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ABSTRACT: Understanding structure—mechanical activity rela-
tionships (SMARs) in polymer mechanochemistry is essential for
the rational design of mechanophores with desired properties, yet
SMARs in noncovalent mechanical transformations remain
relatively underexplored. In this study, we designed a subset of
diarylethene mechanophores based on a lever-arm hypothesis and

g : c . ] . M1 M2 M3
systematically investigated their mechanical activity toward a
noncovalent-yet-chemical conversion of atropisomer stereochemis- SMFS 328 pN 197 pN 131 pN
(DFT) (1.22 nN) (0.60 nN) (0.45 nN)

try. Results from Density functional theory (DFT) calculations,
single-molecule force spectroscopy (SMFS) measurements, and Longer effective lever arm, more mechanosensitive
ultrasonication experiments collectively support the lever-arm

hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers. Notably, the transition
force for the diarylethene M3 featuring extended S-phenylbenzo[b]thiophene aryl groups is determined to be 131 pN =+ 4 pN by
SMES. This value is lower than those typically recorded for other mechanically induced chemical processes, highlighting its
exceptional sensitivity to low-magnitude forces. This work contributes a fundamental understanding of chemo-mechanical coupling
in atropisomeric configurational mechanophores and paves the way for designing highly sensitive mechanochemical processes that
could facilitate the study of nanoscale mechanical behaviors across scientific disciplines.
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B INTRODUCTION Eyring/Bell framework remains a useful construction for
Mechanophores are molecular units that undergo specific qualitatively interpreting many mechanochemical structure—
1-3 activity effects.

structure and property changes under mechanical force,
allowing for molecular-level insights into mechanical behaviors.
This “mechanophore” concept traditionally refers to mechan-
ically induced chemical transformations, such as the cleavage of
azo moieties’ or ring-opening of spiropyrans (Figure la).>”’

The “mechanophore” concept has expanded to include units
that respond to mechanical forces through noncovalent, physical
means such as conformational rearrangements (Figure 1a).””*’
These noncovalent transformations typically respond to lower-
Those covalent mechanochemical processes typically involve magnitude forces than thos.e required to break covalent.bonds
homolytic cleavage,* ™" heterolytic cleavage,™'S pericyclic (9.24 to several nN on the time scale o£ 1021 s, Eischaracterlzed by
reactions,'™>* or metal—coordinate bond cleavage.”>™*’ s1ngle—.molecule force spectroscop Y).- Thus,‘ the ex-
Kauzmann and Eyring extended the transition state theory to ploratlon. of nolnco.valent mechanical transformations has
cases where a constant external force acts along the reaction attract‘ed increasing interest. For example, Weder and Sagara

28,29 L have introduced rotaxane- and cyclophane-based mechano-
pathway, shedding light on the fundamentals of covalent hores where force affects the spatial ali ¢ betw
mechanochemistry. It is understood that the application of force P h h d al hei I;a 1a1 agnment between
decreases the activation energy (E,) of a reaction by coupling chromop gr§s an 4 alters tkelr E oto u.mmesc:;ni ﬂproper;
mechanical work to the nuclear movements that occur along the tles. aito -and co-workers have ploneere aPPIng
reaction coordinate.””** Bell’s approximate theory™ further mechanop h}? res ;hat. unde.rgo ;onformatcxlona}ll plangrllatpn
states that an applied force F changes a reaction’s energy barrier under mechanical stimulation that extends the conjugation
by AE,, = —FAR, where AR is the change in the distance
between the atoms (to which F is applied) from the reactant Received:  September 26, 2024
state to the transition state along the reaction coordinate. This Revised: ~ December 11, 2024
approximate theory assumes the force only linearly reduces the Accepted:  December 12, 2024
activation energy, without otherwise distorting structures or Published: January 10, 2025
altering reaction pathways. More comprehensive theoretical
treatments are now well established,>*™>® but the Kauzmann/
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(a) Representative Mechanisms for Reported Mechanophores
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Figure 1. (a) Representative mechanisms for mechanically induced
molecular transformations. (b) This study introduces a lever-arm effect
that enables fine-tuning mechanical reactivity in force-triggered
atropisomerization.

length.”*>* Moreover, the research groups of Matile,> >

Sommer (Figure 1a),”’ and Lu® have innovated twisted
conjugated systems that planarize and gain conjugation
efficiency under force. Other strategies for force-induced
noncovalent processes include mechanical manipulation of
supramolecular interactions in s?rnthetic and biomaterials,”' %
and metal—ligand dissociation. * However, most noncovalent
physical changes provide transient signals that disappear when
the force is removed.

