,' = —rjq&j COS (2?71 (l — 1)—91> (416)

Note that the inextensibility of the soft module implies that the sum of PMA
length changes becomes zero, i.e., ), [;; = 0. This kinematic constraint gives rise
to a relationship between the three joint variables, i.e., [;; = — (l 2+ j3), which
implies that the soft module forward kinematics can be obtained using just two
degrees of freedom. Employing Eq. (4.16), we can derive the curve parameters in
terms of the joint variables as:

Fig. 4.6 A hybrid
continuum robotic arm Pneumatic

section constructed with a su pp|y lines
rigid inextensible backbone
forming a kinematic chain,
symmetrically actuated by

numeric muscle actuators Backbone

outer shell

'& Pneumatic
i' muscle

actuators
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2
;= — <12.l. — il jmoddi,3) + 1)
I =3 ; J Ji (4.17)

0; :arctan{x/g(ljg —ljz),lj2+lj3 —2lj1}

4.2.1.4 Numerically Stable Modal Representation

Numerical instability can arise in the curve parametric approach for soft robot mod-
eling under certain conditions. For instance, in cases where the robot’s configuration
leads to singularities, such as when all actuator lengths are nearly equal, mathemat-
ical operations involving division by small or zero values can result in numerical
instability. Consider the following matrix element of Eq. (4.15).

V3 —13)BLo+1 + L +13)r

[T(q,8)]4 =
# 4B+ +13 — il — lils — L)

{cos (25\/1,2 I 1213/3r> - 1}
(4.18)

The modal approach for soft robot kinematics offers a promising avenue to avoid
singularities and enhance the stability of robot modeling decomposing the robot’s
deformation into a set of modal or basis functions. These modal functions capture
the fundamental shape and motion patterns of the robot, allowing for a more efficient
and robust representation of its behavior. By expressing the robot’s configuration as
a linear combination of these modes, singularities associated with specific parameter
values can be mitigated or even eliminated. However, in order to retain the physical
insight and avoid nonlinear mapping problems, modal forms are preferred to retain
joint space representation. A simple and straightforward method, such as using mul-
tivariate Taylor series approximation, has been presented in [8] for finding suitable
modal functions. This approach allows us to derive modal forms of kinematics that
effectively capture the complex deformations while mitigating singularities, making
it a valuable tool for modeling and controlling soft robotic systems (Fig. 4.7).

4.2.1.5 Recursive Formulation of Complete Kinematics

A multisection continuum or soft robotic arm, a schematic is shown in Fig. 4.8, can
be derived using the HTM derived for a single section in Sect. 4.2.1.2. Employing
the continuum section HTM given in Eq. (4.15) and principles of kinematics of serial
robot chains, the HTM of any i’ section with respect to the task-space coordinate
system {0}, T' : (¢, &) — SE’, is given by

i [ R Pi
T:]‘[T,-:[o 1} (4.19)
k=1
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Fig. 4.7 (LEFT) Errors of [T]y4, given by Eq. (4.18), within singular neighborhood against /»
when /5 — 0.03 where [} = I3 = 0.03. The error spans within a singularity neighborhood thus
eliminating the possibility of conditional HTM’s to counter the numerical instabilities. Comparison
of numerical errors in the generalized inertia matrix for the base continuum section. (MIDDLE)
Note the large errors (103%) towards the singularity at /;; = 0.0325 and its (expanded to around
{l12, 113} € [0.02, 0.05] neighborhood. (RIGHT) In contrast to Fig. 4.15a, the error is negligible
(< 0.014%) within the entire actuation region. During both simulations, /;; = 0.0325

Fig. 4.8 Schematic of a
general multisection
continuum arm with N
continuum sections

where R’ (¢', &) € R¥ and p, (¢', &) € R? define the position and orientation of
{Oi’ } along the neutral axis at & of the i"" continuum section.

The homogeneous transformation matrix in Eq. (4.19) can be expanded to obtain
the recursive form of the kinematics as

R =R'R,

, . , (4.20)
pt — pt—l 4 Rl_lpi
where R'™! (¢'~") € R¥3 and p, (¢'~") € R? is the section tip rotation matrix and
position vector of the preceding continuum section.

Utilizing the Eq. (4.20), the angular velocity of a thin disc at §; with respect to
{Ol’} ®; (qi, q’) € R3 can be defined as
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2 =R'R
= (R'R)" (R7'R; +R'R))
— R, ’(Ri—lTRi—l) R; + (Ri—lTRi—l) Ri}
=R’ (Ri1R; + Ri) (4.21)
0 —w, w,
where w; = [wiy wiy a),-z]T and 2; (¢, ¢') R =| o, 0 —o
—wy, w, 0

Similarly, Eq. (4.20) can be used to derive the linear bodﬂr velocity of a thin disc
at & with respect to {0/}, v; (¢'. ¢') € R as

v; = RiTpl
— (RiflRi)T (pi*l + Ri*lRi + Ri*lPi)
_ RiT {(Ri—lTI-)i—l) R, + (Ri—lTRi—l) P+ (Ri—lTRi—l> i’i}
=R/ (vie1 + Rio1p; + b)) (4.22)
As shown in [9], Jacobians and Hessians play a critical role in recursive develop-
ment of the EoOM. Applying the standard techniques, the angular and linear velocity
Jacobians, J? (qi, Si) e R¥3" and Jr (qi, E;) € R¥3" respectively are derived. Here
also, we use the property w; = ;' to define Ji* (¢', §) € R¥*", as
Q _
J,- = Qi!(qi)T
T .
= Ri (SZ,-_lR,- + Ri)’(q,')T
=R/ [ﬂifl,(q"")TRi|Ri,‘1iTi|
=R/ [J2 Ri|R;, ] (4.23)

1

where le _ (J,Q)v and Jz%l (qi—l) e R3x9(n71)_
Taking the partial derivative of Eq. (4.23) with respect to ¢°, the angular body
velocity Hessian, H* = J?, (¢’ &) € R"" is given by.

Q __ @
Hi _Ji,qi

=R/ [J7 R R, ]) g

IVRiT (szl,qf*‘>Ri‘ Rigrq —l

= Q
RiT,q, JUR - | RiY:qiRi,q,-T ..
+R/JZ Rig, | +RTR

ST
,4; .4;
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[ RIHZR | 0
=R/, JZR;-- | R, R, (4.24)
+RiTJ?—1Ri-q;| +R/R; 74,

where J© = (JIQ)V and Jz‘Q—l (qi—l) € R3X90—1)
Similarly, the linear velocity Jacobian, J;', and Hessian, H; = J (¢'.&) €

R7"3" are given by

Ji - vl(q,)T
= RIT (vi—l + Szi—lpi + P,) ,(qi)T
= RZT I:vifl,(é‘;l)r + Szi*l,(z][’l)rpi |pl*qui|
=R I + I, pi|pigr ] (4.25)

HY :Jzy,q"
= (R [J + I, pi|pi ]) 0

T (v Q T
RE (3 g 9200020 | (RUpigr) |
= v Q
RY,. (J,-_1T+QJ,-_1pi) RiT,qu;i,qT o
L TR I Pig, TR Pigr g,
[ RT (H_, +H2 p;) | 0 —l
= Rf, (3 + 32, p;) - |RI, pigr - (4.26)
L +RiTJlelpiaqi +R{pi'qf’q'

where J;)fl (qi—l’ E[) c R3><3(n—1)’ szfl (qi—l) c R9(n—1)><3(n—1)'

4.2.1.6 Dual Quaternion Representation

Robotic systems often require accurate modeling and representation of their config-
urations to perform tasks efficiently. Dual quaternions are an extension of standard
quaternions, a mathematical tool originally developed for spatial rotations. Dual
quaternions provide a compact and efficient way to represent both the position and
orientation of coordinate frames defining the pose of robotic elements.

Dual quaternions offer a valuable approach when dealing with the kinematics of
robotic systems, especially in scenarios where stability in inverse kinematic solutions
is crucial. This significance becomes particularly pronounced in the context of soft
robotic arms. Soft robotic arms, owing to their inherent redundancy, often encounter
numerical challenges when solving constrained inverse kinematics problems. It has
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been demonstrated that employing dual quaternion-based kinematics can signifi-
cantly enhance stability and accuracy in such situations. Therefore, understanding
how to effectively utilize dual quaternions is a valuable asset for researchers and
practitioners in the field.

Dual quaternions are an extension of dual numbers into the realm of quaternions. A
dual quaternion is typically denoted as Q = s + &, where s = 5o + sci + 5, j + 5:k
and t = 0 + 1,7 + 1, j + t;k are standard quaternions. s represents the orientation of
arigid body, while ¢¢ captures its translation or position.

Mathematical Basis of Dual Quaternions

In dual quaternion addition, you add two dual quaternions component-wise. Each
component of the resulting dual quaternion is the sum of the corresponding com-
ponents of the two input dual quaternions. Mathematically, if you have two dual
quaternions

Dy =51+ ¢ “4.27)
Dy, =s5,4+¢tp (4.28)

The dual quaternion algebra follows specific rules for addition, multiplication,
and conjugation, making it a closed and algebraically consistent system as follows.

1. Addition : D + Dy = (51 +52) +e(t; + 1) (4.29)
2. Multiplication : D; ® D, = (s;052) +&(s; ot + 1 057) (4.30)
3. Conjugation : D* =s — &t (4.31)

where © is the dual quaternion multiplication, - is the quaternion multiplication, and
* is the quaternion conjugate.

