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Chapter 4 

Modeling Soft Robots 

Isuru Godage and Hunter Gilbert 

Abstract This chapter explores the evolving landscape of soft robotic kinematic 

and dynamic modeling, organized into four distinct sections to encompass a broad 

spectrum of methodologies. The first section investigate into Continuous Curvature 

Models, addressing the challenges associated with the inherently continuous and 

deformable nature of soft robots. Various approaches within continuum mechanics 

and finite element analysis are discussed, highlighting the complexities involved in 

capturing the intricate motion and shape changes exhibited by these systems. The 

second section focuses on Lumped Parametric Models, providing insights into tech-

niques that discretize soft robots into simpler, interconnected elements. This section 

explores the advantages and limitations of such models, emphasizing their efficacy in 

simulating the dynamic behavior of soft robots with reduced computational complex-

ity. The third section introduces Hybrid Models, which amalgamate the strengths of 

continuous curvature and lumped parametric models. This approach seeks to strike a 

balance between accuracy and computational efficiency, offering a versatile frame-

work for modeling soft robotic systems in various applications. The fourth section 

explores Learning-Based Models, a burgeoning field leveraging machine learning 

and data-driven approaches to model the complex kinematics and dynamics of soft 

robots. The chapter provides an overview of neural networks, reinforcement learn-

ing, and other learning-based techniques, showcasing their potential in capturing 

intricate soft robotic behaviors and adapting to real-world scenarios. The chapter 

concludes by addressing the critical question of “How to Select Suitable Models” 

for soft robotic applications. It offers guidance on the criteria for model selection, 

taking into account factors such as system complexity, computational efficiency, and 

the availability of training data. By providing a comprehensive overview of these 

modeling approaches, this chapter aims to equip researchers, engineers, and practi-

tioners with a nuanced understanding of the diverse methodologies available for soft 

robotic kinematic and dynamic modeling, paving the way for advancements in the 

field. 
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4.1 Introduction 

In this chapter, we delve into the diverse landscape of soft and continuum robot 

modeling approaches, exploring four distinct paradigms that have shaped the field’s 

evolution. We begin by unraveling the intricacies of continuous curvature models, 

which focus on capturing the gradual, seamless deformations of soft robots through 

mathematical representations of curvature and torsion. Next, we venture into the 

realm of lumped parametric models, where complex structures are approximated 

through discrete elements and simplified parameters, offering analytical insights 

into deformations and forces. Shifting gears, we delve into data-driven or learning 

models, which harness the power of machine learning and neural networks to predict 

the behavior of soft robots from empirical data, bridging the gap between theory and 

experimentation. Finally, we explore the synthesis of these modeling approaches in 

hybrid models, where analytical, data-driven, and empirical methods harmonize to 

provide a comprehensive understanding of soft robot dynamics and control. 

Although there is no unanimous consensus on the precise definitions, the phrase 

“continuum robot” is generally used to indicate motion that occurs without iden-

tifiable kinematic pairs. Conversely, the term “soft robot” implies a greater degree 

of mechanical compliance, which is defined as the ratio of displacement to force. 

This compliance is more pronounced in soft robots than in traditional approaches 

to robotic interaction, as they are able to respond more effectively to environmental 

forces. Soft robots are typically composed of soft materials, which can be character-

ized by material parameters such as the modulus of elasticity. In contrast, continuum 

robots made of harder materials can be designed to exhibit high or low mechanical 

stiffness in response to external forces, depending on their specific design features. 

Continuum robots are a type of flexible robotic manipulator composed of a long, 

flexible, and continuous structure, often modeled after biological organisms like 

elephant trunks or octopus tentacles, which can be bent, twisted, or elongated to 

perform a wide range of tasks in various environments. Unlike traditional rigid 

robots, continuum robots can adapt to their surroundings and conform to complex 

shapes, making them ideal for applications in areas such as medicine, manufacturing, 

and exploration. Some examples of continuum robots in the literature are shown in 

Fig. 4.1. 

Often referred interchangeably, soft robots are a type of continuum robot that uti-

lizes soft and flexible materials, such as elastomers, hydrogels, and fabrics, in their 

design and construction to achieve a range of functionalities and movements like 

those of biological organisms. In the literature, comparted to systems referred to as 

continuum robots, soft robots often refer to physical systems with lower stiffnesses. 

Soft robots can deform and change shape in response to external stimuli, such as 

changes in temperature or pressure, allowing them to interact with their environment 

in unique ways. Due to their flexibility and adaptability, soft robots have applications 

in fields such as healthcare, agriculture, and search and rescue, where they can per-

form delicate and complex tasks that are difficult for traditional rigid robots. Some 

examples of soft robots are shown in Fig. 4.2.
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Fig. 4.1 Various Types of Continuum and Soft Robots. a OC Robotics—Series II, X125 snake-arm 

robot at UCL [ 3], b continuum manipulator [ 4], c tendon-driven continuum robot [ 15], d Tendon-

actuated soft robot, e joystick-controlled concentric robot [ 29], f variable length multi-section 

pneumatic soft robot [ 9], g The Bionic Handling Assistant by Festo, showcasing a biomimetic 

design inspired by the elephant’s trunk, h Concentric agonist-antagonist robot [ 25], i three-segment 

continuum robot [ 26], j continuum robot [ 31], k Honeycomb pneunets robot [ 37], l autonomous 

robotic catheter blazes trail [ 30], m discrete wire-driven continuum robot arm [ 41], n ‘Octarm’ 

continuum manipulator [ 23], o origami continuum robot [ 44], p 2D robotic manipulator [ 22], q 

magnetic soft robot [ 17] 

Fig. 4.2 a Soft robotic glove [ 28], b 3D-printed soft robotic hand [ 32], c gecko-inspired soft robot 

[ 33], d soft elbow exosuit [ 38], e Meter-scale soft hexapod robot [ 18], f Soft biomimetic fish robot 

[ 35], g Soft tetrahedral robot [ 27], h Sorx: soft pneumatic hexapedal robot [ 19], i Electronics-free 

soft-legged robot [ 6], j Wheelless soft robotic snake [ 2], k Multigait soft robot [ 34], l pressure-

operated soft robotic snake [ 20] 

This chapter examine the current state-of-the-art in mathematical modeling of 

continuum manipulators that possess at least one “long” aspect in their shape. Such 

manipulators, also referred to as slender, are characterized by beam-like or bending
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deformations that dominate their motion. The purpose of these models is to establish 

a relationship between the motion of the robot and the actuator variables, boundary 

conditions, and sensor measurements. However, they do not typically address other 

essential factors in robot design and analysis, such as repeatability, wear, and safety. 

Slender designs include “arms,” “snakes,” and individual “fingers” of a multi-fingered 

hand. Designs composed of individual components with this property, such as con-

centric tube robots or multi-backbone continuum robots, are natural extensions of this 

classification. Even for robots made of softer materials like the STIFF-FLOP designs, 

which exhibit localized deformations that may be complex, the dominant behavior 

remains beam-like. This chapter aims to discuss different modeling approaches at 

depth and present an assortment of methods reported in the literature using a common 

notation. 

4.1.1 Preliminaries 

Before embarking on the journey of understanding and exploring the modeling 

approaches for continuum and soft robots, it’s essential to establish a foundational 

understanding of key terms and concepts that will pave the way for a deeper com-

prehension of the subject matter. This subsection serves as a crucial stepping stone, 

offering readers a concise yet comprehensive introduction to the preliminary terms 

that will frequently emerge throughout our exploration. These terms, ranging from 

elasticity and stress-strain relationships to kinematics and finite element analysis, 

provide the conceptual scaffolding upon which our discussions will rest. By famil-

iarizing ourselves with this essential vocabulary, we equip ourselves with the tools 

necessary to navigate the intricate landscape of soft and continuum robot modeling 

with confidence and clarity. 

Deformation: In soft and continuum robotics, deformation—often structural— 

refers to the changes in the shape and size of the robot’s structure as it undergoes exter-

nal forces or movements. This type of deformation is typically caused by the inherent 

compliance and flexibility of the materials used in soft and continuum robotics. Struc-

tural deformation can have a significant impact on the performance and behavior of 

soft and continuum robots. For example, in a soft gripper designed to grasp objects, 

the deformation of the gripper’s structure can affect the force and grip strength applied 

to the object. Similarly, in a continuum robot designed to move through complex envi-

ronments, the structural deformation of the robot’s flexible structure can affect its 

ability to navigate and manipulate objects. To account for deformation in soft and 

continuum robotics, researchers often use appropriate models—often motivated by 

the robot design—that describe the robot’s behavior as a function of its material 

properties and geometry. Understanding and modeling structural deformation is an 

essential aspect of soft and continuum robotics, as it enables researchers and engi-

neers to design and control robots that can move and interact with their environment 

in a safe and effective manner.
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Backbone Curve: The backbone curve in continuum robotics is a term used to 

describe the overall shape and geometry of a continuum robot [ 39]. It refers to the line 

that runs through the center of the robot’s flexible structure and defines the robot’s 

bending characteristics. The backbone curve is an important concept in continuum 

robotics because it determines the robot’s motion and deformation properties. For 

example, the curvature of the backbone curve can affect the robot’s ability to bend 

and twist, while the length and shape of the curve can influence the robot’s reach 

and dexterity. Designing and modeling the backbone curve is a critical step in the 

development of continuum robots, as it requires careful consideration of factors 

such as the robot’s intended application, the materials used in its construction, and 

the desired motion and deformation characteristics. A variety of techniques have 

been developed to model the backbone curve, including finite element analysis and 

optimization algorithms. 

Framed Curve: The concept of framed curve in continuum robotics involves 

the attachment of a triad of reference vectors at each point along the curve. These 

vectors are used to describe the orientation and shape of the robot at that particular 

point, allowing for precise control over its motion and deformation. Typically, the 

three vectors attached to each point on the framed curve include one that is tangent 

to the curve itself, and two that span the cross sections of the robot at that point. This 

triad of vectors allows researchers and engineers to fully describe the orientation and 

shape of the robot at any given point, which is essential for controlling its motion and 

deformation. For instance, in the context of Homogeneous Transformation Matrices 

(HTM), the rotation matrix can be considered as a framed curve that serves to model 

deformation along the length of the robot. This framed curve helps track various 

factors such as bending, torsion, and other shear phenomena, ultimately contributing 

to a more accurate and comprehensive modeling approach. 

Constant Curvature Shapes: Constant curvature modeling is a method used 

to model the kinematics of continuum robots [ 40]. This approach assumes that the 

robot’s backbone curve has a constant curvature, meaning that the curve does not 

change its curvature along its length. Under the constant curvature model, the robot’s 

motion and deformation can be described using a set of equations that relate the cur-

vature of the backbone curve to the motion of the robot’s end effector. This approach 

allows for precise control over the robot’s motion, and it has been used in a wide range 

of applications, including medical robotics and industrial automation. However, the 

constant curvature model does have some limitations. In particular, it assumes that 

the robot’s deformation is dominated by bending, rather than stretching or other 

types of deformation. This may not be the case for all types of continuum robots, 

particularly those made of very soft materials or those with complex geometries. 

Finite Approximations: Finite approximations are a commonly used technique 

for modeling continuum robots [ 14]. Continuum robots are robots that use soft, 

flexible materials to achieve their motion, which makes them highly adaptable and 

able to move through complex, curved spaces. However, this flexibility also makes 

them challenging to model accurately using traditional mathematical methods. Finite 

approximations address this challenge by breaking the continuous motion of a con-

tinuum robot into a series of discrete segments. These segments are modeled using
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finite element analysis, which is a numerical method for approximating solutions to 

partial differential equations. In practice, this means that the robot is divided into 

small sections, and the behavior of each section is modeled using a set of equations 

that describe its deformation and motion. These equations are solved numerically, 

and the solutions are then combined to provide a complete model of the robot’s 

motion. Note that finite approximations are still an approximation, and there may be 

limitations to the accuracy of the model depending on the complexity of the robot 

Configuration: Configuration refers to the positions that a mechanical system’s 

parts can be in. Thus, configuration refers to the arrangement of all the robot’s degrees 

of freedom (DOFs) that define its state. For example, in a simple planar robot arm, 

the configuration might include joint angles, while in a more complex robot, it could 

involve joint angles, translations, and orientations. 

Configuration Space: Configuration space (C-space) is a mathematical space in 

which each point corresponds to a unique configuration of the robot. In a C-space, 

each dimension represents a different degree of freedom (DOF) of the robot. For 

instance, in a 3-DOF robot, the C-space would be three-dimensional. The entire C-

space encompasses all possible combinations of joint values or robot states that 

the robot can achieve without violating any constraints. Also, the configuration 

space takes into account all kinematic, geometric, and other constraints that the 

robot must satisfy. For example, it considers joint limits, collision avoidance, and 

workspace boundaries. Constraints in C-space restrict the robot’s motion to feasible 

and collision-free configurations. 

Joint Space: In robot modeling, joint space refers to a specialized coordinate 

system used to describe the configuration or state of a robot. This coordinate system 

is particularly focused on representing the positions and orientations of the robot’s 

individual joints. Each joint contributes to the overall configuration of the robot, 

and joint space provides a convenient way to define and control these configura-

tions. In joint space, the parameters typically include joint angles, joint velocities, 

and possibly other joint-specific parameters, depending on the robot’s design and 

complexity. By defining the robot’s state in joint space, it becomes easier to plan and 

execute robot movements, perform kinematic and dynamic analyses, and develop 

control algorithms. Joint space representations are particularly useful in robotics for 

tasks such as path planning, inverse kinematics, and trajectory control, as they allow 

engineers and researchers to work directly with the robot’s articulation. 