The development of mechanophores that are both highly
mechanosensitive and capable of permanently recording
mechanical activation events could enhance the study of
nanoscale mechanical processes. Recently, our group has
introduced a diarylethene configurational mechanophore
(Figure la) that undergoes a noncovalent-yet-chemical con-
version of atropisomer stereochemistry upon mechanical
stimulation, transitioning from a parallel form to its antiparallel
diastereomers.”>® This stereochemical conversion perma-
nently alters molecular symmetry and turns on chemical
reactivity toward a subsequent photochemical electrocyclization
reaction. Density functional theory (DFT) calculations using
the constrained geometries simulate external force (CoGEF)
method and estimate its peak force F,,,, at 0.6 nN, significantly
lower than is typical of mechanically induced covalent chemical
reactions that have been evaluated using CoGEE.”’ "% This
mechanophore also showed faster activation rates in solution-
phase ultrasonication experiments compared to a benchmark
anthracene-maleimide mechanophore. These initial findings
underscore the force-stereochemistry coupling as a promising
mechanism for developing high-sensitivity mechanochemical
transformations, but a quantitative measure of the transition
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force required to drive the stereochemical conversion at a given
rate has yet to be determined.

Understanding structure—mechanical activity relationships
(SMARs) in polymer mechanochemistry is essential for the
rational design of mechanophores with desired properties. To
date, SMAR studies have predominantly focused on covalent
mechanochemistry. For example, the stereochemistry, regio-
chemistry, and substituent effects in various mechanophore
scaffolds, such as benzocyclobutane,**”° cyclol)uten<e,7l’72 gem-
dihalocyclopropanes,”® naphthopyran,”*~”® furan-malei-
mide,””” spiropyran,””*® and the more recent pterodactylane
mechanophores,”® have been shown to significantly influence
their chemo-mechanical coupling. One key mechanism for
enhancing mechanochemical reactivity is a “lever-arm” effect,
where variations in the polymer backbone structure and/or the
structure of the handles connecting mechanophore and polymer
act like a molecular crowbar that can modulate mechanophore
activity by changing the AR parameter associated with Bell
theory.*””>”*~% However, SMARs in noncovalent mechanical
transformations remain underexplored in polymer mechano-
chemistry.*’

We are particularly interested in developing a fundamental
understanding of the chemo-mechanical couplin§ in the recently
introduced configurational mechanophores.”> In this study,
we quantified the transition forces (F*) for mechanical
atropisomerization using single-molecule force spectroscopy
(SMES) for the first time to characterize mechanophores M1-
M3 (Figure 1b). The previously reported M2 structure showed
an F* of 197 pN =+ 12 pN, corroborating its high mechanical
activity suggested by earlier indirect evidence.” Using Bell’s
approximation as an intuitive framework,”® we hypothesized a
“lever-arm effect” to fine-tune the mechanochemical reactivity in
diarylethene atropisomers. For a subset of mechanophores M1-
M3 (Figures 1b and 2a) which undergo mechanistically similar
transformation of atropisomer stereochemistry, M3 features the
longest rigid structure—the “lever arm”—between the polymer
attachment site (where force is applied) and the rotational chiral
axis (the “fulcrum”), maximizing the AR and thus, requiring the
smallest force to adequately reduce the activation barrier for
atropisomerization. Conversely, M1 comprises the shortest
“lever arm” and requires the highest force. This anticipated
activity trend is confirmed by DFT calculations, SMFS, and
ultrasonication experiments. Remarkably, for M3, which
incorporates the longest lever arm, its F* is further reduced to
131 pN =+ 4 pN, a 33% reduction from the record of previously
reported M2 structure. This study offers fundamental insights
into the chemo-mechanical coupling between atropisomer
stereochemistry and force and provides design principles for
highly sensitive mechanochemical transformations which could
enable the study of previously unobserved nanoscale mechanical
processes.