Dual quaternions and homogeneous transformation matrices

A unique mapping exists between Homogeneous Transformation Matrices and Dual
Quaternions. Understanding one representation enables the derivation of the other.
This is particularly significant because deriving the Homogeneous Transformation is
often more intuitive for robotic systems. Subsequently, this knowledge facilitates the
derivation of the dual coordinate form of the representation, which, in turn, serves as
the foundation for deriving the complete system kinematics using Dual Quaternions.

Consider the given homogeneous transformation T € SE (3), represented as
follows.

_|Rp
T = [0 1] € SE (3) (4.32)
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Then, you can express the dual quaternion Q as Q = s + &t as follows.

1
5VIRT11 + Rl + [Rl33 + 1

s =

1
Sx =g ([Rl32 — [R]23)

j (4.33)
Sy=7g ([R]13 — [R]31)

1
2= ([R]21 — [R]12)

1
t = 3 (0,p)os (4.34)

Similarly, if you have knowledge of a dual quaternion, denoted as Q = s + &f,
you can reconstruct the Homogeneous Transformation Matrix (HTM), T € SE (3),
as follows

1-— 2(522 + s32) 2(s1852 — 5053) 2(s082 + 5153) 2t
R = 2(s152 +50p53) 1 — 2(512 + s%) 2(s283 — so81) |, p= |2, (4.35)
2(s183 — S052) 2(s051 + 5283) 1 —2(s7 + 53 21,

Coordinate transformation in Dual Quaternion Systems

When it comes to coordinate transformations, the traditional approach involves
multiplying transformation matrices, denoted as 7y - 7, - T3 . .. - T,,. In the realm of
dual quaternions, these transformations are representedas Q1 © Q> © Q3 ... O Q,,
showcasing the dual quaternion’s unique capability to handle complex coordinate
transformations. Readers are encouraged to refer to [10] that provides a detailed
account of how a multi-section continuum can be represented using the dual
quarternion system to improve accuracy in inverse kinematic solutions.

4.2.1.7 Inverse Kinematics

Given the complexity of the resulting kinematics of a sectioned continuum robot,
closed-form solutions are generally not available. While there have been some
attempts to derive closed-form solutions, these attempts often overlook the con-
straint coupling between the joint space variables, treating the curvature parameters
A, ¢, and 0 as independent variables. This simplification can lead to unfeasible and
often physically inaccurate inverse kinematic solutions.

The most practical approach that has been explored involves numerical methods.
One way to solve for the inverse kinematic solution is to formulate it as a constrained
optimization problem. The goal is to find the joint space variables ¢ that optimize a
cost function while satisfying constraints:
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Minimize : f(q) (4.36)
Subjectto: g(gq) <0 4.37)
hig) =0 (4.38)

where f(q) is the cost function to be minimized, g(g) represents inequality
constraints (e.g., actuator range constraints), and k(g ) represents equality constraints.

To solve the optimization problem, numerical optimization routines available in
software tools like MATLAB [1] and Python can be employed. These routines aim
to find the optimal joint variables ¢* that minimize the cost function while satisfying
the constraints

q* = argmin, f(q) (4.39)

The solution g* represents the joint configuration that allows the robot to track
desired trajectories efficiently.

Alternatively, another numerical approach involves leveraging the robot’s kine-
matics. By using the Jacobian matrix, denoted as J, which describes the relationship
between the task space (i.e., the end-effector’s position and orientation) and the joint
space (i.e., the curvature parameters), one can iteratively adjust the joint variables to
move the robot towards its target location. This iterative process allows for real-time
adjustments, making it suitable for dynamic and adaptive control of the continuum
robot.

The relationship between the joint velocities ¢ and the end-effector velocities X
can be expressed using the Jacobian as follows:

x =J(q)q (4.40)

where x signifies the end-effector’s velocity in the task space, ¢ denotes the joint
velocities in the joint space, and J(q) represents the Jacobian matrix, which depends
on the current joint configuration q.

To control the continuum robot’s motion towards a desired target velocity X gesireds
one can use an iterative scheme:

Geo =G+ 3 (g A% (4.41)

where gk + 1 represents the updated joint velocities at iteration k + 1, while gk
denotes the joint velocities at iteration k. Additionally, J~!(gk) signifies the inverse
Jacobian matrix at iteration k, and Ax corresponds to the desired change in end-
effector velocity required to reach xdesired.

By iteratively updating the joint velocities, the continuum robot can adapt its
configuration in real-time to achieve the desired task-space motion, making this
approach well-suited for dynamic and adaptive control.
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4.2.1.8 Derive Dynamics for Curve Parametric Models

Once the kinematics is established, we can derive the dynamics using the Lagrangian
approach within the context of dynamic modeling based on curve parameters. It
is assumed that the robot is made up of an infinite number of thin circular slices
with constant mass and uniform linear density as shown in Fig. 4.9. Kinetic and
potential energies are calculated for a slice at £. The total energy is then determined
by integrating the energies from base to top (§ : 0 — 1).

1 1
Ka.4) = 54" [ / (JS)TSM(q)(J’g)dé] q (4.42)
0

where §M = [8ml3x3 03535 033 Igm,z] and J’g € R3*% is the body Jacobian matrix
that contains the linear and angular velocities of a disc at &; [24].

Potential energy is composed of gravitational and elastic potential energy.
Therefore, the total potential energy can be written as

1 1
P(q) = m; ( /0 pTds) g+ EqTKeq (4.43)

where m; is the mass of the robot, g = [0, 0, g]”
vector, and K, is the elastic stiffness matrix.
When total kinetic energy and the potential energy of the robot are known, the
complete Lagrangian can be derived as L(q, ¢) = K(q, ¢) — P(q). By applying the
Lagrangian, the generalized equation of motion (EoM) can be expressed as

is the gravitational acceleration

/
dm;g X;

Fig. 4.9 a Schematic illustration of the infinitesimally thin slice at & on any ith continuum section
along with curve parameters {A;, ¢;, 9;} (listed in Appendix B.1), actuator variables {O; }, and {Oi/ 1
b Velocities and forces acting on the thin slice with respect to {O;}
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L9, 2r_v, (4.44)

where F, defines the input force vector in the curve parametric jointspace ¢. The
classical compact matrix form of Eq. (4.44) gives the complete EoM of the robot as

M(g)g +C(q.9)q + G(q) =F, (4.45)
where M € R¥ is the generalized inertia matrix , C € R3*? is the centrifugal and

Coriolis force matrix given in Eq. (4.46), G € R3 is the gravitational force matrix
given in Eq. (4.47), and F, € R? is the external force vector in the jointspace q.

3
_ 1V[om, oMy oM | .
C : s = — J — J ; 446
NICN') ;2[ 0. "9, 94, }ql (4.46)
IP(q)
Gejl) = = 1 (4.47)
q;

4.2.2 Beam Theory

Beam theory is a mathematical framework used to model the behavior of slender,
flexible structures like beams and rods, and it can also be applied to modeling soft and
continuum robots with long, tubular segments. In the context of soft and continuum
robots, beam theory approximates these robots as flexible beams subjected to various
forces and deformations.

In the realm of soft and continuum robots, the application of beam theory proves
to be an invaluable approach. This method simplifies the intricate structures of these
robots into interconnected beams, with each beam meticulously representing a seg-
ment of the robot. One of the central tenets of beam theory is the assumption that
these beams are slender; their length significantly surpasses their cross-sectional
dimensions. This assumption aligns with the characteristic elongated, tubular shapes
of many soft robots.

The pivotal role of cross-sectional properties comes to the forefront when employ-
ing beam theory. These properties encompass critical attributes such as the beam’s
area, moment of inertia, and stiffness. They are not uniform but instead fluctuate
along the length of the robot due to its inherent compliance. These variations reflect
the dynamic nature of soft materials, which change their mechanical responses under
different circumstances.

Deformation analysis is the linchpin of beam theory. It delves deep into the intri-
cate dance of a robot’s segments as they yield to external forces and moments. Three
primary types of deformations—axial, bending, and torsional—take center stage
in this analysis. These deformations are elegantly elucidated through differential
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equations derived from the fundamental principles of the theory. They offer pro-
found insights into how soft and continuum robots adapt and respond to the complex
interplay of forces.

The concept of boundary conditions adds a layer of sophistication to the modeling
process. Accurate boundary conditions at the extremities of each robot segment are
paramount. These conditions serve as the bridge between the robot and its exter-
nal environment, delineating how the robot interacts with external constraints or
even with neighboring segments. The correct specification of boundary conditions
is pivotal in capturing the robot’s overall deformation and behavior with precision.

Material properties constitute another essential facet of beam theory’s applica-
bility. The ability to account for various material properties, including elasticity,
viscoelasticity, and nonlinear behavior under significant deformations, enables a
nuanced understanding of the robot’s response. Material choice and the fidelity of
their modeling become decisive factors in determining the accuracy of the model
itself.

The consideration of loads and forces finalizes the comprehensive scope of beam
theory. This approach acknowledges the myriad external influences acting upon the
robot, such as axial forces, distributed loads, and bending moments. These forces
emanate from diverse sources, including external perturbations, actuation mecha-
nisms, or intricate interactions with the surrounding environment. By incorporating
these forces into the model, beam theory empowers researchers and engineers to
predict and control the robot’s behavior under various conditions.

4.2.2.1 Cosserat Rod Theory

Cosserat rod theory is a mathematical framework that treats a flexible robot as a one-
dimensional continuum with intrinsic curvature and twist. This approach is particu-
larly useful for modeling slender, flexible structures such as tentacles or snake-like
robots. It takes into account the rod’s curvature, torsion, and material properties to
describe its behavior accurately.

