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ABSTRACT: Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the 
rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively 
underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically 
investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from 
DFT calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support 
the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers. Notably, the 
transition force for the diarylethene M3 featuring extended 5-phenylbenzo[b]thiophene aryl groups is determined to be 131 pN ± 4 
pN by SMFS. This value is lower than typically recorded for other mechanically induced chemical processes, highlighting its excep-
tional sensitivity to low-magnitude forces. This work contributes a fundamental understanding of chemo-mechanical coupling in 
atropisomeric configurational mechanophores and paves the way for designing highly sensitive mechanochemical processes that 
could facilitate the study of nanoscale mechanical behaviors across scientific disciplines. 

Introduction 

Mechanophores are molecular units that undergo specific 
structure and property changes under mechanical force,1–3 al-
lowing for molecular-level insights into mechanical behaviors. 
This ‘mechanophore’ concept traditionally refers to mechani-
cally induced chemical transformations, such as the cleavage of 
azo moieties4 or ring-opening of spiropyrans (Figure 1a).5–7 
Those covalent mechanochemical processes typically involve 
homolytic cleavage,8–13 heterolytic cleavage,14,15 pericyclic re-
actions,16–24 or metal–coordinate bond cleavage.25–27 Kauzmann 
and Eyring extended the transition state theory to cases where a 
constant external force acts along the reaction pathway,28,29 
shedding light on the fundamentals of covalent mechanochem-
istry. It is understood that the application of force decreases the 
activation energy (Eact) of a reaction by coupling mechanical 
work to the nuclear movements that occur along the reaction 
coordinate.29–32 Bell’s approximate theory33 further states that 
an applied force F changes a reaction’s energy barrier by ∆Eact 
= -F∆R, where ∆R is the change in the distance between the 
atoms (to which F is applied) from the reactant state to the tran-
sition state along the reaction coordinate. This approximate the-
ory assumes the force only linearly reduces the activation en-
ergy, without otherwise distorting structures or altering reaction 
pathways. More comprehensive theoretical treatments are now 
well-established,34–38 but the Kauzmann/Eyring/Bell frame-
work remains a useful construction for qualitatively interpreting 
many mechanochemical structure-activity effects.  

The ‘mechanophore’ concept has expanded to include 
units that respond to mechanical forces through noncovalent, 
physical means such as conformational rearrangements (Fig. 
1a).39,40 These noncovalent transformations typically respond to 
lower-magnitude forces than those required to break covalent 
bonds (0.24 to several nN on the time scale of 0.1 s, as charac-
terized by single-molecule force spectroscopy).22,23,41–48 Thus, 
the exploration of noncovalent mechanical transformations has 
attracted increasing interest. For example, Weder and Sagara 
have introduced rotaxane- and cyclophane-based mechano-
phores where force affects the spatial alignment between chro-
mophores and alters their photoluminescent properties.49–52 
Saito and co-workers have pioneered ‘flapping’ mechanophores 
that undergo conformational planarization under mechanical 
stimulation that extends the conjugation length.53,54 Moreover, 
the research groups of Matile55–58, Sommer,59 and Lu60 have in-
novated twisted conjugated systems that planarize and gain con-
jugation efficiency under force. Other strategies for force-in-
duced noncovalent processes include mechanical manipulation 
of supramolecular interactions in synthetic and biomaterials,61–

63 and metal-ligand dissociation.64 However, most noncovalent 
physical changes provide transient signals that disappear when 
the force is removed.  

The development of mechanophores that are both highly 
mechanosensitive and capable of permanently recording me-
chanical activation events could enhance the study of nanoscale 
mechanical processes. Recently, our group introduced a 
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diarylethene configurational mechanophore (Figure 1a) that un-
dergoes a noncovalent-yet-chemical conversion of atropisomer 
stereochemistry upon mechanical stimulation, transitioning 
from a parallel form to its antiparallel diastereomers.65,66 This 
stereochemical conversion permanently alters molecular sym-
metry and turns on chemical reactivity toward a subsequent 
photochemical electrocyclization reaction. Density-functional 
theory (DFT) calculations using the constrained geometries 
simulate external force (CoGEF) method estimated its peak 
force Fmax at 0.6 nN, significantly lower than is typical of me-
chanically induced covalent chemical reactions that have been 
evaluated using CoGEF.67–69 This mechanophore also showed 
faster activation rates in solution-phase ultrasonication experi-
ments compared to a benchmark anthracene-maleimide mech-
anophore. These initial findings underscore the force-stereo-
chemistry coupling as a promising mechanism for developing 
high-sensitivity mechanochemical transformations, but a quan-
titative measure of the transition force required to drive the ste-
reochemical conversion at given rate has yet to be determined.  