Task Space: Task space provides a vital perspective for describing the actions 

and behaviors of robots. It represents a higher-level coordinate system focused on 

the position and orientation of a robot’s end-effector, such as its gripper or tool, in 

relation to a reference frame. Task space simplifies the planning and control of robotic 

tasks by specifying where the end-effector should be and how it should be oriented 

to achieve particular objectives. This approach allows engineers and programmers 

to design robots that interact effectively with their environment, from picking and 

placing objects to performing complex assembly tasks. Solving for the joint angles 

necessary to achieve desired end-effector poses in task space, known as inverse 

kinematics, plays a central role in robot modeling and control.
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Generalized Coordinates: Generalized coordinates are a vital concept in the 

realm of mechanics and dynamics. They represent a set of parameters that compre-

hensively describe the configuration of a system. These coordinates are not merely 

numerical values but serve as the coordinates of a singular point within an abstract 

space known as “configuration space.” Generalized coordinates can take two primary 

forms: absolute and relative. Absolute coordinates are referenced with respect to an 

unchanging inertial frame, providing a fixed point of reference. In contrast, rela-

tive coordinates are defined concerning a co-moving frame, which moves in tandem 

with the system under consideration. This distinction in reference frames allows for 

a versatile and adaptable means of characterizing the configuration and motion of 

dynamic systems. 

4.2 Continuous Curvature Models 

Continuous curvature approaches are mathematical techniques used to model the 

shape and behavior of soft and continuum robots. These robots are made of flexi-

ble materials, allowing them to move and deform continuously rather than in dis-

crete steps, which is characteristic of traditional rigid robots. Continuous curvature 

approaches aim to capture and describe the complex and continuous deformations 

that soft and continuum robots can achieve. 

4.2.1 Curve Parametric Models 

Curve parametric (CP) modeling is a fundamental approach that revolves around the 

utilization of mathematical curves and parameters to describe the form and actions 

of soft robots. One of the notable strengths of curve parametric modeling in the 

realm of soft robotics is its capacity to accurately capture the intricate deformations 

and motions exhibited by these robots. In addition, curve parametric approaches 

offer numerous other advantages in soft robot modeling. Firstly, they excel in accu-

rately representing the intricate and nonlinear deformations of soft robots, even when 

subjected to substantial loads and constraints. This precision arises from their capa-

bility to capture the spatial distribution of material properties and interactions within 

the robot’s structure. Secondly, these approaches exhibit computational efficiency, 

proving effective for complex soft robot geometries. Curve parametric models are 

flexible and adaptable, accommodating a wide range of soft robot geometries, includ-

ing continuum, articulated, hybrid, and surface robots. In this section, we will utilize 

the pneuamtically actuated multisection continuum arm shown in Fig. 4.3. 

Consider the schematic of any continuum arm shown in Fig. 4.4. Without losing 

generality, the three variable length actuator configuration is considered and the 

actuators are fixed to a circular rigid frame at a radius, . r from the center and . 
2π
3
rads

apart. Hence, the actuators are operated at a distance . r , aligned with the neutral
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Fig. 4.3 Multisection 

Continuum Arm with 

Pneumatic Muscle 

Actuators [ 8]. The arm 

consists of three serially 

attached continuum sections, 

each actuated by three 

extending-mode numeric 

muscle actuators 

symmetrically attached. 

Differential pressures in the 

pneumatic muscle actuators 

create circular arc shapes in 

the sections, while 

common-mode pressure 

causes extension. Note that 

some prototypes may use 

more than three actuators, 

such as four, and may 

incorporate different types of 

actuators that can extend, 

compress, or both during 

operation 

Fig. 4.4 Joint-space of a 

continuum/soft robotic 

section 

axis, which is an imaginary line running from the center along the length of the 

continuum robot. Let the initial length of each actuator is .L whose change is in 

.li ∈ Rwhere.li :min ≤ li (t) ≤ li :max for.i ∈ {1, 2, 3};. i and. t denote the actuator number 

and time, respectively. Therefore, .L i (t) = L + li (t) calculates the actuator length 

at any time and the vector of joint variables of the continuum robot is defined as 

.q = [l1(t), l2(t), l3(t)]
T ∈ R

3.
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Due to the constrained actuator arrangement, when the robot is actuated, it either 

demonstrates straightforward linear motions (expansion or contraction) or curves 

into a circular arc. Thus, assuming there are no substantial external forces, the spatial 

alignment of the robot can be entirely defined as a circular arc with variable curvature 

radius and length. The arc is defined by three spatial parameters; radius of curvature 

.λ ∈ (0,∞) with instantaneous center . C , angle subtended by the bending arc . φ ∈
[0, 2π ], and angle of the bending plane with respect to the .+X axis, .θ ∈ [−π, π ]. 

4.2.1.1 Deriving Curve Parameters in Joint Space Variables 

Let the origin of the task-space coordinate frame .{Oi } coincide with the center of 
the base plate, where .

−−−→
Oi A1 defines the .X i axis. The actuator attachment points 

form an equilateral triangle with sides of length .ri
√
3 at each end of the contin-

uum section. The coordinates of the actuator attachment points are .A1 = [ri , 0, 0]T , 
.A2 = ri

2
[−1,

√
3, 0]T , and .A3 = − ri

2
[1,

√
3, 0]T . The instantaneous center of the 

bent arm’s circular arc shape is represented as . Ci .  In  Fig. 4.5, you can observe the 

actuator base points, .A1, .A2, and .A3, projected onto .
−−→
OiCi , where they intersect at 

. x∗
1 , . x

∗
2 , and . x∗

3 . The respective distances between .Oi and these intersection points are 

. Oi x
∗
1 = ri cos θi

Oi x
∗
2 = ri cos

(

2π

3
− θi

)

(4.1) 

Oi x
∗
3 = ri cos

(

4π

3 
− θi

)

The actuator lengths form radii of three concentric circular arcs at .OiCi (see Fig. 

4.5). Employing the arc geometrical relationship where arc length is equal to the 

curvature radius times the subtended angle, the actuator lengths are related to curve 

parameters as follows: 

Fig. 4.5 Orthographic 

projection of the moving 

coordinate frame, . 
{

O ,}

along the neutral axis and the 

normalizing scalar, .ξi shown 

on the bending plane (i.e., 

.ziOiCi plane)
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. L i0 + li1 =
(

λi − Oi x
∗
1

)

φi

= {λi − ri cos (θi )} φi (4.2) 

. L i0 + li1 = (λi − Oi x
∗
2 )φi

=
(

λi +
1

2
ri cos θi −

√
3

2
ri sin θi

)

φi (4.3) 

. L i0 + li1 = (λi − Oi x
∗
3 )φi

=
(

λi +
1

2
ri cos θi +

√
3

2
ri sin θi

)

φi (4.4) 

These relationships are now manipulated to derive curve parameters in joint space 

variables. Summing up Eqs. (4.2), (4.3), and (4.4) yields 

. 3λiφi = 3L i0 + li1 + li2 + li3

φi =
1

3λi

(3L i0 + li1 + li2 + li3) (4.5) 

Subtracting Eq. (4.3) from Eq. (4.4) and rearranging the terms produces 

. li3 − li2 =
(√

3ri sin θi

)

φi

sin θi =
li3 − li2√
3riφi

(4.6) 

Similarly, rearranging Eq. (4.2)  give  s

. cos θi =
λiφi − (L i0 + li1)

riφi

(4.7) 

Applying Eqs. (4.6) and (4.7) to the trigonometric identity .sin2 θi + cos2 θi = 1, 

to remove . θi from the relationship, results in 

.

(

li3 − li2√
3riφi

)2

+
(

λiφi − (L i0 + li1)

riφi

)2

= 1 (4.8) 

Substituting .φi from Eq. (4.5) into Eq. (4.8) and solving for .λi ∈ R
+ gives 

.λi

(

qi
)

= (3L i0 + li1 + li2 + li3) ri

2

√

l2i1 + l2i2 + l2i3 − li1li2 − li1li3 − li2li3

(4.9)
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The result given by Eq. (4.12) is then substituted into Eq. (4.5)  to  solve .φi as 

.φi

(

qi
)

=
2

√

l2i1 + l2i2 + l2i3 − li1li2 − li1li3 − li2li3

3ri
(4.10) 

Dividing Eqs. (4.6)  by (4.7) yields . θi as 

.θi
(

q i
)

= tan−1

( √
3 (li3 − li2)

li2 + li3 − 2li1

)

(4.11) 

Substituting .φi from Eq. (4.5) into Eq. (4.8) and solving for .λi ∈ R
+ gives 

.λi

(

qi
)

= (3L i0 + li1 + li2 + li3) ri

2

√

l2i1 + l2i2 + l2i3 − li1li2 − li1li3 − li2li3

(4.12) 

The result given by Eq. (4.12) is then substituted into Eq. (4.5)  to  solve .φi as 

.φi

(

qi
)

=
2

√

l2i1 + l2i2 + l2i3 − li1li2 − li1li3 − li2li3

3ri
(4.13) 

Dividing Eqs. (4.6)  by (4.7) yields . θi as 

.θi
(

q i
)

= tan−1

( √
3 (li3 − li2)

li2 + li3 − 2li1

)

(4.14) 

4.2.1.2 Deriving the Homogeneous Transformation Matrix (HTM) 

for a Single Continuum Section 

For complete kinematic modeling, it is essential to accurately calculate both the posi-

tion and orientation of all joints and links in a robotic system. Due to the substan-

tial inherent mechanical flexibility, continuum sections exhibit varying orientations 

along their length, necessitating the representation of this variation using a continuous 

homogeneous transformation matrix (HTM). We define a moving coordinate frame 

denoted as .{O ,} is established (refer to Fig. 4.4), and a scalar parameter .ξ ∈ [0, 1] is 
introduced. This parameter allows for the movement of.{O ,} from the base (.ξ = 0)  to  

the tip (.ξ = 1) along the neutral axis of the continuum section. Accordingly, homo-

geneous translational and rotational transformations based on curve parameters can 

be derived as
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. T(q, ξ) = RZ (θ)PX (λ)RY (φ)PX (−λ)RZ (−θ)

=
[

R(q, ξ) p(q, ξ)

01×3 1

]

(4.15) 

where .RZ and .RY are homogeneous rotation matrices about .+Z and .+Y axes 

and .PX , is the homogeneous translation matrix along .+X axis. Additionally, . q =
[λ, φ, θ ]T ∈ R

3 is the curve parameter vector, .R ∈ SO (3), . p = [x, y, z]T ∈ R
3

are the rotational and translational matrices of the robot. 

4.2.1.3 Constant-Length System Modeling 

Noting that the bending of the soft module is critical to the robot locomotion, under-

standing the relationship between the PMA lengths and the curve parameters is 

important as controlling the PMA lengths enables the control of module shape and 

robot locomotion. The PMA lengths can be related to the curve parameters as given 

in [ 8] as (Fig. 4.6). 

. L + l j i =
{

L

φ j

− r cos

(

2π

3
(i − 1) − θ j

)}

φ j

l j i = −r jφ j cos

(

2π

3
(i − 1) − θ j

)

(4.16) 

Note that the inextensibility of the soft module implies that the sum of PMA 

length changes becomes zero, i.e., .
∑

i l j i = 0. This kinematic constraint gives rise 

to a relationship between the three joint variables, i.e., .l j1 = −
(

l j2 + l j3
)

, which 

implies that the soft module forward kinematics can be obtained using just two 

degrees of freedom. Employing Eq. (4.16), we can derive the curve parameters in 

terms of the joint variables as: 

Fig. 4.6 A hybrid 

continuum robotic arm 

section constructed with a 

rigid inextensible backbone 

forming a kinematic chain, 

symmetrically actuated by 

numeric muscle actuators
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.

φ j =
2

3r

√

√

√

√

3
∑

i=1

(

l2j i − l j i l jmod(i,3) + 1
)

θ j = arctan
{√

3
(

l j3 − l j2
)

, l j2 + l j3 − 2l j1

}

(4.17) 

4.2.1.4 Numerically Stable Modal Representation 

Numerical instability can arise in the curve parametric approach for soft robot mod-

eling under certain conditions. For instance, in cases where the robot’s configuration 

leads to singularities, such as when all actuator lengths are nearly equal, mathemat-

ical operations involving division by small or zero values can result in numerical 

instability. Consider the following matrix element of Eq. (4.15). 

. [T (q, ξ)]24 =
√
3 (l2 − l3) (3L0 + l1 + l2 + l3) r

4
(

l21 + l22 + l23 − l1l2 − l1l3 − l2l3
)

{

cos

(

2ξ

√

l21 + l22 + l23 − l1l2 − l1l3 − l2l3/3r

)

− 1

}

(4.18) 

The modal approach for soft robot kinematics offers a promising avenue to avoid 

singularities and enhance the stability of robot modeling decomposing the robot’s 

deformation into a set of modal or basis functions. These modal functions capture 

the fundamental shape and motion patterns of the robot, allowing for a more efficient 

and robust representation of its behavior. By expressing the robot’s configuration as 

a linear combination of these modes, singularities associated with specific parameter 

values can be mitigated or even eliminated. However, in order to retain the physical 

insight and avoid nonlinear mapping problems, modal forms are preferred to retain 

joint space representation. A simple and straightforward method, such as using mul-

tivariate Taylor series approximation, has been presented in [ 8] for finding suitable 

modal functions. This approach allows us to derive modal forms of kinematics that 

effectively capture the complex deformations while mitigating singularities, making 

it a valuable tool for modeling and controlling soft robotic systems (Fig. 4.7). 