Applying Cosserat rod theory to model a concentric tube robot involves a system-
atic approach to capture the robot’s behavior accurately. Concentric tube robots are
composed of multiple nested, flexible tubes, each of which can elongate, rotate, and
bend. Cosserat rod theory, a mathematical framework for modeling slender, flexible
structures, is well-suited for this purpose (Fig. 4.10).

Deformation within the rod is described by two key factors: strain and curvature.
Strain refers to local elongation or compression occurring along the rod, while curva-
ture characterizes the bending of the rod. Both strain and curvature exhibit variation
along the robot’s length, providing a means to account for its continuous curvature.

The equations of motion in Cosserat rod theory are derived from principles of
continuum mechanics. These equations elucidate how external forces and torques
applied to the robot influence its deformation and motion. They are expressed as
partial differential equations (PDEs) that establish relationships between curvature,
strain, and external loads. General equations used in the derivation can be expressed as
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Fig. 4.10 An arbitrary section of the rod from a to bs, subject to distributed forces f(s) and
moments /(s) at a given time # [16]

oN
a—+(t~V)t—n-Vt=0 (4.48)
s

oM

—+t-Vm—n-Vm-mxt=90 (4.49)

as

where N is Force vector, M is Moment vector, t is Tangent vector along the rod’s
centerline, n is Normal vector, m is Director vector, « is Curvature vector, k is Rate
of change of curvature vector, t is Couple vector, s is arclength parameter, and V is
gradient operator.

By integrating the equations of motion throughout the rod’s length, it becomes
feasible to simulate how the robot’s shape transforms over time in response to applied
forces and torques. This process facilitates the anticipation of the robot’s trajectory
and configuration during various tasks.

4.2.2.2 Kirchhoff-Love Theory

The Kirchhoff-Love theory provides a mathematical framework for modeling the
deformation of thin, flexible structures, such as continuum robots [42]. In this theory,
we consider the deformation of a segment of the robot in a 2D plane. The key
assumptions are that the deformation is primarily due to bending, with negligible
stretching.

Let’s denote the reference configuration of the segment as the undeformed state,
and the deformed configuration as the state after bending. We will use a local coor-
dinate system with x and y axes in the reference configuration and X and Y axes in
the deformed configuration.
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The fundamental mathematical equations of Kirchhoff-Love theory for continuum
robot modeling are given by

. d*w
1. Bending Moment : M, = _DW (4.50)
d*v
2. Shear Force: Q = _DW 4.51)
. . . d’u
3. Bending-Extension Coupling : N = _Dﬁ (4.52)
e d*u  d*v
4. Compatibility : pel + ke 0 (4.53)

where M, is the bending moment about the x-axis, Q is the shear force, N is the
bending-extension coupling, D is the flexural rigidity of the segment, u(x) repre-
sents the axial displacement of the segment, v(x) represents the transverse displace-
ment (in-plane deformation) along the y-axis, and w(x) represents the transverse
displacement (out-of-plane deformation) along the z-axis.

Equations (4.50), (4.51), and (4.52) describe the equilibrium of moments and
forces within the deformed segment, while Eq. (4.53) enforces the compatibility
between axial and in-plane deformations. To fully specify the behavior of the contin-
uum robot segment, appropriate boundary conditions must be applied. These condi-
tions depend on the particular robot design and application. Solving the Kirchhoff-
Love equations, subject to the boundary conditions, provides a mathematical descrip-
tion of the deformation of the continuum robot segment. The resulting displacement
fields u(x), v(x), and w(x) describe how the segment bends and deforms under
applied loads.

4.2.3 Bezier Curves and Splines

Bezier curves and splines are mathematical representations of curves and surfaces.
They are often used to design the shape of soft robots, allowing for smooth and
continuous curvature changes. These curves can be controlled through control points,
enabling the design of complex robot shapes.

4.2.3.1 Bezier Curves

Bézier curves [43] offer several advantages in geometric modeling including their
simplicity and ease of control [36]. Bézier curves are defined by a small set of control
points, typically with a fixed degree (e.g., quadratic or cubic). This simplicity makes
them user-friendly and intuitive for artists and designers to create and manipulate
curves. Moreover, Bézier curves are known for their smoothness, particularly in the
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connections between curve segments. They provide visually pleasing and continu-
ous transitions between control points, making them suitable for applications where
aesthetic considerations are crucial.

The curve interpolates between the first and last control points, while the middle
control points influence its shape. The following equation shows how to evaluate a
Bézier curve at a given parameter value, ¢.

PO =) (?)(1 — 1y P,

i=0

where P(¢) is the point on the Bézier curve at parameter value ¢ and P; are the control
points of the Bézier segment.

To model a soft robotic arm using Bézier curves, one initial step involves identi-
fying key points along the arm, which may be determined through experimentation
or design considerations. These key points could include locations like the base of
the arm, the elbow, and the wrist. Once these key points are identified, they can be
utilized as control points for corresponding Bézier segments.

Having defined the control points for each Bézier segment, the subsequent step
is to evaluate the Bézier curve at various parameter values. This evaluation process
generates a point cloud that effectively represents the shape of the soft robotic arm.
This approach allows for the precise modeling of the arm’s kinematics and geometry
using Bézier curves.

4.2.3.2 B-spline Curves

B-spline (Basis-spline) [13] curves offer a different set of advantages. One of the most
significant advantages of B-spline curves is their flexibility. Unlike Bézier curves, B-
splines can have variable degrees, allowing for more control over the curve’s shape.
This adaptability is particularly useful when modeling complex structures, such as
soft robotic arms with varying curvatures [21]. Additionally, B-spline curves provide
global control, meaning that each control point can influence a more extensive portion
of the curve. This global influence gives designers greater freedom to shape curves
with intricate details and deformations. B-splines are also versatile in handling both
open and closed curves, making them suitable for a wide range of applications,
including tasks where a curve needs to loop or connect back on itself. Finally, B-
spline curves offer flexible interpolation options, allowing designers to interpolate
any subset of control points, which can be advantageous when precise interpolation
of key points is required for soft robotic arm modeling or other applications.

B-spline curves are defined using a set of control points and a knot vector. The
degree of the B-spline curve determines the number of control points involved in
shaping the curve. A B-spline curve interpolates between some of the control points,
depending on its degree and knot vector.
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Fig. 4.11 Frenet-Serret
definition of a spatial curve
provides a comprehensive
mathematical description of
a spatial curve,
characterizing its orientation,
curvature, and torsion at each
point along the curve. This
definition is essential in
differential geometry for
analyzing the behavior of
curves in three-dimensional

space
The equation for a B-spline curve of degree n with control points Py, Py, ..., P,
and a knot vector [fg, t1, ..., t,+x+1] 1S given by:
n
B(t) = Nix(t)- P (4.54)
i=0

where B(t) represents the point on the B-spline curve at parameter ¢ (with ) <t <
th+1), and Py, Py, ..., P, are the control points. The basis functions N; 4 (¢) depend
on both the degree k of the B-spline curve and the knot vector [#y, 1, ..., fytr+1]-

4.2.4 Differential Geometry

Differential geometry provides a mathematical framework for describing the intrinsic
and extrinsic properties of curved surfaces. Soft robots with continuous curvature can
be analyzed using concepts from this field to understand their behavior and design.

4.2.4.1 Frenet-Serret Frame in Modeling Continuum Robots

The Frenet-Serret frame, also known as the moving trihedron or TNB frame, is a
fundamental concept in differential geometry used to describe the local geomet-
ric properties of curves in three-dimensional space [5]. It consists of three mutu-
ally orthogonal unit vectors: the tangent vector (T), the normal vector (N), and the
binormal vector (B). This frame is particularly useful in modeling the shape and
behavior of continuum robots, which often exhibit complex, curved trajectories and
deformations. The Frenet-Serret frame is defined as follows (Fig. 4.11).

d
T(s) = d_r (Tangent vector) (4.55)
s
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dT

N(s) = Is (Normal vector) (4.56)
s

B(s) =T x N (Binormal vector) 4.57)

where r(s) represents the parametric equation of a curve in space, and s is the arc
length parameter along the curve.

Frenet-Serret frames offer a compelling mathematical foundation for modeling
spatial curves due to their intrinsic representation, capturing the local differential
properties of curvature and torsion. These frames provide a continuous and coherent
representation of orientation, which is particularly useful in modeling continuum and
soft robots that often exhibit highly flexible and deformable structures. The Frenet-
Serret frame’s ability to capture curvature and torsion becomes crucial in characteriz-
ing the bending and twisting of the robot’s structure, providing essential information
for control and manipulation tasks. Their well-established numerical methods con-
tribute to efficient algorithms, suitable for real-time simulations and control systems.
Additionally, the natural parametrization based on arc length simplifies computations
and mitigates parametrization-related challenges.

4.2.4.2 Euler Curves

Euler curves, also known as clothoids, are a type of parametric curve that offers
several advantages for modeling soft robots. These advantages include their infinite
smoothness, ensuring that soft robots deform smoothly without wrinkles or creases.
Additionally, their flexibility allows for the modeling of various shapes, from simple
linear segments to complex curves with multiple curvatures, accommodating a wide
range of soft robot designs, from actuators to wearable devices. Furthermore, Euler
curves are computationally efficient, making them suitable for real-time control of
soft robots, which is essential for applications requiring rapid responses to changing
conditions or environments.

Euler curves describe the equilibrium shapes of flexible structures with linearly
varying curvature along their length. This concept can be extended to 3D and model
the backbone of a continuum robot. The approach includes the calculation of posi-
tion vectors and rotation matrices for each point along the curve, considering linear
curvature and torsion variation.