Understanding structure-mechanical activity relationships 
(SMARs) in polymer mechanochemistry is essential for the ra-
tional design of mechanophores with desired properties. To 
date, SMAR studies have predominantly focused on covalent 
mechanochemistry. For example, the stereochemistry, regio-
chemistry, and substituent effects in various mechanophore 
scaffolds, such as benzocyclobutane,20,70 cyclobutene,71,72 gem-
dihalocyclopropanes,44 naphthopyran,73–75 furan-maleimide,76,77 

spiropyran,6,7,46 and the more recent pterodactylane mechano-
phores,78 have been shown to significantly influence their 
chemo-mechanical coupling. One key mechanism for enhanc-
ing mechanochemical reactivity is a “lever-arm” effect, where 
variations in the polymer backbone structure and/or the 

structure of the handles connecting mechanophore and polymer 
act like a molecular crowbar that can modulate mechanophore 
activity by changing the ∆R parameter associated with Bell the-
ory.42,72,79–82 However, SMARs in noncovalent mechanical 
transformations remain underexplored in polymer mechano-
chemistry.83 

We are particularly interested in developing a fundamental 
understanding of the chemo-mechanical coupling in the re-
cently introduced configurational mechanophores.65,66 In this 
study, we quantified the transition forces (F*) for mechanical 
atropisomerization using single-molecule force spectroscopy 
(SMFS) for the first time to characterize mechanophores M1-
M3 (Figure 1b). The previously reported M2 structure showed 
an F* of 197 pN ± 12 pN, corroborating its high mechanical 
activity suggested by earlier indirect evidence.65 Using Bell’s 
approximation as an intuitive framework,33 we hypothesized a 
“lever-arm effect” to fine-tune the mechanochemical reactivity 
in diarylethene atropisomers. For a subset of mechanophores 
M1-M3 (Figure 1b and 2a) which undergo mechanistically sim-
ilar transformation of atropisomer stereochemistry, M3 features 
the longest rigid structure—the ‘lever arm’—between the poly-
mer attachment site (where force is applied) and the rotational 
chiral axis (the ‘fulcrum’), maximizing the ∆R and thus, requir-
ing the smallest force to adequately reduce the activation barrier 
for atropisomerization. Conversely, M1 comprises the shortest 
‘lever arm’ and requires the highest force. This anticipated ac-
tivity trend is confirmed by DFT calculations, SMFS, and ultra-
sonication experiments. Remarkably, for M3 which incorpo-
rates the longest lever arm, its F* is further reduced to 131 pN 
± 4 pN, a 33% reduction from the record of previously reported 
M2 structure. This study offers fundamental insights into the 
chemo-mechanical coupling between atropisomer stereochem-
istry and force and provides design principles for highly sensi-
tive mechanochemical transformations which could enable the 
study of previously unobserved nanoscale mechanical pro-
cesses.  
DFT Calculations 

Configurational mechanophores M1-M3 are designed to 
comprise the same sterically bulky benzobis(thiadiazole) (BBT) 
bridge, while their side-arm aryl groups are rationally varied to 
adjust the effective length of the rigid ‘lever-arm’ structures be-
tween the polymer anchoring site and the rotational chiral axis. 
The distances between the polymer attachment site and the ro-
tational chiral axis for M1, M2 and M3 in their DFT-predicted 
equilibrium geometry (indicated by blue arrows in Figure 2a) 
are measured to be 2.62 Å, 5.09 Å and 9.09 Å, respectively. 
Their truncated models are subjected to DFT calculations using 
the CoGEF technique to simulate the force-induced atropisom-
erization.84 The distance between two terminal atoms (the pur-
ple lines in Figure 2a), where force is applied, is fixed. Starting 
from the equilibrium geometry, this distance is incrementally 
increased, with the molecule's energy minimized after each 
step. For all three model mechanophores, elongating the con-
strained distance results in distortion of the dihedral angle be-
tween the benzothiadiazole bridge and the side-arm aryl groups, 
along with bond elongation along the force transduction axis. 
Eventually, this leads to a sudden rotation of one side-arm aryl 
plane around the BBT-aryl  bond, inducing a flip at that chi-
rality axis. As a result, the parent achiral Sa,Ra parallel dia-
rylethenes are transformed into their antiparallel diastereomers. 
The force-driven rotation for DFT models of M1, M2, and M3 
exhibits peak CoGEF Fmax values of 1.22 nN, 0.60 nN, and 0.45 