4.2.1.5 Recursive Formulation of Complete Kinematics 

A multisection continuum or soft robotic arm, a schematic is shown in Fig. 4.8, can 

be derived using the HTM derived for a single section in Sect. 4.2.1.2. Employing 

the continuum section HTM given in Eq. (4.15) and principles of kinematics of serial 

robot chains, the HTM of any .i th section with respect to the task-space coordinate 

system .{O}, .Ti :
(

qi , ξi
)

|→ SE
3, is given by 

.Ti =
i

∏

k=1

Ti =
[

Ri pi

0 1

]

(4.19)
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Fig. 4.7 (LEFT) Errors of .[T]24,  given  by  Eq  . (4.18), within singular neighborhood against . l2
when .l2 → 0.03 where .l1 = l3 = 0.03. The error spans within a singularity neighborhood thus 

eliminating the possibility of conditional HTM’s to counter the numerical instabilities. Comparison 

of numerical errors in the generalized inertia matrix for the base continuum section. (MIDDLE) 

Note the large errors (.103%) towards the singularity at .l11 = 0.0325 and its (expanded to around 

.{l12, l13} ∈ [0.02, 0.05] neighborhood. (RIGHT) In contrast to Fig. 4.15a, the error is negligible 
(.≤ 0.014%) within the entire actuation region. During both simulations, . l11 = 0.0325

Fig. 4.8 Schematic of a 

general multisection 

continuum arm with N 

continuum sections 

where .Ri
(

q i , ξi
)

∈ R
3×3 and . pi

(

qi , ξi
)

∈ R
3 define the position and orientation of 

.

{

O ,
i

}

along the neutral axis at . ξi of the .i th continuum section. 

The homogeneous transformation matrix in Eq. (4.19) can be expanded to obtain 

the recursive form of the kinematics as 

.

Ri = Ri−1Ri

pi = pi−1 + Ri−1 pi
(4.20) 

where .Ri−1
(

qi−1
)

∈ R
3×3 and . pi

(

qi−1
)

∈ R
3 is the section tip rotation matrix and 

position vector of the preceding continuum section. 

Utilizing the Eq. (4.20), the angular velocity of a thin disc at .ξi with respect to 

.

{

O ,
i

}

, .ωi

(

qi , q̇ i
)

∈ R
3 can be defined as
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. Gi = Ri T Ṙi

=
(

Ri−1Ri

)T (

Ṙi−1Ri + Ri−1PRi

)

= Ri

{(

Ri−1T Ṙi−1
)

Ri +
(

Ri−1TRi−1
)

PRi

}

= RT
i

(

Gi−1Ri + Ṙi

)

(4.21) 

where .ωi =
[

ωi x ωiy ωi z

]T
and .Gi

(

qi , q̇ i
)

∈ R
3×3 =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



. 

Similarly, Eq. (4.20) can be used to derive the linear body velocity of a thin disc 

at . ξi with respect to .

{

O ,
i

}

, .υ i

(

qi , q̇ i
)

∈ R
3 as 

. υ i = Ri T ṗi

=
(

Ri−1Ri

)T (

ṗi−1 + Ṙi−1Ri + Ri−1 ṗi
)

= RT
i

{(

Ri−1T ṗi−1
)

Ri +
(

Ri−1T Ṙi−1
)

pi +
(

Ri−1TRi−1
)

ṗi

}

= RT
i

(

vi−1 + Gi−1 pi + ṗi
)

(4.22) 

As shown in [ 9], Jacobians and Hessians play a critical role in recursive develop-

ment of the EoM. Applying the standard techniques, the angular and linear velocity 

Jacobians,.Jω
i

(

qi , ξi
)

∈ R
3×3n and.Jυ

i

(

q i , ξi
)

∈ R
3×3n respectively are derived. Here 

also, we use the property .ωi = G∨
i to define .J	

i

(

qi , ξi
)

∈ R
3×9n ,  a  s

. J	
i = G

i,(q̇i)
T

= RT
i

(

Gi−1Ri + Ṙi

)

,(q̇i)
T

= RT
i

[

G
i−1,(q̇i−1)

TRi Ṙi,q̇T
i

]

= RT
i

[

J	
i−1Ri Ri,qi

]

(4.23) 

where .Jω
i =

(

J	
i

)∨
and .J	

i−1

(

qi−1
)

∈ R
3×9(n−1). 

Taking the partial derivative of Eq. (4.23) with respect to . qi , the angular body 

velocity Hessian, .H	
i = J	

i,qi

(

qi , ξi
)

∈ R
9n×9n is given by. 

.H	
i = J	

i,qi

=
(

RT
i

[

J	
i−1Ri Ri,qT

i

])

,qi

=











RT
i

(

J	
i−1,q i−1

)

Ri Ri,qT
i ,qi−1

RT
i,qi

J	
i−1Ri · · · RT

i,qi
Ri,qT

i
· · ·

+RT
i J

	
i−1Ri,qi

+RT
i Ri,qT

i ,qi










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=









RT 
i H

	
i−1Ri 0 

RT 
i,qi 

J	
i−1Ri · · · RT 

i,qi 
Ri,qT 

i 
· · ·

+RT 
i J

	
i−1Ri,qi 

+RT 
i Ri,qT 

i ,q i









(4.24) 

where .Jω
i =

(

J	
i

)∨
and .J	

i−1

(

qi−1
)

∈ R
3×9(n−1). 

Similarly, the linear velocity Jacobian, . Jυ
i , and Hessian, . H

υ
i = Jυ

i,qi

(

qi , ξi
)

∈
R

9n×3n are given by 

. Jυ
i = υ

i,(q̇i)
T

= RT
i

(

υ i−1 + Gi−1 pi + ṗi
)

,(q̇i)
T

= RT
i

[

υ
i−1,(q̇i−1)

T + G
i−1,(q̇i−1)

T pi ṗi,q̇T
i

]

= RT
i

[

Jυ
i−1 + J	

i−1 pi pi,qT
i

]

(4.25) 

. Hυ
i = Jυ

i,qi

=
(

RT
i

[

Jυ
i−1 + J	

i−1 pi pi
])

,qi

=









RT
i

(

Jυ
i−1,q i−1 + J	

i−1,q i−1 pi

) (

RT
i pi,qT

i

)

,qi−1

RT
i,qi

(

Jυ
i−1 + J	

i−1 pi
)

· · · RT
i,qi

pi,qT
i
· · ·

+RT
i J

	
i−1 pi,qi +RT

i pi,qT
i ,qi









=







RT
i

(

Hυ
i−1 + H	

i−1 pi
)

0

RT
i,qi

(

Jυ
i−1 + J	

i−1 pi
)

· · · RT
i,qi

pi,qT
i
· · ·

+RT
i J

	
i−1 pi,qi +RT

i pi,qT
i ,qi






(4.26) 

where .Jυ
i−1

(

qi−1, ξi
)

∈ R
3×3(n−1), .Hυ

i−1

(

qi−1
)

∈ R
9(n−1)×3(n−1). 

4.2.1.6 Dual Quaternion Representation 

Robotic systems often require accurate modeling and representation of their config-

urations to perform tasks efficiently. Dual quaternions are an extension of standard 

quaternions, a mathematical tool originally developed for spatial rotations. Dual 

quaternions provide a compact and efficient way to represent both the position and 

orientation of coordinate frames defining the pose of robotic elements. 

Dual quaternions offer a valuable approach when dealing with the kinematics of 

robotic systems, especially in scenarios where stability in inverse kinematic solutions 

is crucial. This significance becomes particularly pronounced in the context of soft 

robotic arms. Soft robotic arms, owing to their inherent redundancy, often encounter 

numerical challenges when solving constrained inverse kinematics problems. It has
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been demonstrated that employing dual quaternion-based kinematics can signifi-

cantly enhance stability and accuracy in such situations. Therefore, understanding 

how to effectively utilize dual quaternions is a valuable asset for researchers and 

practitioners in the field. 

Dual quaternions are an extension of dual numbers into the realm of quaternions. A 

dual quaternion is typically denoted as .Q = s + εt , where . s = s0 + sx i + sy j + szk

and .t = 0 + tx i + ty j + tzk are standard quaternions. . s represents the orientation of 

a rigid body, while .εt captures its translation or position. 

Mathematical Basis of Dual Quaternions 

In dual quaternion addition, you add two dual quaternions component-wise. Each 

component of the resulting dual quaternion is the sum of the corresponding com-

ponents of the two input dual quaternions. Mathematically, if you have two dual 

quaternions 

.D1 = s1 + εt1 (4.27) 

.D2 = s2 + εt2 (4.28) 

The dual quaternion algebra follows specific rules for addition, multiplication, 

and conjugation, making it a closed and algebraically consistent system as follows. 

.1. Addition : D1 + D2 = (s1 + s2) + ε(t1 + t2) (4.29) 

.2. Multiplication : D1 O D2 = (s1 ◦ s2) + ε(s1 ◦ t2 + t1 ◦ s2) (4.30) 

.3. Conjugation : D∗ = s − εt (4.31) 

where .O is the dual quaternion multiplication, . · is the quaternion multiplication, and 

. ∗ is the quaternion conjugate. 

Dual quaternions and homogeneous transformation matrices 

A unique mapping exists between Homogeneous Transformation Matrices and Dual 

Quaternions. Understanding one representation enables the derivation of the other. 

This is particularly significant because deriving the Homogeneous Transformation is 

often more intuitive for robotic systems. Subsequently, this knowledge facilitates the 

derivation of the dual coordinate form of the representation, which, in turn, serves as 

the foundation for deriving the complete system kinematics using Dual Quaternions. 

Consider the given homogeneous transformation .T ∈ SE (3), represented as 

follows. 

.T =
[

R p

0 1

]

∈ SE (3) (4.32)
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Then, you can express the dual quaternion .Q as .Q = s + εt as follows. 

.

s0 =
1

2

√

[R]11 + [R]22 + [R]33 + 1

sx =
1

4
([R]32 − [R]23)

sy =
1

4
([R]13 − [R]31)

sz =
1

4
([R]21 − [R]12)

(4.33) 

.t =
1

2
(0, p) ◦ s (4.34) 

Similarly, if you have knowledge of a dual quaternion, denoted as .Q = s + εt , 

you can reconstruct the Homogeneous Transformation Matrix (HTM), .T ∈ SE (3), 

as follows 

.R =





1 − 2(s22 + s23 ) 2(s1s2 − s0s3) 2(s0s2 + s1s3)

2(s1s2 + s0s3) 1 − 2(s21 + s23 ) 2(s2s3 − s0s1)

2(s1s3 − s0s2) 2(s0s1 + s2s3) 1 − 2(s21 + s22 )



 , p =





2tx
2ty
2tz



 (4.35) 

Coordinate transformation in Dual Quaternion Systems 

When it comes to coordinate transformations, the traditional approach involves 

multiplying transformation matrices, denoted as .T1 · T2 · T3 . . . · Tn . In the realm of 

dual quaternions, these transformations are represented as.Q1 O Q2 O Q3 . . . O Qn , 

showcasing the dual quaternion’s unique capability to handle complex coordinate 

transformations. Readers are encouraged to refer to [ 10] that provides a detailed 

account of how a multi-section continuum can be represented using the dual 

quarternion system to improve accuracy in inverse kinematic solutions. 

4.2.1.7 Inverse Kinematics 

Given the complexity of the resulting kinematics of a sectioned continuum robot, 

closed-form solutions are generally not available. While there have been some 

attempts to derive closed-form solutions, these attempts often overlook the con-

straint coupling between the joint space variables, treating the curvature parameters 

. λ, . φ, and . θ as independent variables. This simplification can lead to unfeasible and 

often physically inaccurate inverse kinematic solutions. 

The most practical approach that has been explored involves numerical methods. 

One way to solve for the inverse kinematic solution is to formulate it as a constrained 

optimization problem. The goal is to find the joint space variables . q that optimize a 

cost function while satisfying constraints:
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.Minimize : f (q) (4.36) 

.Subject to : g(q) ≤ 0 (4.37) 

.h(q) = 0 (4.38) 

where . f (q) is the cost function to be minimized, .g(q) represents inequality 

constraints (e.g., actuator range constraints), and.h(q) represents equality constraints. 

To solve the optimization problem, numerical optimization routines available in 

software tools like MATLAB [ 1] and Python can be employed. These routines aim 

to find the optimal joint variables .q∗ that minimize the cost function while satisfying 

the constraints 

.q∗ = argminq f (q) (4.39) 

The solution .q∗ represents the joint configuration that allows the robot to track 

desired trajectories efficiently. 

Alternatively, another numerical approach involves leveraging the robot’s kine-

matics. By using the Jacobian matrix, denoted as . J, which describes the relationship 

between the task space (i.e., the end-effector’s position and orientation) and the joint 

space (i.e., the curvature parameters), one can iteratively adjust the joint variables to 

move the robot towards its target location. This iterative process allows for real-time 

adjustments, making it suitable for dynamic and adaptive control of the continuum 

robot. 

The relationship between the joint velocities . q̇ and the end-effector velocities . ẋ

can be expressed using the Jacobian as follows: 

.ẋ = J(q)q̇ (4.40) 

where . ẋ signifies the end-effector’s velocity in the task space, . q̇ denotes the joint 

velocities in the joint space, and .J(q) represents the Jacobian matrix, which depends 

on the current joint configuration . q. 

To control the continuum robot’s motion towards a desired target velocity .ẋdesired, 

one can use an iterative scheme: 

.q̇k+1 = q̇k + J−1(qk)�ẋ (4.41) 

where .q̇k + 1 represents the updated joint velocities at iteration .k + 1, while . q̇k

denotes the joint velocities at iteration . k. Additionally, .J−1(qk) signifies the inverse 

Jacobian matrix at iteration . k, and .�ẋ corresponds to the desired change in end-

effector velocity required to reach .ẋdesired. 

