
Equity-Integrated Infrastructure Resilience Analysis: Case Studies of Florida Communities 
 

Sunil Dhakal, Ph.D.1; and Lu Zhang, Ph.D., A.M.ASCE2 

 
1Project Engineer, S&F Engineers, Inc., Fort Lauderdale, FL. Email: suniel.dhakal@gmail.com 
2Associate Professor, Myers-Lawson School of Construction, Virginia Tech, Blacksburg, VA 
(corresponding author). ORCID: https://orcid.org/0000-0001-9890-1365. Email: luzhang@vt.edu 
 
ABSTRACT 

 
To mitigate the impacts of climate change on infrastructure, there has been a growing trend 

toward adopting resilience strategies in infrastructure planning. However, research highlights 
historical discriminatory practices and biases in policies and investments, resulting in 
disproportionate disaster impacts on communities. To effectively evaluate infrastructure 
resilience, it is crucial to consider these disparities. To address this need, this study focuses on 
assessing infrastructure resilience while incorporating disaster inequality and disaster 
vulnerability using a proposed equity-integrated resilience evaluation model. The resilience of 
infrastructure in Florida counties with different characteristics (e.g., spatial, demographic, and 
socioeconomic statuses) was evaluated and compared. The findings reveal that (1) the more 
socially vulnerable counties experienced greater disaster inequality, (2) there is a higher 
percentage of disaster vulnerable counties in the rural group in high-intensity hurricanes, and (3) 
the infrastructure of the inland counties, collectively, has weaker resilience compared to coastal 
ones. 
 
INTRODUCTION 
 

To mitigate the impacts of climate change on infrastructure, there has been an increasing 
trend in adopting resilience strategies in infrastructure planning processes. Resilient 
infrastructure has the potential to limit the impacts of extreme weather events in terms of 
physical and financial damage to infrastructure, and it has the capability to recover quickly after 
such events. Assessing and analyzing infrastructure resilience could help decision makers and 
infrastructure planners better understand the performance of infrastructure and prioritize 
infrastructure investment. However, studies on previous infrastructure investment and policies 
indicate that there have been discriminatory policies and biases in infrastructure planning 
processes for decades (NASEM 2022). As a result, during extreme events, the disaster impacts 
on infrastructure, including but not limited to physical damage, financial losses, and service 
disruption, are not evenly distributed across different communities. Such disparities are typically 
linked to the variations in community characteristics, such as geographical location, population, 
and socio-economic status. For example, socially vulnerable communities, including those with a 
higher percentage of disabled, elderly, poor, uninsured, and minorities populations (Rao et al. 
2019), typically experience more severe disaster impacts to their infrastructure and require 
longer time to recover from disasters (Drakes et al. 2021). However, existing work on 
infrastructure resilience assessments (e.g., Tonn et al. 2020, Pagano et al. 2019, Chan and 
Schofer 2016) tends to overlook such disparities and vulnerabilities within different 
communities. These assessments often assume that infrastructure serving various communities is 
impacted equally during disasters. Such assessments cannot fully capture the variations in 
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disaster impacts or recovery processes. There is thus a need to account for these disparities and 
vulnerabilities in infrastructure resilience assessments. By doing so, we can gain a more accurate 
understanding of the impacts of disasters on different communities and take steps to improve 
resilience of those communities with greater needs. 

Based on a comprehensive literature review in the domain of infrastructure resilience 
assessment, we identified two main knowledge gaps. First, existing research on infrastructure 
resilience analysis typically does not account for disaster disparities and vulnerabilities. 
Extensive studies (e.g., Tonn et al. 2020, Pagano et al. 2019, Chan and Schofer 2016, Yang et al. 
2018, Ouyang and Duenas-Osorio 2014) have been conducted in assessing the resilience of 
various types of infrastructure, such as transportation infrastructure (e.g., Chan and Schofer 
2016), electric power systems (Yang et al. 2018), and water supply infrastructure (e.g., Pagano et 
al. 2019). However, they did not account for the difference in disaster impacts among the diverse 
communities served by these infrastructures. This lack of consideration may lead to an 
incomplete understanding of the true resilience of infrastructure systems and hinder efforts to 
address the specific needs and vulnerabilities of different communities in disaster planning and 
management. As a result, there is a potential risk of overlooking and neglecting certain 
communities that may be more susceptible to adverse impacts during disasters. Second, there is a 
lack of research that investigates how communities with varying characteristics are affected by 
disasters. By examining the resilience of infrastructure that serves a range of various 
communities, we can identify vulnerable communities and promote more equitable infrastructure 
planning. Although previous research has evaluated the effects of disasters on different 
communities during different stages of a disaster, including preparedness (Kim and Sutley 2021), 
response (Yabe and Ukkusuri 2020), and recovery (Emrich et al. 2019), there are limited studies 
that compare infrastructure resilience across communities with different characteristics and 
explore how these characteristics may influence infrastructure resilience as a whole. Addressing 
this knowledge gap is crucial for a comprehensive understanding of the relationship between 
community attributes and infrastructure resilience. By understanding how various community 
characteristics influence infrastructure resilience, we can work towards creating more robust and 
inclusive disaster management and recovery plans, ultimately promoting a more resilient and 
equitable society. 