Figure 1. (a) Representative mechanisms for mechanically in-
duced molecular transformations. (b) This study introduces a 
lever-arm effect that enables fine-tuning mechanical reactiv-
ity in force-triggered atropisomerization. 
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nN, respectively. These results align with the lever-arm hypoth-
esis stating that an increase in the effective length of the lever 
arm enhances mechanical activity. M3 exhibits the lowest Co-
GEF-estimated Fmax value, a further decrease of 25% from M2 
in our earlier study,65,66 whose Fmax value was already lower 
than that estimated by CoGEF for other mechanically induced 
chemical reactions to the best of our knowledge.67 As a static 
quantum method, CoGEF neglects the thermal effects and tends 
to overestimate the peak force Fmax compared to the transition 
force measured from SMFS experiments (vide infra),85 but pre-
vious studies67 have validated CoGEF as a useful framework to 
compare the relative activity of mechanophores. 
Results and Discussion 

We synthesized macrocyclic mechanophores and their co-
polymers P1-P3 for SMFS studies (Figure 3a and SI). The co-
polymerization of mechanophores with cyclooctene epoxide 
units is a common strategy to increase the adhesion of the co-
polymer to the tip of atomic force microscopy. The reactivity of 
macrocyclic mechanophore monomers toward ring-opening 
metathesis polymerization (ROMP) is low, presumably because 

of the sterically bulky diarylethene structures in the macrocy-
cles.86 Using optimized conditions, we prepared P1-P3 with 
molecular weights around 50 kg/mol comprising about 5 mol% 
of mechanophore units. Multi-mechanophore ROMP copoly-
mers P1-P3 were deposited onto a surface by evaporation of a 
dilute polymer solution in THF. Approach/withdraw cycles of 

Figure 2. (a) DFT-calculated structures of model mechano-
phores in equilibrium geometry. (b) CoGEF calculations 
(B3LYP/6-31G*) predict the mechanical stereochemical con-
version of parallel diarylethenes to their antiparallel forms. 
Elongating the constrained distance results in distortion of the 
dihedral angle between the benzothiadiazole bridge and the 
side-arm aryl groups and eventually leads to a sudden rotation 
of one side-arm aryl plane around the BBT-aryl  bond, induc-
ing a flip at that chirality axis. M3 structures corresponding to 
the data point indicated by the arrow are shown (see SI for de-
tails). 

Figure 3. (a) Synthetic scheme for multi-mechanophore copol-
ymers P1-P3. (2) overlay of representative force-extension 
curves obtained for P1-P3. Curves are normalized to the corre-
sponding extension at 0.8 nN force. (c) Multi-cycle SMFS ex-
periment of P2 shows a characteristic plateau in the first with-
draw, corresponding to the stereo-chemical conversion from 
parallel diarylethenes to the anti-parallel. No plateau is ob-
served in subsequent cycles. 

https://doi.org/10.26434/chemrxiv-2024-smxcc-v2 ORCID: https://orcid.org/0000-0001-7598-4516 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-smxcc-v2
https://orcid.org/0000-0001-7598-4516
https://creativecommons.org/licenses/by/4.0/


 

the AFM tip at a velocity of 300 nm s–1 resulted in force-exten-
sion curves that display characteristic transitions corresponding 
to the mechanical conversion of atropisomer stereochemistry in 
the mechanophore units. Remarkably, P1-P3 displayed distinct 
plateaus at 328 pN ± 10 pN, 197 pN ± 12 pN, and 131 pN ± 4 
pN, respectively, in their force-extension curves, aligning with 
our ‘lever-arm’ hypothesis and CoGEF calculations (Figure 
3b). The same macromolecule chains subjected to multiple cy-
cles of tip retraction only exhibit the characteristic plateau in 
the first cycle, while curves from subsequent cycles lack this 
characteristic plateau and they essentially overlap (Figure 3c). 
These multi-cycle SMFS results evidence that the 

stereochemical conversion of mechanophore units in the copol-
ymers was irreversibly completed in the first cycle without bond 
scission. Putting the SMFS results into context, the F* required 
for the most mechanosensitive covalent mechanophores known 
to date like spiropyran is around 240 pN as determined by 
SMFS.6,35,48,67 Comparable magnitude of forces determined by 
single-molecule measurements have been reported in mechano-
biology systems, such as the unzipping of hybridized dsDNA 
(about 300 pN),87 unfolding of individual immunoglobulin do-
mains (about 150 to 300 pN),88 and disruption of antibody-anti-
gen interactions (about 150 pN).89  The ability of configura-
tional mechanophores to irreversibly respond to low-magnitude 
forces uniquely positions them as a potent technology for per-
manently recording mechanical activation history and enabling 
the study of previously unobservable mechanical behaviors in 
synthetic and biological materials.  