By iteratively updating the joint velocities, the continuum robot can adapt its 

configuration in real-time to achieve the desired task-space motion, making this 

approach well-suited for dynamic and adaptive control.
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4.2.1.8 Derive Dynamics for Curve Parametric Models 

Once the kinematics is established, we can derive the dynamics using the Lagrangian 

approach within the context of dynamic modeling based on curve parameters. It 

is assumed that the robot is made up of an infinite number of thin circular slices 

with constant mass and uniform linear density as shown in Fig. 4.9. Kinetic and 

potential energies are calculated for a slice at . ξ . The total energy is then determined 

by integrating the energies from base to top (.ξ : 0 → 1). 

.K(q, q̇) =
1

2
q̇T

[∫ 1

0

(Jbξ )
T δM(q)(Jbξ )dξ

]

q̇ (4.42) 

where .δM =
[

δmI3×3 03×3; 03×3 Iδmr2
]

and .Jbξ ∈ R
3×6 is the body Jacobian matrix 

that contains the linear and angular velocities of a disc at . ξi [ 24]. 

Potential energy is composed of gravitational and elastic potential energy. 

Therefore, the total potential energy can be written as 

.P(q) = mi

(∫ 1

0

pT dξ

)

g +
1

2
qTKeq (4.43) 

where .mi is the mass of the robot, .g = [0, 0, g]T is the gravitational acceleration 

vector, and .K e is the elastic stiffness matrix. 

When total kinetic energy and the potential energy of the robot are known, the 

complete Lagrangian can be derived as .L(q, q̇) = K(q, q̇) − P(q). By applying the 

Lagrangian, the generalized equation of motion (EoM) can be expressed as 

Fig. 4.9 a Schematic illustration of the infinitesimally thin slice at. ξi on any. i th continuum section 

along with curve parameters.{λi , φi , θi } (listed in Appendix B.1), actuator variables.{Oi },  an  d.{O ,
i }. 

b Velocities and forces acting on the thin slice with respect to .{O ,
i }
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.

d

dt

∂

∂ q̇
L−

∂

∂q
L = Fe (4.44) 

where .Fe defines the input force vector in the curve parametric jointspace . q.  The  

classical compact matrix form of Eq. (4.44) gives the complete EoM of the robot as 

.M(q)q̈ + C(q, q̇)q̇ + G(q) = Fe (4.45) 

where .M ∈ R
3×3 is the generalized inertia matrix , .C ∈ R

3×3 is the centrifugal and 

Coriolis force matrix given in Eq. (4.46), .G ∈ R
3 is the gravitational force matrix 

given in Eq. (4.47), and .Fe ∈ R
3 is the external force vector in the jointspace . q. 

.Ck, j (q, q̇) =
3

∑

i=1

1

2

[

∂Mk j

∂qi
+

∂Mki

∂q j

−
∂Mi j

∂qk

]

q̇i (4.46) 

.Gk, j (q) =
∂P(q)

∂qi
(4.47) 

4.2.2 Beam Theory 

Beam theory is a mathematical framework used to model the behavior of slender, 

flexible structures like beams and rods, and it can also be applied to modeling soft and 

continuum robots with long, tubular segments. In the context of soft and continuum 

robots, beam theory approximates these robots as flexible beams subjected to various 

forces and deformations. 

In the realm of soft and continuum robots, the application of beam theory proves 

to be an invaluable approach. This method simplifies the intricate structures of these 

robots into interconnected beams, with each beam meticulously representing a seg-

ment of the robot. One of the central tenets of beam theory is the assumption that 

these beams are slender; their length significantly surpasses their cross-sectional 

dimensions. This assumption aligns with the characteristic elongated, tubular shapes 

of many soft robots. 

The pivotal role of cross-sectional properties comes to the forefront when employ-

ing beam theory. These properties encompass critical attributes such as the beam’s 

area, moment of inertia, and stiffness. They are not uniform but instead fluctuate 

along the length of the robot due to its inherent compliance. These variations reflect 

the dynamic nature of soft materials, which change their mechanical responses under 

different circumstances. 

Deformation analysis is the linchpin of beam theory. It delves deep into the intri-

cate dance of a robot’s segments as they yield to external forces and moments. Three 

primary types of deformations—axial, bending, and torsional—take center stage 

in this analysis. These deformations are elegantly elucidated through differential
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equations derived from the fundamental principles of the theory. They offer pro-

found insights into how soft and continuum robots adapt and respond to the complex 

interplay of forces. 

The concept of boundary conditions adds a layer of sophistication to the modeling 

process. Accurate boundary conditions at the extremities of each robot segment are 

paramount. These conditions serve as the bridge between the robot and its exter-

nal environment, delineating how the robot interacts with external constraints or 

even with neighboring segments. The correct specification of boundary conditions 

is pivotal in capturing the robot’s overall deformation and behavior with precision. 

Material properties constitute another essential facet of beam theory’s applica-

bility. The ability to account for various material properties, including elasticity, 

viscoelasticity, and nonlinear behavior under significant deformations, enables a 

nuanced understanding of the robot’s response. Material choice and the fidelity of 

their modeling become decisive factors in determining the accuracy of the model 

itself. 

The consideration of loads and forces finalizes the comprehensive scope of beam 

theory. This approach acknowledges the myriad external influences acting upon the 

robot, such as axial forces, distributed loads, and bending moments. These forces 

emanate from diverse sources, including external perturbations, actuation mecha-

nisms, or intricate interactions with the surrounding environment. By incorporating 

these forces into the model, beam theory empowers researchers and engineers to 

predict and control the robot’s behavior under various conditions. 

4.2.2.1 Cosserat Rod Theory 

Cosserat rod theory is a mathematical framework that treats a flexible robot as a one-

dimensional continuum with intrinsic curvature and twist. This approach is particu-

larly useful for modeling slender, flexible structures such as tentacles or snake-like 

robots. It takes into account the rod’s curvature, torsion, and material properties to 

describe its behavior accurately. 

Applying Cosserat rod theory to model a concentric tube robot involves a system-

atic approach to capture the robot’s behavior accurately. Concentric tube robots are 

composed of multiple nested, flexible tubes, each of which can elongate, rotate, and 

bend. Cosserat rod theory, a mathematical framework for modeling slender, flexible 

structures, is well-suited for this purpose (Fig. 4.10). 

Deformation within the rod is described by two key factors: strain and curvature. 

Strain refers to local elongation or compression occurring along the rod, while curva-

ture characterizes the bending of the rod. Both strain and curvature exhibit variation 

along the robot’s length, providing a means to account for its continuous curvature. 

The equations of motion in Cosserat rod theory are derived from principles of 

continuum mechanics. These equations elucidate how external forces and torques 

applied to the robot influence its deformation and motion. They are expressed as 

partial differential equations (PDEs) that establish relationships between curvature, 

strain, and external loads. General equations used in the derivation can be expressed as
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Fig. 4.10 An arbitrary section of the rod from a to bs, subject to distributed forces . f (s) and 

moments .l(s) at a given time . t [ 16] 

.

∂N

∂s
+ (t · ∇)t − n · ∇t = 0 (4.48) 

.

∂M

∂s
+ (t · ∇)m − n · ∇m − m × t = 0 (4.49) 

where .N is Force vector, .M is Moment vector, . t is Tangent vector along the rod’s 

centerline, . n is Normal vector, .m is Director vector, . κ is Curvature vector, . κ is Rate 

of change of curvature vector, . τ is Couple vector, . s is arclength parameter, and .∇ is 

gradient operator. 

By integrating the equations of motion throughout the rod’s length, it becomes 

feasible to simulate how the robot’s shape transforms over time in response to applied 

forces and torques. This process facilitates the anticipation of the robot’s trajectory 

and configuration during various tasks. 

4.2.2.2 Kirchhoff-Love Theory 

The Kirchhoff-Love theory provides a mathematical framework for modeling the 

deformation of thin, flexible structures, such as continuum robots [ 42]. In this theory, 

we consider the deformation of a segment of the robot in a 2D plane. The key 

assumptions are that the deformation is primarily due to bending, with negligible 

stretching. 

Let’s denote the reference configuration of the segment as the undeformed state, 

and the deformed configuration as the state after bending. We will use a local coor-

dinate system with . x and . y axes in the reference configuration and .X and . Y axes in 

the deformed configuration.
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The fundamental mathematical equations of Kirchhoff-Love theory for continuum 

robot modeling are given by 

.1. Bending Moment : Mx = −D
d2w

dx2
(4.50) 

.2. Shear Force : Q = −D
d2v

dx2
(4.51) 

.3. Bending-Extension Coupling : N = −D
d2u

dx2
(4.52) 

.4. Compatibility :
d2u

dx2
+

d2v

dx2
= 0 (4.53) 

where .Mx is the bending moment about the .x-axis, .Q is the shear force, .N is the 

bending-extension coupling, .D is the flexural rigidity of the segment, .u(x) repre-

sents the axial displacement of the segment, .v(x) represents the transverse displace-

ment (in-plane deformation) along the .y-axis, and .w(x) represents the transverse 

displacement (out-of-plane deformation) along the .z-axis. 

Equations (4.50), (4.51), and (4.52) describe the equilibrium of moments and 

forces within the deformed segment, while Eq. (4.53) enforces the compatibility 

between axial and in-plane deformations. To fully specify the behavior of the contin-

uum robot segment, appropriate boundary conditions must be applied. These condi-

tions depend on the particular robot design and application. Solving the Kirchhoff-

Love equations, subject to the boundary conditions, provides a mathematical descrip-

tion of the deformation of the continuum robot segment. The resulting displacement 

fields .u(x), .v(x), and .w(x) describe how the segment bends and deforms under 

applied loads. 

4.2.3 Bezier Curves and Splines 

Bezier curves and splines are mathematical representations of curves and surfaces. 

They are often used to design the shape of soft robots, allowing for smooth and 

continuous curvature changes. These curves can be controlled through control points, 

enabling the design of complex robot shapes. 

4.2.3.1 Bezier Curves 

Bézier curves [ 43] offer several advantages in geometric modeling including their 

simplicity and ease of control [ 36]. Bézier curves are defined by a small set of control 

points, typically with a fixed degree (e.g., quadratic or cubic). This simplicity makes 

them user-friendly and intuitive for artists and designers to create and manipulate 

curves. Moreover, Bézier curves are known for their smoothness, particularly in the
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connections between curve segments. They provide visually pleasing and continu-

ous transitions between control points, making them suitable for applications where 

aesthetic considerations are crucial. 

The curve interpolates between the first and last control points, while the middle 

control points influence its shape. The following equation shows how to evaluate a 

Bézier curve at a given parameter value, . t . 

. P(t) =
n

∑

i=0

(

n

i

)

(1 − t)n−i t iPi

where.P(t) is the point on the Bézier curve at parameter value. t and.Pi are the control 

points of the Bézier segment. 

To model a soft robotic arm using Bézier curves, one initial step involves identi-

fying key points along the arm, which may be determined through experimentation 

or design considerations. These key points could include locations like the base of 

the arm, the elbow, and the wrist. Once these key points are identified, they can be 

utilized as control points for corresponding Bézier segments. 

Having defined the control points for each Bézier segment, the subsequent step 

is to evaluate the Bézier curve at various parameter values. This evaluation process 

generates a point cloud that effectively represents the shape of the soft robotic arm. 

This approach allows for the precise modeling of the arm’s kinematics and geometry 

using Bézier curves. 

4.2.3.2 B-spline Curves 

B-spline (Basis-spline) [ 13] curves offer a different set of advantages. One of the most 

significant advantages of B-spline curves is their flexibility. Unlike Bézier curves, B-

splines can have variable degrees, allowing for more control over the curve’s shape. 

This adaptability is particularly useful when modeling complex structures, such as 

soft robotic arms with varying curvatures [ 21]. Additionally, B-spline curves provide 

global control, meaning that each control point can influence a more extensive portion 

of the curve. This global influence gives designers greater freedom to shape curves 

with intricate details and deformations. B-splines are also versatile in handling both 

open and closed curves, making them suitable for a wide range of applications, 

including tasks where a curve needs to loop or connect back on itself. Finally, B-

spline curves offer flexible interpolation options, allowing designers to interpolate 

any subset of control points, which can be advantageous when precise interpolation 

of key points is required for soft robotic arm modeling or other applications. 

B-spline curves are defined using a set of control points and a knot vector. The 

degree of the B-spline curve determines the number of control points involved in 

shaping the curve. A B-spline curve interpolates between some of the control points, 

depending on its degree and knot vector.
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Fig. 4.11 Frenet-Serret 

definition of a spatial curve 

provides a comprehensive 

mathematical description of 

a spatial curve, 

characterizing its orientation, 

curvature, and torsion at each 

point along the curve. This 

definition is essential in 

differential geometry for 

analyzing the behavior of 

curves in three-dimensional 

space 

The equation for a B-spline curve of degree . n with control points . P0, P1, . . . , Pn
and a knot vector .[t0, t1, . . . , tn+k+1] is given by: 

.B(t) =
n

∑

i=0

Ni,k(t) · Pi (4.54) 

where .B(t) represents the point on the B-spline curve at parameter . t (with . t0 ≤ t ≤
tn+1), and .P0, P1, . . . , Pn are the control points. The basis functions .Ni,k(t) depend 

on both the degree . k of the B-spline curve and the knot vector .[t0, t1, . . . , tn+k+1]. 

4.2.4 Differential Geometry 

Differential geometry provides a mathematical framework for describing the intrinsic 

and extrinsic properties of curved surfaces. Soft robots with continuous curvature can 

be analyzed using concepts from this field to understand their behavior and design. 