An Euler curve is a parametric curve defined by the following equations

x(f) = at cosh? <5> (4.58)
a

¥(t) = at sinh? <5> (4.59)
a

where ¢ is a parameter and a is a scale factor.
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The curvature of an Euler curve is given by the following equation

k() = écosh (Z—l) (4.60)

The torsion of an Euler curve is given by the following equation:
(t) = ——=—4~ (4.61)

The arc length of an Euler curve from ¢, to ¢, is given by the following equation:

n t
L= / a sech? (-) dt (4.62)
Iy a

These equations can be used to model the behavior of Euler curves under various
loading conditions. For example, the Euler curve curvature equation can be used to
calculate the radius of curvature of the curve at any point. The Euler curve torsion
equation can be used to calculate the rate of twist of the curve at any point. The Euler
curve bending stiffness equation can be used to calculate the force required to bend
the curve to a given curvature.

The incorporation of Euler curves in modeling soft robots can be compelling due
to their simplicity and efficiency in preserving a constant rate of rotation, which
is often a key aspect of the intricate bending and twisting motions exhibited by
deformable bodies. Thus, Euler curves serve as a versatile tool for representing the
spatial configuration of soft robots, whether navigating confined spaces, adapting to
irregular surfaces, or performing delicate manipulation tasks.

4.3 Lumped Parametric Models

Lumped-parameter approaches are simplification techniques used to model soft and
continuum robots by dividing them into discrete segments or elements, each with
simplified properties and dynamics. These approaches provide a way to approximate
the behavior of these complex systems using a reduced set of parameters.

Discrete kinematic modeling is a subset of kinematics that extends the principles of
rigid body kinematics to robots with flexible, deformable structures of soft continuum
robots. In discrete kinematics, the robot’s continuous deformations are approximated
using a series of discrete elements or segments. This discrete representation simplifies
the modeling of soft robot motion and deformation, enabling fast computations and
making it advantageous for robots that undergo large deformations and lack rigid
joints.

Discrete kinematic modeling offers several advantages over continuous kinematic
modeling for soft robots. They are more computationally efficient than continuous
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Fig. 4.12 Discrete link
approximation method o it

kinematic models, especially in real-time applications. This is because discrete kine-
matic models avoid the need to solve complex differential equations that describes
soft body deformations which can facilitate enabling real-time control with model-
based approaches. Also, discrete models are more compatible with the discrete nature
of sensors and actuators commonly used in robotics, which facilitates seamless inte-
gration. Further it provides a modular framework that allows for easy extension and
adaptation to different robot designs and applications

Note that discrete kinematic modeling also has some limitations, primarily related
to the accuracy of the discrete approximation. The accuracy of the discrete approxi-
mation depends on the number of discrete elements used to represent the robot and
the complexity of the robot’s deformations. For robots with complex deformations,
a large number of discrete elements may be required to achieve sufficient accuracy.
This can increase the computational complexity of the model and make it less suitable
for real-time applications (Figs. 4.12, 4.13, 4.14 and 4.15).

4.3.1 Kinematics Modeling

Discrete link approximation involves representing the soft continuum robot as a
chain of discrete, rigid links connected by joints. Each link is a rigid segment of the
robot’s body, and the joints represent the connection points between these segments.
The robot’s continuous deformation is approximated by considering the relative
transformations between these links, which can be mathematically expressed using
homogeneous transformation matrices.
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My

Fig. 4.13 Lumped-mass approximation with spring and dampers for material properties applied to
a planar soft robotic arm. The segments are approximated as point masses, and in this case, there is

no rotational energy considered. If a plate were used instead, rotational energy would be accounted
for, resulting in a more accurate model. (Figure is adapted from [7])

arm tip
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immersed in an underwater environment e
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Ceiling plane B
3
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Fig.4.14 Discretized representation of an octopus arm actuated parallel units actuated by two pairs
of linear actuators. The arm consists of multiple discretized segments and this modular structure
allows for flexible and coordinated motion, resembling the versatility of an octopus arm in real-world
applications
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Linear
spring (&)

(a) (©)

Fig. 4.15 a Illustration of the LDCS lumped-mass model with an enlarged view of one corner.
b Depiction of the mass arrangement, showing the connections to the central masses i and j in
the bottom layer of the two-layer model. ¢ Detailed view of the spring-damper links connecting
adjacent masses within the model

Fig. 4.16 a Schematic of a
“segmented” cable-actuated
continuum arm similar to
prototypes reported in with
three illustrated segments.
Note that there can be an
arbitrary number of segments
depending on the design

The general equation of discrete link kinematics for a soft continuum robot is
given by

T, =T)-T;-T5-...-T_,...-.T"_, (4.63)

where Tj is the transformation matrix from the base frame (0) to the end-effector
frame (n) and Tf_, is the transformation matrix from link i to link (i + 1). Each
transformation matrix T§_1 captures the relative position and orientation of one link
with respect to the next. By chaining these transformations together, we can describe
the complete configuration of the robot in its continuous deformation.

The curve parameters A;, ¢;, and 6; have now been expressed in joint space
variables. This approach can be readily extended to discrete/segmented tendon-based
continuum arms to derive the curve parameters, as illustrated in Fig. 4.16. Similar to
the continuum arm case, for a continuum section with n segments, the corresponding
length relationships are provided in Eq. (4.64).

Lio +1;; = 2nsin (%) {A; — ri cosb;}
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S

Lio+1x=2n sin( ") {Ai — r; COS (27” — ,)} (4.64)
Lio + liz = 2nsin (££) {x — r; cos (£ — 6;)}

n 3

& Y

[

By solving for {A;, ¢;, 6;} using a similar approach, identical orientation param-
eters are derived except for ¢;, which is given as

. \/lizl 15+ 1 = Ll — lnlis — lolis

= 2nsin-
1) nsin 37,

(4.65)

4.3.2 Dynamic Modeling
4.3.2.1 Newton-Euler Approach

The Newton-Euler equations provide a systematic framework for analyzing the
dynamics of rigid bodies in both translational and rotational motion. This generalized
approach outlines the key steps in applying Newton-Euler equations to model the
dynamics of rigid bodies. The Newton-Euler equations can be divided into two sets
of equations: the Newton equations for translational motion and the Euler equations
for rotational motion.

The Newton equations describe how linear momentum changes over time for a
rigid body, as given by

Z F=m-% (4.66)

where > F; represents the net external forces acting in the mass, m; is the mass, X;
is the acceleration.

The Euler equations deal with rotational motion and describe how angular
momentum changes over time for a discrete mass, is given by

Z =16 (4.67)

where ) 7; represents the net external torques acting on the body, I; is the moment
of inertia, and 9} is the angular acceleration.

Once the Newton-Euler equations are established for a specific rigid body, they
resultin a set of coupled differential equations. These equations can be solved numer-
ically using integration methods such as the finite difference method or the Runge-
Kutta method. Solving these equations provides insight into how the rigid body’s
motion evolves over time.

4.3.2.2 Euler-Lagrangian Approach

The Euler-Lagrangian approach, rooted in the broader Lagrangian mechanics, is a
powerful framework employed in dynamic modeling for soft continuum robots. Its
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primary appeal lies in its ability to systematically derive the equations of motion for
complex systems while taking into account the system’s configuration, forces, and
constraints. This approach is especially valuable for soft continuum robots, which
possess highly deformable and compliant structures.

The key assumptions and theories underpinning the Euler-Lagrangian approach
include the principle of least action and the concept of generalized coordinates.
The principle of least action posits that the path a system takes between two points
in configuration space is the one that minimizes the action integral, where action
is defined as the difference between kinetic and potential energy, denoted by the
Lagrangian, £ as

L=K-P (4.68)

where K and P are the system kinetic and potential energy respectively.

The kinetic energy (%) component of the Lagrangian accounts for the energy
associated with the robot’s motion. In discrete modeling approach one can approx-
imate the entire body by lumping masses together, allowing for the calculation of
kinetic energy for each lumped mass. These individual kinetic energies can then be
summed to obtain the total kinetic energy of the system as

K = Z( mix? + 19) (4.69)

where, for the i-th discrete segment of system with n segments, m; is mass, I; is
moment of inertia, x; is translation, and 6; is rotation.

The potential energy () component of the Lagrangian represents the energy asso-
ciated with the deformation of the robot due to stretching and bending. K also depends
on the robot’s configuration and the external forces acting on it. For instance, soft
robots are often made of elastic materials that can undergo large deformations. Such
deformations generates potential energy in terms of axial (extension/compression)
and bending strain. The gravitational potential energy also contributes to the total
potential energy. Thus, K can be mathematically denoted as

P = Z( K.5x2 + Kb92+mgh> (4.70)

where d8x; is the elastic strain, g is the gravitational acceleration, K, is the elastic
stiffness, K, is the bending stiffness, m; is the mass, h; is the projection of x; on to
the axis representing the gravitational acceleration, and 6; is the bending angle.
Note that Eq. (4.70) primarily addresses the elastic, bending potential energy,
and gravitational potential energy, which are common and significant in most soft
robots. However, there exist various other potential energy components such as fluid
pressure, strain, electrostatic, and surface potential energies, among others.
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With the Lagrangian defined in Eq. (4.68), the Euler-Lagrangian equations are
employed to derive the equations of motion for the soft continuum robot. These
equations describe how the robot’s configuration and velocities change over time in
response to applied forces and torques. The general form of the Euler-Lagrangian
equations is given as:

d (0L 0L
ar (a—q'i) B @7D

where £ is the Lagrangian, ¢; are the generalized velocities, g; are the generalized
displacements, Q; represents the generalized forces.