B DFT CALCULATIONS

Configurational mechanophores M1-M3 are designed to
comprise the same sterically bulky benzobis(thiadiazole)
(BBT) bridge, while their side-arm aryl groups are rationally
varied to adjust the effective length of the rigid “lever-arm”
structures between the polymer anchoring site and the rotational
chiral axis. The distances between the polymer attachment site
and the rotational chiral axis for M1, M2, and M3 in their DFT-
predicted equilibrium geometry (indicated by blue arrows in
Figure 2a) are measured to be 2.62, 5.09, and 9.09 A,
respectively. Their truncated models are subjected to DFT
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Figure 2. (a) DFT-calculated structures of model mechanophores in equilibrium geometry. (b) CoGEF calculations (B3LYP/6-31G*) predict the
mechanical stereochemical conversion of parallel diarylethenes to their antiparallel forms. Elongating the constrained distance results in distortion of
the dihedral angle between the benzothiadiazole bridge and the side-arm aryl groups and eventually leads to a sudden rotation of one side-arm aryl
plane around the BBT-aryl 6 bond, inducing a flip at that chirality axis. M3 structures corresponding to the data point indicated by the arrow are shown

(see the SI for details).

calculations using the CoGEF technique to simulate the force-
induced atropisomerization.** The distance between two
terminal atoms (purple lines in Figure 2a), where force is
applied, is fixed. Starting from the equilibrium geometry, this
distance is incrementally increased, with the molecule’s energy
minimized after each step. For all three model mechanophores,
elongating the constrained distance results in distortion of the
dihedral angle between the benzothiadiazole bridge and the
side-arm aryl groups, along with bond elongation along the force
transduction axis. Eventually, this leads to a sudden rotation of
one side-arm aryl plane around the BBT-aryl 6 bond, inducing a
flip at that chirality axis. As a result, the parent achiral S,R,
parallel diarylethenes are transformed into their antiparallel
diastereomers. The force-driven rotation for DFT models of M1,
M2, and M3 exhibits peak CoGEF F,,, values of 1.22 nN, 0.60
nN, and 0.45 nN, respectively. These results align with the lever-
arm hypothesis stating that an increase in the effective length of
the lever arm enhances mechanical activity. M3 exhibits the
lowest CoGEF-estimated F,,, value, a further decrease of 25%
from M2 in our earlier study,”°® whose F,,,, value was already
lower than that estimated by CoGEF for other mechanically
induced chemical reactions to the best of our knowledge.” As a
static quantum method, CoGEF neglects the thermal effects and
tends to overestimate the peak force F, compared to the
transition force measured from SMFS experiments (vide
infra),*> but previous studies®” have validated CoGEF as a
useful framework to compare the relative activity of
mechanophores.

B RESULTS AND DISCUSSION

We synthesized macrocyclic mechanophores and their copoly-
mers P1-P3 for SMES studies (Figures 3a and Supporting
Information). The copolymerization of mechanophores with
cyclooctene epoxide units is a common strategy to increase the
adhesion of the copolymer to the tip of atomic force microscopy.
The reactivity of macrocyclic mechanophore monomers toward
ring-opening metathesis polymerization (ROMP) is low,
presumably because of the sterically bulky diarylethene
structures in the macrocycles.* Using optimized conditions,
we prepared P1-P3 with molecular weights around 50 kg/mol
comprising about 5 mol % of mechanophore units. Multi-
mechanophore ROMP copolymers P1-P3 were deposited onto
a surface by evaporation of a dilute polymer solution in THEF.

2504

Approach/withdraw cycles of the AFM tip at a velocity of 300
nm-s™' resulted in force—extension curves that display
characteristic transitions corresponding to the mechanical
conversion of atropisomer stereochemistry in the mechano-
phore units. Remarkably, P1-P3 displayed distinct plateaus at
328 pN + 10 pN, 197 pN =+ 12 pN, and 131 pN =+ 4 pN,
respectively, in their force—extension curves, aligning with our
“lever-arm” hypothesis and CoGEF calculations (Figure 3b,
left). The same macromolecule chains subjected to multiple
cycles of tip retraction only exhibit the characteristic plateau in
the first cycle, while curves from subsequent cycles lack this
characteristic plateau and they essentially overlap (Figure 3b,
right). These multicycle SMFS results evidence that the
stereochemical conversion of mechanophore units in the
copolymers was irreversibly completed in the first cycle without
bond scission. Putting the SMFS results into context, the F*
required for the most mechanosensitive covalent mechano-
phores known to date like spiropyran is around 240 pN, as
determined by SMFS.”****” Comparable magnitude of forces
determined by single-molecule measurements has been reported
in mechanobiology systems, such as the unzipping of hybridized
dsDNA (about 300 pN),*” unfolding of individual immunoglo-
bulin domains (about 150—300 pN),** and disruption of
antibody—antigen interactions (about 150 pN).*” The ability of
configurational mechanophores to irreversibly respond to low-
magnitude forces uniquely positions them as a potent
technology for permanently recording mechanical activation
history and enabling the study of previously unobservable
mechanical behaviors in synthetic and biological materials.
Further, we systematically compared the activation rates of
chain-centered mechanophores through solution-phase ultra-
sonication experiments. Ultrasound acoustic field causes
pressure variation in the solution and generates rapidly
collapsing cavitation, inducing a solvodynamic shear force field
that transduces force to mechanophores covalently embedded in
the backbone of dissolved polymers.® Force is maximized at the
midpoint of the polymer chain, and longer chains experience
greater force. Rates of mechanophore conversion in ultra-
sonication experiments are frequently used as a measure to
assess the relative reactivities among different mechano-
phores.”"””?%! When mechanophores are incorporated at the
center of linear polymers with identical lengths, faster activation
rates suggest higher mechanical reactivity. We synthesized
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Figure 3. (a) Synthetic scheme for multimechanophore copolymers
P1-P3. (b) Overlay of representative force—extension curves obtained
for P1-P3. Curves are normalized to the corresponding extension at 0.8
nN force. (c) Multicycle SMFS experiment of P2 shows a characteristic
plateau in the first withdraw, corresponding to the stereochemical
conversion from parallel diarylethenes to the antiparallel. No plateau is
observed in subsequent cycles.