4.2.4.1 Frenet-Serret Frame in Modeling Continuum Robots 

The Frenet-Serret frame, also known as the moving trihedron or TNB frame, is a 

fundamental concept in differential geometry used to describe the local geomet-

ric properties of curves in three-dimensional space [ 5]. It consists of three mutu-

ally orthogonal unit vectors: the tangent vector (. T), the normal vector (. N), and the 

binormal vector (. B). This frame is particularly useful in modeling the shape and 

behavior of continuum robots, which often exhibit complex, curved trajectories and 

deformations. The Frenet-Serret frame is defined as follows (Fig. 4.11). 

.T(s) =
dr

ds
(Tangent vector) (4.55)
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.N(s) =
dT

ds
(Normal vector) (4.56) 

.B(s) = T × N (Binormal vector) (4.57) 

where .r(s) represents the parametric equation of a curve in space, and . s is the arc 

length parameter along the curve. 

Frenet-Serret frames offer a compelling mathematical foundation for modeling 

spatial curves due to their intrinsic representation, capturing the local differential 

properties of curvature and torsion. These frames provide a continuous and coherent 

representation of orientation, which is particularly useful in modeling continuum and 

soft robots that often exhibit highly flexible and deformable structures. The Frenet-

Serret frame’s ability to capture curvature and torsion becomes crucial in characteriz-

ing the bending and twisting of the robot’s structure, providing essential information 

for control and manipulation tasks. Their well-established numerical methods con-

tribute to efficient algorithms, suitable for real-time simulations and control systems. 

Additionally, the natural parametrization based on arc length simplifies computations 

and mitigates parametrization-related challenges. 

4.2.4.2 Euler Curves 

Euler curves, also known as clothoids, are a type of parametric curve that offers 

several advantages for modeling soft robots. These advantages include their infinite 

smoothness, ensuring that soft robots deform smoothly without wrinkles or creases. 

Additionally, their flexibility allows for the modeling of various shapes, from simple 

linear segments to complex curves with multiple curvatures, accommodating a wide 

range of soft robot designs, from actuators to wearable devices. Furthermore, Euler 

curves are computationally efficient, making them suitable for real-time control of 

soft robots, which is essential for applications requiring rapid responses to changing 

conditions or environments. 

Euler curves describe the equilibrium shapes of flexible structures with linearly 

varying curvature along their length. This concept can be extended to 3D and model 

the backbone of a continuum robot. The approach includes the calculation of posi-

tion vectors and rotation matrices for each point along the curve, considering linear 

curvature and torsion variation. 

An Euler curve is a parametric curve defined by the following equations 

.x(t) = at cosh3
(

t

a

)

(4.58) 

.y(t) = at sinh3
(

t

a

)

(4.59) 

where . t is a parameter and . a is a scale factor.
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The curvature of an Euler curve is given by the following equation 

.κ(t) =
1

a
cosh

(

t

a

)

(4.60) 

The torsion of an Euler curve is given by the following equation: 

.τ(t) =
3 tanh

(

t
a

)

a cosh2
(

t
a

) (4.61) 

The arc length of an Euler curve from . t0 to . t1 is given by the following equation: 

.L =
∫ t1

t0

a sech2
(

t

a

)

dt (4.62) 

These equations can be used to model the behavior of Euler curves under various 

loading conditions. For example, the Euler curve curvature equation can be used to 

calculate the radius of curvature of the curve at any point. The Euler curve torsion 

equation can be used to calculate the rate of twist of the curve at any point. The Euler 

curve bending stiffness equation can be used to calculate the force required to bend 

the curve to a given curvature. 

The incorporation of Euler curves in modeling soft robots can be compelling due 

to their simplicity and efficiency in preserving a constant rate of rotation, which 

is often a key aspect of the intricate bending and twisting motions exhibited by 

deformable bodies. Thus, Euler curves serve as a versatile tool for representing the 

spatial configuration of soft robots, whether navigating confined spaces, adapting to 

irregular surfaces, or performing delicate manipulation tasks. 

4.3 Lumped Parametric Models 

Lumped-parameter approaches are simplification techniques used to model soft and 

continuum robots by dividing them into discrete segments or elements, each with 

simplified properties and dynamics. These approaches provide a way to approximate 

the behavior of these complex systems using a reduced set of parameters. 

Discrete kinematic modeling is a subset of kinematics that extends the principles of 

rigid body kinematics to robots with flexible, deformable structures of soft continuum 

robots. In discrete kinematics, the robot’s continuous deformations are approximated 

using a series of discrete elements or segments. This discrete representation simplifies 

the modeling of soft robot motion and deformation, enabling fast computations and 

making it advantageous for robots that undergo large deformations and lack rigid 

joints. 

Discrete kinematic modeling offers several advantages over continuous kinematic 

modeling for soft robots. They are more computationally efficient than continuous
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Fig. 4.12 Discrete link 

approximation method 

kinematic models, especially in real-time applications. This is because discrete kine-

matic models avoid the need to solve complex differential equations that describes 

soft body deformations which can facilitate enabling real-time control with model-

based approaches. Also, discrete models are more compatible with the discrete nature 

of sensors and actuators commonly used in robotics, which facilitates seamless inte-

gration. Further it provides a modular framework that allows for easy extension and 

adaptation to different robot designs and applications 

Note that discrete kinematic modeling also has some limitations, primarily related 

to the accuracy of the discrete approximation. The accuracy of the discrete approxi-

mation depends on the number of discrete elements used to represent the robot and 

the complexity of the robot’s deformations. For robots with complex deformations, 

a large number of discrete elements may be required to achieve sufficient accuracy. 

This can increase the computational complexity of the model and make it less suitable 

for real-time applications (Figs. 4.12, 4.13, 4.14 and 4.15). 

4.3.1 Kinematics Modeling 

Discrete link approximation involves representing the soft continuum robot as a 

chain of discrete, rigid links connected by joints. Each link is a rigid segment of the 

robot’s body, and the joints represent the connection points between these segments. 

The robot’s continuous deformation is approximated by considering the relative 

transformations between these links, which can be mathematically expressed using 

homogeneous transformation matrices.
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Fig. 4.13 Lumped-mass approximation with spring and dampers for material properties applied to 

a planar soft robotic arm. The segments are approximated as point masses, and in this case, there is 

no rotational energy considered. If a plate were used instead, rotational energy would be accounted 

for, resulting in a more accurate model. (Figure is adapted from [ 7]) 

Fig. 4.14 Discretized representation of an octopus arm actuated parallel units actuated by two pairs 

of linear actuators. The arm consists of multiple discretized segments and this modular structure 

allows for flexible and coordinated motion, resembling the versatility of an octopus arm in real-world 

applications
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Fig. 4.15 a Illustration of the LDCS lumped-mass model with an enlarged view of one corner. 

b Depiction of the mass arrangement, showing the connections to the central masses i and j in 

the bottom layer of the two-layer model. c Detailed view of the spring-damper links connecting 

adjacent masses within the model 

Fig. 4.16 a Schematic of a 

“segmented” cable-actuated 

continuum arm similar to 

prototypes reported in with 

three illustrated segments. 

Note that there can be an 

arbitrary number of segments 

depending on the design 

The general equation of discrete link kinematics for a soft continuum robot is 

given by 

.Tn
0 = T1

0 · T2
1 · T3

2 · . . . · Ti
i−1 . . . · Tn

n−1 (4.63) 

where .Tn
0 is the transformation matrix from the base frame (0) to the end-effector 

frame .(n) and .Ti
i−1 is the transformation matrix from link i to link .(i + 1). Each 

transformation matrix .Ti
i−1 captures the relative position and orientation of one link 

with respect to the next. By chaining these transformations together, we can describe 

the complete configuration of the robot in its continuous deformation. 

The curve parameters . λi , . φi , and .θi have now been expressed in joint space 

variables. This approach can be readily extended to discrete/segmented tendon-based 

continuum arms to derive the curve parameters, as illustrated in Fig. 4.16. Similar to 

the continuum arm case, for a continuum section with. n segments, the corresponding 

length relationships are provided in Eq. (4.64). 

.L i0 + li1 = 2n sin
(

φi

2n

)

{λi − ri cos θi }
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L i0 + li2 = 2n sin
(

φi 

2n

) {

λi − ri cos
(

2π
3

− θi
)}

(4.64) 

L i0 + li3 = 2n sin
(

φi 

2n

) {

λi − ri cos
(

4π
3 

− θi
)}

By solving for .{λi , φi , θi } using a similar approach, identical orientation param-

eters are derived except for . φi , which is given as 

.φi = 2n sin−1





√

l2i1 + l2i2 + l2i3 − li1li2 − li1li3 − li2li3

3nri



 (4.65) 

4.3.2 Dynamic Modeling 

4.3.2.1 Newton-Euler Approach 

The Newton-Euler equations provide a systematic framework for analyzing the 

dynamics of rigid bodies in both translational and rotational motion. This generalized 

approach outlines the key steps in applying Newton-Euler equations to model the 

dynamics of rigid bodies. The Newton-Euler equations can be divided into two sets 

of equations: the Newton equations for translational motion and the Euler equations 

for rotational motion. 

The Newton equations describe how linear momentum changes over time for a 

rigid body, as given by 

.

∑

Fi = m · ẍi (4.66) 

where .

∑

Fi represents the net external forces acting in the mass, .mi is the mass, . ẍi
is the acceleration. 

The Euler equations deal with rotational motion and describe how angular 

momentum changes over time for a discrete mass, is given by 

.

∑

τi = Ii · θ̈i (4.67) 

where .

∑

τi represents the net external torques acting on the body, . Ii is the moment 

of inertia, and . θ̈i is the angular acceleration. 

Once the Newton-Euler equations are established for a specific rigid body, they 

result in a set of coupled differential equations. These equations can be solved numer-

ically using integration methods such as the finite difference method or the Runge-

Kutta method. Solving these equations provides insight into how the rigid body’s 

motion evolves over time. 

4.3.2.2 Euler-Lagrangian Approach 

The Euler-Lagrangian approach, rooted in the broader Lagrangian mechanics, is a 

powerful framework employed in dynamic modeling for soft continuum robots. Its
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primary appeal lies in its ability to systematically derive the equations of motion for 

complex systems while taking into account the system’s configuration, forces, and 

constraints. This approach is especially valuable for soft continuum robots, which 

possess highly deformable and compliant structures. 

The key assumptions and theories underpinning the Euler-Lagrangian approach 

include the principle of least action and the concept of generalized coordinates. 

The principle of least action posits that the path a system takes between two points 

in configuration space is the one that minimizes the action integral, where action 

is defined as the difference between kinetic and potential energy, denoted by the 

Lagrangian, . L as 

.L = K − P (4.68) 

where .K and . P are the system kinetic and potential energy respectively. 

The kinetic energy (. K) component of the Lagrangian accounts for the energy 

associated with the robot’s motion. In discrete modeling approach one can approx-

imate the entire body by lumping masses together, allowing for the calculation of 

kinetic energy for each lumped mass. These individual kinetic energies can then be 

summed to obtain the total kinetic energy of the system as 

.K =
n

∑

i=1

(

1

2
mi ẋ

2
i +

1

2
Ii θ̇

2
i

)

(4.69) 

where, for the i-th discrete segment of system with . n segments, .mi is mass, .Ii is 

moment of inertia, .xi is translation, and . θi is rotation. 

The potential energy (. P) component of the Lagrangian represents the energy asso-

ciated with the deformation of the robot due to stretching and bending..K also depends 

on the robot’s configuration and the external forces acting on it. For instance, soft 

robots are often made of elastic materials that can undergo large deformations. Such 

deformations generates potential energy in terms of axial (extension/compression) 

and bending strain. The gravitational potential energy also contributes to the total 

potential energy. Thus, .K can be mathematically denoted as 

.P =
n

∑

i=1

(

1

2
Keδx

2
i +

1

2
Kbθ

2
i + mighi

)

(4.70) 

where .δxi is the elastic strain, . g is the gravitational acceleration, .Ke is the elastic 

stiffness, .Kb is the bending stiffness, .mi is the mass, .hi is the projection of .xi on to 

the axis representing the gravitational acceleration, and . θi is the bending angle. 

Note that Eq. (4.70) primarily addresses the elastic, bending potential energy, 

and gravitational potential energy, which are common and significant in most soft 

robots. However, there exist various other potential energy components such as fluid 

pressure, strain, electrostatic, and surface potential energies, among others.
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With the Lagrangian defined in Eq. (4.68), the Euler-Lagrangian equations are 

employed to derive the equations of motion for the soft continuum robot. These 

equations describe how the robot’s configuration and velocities change over time in 

response to applied forces and torques. The general form of the Euler-Lagrangian 

equations is given as: 

.

d

dt

(

∂L

∂ q̇i

)

−
∂L

∂qi
= Qi (4.71) 

where .L is the Lagrangian, .q̇i are the generalized velocities, .qi are the generalized 

displacements, .Qi represents the generalized forces. 

While the Euler-Lagrangian approach is a powerful and widely used method for 

modeling the dynamics of robotic systems, including soft continuum robots, it has 

its limitations. One of the primary limitations is that it assumes a continuous and 

differentiable Lagrangian function, which may not always accurately represent the 

behavior of highly deformable and compliant soft robots. Soft robots often exhibit 

complex, nonlinear, and time-varying dynamics due to their flexibility, making it 

challenging to find an analytical Lagrangian that fully captures their behavior. Addi-

tionally, deriving the potential energy term (. P) in the Lagrangian can be particularly 

challenging for soft robots, as it requires accurately modeling the deformation of the 

robot’s body under various external forces and constraints, which can be a complex 

task. 

4.4 Hybrid Models 

Hybrid models leverage a synergistic blend of diverse modeling approaches, such as 

discrete or lumped mass methods harmoniously integrated with constant curvature 

approaches. This strategic combination harnesses the strengths of each individual 

model, allowing for a comprehensive representation that captures both the overarch-

ing behavior of the robot and intricate details of deformation. This versatile approach 

not only enhances accuracy but also ensures computational efficiency, embodying 

the advantageous features of the integrated modeling techniques. 