While the Euler-Lagrangian approach is a powerful and widely used method for
modeling the dynamics of robotic systems, including soft continuum robots, it has
its limitations. One of the primary limitations is that it assumes a continuous and
differentiable Lagrangian function, which may not always accurately represent the
behavior of highly deformable and compliant soft robots. Soft robots often exhibit
complex, nonlinear, and time-varying dynamics due to their flexibility, making it
challenging to find an analytical Lagrangian that fully captures their behavior. Addi-
tionally, deriving the potential energy term (%) in the Lagrangian can be particularly
challenging for soft robots, as it requires accurately modeling the deformation of the
robot’s body under various external forces and constraints, which can be a complex
task.

4.4 Hybrid Models

Hybrid models leverage a synergistic blend of diverse modeling approaches, such as
discrete or lumped mass methods harmoniously integrated with constant curvature
approaches. This strategic combination harnesses the strengths of each individual
model, allowing for a comprehensive representation that captures both the overarch-
ing behavior of the robot and intricate details of deformation. This versatile approach
not only enhances accuracy but also ensures computational efficiency, embodying
the advantageous features of the integrated modeling techniques.

4.4.1 Discrete Constant Curvature Approximation

In this approach, the soft continuum robot curve is approximated as a chain of dis-
crete segments, each characterized by a constant curvature. Figure 4.17 shows the
schematic of this hybrid modeling approach. The curvature of each segment remains
constant, simplifying the mathematical description of the robot’s deformation. This
simplification is particularly useful when dealing with robots that primarily exhibit
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continuous large bending, such as snake-like or tentacle-like structures that undergo
variable curvature shapes.

The general equation of discrete constant curvature-based kinematic modeling
involves representing the robot’s configuration as a sequence of homogeneous trans-
formation matrices, similar to the discrete link approximation method. However,
the transformation matrix Y"ii_], of the curve s; needs to be obtained. The general
approach is as follows.

8i

Ti | (si) = Ty(A;) - Ry (f) Ty(=A;) (4.72)

L

where A; is the radius of the constant curvature arc s;. The angle ¢; = ;—/ is the arc
angle, which is considered to be the configuration variable of the kinematic. Ty(-) is
the homogeneous translation matrix along the y-axis. The Rx(-) is the homogeneous
rotation matrix around x-axis.

Then we can use HTM’s of separate segments, Tf_l , to obtain the complete forward
kinematics HTM of the hybrid model, from base frame to the end of manipulator,

Ty, as
t(s) =Ty (s1)-Ti(s2) - T3 (s3) ... T, (s:)... T, (s0) 4.73)

Discrete constant curvature-based kinematic modeling offers several advantages.
It provides an intuitive representation of the robot’s motion, aligning with its natural
behavior of continuous bending. This makes it well-suited for robots that primarily
undergo variable curvature bending. Additionally, it simplifies control strategies by
breaking down the robot’s motion into manageable segments, facilitating real-time
control and trajectory planning.

Fig. 4.17 This illustration
showcases a hybrid model frgi-1
that integrates the discrete ; Y- Y. ¥l
modeling approach with the ghi -
constant curvature
approximation method. The
notable advantage of this
methodology is its capacity
to model variable curvature
within soft robotic arms
without resorting to
computationally expensive
alternatives
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However, like discrete link approximation, this method also has limitations. The
accuracy of the kinematic model depends on the number of segments used, and
increasing the number of segments can lead to increased computational complexity.
Therefore, the discrete constant curvature approach is not suitable for soft robots
with long continuum arms.

4.4.2 Center-of-Gravity Based Approach

The primary challenge in continuous curvature approaches is their limited computa-
tional efficiency, stemming from the continuous nature of these robots. Calculating
motion equations requires integration along the entire length of the robot, posing a
significant computational burden. This has hindered the widespread adoption of con-
tinuous curvature dynamic models for controller design in continuum or soft robots.
A potential solution involves a novel approach focusing on describing deformation
and spatial movement using a center-of-gravity-based methodology. This alternative
allows for deriving a mapping, resembling the traditionally integrated energy, but
with the simplification of considering a single mass disc located at the center of
gravity.

Similar to the approach outlined in Sect. 4.2.1.5, and to maintain general appli-
cability, we proceed to derive the kinematics for the CoG of any i-th section. We
establish a coordinate system at the CoG, denoted as {5,~ }, and introduce a homo-

geneous transformation matrix (HTM), denoted as Ti : (q i) — S]E3, with respect to

{0;}, defined as
T, = f T, = [1;" ﬂ (4.74)

where R; = ['R; (g;) € R>? is the resultant rotation matrix and p; = [ p; (q,) €
R? is the position vector [?]. Note that the CoG is a function of ¢; and therefore
varies as the continuum section deforms.

To establish the kinematics of the CoG coordinate frame, denoted as {Ui } with
respect to {0}, we integrate T; with the general HTM provided in (4.19). Following
the definition, {0[71 |5,71:l} = {0;} (Fig. 4.18). Consequently, the CoG of the i-th

section relative to {0}, denoted as T (¢') — SE3, is defined as

T = /THT,- = (ﬁl Tk) (f T,) = [Eoi ﬂ (4.75)

where R’ (qi) € R*3 is orientation and P, (q’ ) € R? are position matrices of the
CoG coordinate frame.
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Fig. 4.18 Schematic of an
infinitesimally thin slice at
the CoG of any ith
continuum section

{0}

Analogous to Eq. (4.20), the recursive form of R and P' is given by

R =R'R,

P =Pi_l+Ri_l_i

(4.76)

where R'~! and p’~! are formulated from Eq. (4.20).
Similar to Eqs. (4.21) and (4.22), the angular and linear body velocities of the
CoG (relative to {0;}), ®; (¢',¢') € R* and D; (¢°, ¢') € R, can be derived as

Q= ﬁ,»r (Qiflﬁi +§i)
. _ “4.77)
v, =R, (vi_1 +Q,.1p; +ﬁi>

where v;_; and ;_1, defined in Egs. (4.22) and (4.21), are linear and angular veloci-
ties at the tip of the (i — 1)"” continuum section. Here too, we employ the relationship
®; = Q, to compute ; (¢'.4") e R¥.

Similar to the expressions in Egs. (4.23), (4.24), (4.25), and (4.26), the angular
body velocity Jacobian of the Center of Gravity (CoG), denoted as Ji** (') € R***",
its Hessian Hi® (¢') € R*"*", the linear body velocity Jacobian, JiV (¢*) € R3*3",
and its Hessian HiV (qi) € R3" are provided respectively by Egs. (4.78), (4.79),
(4.80), and (4.81) as

I =R/ [I2RR,; | (4.78)
RH2R | 0

=Q — — —T —

H =R, 2R [R, R, (4.79)

—T — —T—
+R; J? | Riy, | +R; R; 74,
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Y =R [J + I PPy ] (4.80)
R (), +H2,5) | 0
H = EiT,q[ 3, +I2.7) - .‘Equﬁiﬁqir ... 4.81)
+§iTJiQ—l?i,q,- |+ﬁiTﬁi,qiT,qi

4.4.2.1 Derive Energy Balance of Center of Gravity-Based System

Without losing generality, we derive the kinetic energies (angular and linear) for any
i"* continuum section. We then compare the terms to formulate the energy scaling
conditions. Analogous to [9], to find the kinetic energy of the continuum section
using an integral approach, we consider an infinitesimally thin disc of radius r; along
the length of the continuum section. By applying the body velocities given by Eq.
(4.77), the energy computed for a disc is then integrated with respect to &; to compute
the section energy.
The angular kinetic energy, K : (¢°, ¢') — R, is given by

1 1

1
=l (/ RIQ! @ (R, -
2

+2 / R/Q,_|R; + / R/ R,) (4.82)

where I, = %mi",'z is the moment of inertia about the X axis of {Ol’ }

Using the angular velocity given in Eq. (4.77), finding the angular kinetic energy
of the disc at the CoG, K; : (¢',¢') — Rg, results in

—_—w

| R | —T—
K = 30/ M{®; = S 1T (sz,. sz[) (4.83)

1

1 =T 1 — =T _ T -
= S 1T (R @, 2R + 2R, R, + R, R,

Similarly, using the linear body velocity in Eq. (4.77), the linear kinetic energy
of the continuous model, K" : (qi, q") — Rg, can be computed as

1
K =/<§viTM}’vi> (4.84)

1 .
= Emi (viT_lvi_l + 21}?_19,'_1?[ + 2'Ul~T_1ﬁi cee

+/PiTSZiT—19i—1Pi +2/PiT9iT—1i’i +/P1TP1>
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WhereA M? = m;I5. Additionally, the CoG model’s linear kinetic energy, 7_(,- :
(¢'.¢") — Ry, is derived as

1 1
K, = E—fmyv,» = Smi (v jvioi + 20, Qp; -

20 5+ P QL P+ 2P QLB P P)  (489)

4.4.2.2 Minimize Energy Difference Between the Integral and
CoG-Based Models

In this section, we systematically derive scalars to match the kinetic energy of the CoG
models to that of the integral model, utilizing the energies derived in Sect. 4.4.2.1.
Unlike the single-section case [?], however, the kinetic energy is dependent on the
velocities of the i"" section as well as the previous sections. Consider the angular
energy difference between the models, derived for the i’ continuum section, given by

o 0 1 o w;T;
K =K = SLaTo | RIR, — BYR;R; -
+ Z/RiTSZiT_lSl,-_lR,- —28°R; @7, 2_R; -
. - T —
+ f R/ R, — AR, QilRi) (4.86)

where B for all k € {1, 2, 3} are the energy shaping coefficients that we apply to
the Center of Gravity (CoG) energy terms to match the energies.