Further, we systematically compared the activation rates of 
chain-centered mechanophores through solution-phase ultra-
sonication experiments. Ultrasound acoustic field causes pres-
sure variation in the solution and generates rapidly collapsing 
cavitation, inducing a solvodynamic shear force field that trans-
duces force to mechanophores covalently embedded in the 
backbone of dissolved polymers.3 Force is maximized at the 
midpoint of the polymer chain, and longer chains experience 
greater force. Rates of mechanophore conversion in ultrasoni-
cation experiments are frequently used as a measure to assess 
the relative reactivities among different mechanophores. 
71,77,90,91 We synthesized PMA1-PMA3 containing chain-cen-
tered mechanophores M1-M3 by tethering bis-functionalized 
mechanophores to identical azide-functionalized poly(methyl 
acrylate) polymers (PMA-Azide, MnNMR = 34.7 kg/mol) 
through CuAAC click chemistry (Figure 4a and SI).92 This 
method guarantees uniform chain lengths for PMA1-PMA3, 
ensuring that all chain-centered mechanophores experience 
similar force environments under standard ultrasonication treat-
ments. Solvodynamic force converts the photoinert parallel di-
arylethenes to their photoswitchable antiparallel diastereomers, 
as illustrated by the sonication-dependent photoactivity of 
PMA3 (Figure 4b).  A solution of PMA3 (15 mL, 1.0 mg/mL 
in acetonitrile) was initially colorless and remained colorless af-
ter UV exposure. In contrast, UV irradiation (λ = 365 nm) 
turned the ultrasound-activated polymer sample into a red color, 
with an absorption peak emerging at around 530 nm. Moreover, 
the ultrasonicated PMA3 solution could be switched between 
the colored and colorless forms reversibly under UV and visible 
irradiation, matching our previous findings.65 We observed 
minimal fatigue after six cycles of UV irradiation at 365 nm and 
four cycles at 254 nm (Figure S12). PMA1 and PMA2 exhibit 
similar sonication-dependent photochromic properties (Sup-
porting Information Section 4 and Section 5). 

This photoactivity change provides a convenient readout to 
monitor the ultrasound-mediated mechanochemical activation 
of PMA1-PMA3 by measuring their photostationary-state ab-
sorbance with UV−vis spectroscopy (Figure 5a). A polymer so-
lution was subjected to standard ultrasonication conditions, and 
aliquots of the solution were removed and analyzed after each 
duration of ultrasonication. All initial polymer solutions con-
taining the parallel diarylethene mechanophores were colorless 
and photoinert. Exposing the sonicated solutions to UV irradia-
tion (λ = 365 nm) leads to the development of a red color due 
to the photo-excitation of converted mechanophores, with an 
absorption peak at around 510-530 nm. Their photostationary-

Figure 4. (a) Synthesis of PMA3 containing a chain-centered 
mechanophore, and its stimuli-responsive properties. Force-
triggered atropisomerization of the parallel diarylethene gener-
ates a racemate of antiparallel isomers, but only one antiparal-
lel isomer is shown for simplicity. (b) Ultrasonication-depend-
ent photochromism of PMA3.  

(a) 

(b) 
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state absorptions were measured as a function of ultrasonication 
time, with PMA3 shown in Figure 5a as a representative exam-
ple (Figure S9-S11). Their peak absorbance values in the visible 
region were used to calculate the percentage mechanochemical 
conversion. By fitting the ultrasonication-dependent conversion 
to a first-order rate expression (Figure 5b and Figure S13), the 
rate constants of the pseudo-first-order sonomechanical reac-
tions are calculated to be 0.105 ± 0.003 min−1, 0.145 ± 0.003 
min−1, and 0.239 ± 0.007 min−1 for PMA1-PMA3, respectively. 
The trend of these sonomechanical activation rates is consistent 
with the mechanosensitivity trend among M1-M3 observed in 
our SMFS and CoGEF results, collectively supporting the 
lever-arm SMAR hypothesis.  