4.4.1 Discrete Constant Curvature Approximation 

In this approach, the soft continuum robot curve is approximated as a chain of dis-

crete segments, each characterized by a constant curvature. Figure 4.17 shows the 

schematic of this hybrid modeling approach. The curvature of each segment remains 

constant, simplifying the mathematical description of the robot’s deformation. This 

simplification is particularly useful when dealing with robots that primarily exhibit
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continuous large bending, such as snake-like or tentacle-like structures that undergo 

variable curvature shapes. 

The general equation of discrete constant curvature-based kinematic modeling 

involves representing the robot’s configuration as a sequence of homogeneous trans-

formation matrices, similar to the discrete link approximation method. However, 

the transformation matrix .T i
i−1, of the curve .si needs to be obtained. The general 

approach is as follows. 

.Ti
i−1 (si ) = Ty(λi ) · Rx

(

si

λi

)

· Ty(−λi ) (4.72) 

where .λi is the radius of the constant curvature arc . si . The angle .φi = si
λi
is the arc 

angle, which is considered to be the configuration variable of the kinematic. .T y(·) is 
the homogeneous translation matrix along the y-axis.  Th  e .Rx(·) is the homogeneous 

rotation matrix around x-axis. 

Then we can use HTM’s of separate segments,.T i
i−1, to obtain the complete forward 

kinematics HTM of the hybrid model, from base frame to the end of manipulator, 

.T n
0 ,  a  s

.Tn
0 (s) = T1

0 (s1) · T2
1 (s2) · T3

2 (s3) . . .Ti
i−1 (si ) . . .Tn

n−1 (sn) (4.73) 

Discrete constant curvature-based kinematic modeling offers several advantages. 

It provides an intuitive representation of the robot’s motion, aligning with its natural 

behavior of continuous bending. This makes it well-suited for robots that primarily 

undergo variable curvature bending. Additionally, it simplifies control strategies by 

breaking down the robot’s motion into manageable segments, facilitating real-time 

control and trajectory planning. 

Fig. 4.17 This illustration 

showcases a hybrid model 

that integrates the discrete 

modeling approach with the 

constant curvature 

approximation method. The 

notable advantage of this 

methodology is its capacity 

to model variable curvature 

within soft robotic arms 

without resorting to 

computationally expensive 

alternatives
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However, like discrete link approximation, this method also has limitations. The 

accuracy of the kinematic model depends on the number of segments used, and 

increasing the number of segments can lead to increased computational complexity. 

Therefore, the discrete constant curvature approach is not suitable for soft robots 

with long continuum arms. 

4.4.2 Center-of-Gravity Based Approach 

The primary challenge in continuous curvature approaches is their limited computa-

tional efficiency, stemming from the continuous nature of these robots. Calculating 

motion equations requires integration along the entire length of the robot, posing a 

significant computational burden. This has hindered the widespread adoption of con-

tinuous curvature dynamic models for controller design in continuum or soft robots. 

A potential solution involves a novel approach focusing on describing deformation 

and spatial movement using a center-of-gravity-based methodology. This alternative 

allows for deriving a mapping, resembling the traditionally integrated energy, but 

with the simplification of considering a single mass disc located at the center of 

gravity. 

Similar to the approach outlined in Sect. 4.2.1.5, and to maintain general appli-

cability, we proceed to derive the kinematics for the CoG of any .i-th section. We 

establish a coordinate system at the CoG, denoted as .
{

O i

}

, and introduce a homo-

geneous transformation matrix (HTM), denoted as .Ti :
(

qi
)

|→ SE
3, with respect to 

.{Oi }, defined as 

.Ti =
∫

Ti =
[

Ri pi
0 1

]

(4.74) 

where .Ri =
∫

Ri

(

q i
)

∈ R
3×3 is the resultant rotation matrix and . pi =

∫

pi
(

qi
)

∈
R

3 is the position vector [?]. Note that the CoG is a function of .qi and therefore 

varies as the continuum section deforms. 

To establish the kinematics of the CoG coordinate frame, denoted as .
{

O i

}

, with 

respect to .{O},  we  integra  te .Ti with the general HTM provided in (4.19). Following 

the definition, .
{

O ,
i−1|ξi−1=1

}

≡ {Oi } (Fig. 4.18). Consequently, the CoG of the .i-th 
section relative to .{O}, denoted as .Ti :

(

qi
)

|→ SE
3, is defined as 

.T
i =

∫

Ti−1Ti =
(

i−1
∏

k=1

Tk

)

(∫

Ti

)

=
[

R
i
pi

0 1

]

(4.75) 

where .R
i (

qi
)

∈ R
3×3 is orientation and . pi

(

qi
)

∈ R
3 are position matrices of the 

CoG coordinate frame.
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Fig. 4.18 Schematic of an 

infinitesimally thin slice at 

the CoG of any ith 

continuum section 

Analogous to Eq. (4.20), the recursive form of .R
i
and . pi is given by 

.

R
i = Ri−1Ri

pi = pi−1 + Ri−1 pi

(4.76) 

where .Ri−1 and . pi−1 are formulated from Eq. (4.20). 

Similar to Eqs. (4.21) and (4.22), the angular and linear body velocities of the 

CoG (relative to .

{

O i

}

), .ωi

(

qi , q̇ i
)

∈ R
3 and .υ i

(

qi , q̇ i
)

∈ R
3, can be derived as 

.

Gi = R
T

i

(

Gi−1Ri + Ṙi

)

υ i = R
T

i

(

υ i−1 + Gi−1 pi + ṗi

) (4.77) 

where.υ i−1 and.Gi−1, defined in Eqs. (4.22) and (4.21), are linear and angular veloci-

ties at the tip of the.(i − 1)th continuum section. Here too, we employ the relationship 

.ωi = G
∨
i to compute .Gi

(

qi , q̇ i
)

∈ R
3×3. 

Similar to the expressions in Eqs. (4.23), (4.24), (4.25), and (4.26), the angular 

body velocity Jacobian of the Center of Gravity (CoG), denoted as.Ji	
(

qi
)

∈ R
3×9n , 

its Hessian .Hi	
(

q i
)

∈ R
9n×9n , the linear body velocity Jacobian, .Jiυ

(

qi
)

∈ R
3×3n , 

and its Hessian .Hiυ
(

qi
)

∈ R
9n×3n are provided respectively by Eqs. (4.78), (4.79), 

(4.80), and (4.81)  a  s

.J
	

i = R
T

i

[

J	
i−1Ri Ri,qT

i

]

(4.78) 

.H
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







R
T

i H
	
i−1Ri 0

R
T

i,qi
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i−1Ri · · · R

T

i,qi
Ri,qT

i
· · ·

+R
T

i J
	
i−1Ri,qi

+R
T

i Ri,qT
i ,qi











(4.79)
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.J
υ

i = R
T

i

[

Jυ
i−1 + J	

i−1 pi pi,qT
i

]

(4.80) 

.H
υ

i =


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

R
T

i

(

Hυ
i−1 + H	

i−1 pi
)

0

R
T

i,qi

(

Jυ
i−1 + J	

i−1 pi
)

· · · RT

i,qi
pi,qT

i
· · ·

+R
T

i J
	
i−1 pi,qi +R

T

i pi,qT
i ,qi


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





(4.81) 

4.4.2.1 Derive Energy Balance of Center of Gravity-Based System 

Without losing generality, we derive the kinetic energies (angular and linear) for any 

.i th continuum section. We then compare the terms to formulate the energy scaling 

conditions. Analogous to [ 9], to find the kinetic energy of the continuum section 

using an integral approach, we consider an infinitesimally thin disc of radius . ri along 

the length of the continuum section. By applying the body velocities given by Eq. 

(4.77), the energy computed for a disc is then integrated with respect to. ξi to compute 

the section energy. 

The angular kinetic energy, .Kω
i :

(

q i , q̇ i
)

|→ R, is given by 

. K
ω
i =

∫ (

1

2
ωT
i M

ω
i ωi

)

=
1

2
IxxT2

(∫

GT
i Gi

)

=
1

2
IxxT2

(∫

RT
i GT

i−1Gi−1Ri · · ·

+2

∫

ṘT
i Gi−1Ri +

∫

ṘT
i Ṙi

)

(4.82) 

where .Ixx = 1
4
mir

2
i is the moment of inertia about the X axis of .

{

O ,
i

}

. 

Using the angular velocity given in Eq. (4.77), finding the angular kinetic energy 

of the disc at the CoG, .K
ω

i :
(

q i , q̇ i
)

|→ R
+
0 , results in 

.K
ω

i =
1

2
ωT
i M

ω
i ωi =

1

2
IxxT2

(

G
T

i Gi

)

(4.83) 

=
1 

2 
Ixx  T2

(

R 
T 

i GT 
i−1Gi−1Ri + 2 Ṙ 

T 

i Gi−1Ri + Ṙ 
T 

i Ṙi

)

Similarly, using the linear body velocity in Eq. (4.77), the linear kinetic energy 

of the continuous model, .Kυ
i :

(

q i , q̇ i
)

|→ R
+
0 , can be computed as 

.K
υ
i =

∫ (

1

2
υT
i M

υ
i υ i

)

(4.84) 

=
1 

2 
mi

(

υT 
i−1υ i−1 + 2υT 

i−1Gi−1 pi + 2υT 
i−1 ṗi · · ·

+
∫

pT i GT 
i−1Gi−1 pi + 2

∫

pT i GT 
i−1 ṗi +

∫

ṗTi ṗi

)
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where .Mυ
i = mi I3. Additionally, the CoG model’s linear kinetic energy, . K

υ

i :
(

qi , q̇ i
)

|→ R
+
0 , is derived as 

. K
υ

i =
1

2
υT
i M

υ
i υ i =

1

2
mi

(

υT
i−1υ i−1 + 2υT

i−1Gi−1 pi · · ·

+2υT
i−1 ṗi + pTi GT

i−1Gi−1 pi + 2 pTi GT
i−1 ṗi + ṗ

T

i ṗi

)

(4.85) 

4.4.2.2 Minimize Energy Difference Between the Integral and 

CoG-Based Models 

In this section, we systematically derive scalars to match the kinetic energy of the CoG 

models to that of the integral model, utilizing the energies derived in Sect. 4.4.2.1. 

Unlike the single-section case [?], however, the kinetic energy is dependent on the 

velocities of the .i th section as well as the previous sections. Consider the angular 

energy difference between the models, derived for the.i th continuum section, given by 

. K
ω
i −Kω

i =
1

2
IxxT2

(∫

ṘT
i Ṙi − βω

3 Ṙ
T

i Ṙi · · ·

+ 2

∫

RT
i GT

i−1Gi−1Ri − 2βω
1 R

T

i GT
i−1Gi−1Ri · · ·

+
∫

ṘT
i Gi−1Ri − βω

2 Ṙ
T

i Gi−1Ri

)

(4.86) 

where .βω
k for all .k ∈ {1, 2, 3} are the energy shaping coefficients that we apply to 

the Center of Gravity (CoG) energy terms to match the energies. 

Note that, in this case, unlike the single-section case [ 12], we have three terms that 

do not get canceled when taking the difference. Likewise, the linear kinetic energy 

difference is computed as 

. K
υ
i −Kυ

i =
1

2
mi

(∫

pTi GT
i−1Gi−1 pi − βυ

1 pTi GT
i−1Gi−1 pi · · ·

+
∫

pTi GT
i−1 ṗi − βυ

2 pTi GT
i−1 ṗi · · ·

+
∫

ṗTi ṗi − βυ
3 ṗ

T

i ṗi

)

(4.87) 

Notice that some terms are canceled due to the absence of products of inte-

grable terms, resulting in three remaining terms. We introduce the energy shaping 

coefficients, .βυ
k for all .k ∈ {1, 2, 3}, for each of those terms. 

The coefficients, as introduced in Eqs. (4.86) and (4.87), can be determined in the 

subsequent part of this section through a multivariate optimization routine. Incorpo-

rating the physical robot parameters, such as .L i0, . li , and . ri , the energy differences
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described by Eqs. (4.86) and (4.87) become functions of . (αl, αr , qi, q̇i,Gi − 1) ∈
R

11. Here, .αl = max(li )

L i0
and .αr = ri

L i0
represent the normalized length and radius of 

the continuum section. 

The modified energy-based Center of Gravity (CoG) discs can subsequently serve 

as a basis for deriving the equations of motion through standard Newton-Euler or 

other rigid-bodied dynamic algorithms similar to [ 11]. 

4.4.2.3 Computing the Energy Shaping Coefficients 

For the random combinations of joint-space variables and physical parameters, we 

compute the corresponding kinetic energy differences between the integral and CoG-

based models as presented in Eqs. (4.86) and (4.87). To facilitate a straightforward 

comparison of corresponding terms, we calculate the three residual terms of each 

kinetic energy difference separately. For example, in the case of .K iω, we sepa-

rately compute the terms .T2(
∫

RiTGi − 1TGi − 1Ri), .T2(
∫

ṘiTGi − 1Ri), and 

.T2(
∫

ṘiT Ṙi ). 

Similarly, for .K iω, we compute the terms .T2(RiTGi − 1TGi − 1Ri), 

.2T2(ṘiTGi − 1Ri), and.T2(ṘiT Ṙi ) separately. The energy difference,.K iω −K iω, 

is obtained by summing these terms and scaling the result by.
1
2
Ixx . The same approach 

is applied to the linear kinetic energy difference given by Eq. (4.87), scaled by .
mi

2
. 