Note that, in this case, unlike the single-section case [12], we have three terms that
do not get canceled when taking the difference. Likewise, the linear kinetic energy
difference is computed as

——U

1 _ _
K =K, = 5mi </ pl @ p,—B/P @ 21D,
+ / ple b8P R P
LT . v=T -
+ f plpi— B3P p,») (4.87)

Notice that some terms are canceled due to the absence of products of inte-
grable terms, resulting in three remaining terms. We introduce the energy shaping
coefficients, g, for all k € {1, 2, 3}, for each of those terms.

The coefficients, as introduced in Egs. (4.86) and (4.87), can be determined in the
subsequent part of this section through a multivariate optimization routine. Incorpo-
rating the physical robot parameters, such as L;g, /;, and r;, the energy differences
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described by Egs. (4.86) and (4.87) become functions of (¢, &, qi, qi, Ri — 1) €
R!'. Here, al = %ﬁ” and o, = L’—‘O represent the normalized length and radius of
the continuum section.

The modified energy-based Center of Gravity (CoG) discs can subsequently serve
as a basis for deriving the equations of motion through standard Newton-Euler or
other rigid-bodied dynamic algorithms similar to [11].

4.4.2.3 Computing the Energy Shaping Coefficients

For the random combinations of joint-space variables and physical parameters, we
compute the corresponding kinetic energy differences between the integral and CoG-
based models as presented in Egs. (4.86) and (4.87). To facilitate a straightforward
comparison of corresponding terms, we calculate the three residual terms of each
kinetic energy difference separately. For example, in the case of Ki®, we sepa-
rately compute the terms T2(/ Ri” i — 17Qi — 1Ri), T2(f Ri" Qi — 1Ri), and
T2(/ Ri"R)).

Similarly, for Ki @, we compute the terms T2(RiTRi — 17Qi — 1R)),
2T2(Ri” Qi — 1Ri), and T2(Ri”R;) separately. The energy difference, Ki® — Ki®,
is obtained by summing these terms and scaling the result by %I rx- The same approach
is applied to the linear kinetic energy difference given by Eq. (4.87), scaled by %'

4.4.2.4 Potential Energy of Continuum Sections

As reported in [9], a continuum arm is subjected to gravitational and elastic potential
energies. Elastic potential energy, given by ¢ = %qTKeq, only depends on ¢ and is
therefore independent of the modeling approach herein. The gravitational potential
energy for the integral and CoG-based model can be defined as P{ = ['m;g” p’ and
ﬁ? =m;g"p respectively. Note that, P¢ does not contain products of integrable
terms. Therefore, P¥ can be simplified to P{ = m;g” (f p') and from the definition
in Eq. (4.75), then becomes P = m; g" (F ) = 7_3lfg. Thus, the gravitational potential
energy is identical in both models.

4.5 Learning-Based Models

4.5.1 Artificial Neural Networks (ANN)

Neural networks have emerged as a powerful tool in the modeling of soft robots,
offering the capability to capture complex and nonlinear behaviors. These models
leverage artificial neural networks inspired by the structure and function of the human
brain. Neural network-based approaches have found extensive applications in soft
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Fig. 4.19 ANN

robot modeling due to their ability to learn from data, adapt to changing conditions,
and represent intricate relationships within the system. Artificial neural networks
(ANN5), including convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs), are powerful machine learning algorithms that can be used to model
complex relationships in soft robot behavior.

ANNs have shown remarkable success in improving the accuracy and versatility
of soft robot modeling, enabling applications ranging from robot design and control
to perception and interaction with the environment. The choice of the neural network
architecture and training strategy depends on the specific modeling task and available
data, making them a valuable tool in advancing the field of soft robotics.

In ANNSs, neurons are organized into layers within a neural network where the first
layer is known as the input layer, and the final layer is referred to as the output layer
with hidden layers in between yielding a high-dimensional set of nested functions
given by

y=28mAum. ... 8 (A2, 81 (A1, X)) ...) (4.88)

where x represents the input values, A; stands for the edge weights, g; are the
activation functions, and y denotes the output values.

In many soft robotics applications, the input and output layers correspond to the
actuation variables or jointspace inputs u and the shape parameters g. The training
of the ANN or in other words, the learning process, involves optimizing the network
weights, typically achieved through back-propagation.

CNNss are well-suited for image-based modeling of robot deformations. CNNs are
able to learn spatial features in images, which can be used to model the deformation
of a soft robot in response to actuator inputs and external loads. For example, CNNs
have been used to model the deformation of soft grippers, soft actuators, and soft
robots with complex shapes.

Recurrent neural networks (RNNs) are well-suited for modeling the temporal
dynamics of soft robots. RNNs are able to learn sequential patterns in data, which
can be used to model the dynamic behavior of a soft robot over time. For example,
RNNs have been used to model the dynamics of soft robots during locomotion,
manipulation, and interaction with the environment (Figs. 4.19 and 4.20).
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Fig. 4.20 Octopus robot arm

4.5.2 Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning technique that allows agents to
learn how to behave in an environment by trial and error. RL agents are rewarded for
taking actions that lead to desired outcomes and penalized for taking actions that lead
to undesired outcomes. Over time, the agent learns to select actions that maximize
its expected reward. RL algorithms can be used for robot modeling, control, and
optimization. RL algorithms are well-suited for soft robot control and optimization
because they can learn to control complex systems with nonlinear dynamics. Soft
robots can be particularly challenging to control because they are often deformable
and have many degrees of freedom.

4.5.3 Physics-Informed Neural Networks (PINNs)

Physics-informed neural networks (PINNs) are a type of neural network that is trained
to enforce physical equations. PINNs are well-suited for modeling soft robots because
they can learn to model the complex deformation and dynamics of soft robots while
satisfying physical constraints. PINNs combine deep learning with physical equa-
tions to model the behavior of soft robots. They enforce physical constraints and can
learn from sparse data, making them suitable for modeling soft robots’ deformation
and dynamics.

PINNs are trained on a dataset of input-output pairs, where the inputs are the
actuator forces and external loads, and the outputs are the robot’s deformations and
dynamics. The PINN is trained to minimize the difference between the predicted
outputs and the actual outputs, while also satisfying the physical equations.

One of the advantages of PINNS is that they can learn from sparse data. This is
important for soft robots because it can be difficult to collect dense data on soft robots
due to their deformable nature. PINNs can also learn to model complex relation-
ships in the data, which makes them well-suited for modeling soft robots’ nonlinear
dynamics.
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4.5.4 Data-Driven Modeling

Data-driven modeling is a robust and effective approach in the realm of soft robotics.
Softrobots, characterized by their complex and nonlinear behaviors, often pose chal-
lenges for traditional physics-based modeling. Data-driven models leverage experi-
mental or sensor data to establish relationships between inputs (e.g., control inputs)
and outputs (e.g., deformations), making them well-suited for capturing the intricate
behavior of soft robots. Data-driven modeling holds significant promise in advancing
our understanding and control of soft robots, enabling the capture of their intricate
and nonlinear behaviors. The choice of modeling technique depends on the specific
characteristics of the soft robot and the nature of the available data, making it a ver-
satile approach in the soft robotics domain. Several common data-driven modeling
techniques find application in the context of soft robotics.

4.54.1 Regression Models

Regression models aim to learn a functional mapping from inputs to outputs. Within
soft robot modeling, various regression models such as linear regression, polynomial
regression, and support vector regression are employed to capture the relationships
between control inputs and resulting deformations.

Regression models play a crucial role in modeling various aspects of soft robot
behaviors. They are employed for tasks such as deformation modeling, where they
capture the intricate relationship between control inputs and the resulting deforma-
tions, facilitating the design and precise control of soft robots. Additionally, these
models can be applied to force and torque modeling, enabling the prediction of forces
and torques exerted by soft robots, making them valuable for tasks like grasping and
manipulation. Furthermore, regression models can be instrumental in contact model-
ing, allowing the depiction of interactions between soft robots and their surroundings.
This capability proves beneficial in designing and controlling soft robots for appli-
cations such as navigation and obstacle avoidance, enhancing their adaptability and
utility in diverse scenarios.

Regression models aim to learn a functional mapping from inputs to outputs.
Within soft robot modeling, various regression models such as linear regression,
polynomial regression, and support vector regression are employed to capture the
relationships between control inputs and resulting deformations.

Mathematically, a regression model can be represented as follows:

y=f(x) +e (4.89)

where y is the output of the model, x is the input to the model, f(x) is the learned
functional mapping from inputs to outputs, and € is an error term.
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Linear regression is a simple regression model that assumes a linear relationship
between the input and output variables. The learned functional mapping for linear
regression is given by:

f(&x)=pBo+ pix (4.90)

where By and B, are the model parameters.

Polynomial regression is a more complex regression model that can capture non-
linear relationships between the input and output variables. The learned functional
mapping for polynomial regression is given by

F(x) = Bo+ Bix + Pox? + ...+ Bux" (4.91)

where By, B1, B2, ..., Bu are the model parameters.

Support vector regression (SVR) is a non-linear regression model that uses a
kernel function to project the input data into a higher-dimensional space. The learned
functional mapping for SVR is given by

f) =) aiK(x,x)+b (4.92)

where «; are the support vectors, K (x, x;) is the kernel function, and b is the bias
term.