NMR-measured mechanical conversions of PMA1-PMA3 
align with results from UV-vis studies. Polymers were soni-
cated in acetonitrile (15 mL, 2 mg/mL), isolated, and their struc-
tures analyzed using NMR spectroscopy. As a representative, 
Figure 6 shows the 1H NMR spectrum of PMA3 subjected to 
ultrasonication: a new set of resonances (blue shade) emerged, 
consistent with the structure of antiparallel diarylethenes ob-
served in a separately synthesized control polymer PMA3ap. 
NMR results indicate that sonication for 5 minutes converts 

approximately 40.2%, 52.5%, and 63.7% of PMA1, PMA2, 
and PMA3, respectively (see Figure S14-S16). These NMR re-
sults align with the pseudo-first-order kinetics determined by 
UV-vis for PMA1-PMA3 (Figure 5b and Figure S13), which 
predicted conversions of 40.8 %, 51.6%, and 69.8% after the 
same ultrasonication duration, respectively.  

The mechanical conversion of all three polymers PMA1-
PMA3 rapidly approached completion after about 20 min ultra-
sonication, whereas there were minor changes in their polymer 
molecular weights over the same period as indicated by size ex-
clusion chromatography (SEC) (Figure S17). This highlights 
another feature of the diarylethene mechanophores that their 
noncovalent-yet-chemical transformation signals stress without 
sacrificial bond scission, minimizing the impact on the intrinsic 
properties of the polymer matrix. Additionally, control poly-
mers containing M1-M3 at PMA chain ends remained photoin-
ert before and after identical ultrasound treatments, confirming 
the mechanical origin of the observed changes from ultrasoni-
cation experiments (Figure S18).  

To test the thermal stability of diarylethene atropisomers, 
solutions of synthetic intermediates 1-yne-p, 2-yne-p, and 3-
yne-p (comprising M1-M3 moieties, respectively) in DMSO-
d6 were heated to 100 °C for 12 h. Subsequent NMR analysis 
revealed negligible shifts in their resonances (Figure S19-S21), 
demonstrating these atropisomers’ excellent thermal stability 
even at elevated temperatures. Antiparallel diarylethenes also 
exhibited excellent stability under similar thermal conditions 
(Figure S22-S24). These experimental results corroborate with 
DFT-predicted high rotational barriers of 218 kJ/mol, 182 
kJ/mol, and 178 kJ/mol for the thermal atropisomerization of 
model M1-M3 structures (Figure S4), respectively. The excel-
lent thermal stability of parallel diarylethene mechanophores 
and their inherent photo-inertness make them well-suited as 
molecular force sensors with high specificity to mechanical 
stimuli,38 offering advantages over mechanophores that are ei-
ther thermally (e.g., diarylbibenzofuranone)93 or photochemi-
cally active (e.g., spiropyran).94 

Figure 5. (a) Absorption of PMA3 solutions in photostationary 
states (achieved by 120 s irradiation at 365 nm under a hand-
held UV lamp) as a function of ultrasonication time. (b) Time-
course sonomechanical activation of PMA1-PMA3 fitted into 
pseudo-first-order rate expressions (Figure S13). 

 

(a) 

(b) 

 t
1/2 

= 2.9 min  

             4.8 min       6.6 min 

                                                

Figure 6. Partial 1H NMR spectra of PMA3 (acetone-d6) sub-
jected to different ultrasonication conditions: no sonication 
(top trace), 5 min and 60 min of ultrasonication (2nd and 3rd 
traces, respectively). The bottom trace corresponds to a sepa-
rately synthesized control polymer PMA3ap incorporating an 
antiparallel diarylethene. Orange shade: parallel diarylethene; 
Blue shade: antiparallel diarylethene; Blended: overlapped 
peaks. 
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Conclusion 
In summary, this study unambiguously establishes the ex-

ceptional mechanosensitivity of chemo-mechanical coupling in 
diarylethene atropisomers, as evidenced through both computa-
tional and experimental methods. The F* value for the previ-
ously introduced M2 structure is 197 pN ± 12 pN as determined 
by SMFS. This value is lower than typically observed in other 
mechanically induced chemical reactions studied to date by 
SMFS, corroborating our previous indirect findings. Addition-
ally and importantly, we introduce an intuitive ‘lever-arm’ ef-
fect that allows for the fine-tuning of the mechanical reactivity 
in diarylethene configurational mechanophores, leading to the 
development of a new mechanophore M3 which exhibits fur-
ther increased mechanosensitivity with an F* value of 131 pN 
± 4 pN. These atropisomeric diarylethene mechanophores also 
feature excellent thermal stability and are inherently photoinert, 
making them well-suited as molecular force probes with high 
specificity to mechanical stimuli. This study lays the ground-
work for exploring the SMAR in this mechanistically distinct 
class of atropisomeric configurational mechanophores. It also 
paves the way for designing highly sensitive and irreversible 
mechanochemical processes that are crucial for understanding 
nanoscale mechanical behaviors in various synthetic and bio-
logical materials.  
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