To address this gap, this paper presents a study that comparatively analyzes infrastructure 
resilience while accounting for disaster disparities and vulnerabilities. We utilized the social-
welfare-based infrastructure resilience assessment (SW-Infra-RA) model proposed by Dhakal 
and Zhang (2023). SW-Infra-RA model assesses the collective resilience of infrastructure 
serving multiple communities while accounting for (1) disaster inequality – the unequal 
distributions of disaster impacts on infrastructure across various communities; and (2) disaster 
vulnerability– the disaster impacts on the infrastructure of the communities that suffer from the 
most severe impacts. In this study, we focused on measuring and comparing the levels of disaster 
inequalities, the levels of disaster vulnerability, and the collective resilience of infrastructure 
serving Florida counties with various characteristics (e.g., spatial, demographic, and socio-
economic characteristics). The remainder of the paper presents the research context, explains the 
research method, discusses the results, and summarizes the study with conclusions.  

RESEARCH CONTEXT 
 

In this study, we selected three hurricanes that made landfall in Florida: Hurricanes Michael, 
Irma, and Sally. Hurricane Michael is a Category 5 hurricane that made landfall near Mexico 
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Beach in Florida Panhandle on October 10, 2018. It was one of the strongest hurricanes that hit 
Florida gulf coast region (NOAA 2019). Hurricane Michael brought catastrophic storm surges 
ranging from 9 ft to 14 ft on the Florida Panhandle coast (NOAA 2019). It also brought 
enormous wind gusts that resulted in extensive structural damage and disruption of infrastructure 
services. Infrastructure such as communication and electric transmission lines were destroyed 
from fallen trees and flying debris (Burgess 2018). A damage assessment report showed that 
roads and highways in the coastal region between Panama City and Alligator point were washed 
out due to flash flooding (NOAA 2019).  

Hurricane Irma, another Category 5 hurricane, made landfall in Florida Keys on September 
10, 2017. It brought strong winds and storm surges that caused flooding with a maximum 
inundation level of 5ft to 8 ft above normal level for the lower Florida Keys (NOAA 2018). The 
hurricane caused extensive damage to the infrastructure serving the communities of South 
Florida. For example, a report showed that a part of US 1 Highway was washed away due to 
heavy rainfalls and storm surges.  

Hurricane Sally is a Category 2 hurricane that made landfall near the Florida/Alabama state 
line on September 16, 2020 (NOAA 2021a). The storm brought strong wind speeds (105 mph) 
and storm surges, causing extensive damage to infrastructure across the northwest coastal region 
of Florida. Heavy rainfall combined with storm surges resulted in massive flooding and damage 
to electric power infrastructure serving the communities of western Panhandle region of Florida 
(Saunders 2020). 
 
RESEARCH QUESTIONS 
 

We conducted three case studies in the context of the three selected hurricanes to address the 
following research questions: 

1. How does disaster inequality vary among counties with different characteristics (e.g., 
coastal vs inland, urban vs rural, more socially vulnerable vs less socially vulnerable)? 

2. How does disaster vulnerability differ among counties with different characteristics? 
3. How does collective infrastructure resilience vary among counties with different 

characteristics? 
 
CASE STUDY DESIGN 
 

We designed the three case studies in a similar manner in terms of structure and content. For 
each case study, by leveraging the SW-Infra-RA (Dhakal and Zhang 2023), we measured and 
compared disaster inequalities, disaster vulnerabilities, and collective resilience of one type of 
infrastructure that serves different groups of communities. The background information as well 
as the data source of each case study are briefly summarized in Table 1.  

We collected the data for two main types of infrastructure resilience indicators: infrastructure 
functional loss and infrastructure recovery time. Here, functional loss is defined as the reduction 
in functionality of infrastructure due to the impacts of a disaster. Depending on the type of 
infrastructure, functional loss can be represented through indicators such as percentage of 
communication service outages, percentage of electric power outages, and percentage of road 
closures. Recovery time is defined as the time required by infrastructure to resume its services to 
the original functional level after disasters and can be represented through indicators such as the 
time required for road reopening and the time required for resuming electric power services. The 
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data for these indicators were collected from both public and private sources, including Federal 
Emergency Management Agency (FEMA), Florida Public Service Commission (FPSC), Federal 
Communications Commission (FCC), and Florida Department of Environmental Protection 
(FDEP). 