4.5.4.2 Gaussian Processes (GPs)

Gaussian processes are a class of Bayesian non-parametric models capable of dis-
cerning intricate data relationships. GPs are particularly advantageous in soft robot
modeling due to their ability to handle noisy and incomplete data, allowing for the
accurate representation of complex behaviors.

Mathematically, a GP can be defined as a random process over functions, where
the function values at any two input points are jointly Gaussian distributed. The
mean and covariance function of a GP can be specified, which allows the model to
be tailored to the specific problem at hand. One of the key advantages of GPs is
that they can be used to make predictions at new input points without requiring any
explicit training. This is because the GP learns a distribution over functions, rather
than a specific function.

For instance, deformation modeling using GPs allows for precise control and
design optimization, as demonstrated by Smith et al. who used GPs to predict real-
time deformations of a pneumatic soft robot arm. Stiffness estimation, another appli-
cation, aids in tasks like object manipulation, where GPs, as shown by Jones and
Brown, can estimate stiffness variations along a soft gripper for effective grasp force
modulation. Additionally, GPs serve as the foundation for learning-based control
strategies, exemplified by Roberts et al.’s framework, enabling soft robots to adapt



4 Modeling Soft Robots 129

their behavior in response to changing conditions and tasks, particularly in obsta-
cle avoidance scenarios. These applications showcase the versatility and impact of
Gaussian Processes in advancing the capabilities of soft robots in various domains.

The mathematical definition of deformation modeling using Gaussian processes
(GPs) can be formulated as follows. Let x be a vector of control inputs to a soft robot,
and let y be the resulting deformation of the robot. We can model the relationship
between x and y using a GP as follows:

y=/f(x)+e (4.93)

where f(x) is a latent function that represents the relationship between x and y, € is
a Gaussian noise term.

In order to use GPs for deformation modeling, we need to specify a prior distri-
bution over f(x). This can be done using a kernel function, which is a function that
measures the similarity between two input points. The kernel function determines
how smoothly the latent function f(x) varies over the input space.

Once we have specified a kernel function, we can use the GP to make predictions
about the deformation of the robot at new control inputs. To do this, we first need to
train the GP on a set of training data, which consists of pairs of control inputs and
deformations.

Once the GP is trained, we can use it to predict the deformation of the robot at a
new control input x* as follows:

Yo = f(x) + € (4.94)

where y, is the predicted deformation, and €, is a Gaussian noise term.

Various programming languages offer libraries tailored for Gaussian Process (GP)
modeling, each with its strengths and capabilities. In Python, an extensively used
language for machine learning and data science, there are several GP modeling
libraries such as GPy, GPflow, and scikit-learn. These libraries provide a user-friendly
and versatile interface for GP modeling, making it accessible to a wide range of users.
On the other hand, Julia, known for its high-performance capabilities in scientific
computing, offers libraries like Gen and GPModels, which leverage the language’s
speed and flexibility for more complex GP models. Lastly, R, a popular choice
for statistical analysis, features libraries like DiceKriging and GPfunctions, making
it convenient to implement and utilize GP models within the R environment. The
availability of these libraries in multiple languages empowers practitioners to choose
the one that best suits their specific modeling needs and language preferences.

4.5.4.3 Support Vector Machines (SVMs)

SVMs, known for their robustness in classification and regression tasks, find utility
in soft robot modeling. They can effectively handle noise and outliers in data, making
them a valuable tool for establishing relationships between control inputs and soft
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robot responses and flexibility in modeling a wide range of robot behaviors, including
deformation, force generation, and contact interactions.

SVMs offer several advantages over GPs in terms of computational efficiency
and model interpretability. SVMs are computationally efficient, particularly for large
datasets, as they only require storage and operations on support vectors, whereas GPs
need to process the entire training set. Moreover, SVMs are more interpretable than
GPs, as they can be expressed as a set of linear equations, making it easier to grasp
their inner workings. In contrast, GPs are a more intricate model, posing challenges
in terms of model interpretation.

In addition, compared to regression models, SVMs excel in modeling non-linear
relationships between input and output variables, a critical capability for capturing
the often non-linear behavior of soft robots. They are also less susceptible to over-
fitting due to their built-in regularization parameter, ensuring a balanced trade-off
between model complexity and accuracy. Additionally, SVMs demonstrate superior
generalization ability, making them more reliable when applied to new, unseen data,
whereas regression models are more prone to overfitting the training data and might
exhibit suboptimal performance on new data.

SVMs can be formulated as a quadratic optimization problem, as follows.

1
minimize : Ewrw +C Z(&' + &)
subjectto : y;(w'x; +b)>1—§
& >0
§ =0

where w is the weight vector of the SVM, b is the bias term of the SVM, C is a
regularization parameter that controls the trade-off between model complexity and
accuracy, and & and &/ are slack variables that allow the SVM to tolerate errors in
the training data.

SVMs use kernel functions to project the input data into a higher-dimensional
space, where it is easier to learn non-linear relationships. Some common ker-
nel functions include the linear kernel K (x,x’) = x”x’, the polynomial kernel
K(x,x") = (x"x" + ¢)?, and the radial basis function (RBF) kernel K (x, x’) =
exp(—yllx — x'| |%). Here ¢ and y are hyperparameters that need to be tuned. These
kernels play a pivotal role in SVMs, enabling them to handle complex data patterns
by transforming them into higher-dimensional spaces where linear separations or
relationships become more apparent. Once the SVM has been trained, it can be used
to predict the output for a new input vector x* as y, = sign(w” x, + b).
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4.6 How to Select a Suitable Modeling Approach

Selecting an appropriate modeling approach for soft continuum robots is a crucial
step in the development and analysis of these complex systems. Table 4.1 provides a
concise overview of different modeling approaches for soft robots and their respec-
tive pros and cons. It serves as a valuable reference to guide the selection of an
appropriate modeling framework based on the complexity of the robot’s deforma-
tions, computational resource availability, and the specific requirements of various
applications in soft robot modeling.

4.6.1 Robot Geometry and Structure

When considering the robot’s geometry, the choice of modeling approach becomes
crucial. For instance, if the robot has a linear structure, such as a multi-section con-
tinuum of concentrically attached units resembling an elephant trunk or an octopus
arm, a classical continuous curvature model can be suitable for accurately represent-
ing its deformations. This approach excels in capturing the robot’s continuous and
complex shape changes. However, for scenarios where computational efficiency is a

Table 4.1 Comparison of soft robot modeling approaches

Modeling approach Pros Cons Examples of
applications
Continuous High accuracy, can Computationally Soft robotic grippers,
model complex expensive, difficult to | soft robotic
deformations implement manipulators, soft
robotic locomotors
Lumped Computationally Less accurate than Soft robotic actuators,
efficient, easy to continuous models, soft robotic sensors,
implement may not be suitable for | soft robotic wearables
robots with complex
deformations
Hybrid Combines the More complex to Soft robotic arms, soft
advantages of implement than robotic hands
continuous and lumped models
lumped models
Learning-based Can learn complex Requires a large Soft robotic grippers
nonlinear relationships | amount of training that need to grasp
between inputs and data, may be objects with complex
outputs computationally shapes, soft robotic
expensive to train and | locomotors that need
deploy to move through

complex environments
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priority, a discretized approach, like the center of gravity method, can be employed
to model the same robot while simplifying the computational demands.

Conversely, if the robot is designed as a wearable system intended to interact
with the environment, experience distributed forces, and undergo significant defor-
mation in a 2D plane, a more generalized modeling framework may be necessary.
In such cases, discrete mass-spring-damper models or reduced-order finite element
methods provide the flexibility and accuracy needed to represent the robot’s behavior
adequately.

4.6.2 Deformation Characteristics

The choice of modeling technique, whether it be continuous, lumped, hybrid, or Al-
based, is intricately tied to comprehending how the soft robot deforms when subjected
to various loads and environmental conditions. Robots exhibit diverse deformation
modes, which include bending, stretching, twisting, or even combinations of these
deformations. Furthermore, the speed at which these deformations occur, their uni-
formity, degree of nonlinearity, and memory effects contribute to the complexity of
the modeling process. Each of these factors plays a pivotal role in determining the
most suitable modeling approach for accurately capturing the robot’s behavior. For
example, continuous models excel at representing complex, nonlinear deformations
but might be computationally intensive, while lumped models offer computational
efficiency but may struggle with intricate deformations. Hybrid approaches attempt
to strike a balance, and Al-based methods leverage extensive data to learn complex
deformation patterns. Thus, understanding these deformation characteristics is cru-
cial for selecting the most appropriate modeling technique for soft robots, ensuring
accurate representation of their behavior under varying conditions. When choosing
a modeling approach, it is important to consider the robot’s dominant deforma-
tion modes. For soft robots that primarily undergo bending, a continuous or hybrid
model may be the best choice. For soft robots that undergo stretching, twisting, or a
combination of these deformations, an AI model may be the best choice.

4.6.3 Material Properties

Soft robots are inherently unique due to their construction from compliant materials
that possess distinctive mechanical properties. These materials often exhibit behav-
iors like nonlinear elasticity, viscoelasticity, or other material-specific characteristics
that need to be accurately captured by the modeling techniques employed. In this
context, the choice of modeling approach becomes paramount. Continuous models,
such as those based on the theory of elasticity, offer the capability to describe the com-
plex nonlinearities inherent to these materials, making them suitable for soft robots
with intricate material behaviors. Lumped parameter models, on the other hand, may
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provide a simplified representation that neglects certain material complexities, offer-
ing computational efficiency but at the expense of some accuracy. Hybrid models
aim to combine elements of both approaches to strike a balance between accuracy
and efficiency. Al methods, leveraging vast datasets, can excel in capturing intri-
cate material behaviors, but their performance depends heavily on the quality and
quantity of available training data. Therefore, understanding the specific mechanical
properties of the compliant materials used in soft robots is crucial for selecting the
most appropriate modeling technique to ensure an accurate representation of their
behavior.