PMA1-PMA3 containing chain-centered mechanophores M1-
M3 by tethering bis-functionalized mechanophores to identical
azide-functionalized poly(methyl acrylate) polymers (PMA-
Azide, Mn"MR = 347 kg/ mol) through CuAAC click chemistry
(Figure 4a and SI).”” This method guarantees uniform chain
lengths for PMAI1-PMA3, ensuring that all chain-centered
mechanophores experience similar force environments under
standard ultrasonication treatments. Solvodynamic force
converts the photoinert parallel diarylethenes to their photo-
switchable antiparallel diastereomers, as illustrated by the
sonication-dependent photoactivity of PMA3 (Figure 4b). A
solution of PMA3 (15 mL, 1.0 mg/mL in acetonitrile) was
initially colorless and remained colorless after UV exposure. In
contrast, UV irradiation (A = 365 nm) turned the ultrasound-
activated polymer sample into a red color, with an absorption
peak emerging at around 530 nm. Moreover, the ultrasonicated
PMA3 solution could be switched between the colored and
colorless forms reversibly under UV and visible irradiation,
matching our previous findings.”> We observed minimal fatigue
after six cycles of UV irradiation at 365 nm and four cycles at 254
nm (Figure S12). PMA1 and PMA?2 exhibit similar sonication-
dependent photochromic properties (SI Sections 4 and S).
This photoactivity change provides a convenient readout to
monitor the ultrasound-mediated mechanochemical activation
of PMA1-PMA3 by measuring their photostationary-state
absorbance with UV—vis spectroscopy (Figure Sa and Figures
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Figure 4. (a) Synthesis of PMA3 containing a chain-centered
mechanophore, and its stimuli-responsive properties. Force-triggered
atropisomerization of the parallel diarylethene generates a racemate of
antiparallel isomers, but only one antiparallel isomer is shown for
simplicity. (b) Ultrasonication-dependent photochromism of PMA3.

S9—S11). A polymer solution was subjected to standard
ultrasonication conditions, and aliquots of the solution were
removed and analyzed after each duration of ultrasonication. All
initial polymer solutions containing the parallel diarylethene
mechanophores were colorless and photoinert. Exposing the
sonicated solutions to UV irradiation (A = 365 nm) leads to the
development of a red color due to the photoexcitation of
converted mechanophores, with an absorption peak at around
510—530 nm. Their photostationary-state absorption were
measured as a function of ultrasonication time (Figures S9—
S11), with the UV-induced absorbance changes for sonicated
PMAS3 solutions shown in Figure Sa as a representative example.
Their peak absorbance values in the visible region were used to
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Figure 5. (a) UV-induced absorbance changes (photostationary-state
spectrum minus non-photoirradiated spectrum, see Figure S11 for data
processing) for sonicated PMA3 solutions. (b) Time-course
sonomechanical activation of PMA1-PMA3 fitted into pseudo-first-
order rate expressions (Figure S13).

calculate the percentage mechanochemical conversion. By
fitting the ultrasonication-dependent conversion to a first-
order rate expression (Figures Sb and S13), the rate constants of
the pseudo-first-order sonomechanical reactions are calculated
to be 0.105 + 0.003, 0.145 + 0.003, and 0.239 + 0.007 min ™" for
PMA1-PMA3, respectively. The trend of these sonomechanical
activation rates is consistent with the mechanosensitivity trend
among M1-M3 observed in our SMFS and CoGEF results,
collectively supporting the lever-arm SMAR hypothesis.