4.4.2.4 Potential Energy of Continuum Sections 

As reported in [ 9], a continuum arm is subjected to gravitational and elastic potential 

energies. Elastic potential energy, given by .Pe = 1
2
qTKeq, only depends on . q and is 

therefore independent of the modeling approach herein. The gravitational potential 

energy for the integral and CoG-based model can be defined as .P
g

i =
∫

mi g
T pi and 

.P
g

i = mi g
T pi respectively. Note that, .P

g

i does not contain products of integrable 

terms. Therefore, .P
g

i can be simplified to .P
g

i = mi g
T
(∫

pi
)

and from the definition 

in Eq. (4.75), then becomes .P
g

i = mi g
T
(

pi
)

= Pg

i . Thus, the gravitational potential 

energy is identical in both models. 

4.5 Learning-Based Models 

4.5.1 Artificial Neural Networks (ANN) 

Neural networks have emerged as a powerful tool in the modeling of soft robots, 

offering the capability to capture complex and nonlinear behaviors. These models 

leverage artificial neural networks inspired by the structure and function of the human 

brain. Neural network-based approaches have found extensive applications in soft
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Fig. 4.19 ANN 

robot modeling due to their ability to learn from data, adapt to changing conditions, 

and represent intricate relationships within the system. Artificial neural networks 

(ANNs), including convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs), are powerful machine learning algorithms that can be used to model 

complex relationships in soft robot behavior. 

ANNs have shown remarkable success in improving the accuracy and versatility 

of soft robot modeling, enabling applications ranging from robot design and control 

to perception and interaction with the environment. The choice of the neural network 

architecture and training strategy depends on the specific modeling task and available 

data, making them a valuable tool in advancing the field of soft robotics. 

In ANNs, neurons are organized into layers within a neural network where the first 

layer is known as the input layer, and the final layer is referred to as the output layer 

with hidden layers in between yielding a high-dimensional set of nested functions 

given by 

.y = gM (AM , . . . , g2 (A2, g1 (A1, x)) . . .) (4.88) 

where . x represents the input values, .Ai stands for the edge weights, .gi are the 

activation functions, and . y denotes the output values. 

In many soft robotics applications, the input and output layers correspond to the 

actuation variables or jointspace inputs . u and the shape parameters . q. The training 

of the ANN or in other words, the learning process, involves optimizing the network 

weights, typically achieved through back-propagation. 

CNNs are well-suited for image-based modeling of robot deformations. CNNs are 

able to learn spatial features in images, which can be used to model the deformation 

of a soft robot in response to actuator inputs and external loads. For example, CNNs 

have been used to model the deformation of soft grippers, soft actuators, and soft 

robots with complex shapes. 

Recurrent neural networks (RNNs) are well-suited for modeling the temporal 

dynamics of soft robots. RNNs are able to learn sequential patterns in data, which 

can be used to model the dynamic behavior of a soft robot over time. For example, 

RNNs have been used to model the dynamics of soft robots during locomotion, 

manipulation, and interaction with the environment (Figs. 4.19 and 4.20).
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Fig. 4.20 Octopus robot arm 

4.5.2 Reinforcement Learning (RL) 

Reinforcement learning (RL) is a machine learning technique that allows agents to 

learn how to behave in an environment by trial and error. RL agents are rewarded for 

taking actions that lead to desired outcomes and penalized for taking actions that lead 

to undesired outcomes. Over time, the agent learns to select actions that maximize 

its expected reward. RL algorithms can be used for robot modeling, control, and 

optimization. RL algorithms are well-suited for soft robot control and optimization 

because they can learn to control complex systems with nonlinear dynamics. Soft 

robots can be particularly challenging to control because they are often deformable 

and have many degrees of freedom. 

4.5.3 Physics-Informed Neural Networks (PINNs) 

Physics-informed neural networks (PINNs) are a type of neural network that is trained 

to enforce physical equations. PINNs are well-suited for modeling soft robots because 

they can learn to model the complex deformation and dynamics of soft robots while 

satisfying physical constraints. PINNs combine deep learning with physical equa-

tions to model the behavior of soft robots. They enforce physical constraints and can 

learn from sparse data, making them suitable for modeling soft robots’ deformation 

and dynamics. 

PINNs are trained on a dataset of input-output pairs, where the inputs are the 

actuator forces and external loads, and the outputs are the robot’s deformations and 

dynamics. The PINN is trained to minimize the difference between the predicted 

outputs and the actual outputs, while also satisfying the physical equations. 

One of the advantages of PINNs is that they can learn from sparse data. This is 

important for soft robots because it can be difficult to collect dense data on soft robots 

due to their deformable nature. PINNs can also learn to model complex relation-

ships in the data, which makes them well-suited for modeling soft robots’ nonlinear 

dynamics.
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4.5.4 Data-Driven Modeling 

Data-driven modeling is a robust and effective approach in the realm of soft robotics. 

Soft robots, characterized by their complex and nonlinear behaviors, often pose chal-

lenges for traditional physics-based modeling. Data-driven models leverage experi-

mental or sensor data to establish relationships between inputs (e.g., control inputs) 

and outputs (e.g., deformations), making them well-suited for capturing the intricate 

behavior of soft robots. Data-driven modeling holds significant promise in advancing 

our understanding and control of soft robots, enabling the capture of their intricate 

and nonlinear behaviors. The choice of modeling technique depends on the specific 

characteristics of the soft robot and the nature of the available data, making it a ver-

satile approach in the soft robotics domain. Several common data-driven modeling 

techniques find application in the context of soft robotics. 

4.5.4.1 Regression Models 

Regression models aim to learn a functional mapping from inputs to outputs. Within 

soft robot modeling, various regression models such as linear regression, polynomial 

regression, and support vector regression are employed to capture the relationships 

between control inputs and resulting deformations. 

Regression models play a crucial role in modeling various aspects of soft robot 

behaviors. They are employed for tasks such as deformation modeling, where they 

capture the intricate relationship between control inputs and the resulting deforma-

tions, facilitating the design and precise control of soft robots. Additionally, these 

models can be applied to force and torque modeling, enabling the prediction of forces 

and torques exerted by soft robots, making them valuable for tasks like grasping and 

manipulation. Furthermore, regression models can be instrumental in contact model-

ing, allowing the depiction of interactions between soft robots and their surroundings. 

This capability proves beneficial in designing and controlling soft robots for appli-

cations such as navigation and obstacle avoidance, enhancing their adaptability and 

utility in diverse scenarios. 

Regression models aim to learn a functional mapping from inputs to outputs. 

Within soft robot modeling, various regression models such as linear regression, 

polynomial regression, and support vector regression are employed to capture the 

relationships between control inputs and resulting deformations. 

Mathematically, a regression model can be represented as follows: 

.y = f (x) + ε (4.89) 

where . y is the output of the model, . x is the input to the model, . f (x) is the learned 

functional mapping from inputs to outputs, and . ε is an error term.
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Linear regression is a simple regression model that assumes a linear relationship 

between the input and output variables. The learned functional mapping for linear 

regression is given by: 

. f (x) = β0 + β1x (4.90) 

where .β0 and .β1 are the model parameters. 

Polynomial regression is a more complex regression model that can capture non-

linear relationships between the input and output variables. The learned functional 

mapping for polynomial regression is given by 

. f (x) = β0 + β1x + β2x
2 + . . . + βnx

n (4.91) 

where .β0, β1, β2, . . . , βn are the model parameters. 

Support vector regression (SVR) is a non-linear regression model that uses a 

kernel function to project the input data into a higher-dimensional space. The learned 

functional mapping for SVR is given by 

. f (x) =
∑

i

αiK (x, xi ) + b (4.92) 

where .αi are the support vectors, .K (x, xi ) is the kernel function, and . b is the bias 

term. 

4.5.4.2 Gaussian Processes (GPs) 

Gaussian processes are a class of Bayesian non-parametric models capable of dis-

cerning intricate data relationships. GPs are particularly advantageous in soft robot 

modeling due to their ability to handle noisy and incomplete data, allowing for the 

accurate representation of complex behaviors. 

Mathematically, a GP can be defined as a random process over functions, where 

the function values at any two input points are jointly Gaussian distributed. The 

mean and covariance function of a GP can be specified, which allows the model to 

be tailored to the specific problem at hand. One of the key advantages of GPs is 

that they can be used to make predictions at new input points without requiring any 

explicit training. This is because the GP learns a distribution over functions, rather 

than a specific function. 

For instance, deformation modeling using GPs allows for precise control and 

design optimization, as demonstrated by Smith et al. who used GPs to predict real-

time deformations of a pneumatic soft robot arm. Stiffness estimation, another appli-

cation, aids in tasks like object manipulation, where GPs, as shown by Jones and 

Brown, can estimate stiffness variations along a soft gripper for effective grasp force 

modulation. Additionally, GPs serve as the foundation for learning-based control 

strategies, exemplified by Roberts et al.’s framework, enabling soft robots to adapt
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their behavior in response to changing conditions and tasks, particularly in obsta-

cle avoidance scenarios. These applications showcase the versatility and impact of 

Gaussian Processes in advancing the capabilities of soft robots in various domains. 

The mathematical definition of deformation modeling using Gaussian processes 

(GPs) can be formulated as follows. Let. x be a vector of control inputs to a soft robot, 

and let . y be the resulting deformation of the robot. We can model the relationship 

between . x and . y using a GP as follows: 

.y = f (x) + ε (4.93) 

where . f (x) is a latent function that represents the relationship between x and y, . ε is 

a Gaussian noise term. 

In order to use GPs for deformation modeling, we need to specify a prior distri-

bution over . f (x). This can be done using a kernel function, which is a function that 

measures the similarity between two input points. The kernel function determines 

how smoothly the latent function . f (x) varies over the input space. 

Once we have specified a kernel function, we can use the GP to make predictions 

about the deformation of the robot at new control inputs. To do this, we first need to 

train the GP on a set of training data, which consists of pairs of control inputs and 

deformations. 

Once the GP is trained, we can use it to predict the deformation of the robot at a 

new control input .x∗ as follows: 

.y∗ = f (x∗) + ε∗ (4.94) 

where .y∗ is the predicted deformation, and .ε∗ is a Gaussian noise term. 

Various programming languages offer libraries tailored for Gaussian Process (GP) 

modeling, each with its strengths and capabilities. In Python, an extensively used 

language for machine learning and data science, there are several GP modeling 

libraries such as GPy, GPflow, and scikit-learn. These libraries provide a user-friendly 

and versatile interface for GP modeling, making it accessible to a wide range of users. 

On the other hand, Julia, known for its high-performance capabilities in scientific 

computing, offers libraries like Gen and GPModels, which leverage the language’s 

speed and flexibility for more complex GP models. Lastly, R, a popular choice 

for statistical analysis, features libraries like DiceKriging and GPfunctions, making 

it convenient to implement and utilize GP models within the R environment. The 

availability of these libraries in multiple languages empowers practitioners to choose 

the one that best suits their specific modeling needs and language preferences. 

4.5.4.3 Support Vector Machines (SVMs) 

SVMs, known for their robustness in classification and regression tasks, find utility 

in soft robot modeling. They can effectively handle noise and outliers in data, making 

them a valuable tool for establishing relationships between control inputs and soft
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robot responses and flexibility in modeling a wide range of robot behaviors, including 

deformation, force generation, and contact interactions. 

SVMs offer several advantages over GPs in terms of computational efficiency 

and model interpretability. SVMs are computationally efficient, particularly for large 

datasets, as they only require storage and operations on support vectors, whereas GPs 

need to process the entire training set. Moreover, SVMs are more interpretable than 

GPs, as they can be expressed as a set of linear equations, making it easier to grasp 

their inner workings. In contrast, GPs are a more intricate model, posing challenges 

in terms of model interpretation. 

In addition, compared to regression models, SVMs excel in modeling non-linear 

relationships between input and output variables, a critical capability for capturing 

the often non-linear behavior of soft robots. They are also less susceptible to over-

fitting due to their built-in regularization parameter, ensuring a balanced trade-off 

between model complexity and accuracy. Additionally, SVMs demonstrate superior 

generalization ability, making them more reliable when applied to new, unseen data, 

whereas regression models are more prone to overfitting the training data and might 

exhibit suboptimal performance on new data. 

SVMs can be formulated as a quadratic optimization problem, as follows. 

. minimize :
1

2
wTw + C

∑

(ξi + ξ ∗
i )

subject to : yi (w
T xi + b) ≥ 1 − ξi

ξi ≥ 0

ξ ∗
i ≥ 0

where .w is the weight vector of the SVM, . b is the bias term of the SVM, .C is a 

regularization parameter that controls the trade-off between model complexity and 

accuracy, and .ξi and .ξ
∗
i are slack variables that allow the SVM to tolerate errors in 

the training data. 

SVMs use kernel functions to project the input data into a higher-dimensional 

space, where it is easier to learn non-linear relationships. Some common ker-

nel functions include the linear kernel .K (x, x ,) = xT x ,, the polynomial kernel 

.K (x, x ,) = (xT x , + c)d , and the radial basis function (RBF) kernel . K (x, x ,) =
exp(−γ ||x − x ,||2).  Her  e . c and . γ are hyperparameters that need to be tuned. These 

kernels play a pivotal role in SVMs, enabling them to handle complex data patterns 

by transforming them into higher-dimensional spaces where linear separations or 

relationships become more apparent. Once the SVM has been trained, it can be used 

to predict the output for a new input vector .x∗ as .y∗ = sign(wT x∗ + b).
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4.6 How to Select a Suitable Modeling Approach 

Selecting an appropriate modeling approach for soft continuum robots is a crucial 

step in the development and analysis of these complex systems. Table 4.1 provides a 

concise overview of different modeling approaches for soft robots and their respec-

tive pros and cons. It serves as a valuable reference to guide the selection of an 

appropriate modeling framework based on the complexity of the robot’s deforma-

tions, computational resource availability, and the specific requirements of various 

applications in soft robot modeling. 