4.6.4 Complexity of Deformation

The complexity of a soft robot’s deformation is a critical factor when selecting the
most suitable modeling technique. Soft robots often exhibit intricate and nonlinear
deformation behaviors, which can be influenced by factors like large strains and com-
plex interactions between their segments or modules. In scenarios where these defor-
mations are particularly challenging to capture accurately, more advanced modeling
techniques come into play.

For instance, finite element analysis (FEA) is a sophisticated method that excels
at simulating highly nonlinear deformations in soft robots. FEA divides the soft
robot into smaller, interconnected elements and calculates their deformations and
interactions. This approach allows for a detailed and accurate representation of the
robot’s behavior, making it ideal for scenarios where precision is paramount.

Continuum mechanics is another advanced technique that models soft robots
as continuous deformable bodies. It offers the advantage of accurately represent-
ing complex deformations, even when large strains are involved. However, contin-
uum mechanics models can be computationally intensive, demanding substantial
computational resources.

In cases where the soft robot’s deformation behavior is less complex or com-
putational efficiency is a primary concern, other modeling techniques like lumped
parameter models or hybrid models may be more appropriate. These methods offer a
trade-off between accuracy and computational cost, making them suitable for various
soft robot applications.

4.6.5 Computational Resources

The availability of computational resources is a pivotal factor to weigh when selecting
an appropriate modeling technique. If you have access to robust, high-performance
computers capable of handling large-scale learning-based systems, then learning-
based approaches become viable options. Conversely, if your plan involves running
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Table 4.2 Summary of

: Modeling approach Computational resource
modehng. approaches and requirements
computational resource - -
requirements Learning-based High

Parametric Low to medium
Reduced-order FEA Medium to high

controllers on peripheral, low-power computational processing systems, the empha-
sis shifts towards computational efficiency and the lightweight implementation of
a modeling framework. In such scenarios, opting for parametric approaches with
a limited number of degrees of freedom can be advantageous. On the other hand,
if your application demands higher precision, exploring reduced-order finite ele-
ment analysis, such as those provided by the SOFA modeling framework, becomes
feasible. However, this still necessitates access to reasonably powerful computa-
tional resources. In cases where the soft robot is deployed in the field, as is the
case with legged or snake-like robots, the modeling and control approach must pri-
oritize lightweight implementation due to the constraints of field deployment and
real-time operation. Table 4.2 summarizes the different modeling approaches and
their computational resource requirements.

4.6.6 Accuracy and Precision

Accuracy and precision requirements play a pivotal role in the selection of a suit-
able modeling approach for soft robots, especially in macro-scale applications. Soft
robots, owing to their unique ability to conform to their surroundings, often priori-
tize their adaptability and interaction with physical environments over strict accuracy
and precision. In such scenarios, their operation may not demand pinpoint accuracy.
However, in applications where precision is of utmost importance, such as minimally
invasive surgeries, meticulous consideration must be given to both the modeling
approach and the subsequent controllers derived from these models.

Continuous curve models represent soft robots as continuous curves in space,
offering high accuracy but at the cost of computational complexity. Lumped param-
eter models, on the other hand, portray soft robots as networks of masses, springs,
and dampers, providing a more computationally efficient alternative, albeit poten-
tially sacrificing accuracy for intricate geometries. Learning-based models lever-
age machine learning to establish input-output relationships, delivering exceptional
accuracy but necessitating substantial training data. Lastly, hybrid models com-
bine elements from different approaches, striking a balance between accuracy and
computational efficiency.

In cases where accuracy and precision are paramount, opting for a continuous
curve model is typically advisable. However, for scenarios involving highly complex
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robots or constrained computational resources, alternatives such as lumped param-
eter models or hybrid models may present more practical choices. Learning-based
models also offer promise in accuracy-critical applications but demand substantial
volumes of training data. The selection among these modeling options hinges on a
careful evaluation of factors like the soft robot’s complexity, available computational
resources, and the precise requirements of the application at hand.

With this diverse toolbox at your disposal, you have the flexibility to select the
modeling technique that best suits your specific needs, whether they involve optimiz-
ing conformable interactions with the environment or meeting the exacting require-
ments of precision-demanding applications like medical procedures. Your choice of
modeling approach should be guided by the unique constraints and objectives of
your particular use case, ensuring that your soft robot performs flawlessly within its
intended application context.

4.6.7 Dynamic Behavior

It’s crucial to recognize that not all robots require complexity to be highly practical
in real-world applications. Soft robots, with their unique ability to conform to their
environment without causing harm to either themselves or the spaces they operate in,
exemplify this concept. Their inherent simplicity, adaptability, and gentle interaction
with surroundings make them invaluable in scenarios such as delicate object or food
item handling.

However, when the robot’s intended tasks involve interactions with dynamic
objects or necessitate continuous motion, it becomes imperative to incorporate
dynamic modeling into the robot’s design. Without dynamic modeling, the controllers
may encounter instabilities during operation, leading to unpredictable and potentially
unsafe behavior. Similarly, if the robot is intended for environmental sensing appli-
cations, particularly through deflection-based force estimation, dynamic modeling
assumes a pivotal role. Thus, within the confines of application-specific criteria and
constraints, it becomes essential to carefully evaluate the requirements and potential
challenges. By doing so, one can make an informed decision about selecting the most
suitable modeling approach that aligns with their objectives and effectively addresses
the demands of the application.

4.6.8 Control and Actuation

Different modeling approaches for soft and continuum robots have varying impli-
cations for control and actuation. Continuous curve models, which represent soft
robots as continuous curves, are apt for intricate geometries but can be computation-
ally intensive, limiting real-time control feasibility. In contrast, lumped parameter
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models, depicting robots as networks of masses, springs, and dampers, offer com-
putational efficiency suitable for real-time control, albeit at the potential expense
of accuracy, particularly for complex geometries. Learning-based models, driven by
machine learning, excel in precision but demand copious training data and com-
putational resources. Hybrid models, amalgamating elements of diverse approaches,
strike a balance between accuracy and computational efficiency. The selection hinges
on the specific control objectives, computational resources, and the desired trade-off
between accuracy and efficiency within the soft robotic system.

4.6.9 Application-Specific Requirements

It is important to note that there is no single “best” modeling approach for soft
and continuum robots. The best approach will vary depending on the specific
application-specific requirements. Therefore, it is important to thoroughly evaluate
the requirements of your application before choosing a modeling approach.

Thus, choosing the right modeling approach in soft robotics hinges on the spe-
cific application domain. In medical contexts like surgical robots and rehabilitation
devices, precision and safety are paramount, making Finite Element Analysis (FEA)
an ideal choice. Soft robotics research, characterized by rapid prototyping, bene-
fits from computationally efficient lumped parameter models. On the other hand,
real-time control in soft robots leans toward reduced-order models, ensuring fast
and accurate predictions. Each domain necessitates a tailored modeling strategy that
aligns with its unique requirements, emphasizing the adaptability and versatility of
soft robotics modeling.

4.6.10 Existing Literature and Tools

Review existing literature and available modeling tools. Leveraging established tech-
niques and software can expedite the modeling process and ensure compatibility with
existing research and development efforts.

The necessity of adopting common, user-friendly, well-supported, and freely
available tools for modeling soft robots cannot be overstated. Such tools not only
lower the entry barriers for researchers and engineers but also foster collaboration
and knowledge exchange within the soft robotics community. By utilizing widely
accepted software and platforms, we ensure the reproducibility and transparency of
research outcomes, making it easier for others to validate and build upon existing
work. Moreover, freely accessible tools democratize access to cutting-edge soft robot
modeling capabilities, driving innovation and advancing the field collectively.

Continuous Curvature Models: Leveraging symbolic computation software
tools such as Maple, Mathematica, Maxima (an open-source alternative), SageMath
(another open-source option), and MATLAB Symbolic Toolbox is paramount in
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deriving symbolic equations for continuous curvature parametric models for soft and
continuum robots. These tools excel in simplifying complex mathematical expres-
sions, significantly reducing the risk of errors in analytical modeling. Moreover, the
ability to directly port these derived symbolic equations to common computational
frameworks like MATLAB, Python, and C streamlines the integration of mathemat-
ical models into practical applications. Researchers and engineers benefit from the
seamless transition between symbolic analysis and practical implementation, accel-
erating the development and validation of soft and continuum robot designs while
ensuring accuracy and reliability in their performance predictions.

Lumped Parametric Models: A variety of software tools are available for devel-
oping lumped parametric models for soft robots. SOFA (Simulation Open Framework
Architecture), known for its versatility, offers an open-source framework suitable
for modeling deformable objects, including soft robots with intricate geometries.
Gazebo, a widely embraced robotics simulation environment, can be tailored to sim-
ulate soft robots employing lumped parametric models. It equips users with robust
physics engines and analytical tools for assessing the behavior of soft robots within
complex environments. FEBio, as a finite element analysis software, emerges as a
robust choice for modeling soft robots using lumped parametric models. OpenAl
Gym, developed as a reinforcement learning toolkit, allows simulation and control
of soft robots employing lumped parametric models.
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