NMR-measured mechanical conversions of PMA1-PMA3
align with results from UV—vis studies. Polymers were sonicated
in acetonitrile (15 mL, 2 mg/mL) and isolated, and their
structures were analyzed using NMR spectroscopy. As a
representative, Figure 6 shows the 'H NMR spectrum of
PMA3 subjected to ultrasonication: a new set of resonances
(blue shade) emerged, consistent with the structure of
antiparallel diarylethenes observed in a separately synthesized
control polymer PMA3ap. NMR results indicate that sonication
for S min converts approximately 40.2%, 52.5%, and 63.7% of
PMAL1, PMA2, and PMA3, respectively (see Figures S14—516).
These NMR results align with the pseudo-first-order kinetics
determined by UV—vis for PMA1-PMA3 (Figures Sb and S13),
which predicted conversions of 40.8, 51.6, and 69.8% after the
same ultrasonication duration, respectively.
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Figure 6. Partial 'H NMR spectra of PMA3 (acetone-d,) subjected to
different ultrasonication conditions: no sonication (top trace), S and 60
min of ultrasonication (2nd and 3rd traces, respectively). The bottom
trace corresponds to a separately synthesized control polymer PMA3ap
incorporating an antiparallel diarylethene. Orange shade: parallel
diarylethene; blue shade: antiparallel diarylethene; blended: overlapped
peaks.

The mechanical conversion of all three polymers PMAI-
PMAS3 rapidly approached completion after about 20 min
ultrasonication, whereas there were minor changes in their
polymer molecular weights over the same period as indicated by
size exclusion chromatography (SEC) (Figure S17). This
highlights another feature of the diarylethene mechanophores
that their noncovalent-yet-chemical transformation signals
stress without sacrificial bond scission, minimizing the impact
on the intrinsic properties of the polymer matrix. Additionally,
control polymers containing M1-M3 at PMA chain ends
remained photoinert before and after identical ultrasound
treatments, confirming the mechanical origin of the observed
changes from ultrasonication experiments (Figure S18).

To test the thermal stability of diarylethene atropisomers,
solutions of synthetic intermediates 1-yne-p, 2-yne-p, and 3-
yne-p (comprising M1-M3 moieties, respectively) in DMSO-dg
were heated to 100 °C for 12 h. Subsequent NMR analysis
revealed negligible shifts in their resonances (Figures S19—S21),
demonstrating these atropisomers’ excellent thermal stability
even at elevated temperatures. Antiparallel diarylethenes also
exhibited excellent stability under similar thermal conditions
(Figures S22—S24). These experimental results corroborate
with DFT-predicted high rotational barriers 0of 218, 182, and 178
kJ/mol for the thermal atropisomerization of model M1-M3
structures (Figure S4), respectively. The excellent thermal
stability of parallel diarylethene mechanophores and their
inherent photoinertness make them well suited as molecular
force sensors with high specificity to mechanical stimuli,”®
offering advantages over mechanophores that are either
thermally (e.g, diarylbibenzofuranone)”® or photochemically
active (e.g., spiropyran).94

B CONCLUSIONS

In summary, this study unambiguously establishes the excep-
tional mechanosensitivity of chemo-mechanical coupling in
diarylethene atropisomers, as evidenced through both computa-
tional and experimental methods. The F* value for the
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previously introduced M2 structure is 197 pN + 12 pN as
determined by SMFS. This value is lower than those typically
observed in other mechanically induced chemical reactions
studied to date by SMFS, corroborating our previous indirect
findings. Additionally and importantly, we introduce an intuitive
“lever-arm” effect that allows for the fine-tuning of the
mechanical reactivity in diarylethene configurational mechano-
phores, leading to the development of a new mechanophore M3
which exhibits further increased mechanosensitivity with an F*
value of 131 pN + 4 pN. These atropisomeric diarylethene
mechanophores also feature excellent thermal stability and are
inherently photoinert, making them well suited as molecular
force probes with high specificity to mechanical stimuli. This
study lays the groundwork for exploring the SMAR in this
mechanistically distinct class of atropisomeric configurational
mechanophores. It also paves the way for designing highly
sensitive and irreversible mechanochemical processes that are
crucial for understanding nanoscale mechanical behaviors in
various synthetic and biological materials.
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