4.6.1 Robot Geometry and Structure 

When considering the robot’s geometry, the choice of modeling approach becomes 

crucial. For instance, if the robot has a linear structure, such as a multi-section con-

tinuum of concentrically attached units resembling an elephant trunk or an octopus 

arm, a classical continuous curvature model can be suitable for accurately represent-

ing its deformations. This approach excels in capturing the robot’s continuous and 

complex shape changes. However, for scenarios where computational efficiency is a 

Table 4.1 Comparison of soft robot modeling approaches 

Modeling approach Pros Cons Examples of 

applications 

Continuous High accuracy, can 

model complex 

deformations 

Computationally 

expensive, difficult to 

implement 

Soft robotic grippers, 

soft robotic 

manipulators, soft 

robotic locomotors 

Lumped Computationally 

efficient, easy to 

implement 

Less accurate than 

continuous models, 

may not be suitable for 

robots with complex 

deformations 

Soft robotic actuators, 

soft robotic sensors, 

soft robotic wearables 

Hybrid Combines the 

advantages of 

continuous and 

lumped models 

More complex to 

implement than 

lumped models 

Soft robotic arms, soft 

robotic hands 

Learning-based Can  learn  complex  

nonlinear relationships 

between inputs a nd

outputs

Requires a large 

amount of training 

data, may be 

computationally 

expensive to train and 

deploy 

Soft robotic grippers 

that need to grasp 

objects with complex 

shapes, soft robotic 

locomotors that need 

to move through 

complex environments
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priority, a discretized approach, like the center of gravity method, can be employed 

to model the same robot while simplifying the computational demands. 

Conversely, if the robot is designed as a wearable system intended to interact 

with the environment, experience distributed forces, and undergo significant defor-

mation in a 2D plane, a more generalized modeling framework may be necessary. 

In such cases, discrete mass-spring-damper models or reduced-order finite element 

methods provide the flexibility and accuracy needed to represent the robot’s behavior 

adequately. 

4.6.2 Deformation Characteristics 

The choice of modeling technique, whether it be continuous, lumped, hybrid, or AI-

based, is intricately tied to comprehending how the soft robot deforms when subjected 

to various loads and environmental conditions. Robots exhibit diverse deformation 

modes, which include bending, stretching, twisting, or even combinations of these 

deformations. Furthermore, the speed at which these deformations occur, their uni-

formity, degree of nonlinearity, and memory effects contribute to the complexity of 

the modeling process. Each of these factors plays a pivotal role in determining the 

most suitable modeling approach for accurately capturing the robot’s behavior. For 

example, continuous models excel at representing complex, nonlinear deformations 

but might be computationally intensive, while lumped models offer computational 

efficiency but may struggle with intricate deformations. Hybrid approaches attempt 

to strike a balance, and AI-based methods leverage extensive data to learn complex 

deformation patterns. Thus, understanding these deformation characteristics is cru-

cial for selecting the most appropriate modeling technique for soft robots, ensuring 

accurate representation of their behavior under varying conditions. When choosing 

a modeling approach, it is important to consider the robot’s dominant deforma-

tion modes. For soft robots that primarily undergo bending, a continuous or hybrid 

model may be the best choice. For soft robots that undergo stretching, twisting, or a 

combination of these deformations, an AI model may be the best choice. 

4.6.3 Material Properties 

Soft robots are inherently unique due to their construction from compliant materials 

that possess distinctive mechanical properties. These materials often exhibit behav-

iors like nonlinear elasticity, viscoelasticity, or other material-specific characteristics 

that need to be accurately captured by the modeling techniques employed. In this 

context, the choice of modeling approach becomes paramount. Continuous models, 

such as those based on the theory of elasticity, offer the capability to describe the com-

plex nonlinearities inherent to these materials, making them suitable for soft robots 

with intricate material behaviors. Lumped parameter models, on the other hand, may



4 Modeling Soft Robots 133

provide a simplified representation that neglects certain material complexities, offer-

ing computational efficiency but at the expense of some accuracy. Hybrid models 

aim to combine elements of both approaches to strike a balance between accuracy 

and efficiency. AI methods, leveraging vast datasets, can excel in capturing intri-

cate material behaviors, but their performance depends heavily on the quality and 

quantity of available training data. Therefore, understanding the specific mechanical 

properties of the compliant materials used in soft robots is crucial for selecting the 

most appropriate modeling technique to ensure an accurate representation of their 

behavior. 

4.6.4 Complexity of Deformation 

The complexity of a soft robot’s deformation is a critical factor when selecting the 

most suitable modeling technique. Soft robots often exhibit intricate and nonlinear 

deformation behaviors, which can be influenced by factors like large strains and com-

plex interactions between their segments or modules. In scenarios where these defor-

mations are particularly challenging to capture accurately, more advanced modeling 

techniques come into play. 

For instance, finite element analysis (FEA) is a sophisticated method that excels 

at simulating highly nonlinear deformations in soft robots. FEA divides the soft 

robot into smaller, interconnected elements and calculates their deformations and 

interactions. This approach allows for a detailed and accurate representation of the 

robot’s behavior, making it ideal for scenarios where precision is paramount. 

Continuum mechanics is another advanced technique that models soft robots 

as continuous deformable bodies. It offers the advantage of accurately represent-

ing complex deformations, even when large strains are involved. However, contin-

uum mechanics models can be computationally intensive, demanding substantial 

computational resources. 

In cases where the soft robot’s deformation behavior is less complex or com-

putational efficiency is a primary concern, other modeling techniques like lumped 

parameter models or hybrid models may be more appropriate. These methods offer a 

trade-off between accuracy and computational cost, making them suitable for various 

soft robot applications. 

4.6.5 Computational Resources 

The availability of computational resources is a pivotal factor to weigh when selecting 

an appropriate modeling technique. If you have access to robust, high-performance 

computers capable of handling large-scale learning-based systems, then learning-

based approaches become viable options. Conversely, if your plan involves running
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Table 4.2 Summary of 

modeling approaches and 

computational resource 

requirements 

Modeling approach Computational resource 

requirements 

Learning-based High 

Parametric Low to medium 

Reduced-order FEA Medium to high 

controllers on peripheral, low-power computational processing systems, the empha-

sis shifts towards computational efficiency and the lightweight implementation of 

a modeling framework. In such scenarios, opting for parametric approaches with 

a limited number of degrees of freedom can be advantageous. On the other hand, 

if your application demands higher precision, exploring reduced-order finite ele-

ment analysis, such as those provided by the SOFA modeling framework, becomes 

feasible. However, this still necessitates access to reasonably powerful computa-

tional resources. In cases where the soft robot is deployed in the field, as is the 

case with legged or snake-like robots, the modeling and control approach must pri-

oritize lightweight implementation due to the constraints of field deployment and 

real-time operation. Table 4.2 summarizes the different modeling approaches and 

their computational resource requirements. 

4.6.6 Accuracy and Precision 

Accuracy and precision requirements play a pivotal role in the selection of a suit-

able modeling approach for soft robots, especially in macro-scale applications. Soft 

robots, owing to their unique ability to conform to their surroundings, often priori-

tize their adaptability and interaction with physical environments over strict accuracy 

and precision. In such scenarios, their operation may not demand pinpoint accuracy. 

However, in applications where precision is of utmost importance, such as minimally 

invasive surgeries, meticulous consideration must be given to both the modeling 

approach and the subsequent controllers derived from these models. 

Continuous curve models represent soft robots as continuous curves in space, 

offering high accuracy but at the cost of computational complexity. Lumped param-

eter models, on the other hand, portray soft robots as networks of masses, springs, 

and dampers, providing a more computationally efficient alternative, albeit poten-

tially sacrificing accuracy for intricate geometries. Learning-based models lever-

age machine learning to establish input-output relationships, delivering exceptional 

accuracy but necessitating substantial training data. Lastly, hybrid models com-

bine elements from different approaches, striking a balance between accuracy and 

computational efficiency. 

In cases where accuracy and precision are paramount, opting for a continuous 

curve model is typically advisable. However, for scenarios involving highly complex
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robots or constrained computational resources, alternatives such as lumped param-

eter models or hybrid models may present more practical choices. Learning-based 

models also offer promise in accuracy-critical applications but demand substantial 

volumes of training data. The selection among these modeling options hinges on a 

careful evaluation of factors like the soft robot’s complexity, available computational 

resources, and the precise requirements of the application at hand. 

With this diverse toolbox at your disposal, you have the flexibility to select the 

modeling technique that best suits your specific needs, whether they involve optimiz-

ing conformable interactions with the environment or meeting the exacting require-

ments of precision-demanding applications like medical procedures. Your choice of 

modeling approach should be guided by the unique constraints and objectives of 

your particular use case, ensuring that your soft robot performs flawlessly within its 

intended application context. 

4.6.7 Dynamic Behavior 

It’s crucial to recognize that not all robots require complexity to be highly practical 

in real-world applications. Soft robots, with their unique ability to conform to their 

environment without causing harm to either themselves or the spaces they operate in, 

exemplify this concept. Their inherent simplicity, adaptability, and gentle interaction 

with surroundings make them invaluable in scenarios such as delicate object or food 

item handling. 

However, when the robot’s intended tasks involve interactions with dynamic 

objects or necessitate continuous motion, it becomes imperative to incorporate 

dynamic modeling into the robot’s design. Without dynamic modeling, the controllers 

may encounter instabilities during operation, leading to unpredictable and potentially 

unsafe behavior. Similarly, if the robot is intended for environmental sensing appli-

cations, particularly through deflection-based force estimation, dynamic modeling 

assumes a pivotal role. Thus, within the confines of application-specific criteria and 

constraints, it becomes essential to carefully evaluate the requirements and potential 

challenges. By doing so, one can make an informed decision about selecting the most 

suitable modeling approach that aligns with their objectives and effectively addresses 

the demands of the application. 

4.6.8 Control and Actuation 

Different modeling approaches for soft and continuum robots have varying impli-

cations for control and actuation. Continuous curve models, which represent soft 

robots as continuous curves, are apt for intricate geometries but can be computation-

ally intensive, limiting real-time control feasibility. In contrast, lumped parameter
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models, depicting robots as networks of masses, springs, and dampers, offer com-

putational efficiency suitable for real-time control, albeit at the potential expense 

of accuracy, particularly for complex geometries. Learning-based models, driven by 

machine learning, excel in precision but demand copious training data and com-

putational resources. Hybrid models, amalgamating elements of diverse approaches, 

strike a balance between accuracy and computational efficiency. The selection hinges 

on the specific control objectives, computational resources, and the desired trade-off 

between accuracy and efficiency within the soft robotic system. 

4.6.9 Application-Specific Requirements 

It is important to note that there is no single “best” modeling approach for soft 

and continuum robots. The best approach will vary depending on the specific 

application-specific requirements. Therefore, it is important to thoroughly evaluate 

the requirements of your application before choosing a modeling approach. 

Thus, choosing the right modeling approach in soft robotics hinges on the spe-

cific application domain. In medical contexts like surgical robots and rehabilitation 

devices, precision and safety are paramount, making Finite Element Analysis (FEA) 

an ideal choice. Soft robotics research, characterized by rapid prototyping, bene-

fits from computationally efficient lumped parameter models. On the other hand, 

real-time control in soft robots leans toward reduced-order models, ensuring fast 

and accurate predictions. Each domain necessitates a tailored modeling strategy that 

aligns with its unique requirements, emphasizing the adaptability and versatility of 

soft robotics modeling. 

4.6.10 Existing Literature and Tools 

Review existing literature and available modeling tools. Leveraging established tech-

niques and software can expedite the modeling process and ensure compatibility with 

existing research and development efforts. 

The necessity of adopting common, user-friendly, well-supported, and freely 

available tools for modeling soft robots cannot be overstated. Such tools not only 

lower the entry barriers for researchers and engineers but also foster collaboration 

and knowledge exchange within the soft robotics community. By utilizing widely 

accepted software and platforms, we ensure the reproducibility and transparency of 

research outcomes, making it easier for others to validate and build upon existing 

work. Moreover, freely accessible tools democratize access to cutting-edge soft robot 

modeling capabilities, driving innovation and advancing the field collectively. 

Continuous Curvature Models: Leveraging symbolic computation software 

tools such as Maple, Mathematica, Maxima (an open-source alternative), SageMath 

(another open-source option), and MATLAB Symbolic Toolbox is paramount in
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deriving symbolic equations for continuous curvature parametric models for soft and 

continuum robots. These tools excel in simplifying complex mathematical expres-

sions, significantly reducing the risk of errors in analytical modeling. Moreover, the 

ability to directly port these derived symbolic equations to common computational 

frameworks like MATLAB, Python, and C streamlines the integration of mathemat-

ical models into practical applications. Researchers and engineers benefit from the 

seamless transition between symbolic analysis and practical implementation, accel-

erating the development and validation of soft and continuum robot designs while 

ensuring accuracy and reliability in their performance predictions. 

Lumped Parametric Models: A variety of software tools are available for devel-

oping lumped parametric models for soft robots. SOFA (Simulation Open Framework 

Architecture), known for its versatility, offers an open-source framework suitable 

for modeling deformable objects, including soft robots with intricate geometries. 

Gazebo, a widely embraced robotics simulation environment, can be tailored to sim-

ulate soft robots employing lumped parametric models. It equips users with robust 

physics engines and analytical tools for assessing the behavior of soft robots within 

complex environments. FEBio, as a finite element analysis software, emerges as a 

robust choice for modeling soft robots using lumped parametric models. OpenAI 

Gym, developed as a reinforcement learning toolkit, allows simulation and control 

of soft robots employing lumped parametric models. 
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