 
Table 1. Case Study Information. 

 
Case Study Hurricane Type of Infrastructure Data Source 

I Hurricane Michael Communication FCC (2018) 
II Hurricane Sally Electric power FPSC (2023) 
III Hurricane Irma Transportation FDEP (2023) 

 
The geographical regions in close proximity to disasters often experience more severe 

impacts compared to the regions located farther away from the same disaster. To account for the 
effects of varying disaster threat levels on infrastructure serving multiple counties, we used 
normalized disaster impacts (functional loss and recovery time) in our analysis. We normalized 
the disaster impacts based on the average sustained wind speeds during the disaster period.  

For each case study, we first identified the Florida counties that issued disaster declarations 
due to the selected hurricane. Then, to conduct the comparative study among communities with 
different spatial, demographic, and socioeconomic characteristics, we classified the identified 
counties into multiple groups, including (1) the coastal and inland groups, (2) the urban and rural 
groups, and (3) the more socially vulnerable and less socially vulnerable groups. The coastal 
group includes counties that have a coastline bordering the ocean (NOAA 2021b), while the 
inland group includes counties that share their borders with adjacent counties with no coastline 
bordering. The urban group includes counties with population densities higher than 100 
individuals per square mile, while the rural group includes counties with population densities 
lower than 10 individuals per square mile (Florida Health 2022). The less vulnerable group 
includes counties with social vulnerability index (SVI) (CDC/ATSDR 2023) ranging from 0 to 
0.5, while the more socially vulnerable group includes counties with social vulnerability index 
(SVI) ranging from 0.5 to 1. Here, the SVI is an index that is used to assess the vulnerability of a 
population to hazards and disasters. It takes into account factors such as socioeconomic status, 
race/ethnicity, language barriers, age, and disability status, which can affect a community’s 
ability to prepare for, cope with, and recover from disasters. (CDC/ATSDR 2023).  

We then assessed the infrastructure resilience across multiple counties using the SW-Infra-
RA model (Dhakal and Zhang 2023). The SW-Infra-RA model has four key components: (1) a 
mathematical measure that assesses the unequal distribution of disaster impacts across different 
counties by adapting the Gini coefficient (Atkinson and Brandolini 2010), (2) a line of 
vulnerability that identifies those communities that suffer from the most severe impacts from a 
disaster, (3) a collective disaster impact function that measures the collective functional loss and 
collective recovery time by incorporating unequal distribution of disaster impacts and the 
potentially severe disaster impacts on vulnerable communities, and (4) a collective infrastructure 
resilience assessment function that quantifies collective infrastructure resilience based on the 
collective disaster impacts. For detailed information about this model, the readers are referred to 
Dhakal and Zhang (2023).  

To conduct the case studies, we followed the following four primary steps:  
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(1) Measuring the unequal distribution of disaster impacts on infrastructure serving multiple 
counties by using Gini coefficient, of which the value ranges from 0 to 1, with 0 
representing perfect equality and 1 representing complete inequality; 

(2) Determining the line of vulnerability to identify disaster vulnerable counties and 
measuring the percentage of disaster vulnerable counties in each group;  

(3) Quantifying the collective disaster impacts on infrastructure serving multiple counties;  
(4) Assessing the collective loss of resilience of infrastructure. 

RESULTS AND DISCUSSION 

Based on the aforementioned steps and utilizing the functions proposed in SW-Infra-RA 
(Dhakal and Zhang 2023), the results of the three case studies are summarized in Tables 2, 3, and 
4. The next three paragraphs highlighted some of the main findings with relevant discussion. 
 

Table 2. Results of Case Study I. 
 

Variable Coastal  Inland Urban  Rural More 
vulnerable 

Less 
vulnerable 

FL RT FL RT FL RT FL RT FL RT FL RT 
Gini coefficient 0.93 0.84 0.92 0.92 0.75 0.83 0.92 0.92 0.93 0.89 0.72 0.52 

Line of 
vulnerability 0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 0.56 0.46 

% Vulnerable 
counties 62% 12% 71% 28% 25% 25% 45% 36% 41%  25%  66%  66%  

Collective 
disaster 
impacts 

0.78 0.42 0.87 0.67 0.8 0.46 0.73 0.65 0.74 0.55 0.92 0.81 

Collective loss 
of resilience 0.16 0.29 0.18 0.24 0.2 0.37 

Notes: FL= functional loss: RT = recovery time 
 

Table 3. Results of Case Study II. 
 

Variable Coastal Inland Urban Rural More 
vulnerable 

Less 
vulnerable 

FL RT FL RT FL RT FL RT FL RT FL RT 
Gini Coefficient 0.74 0.77 0.76 0.8 0.74 0.76 0.76 0.78 0.86 0.92 0.6 0.59 

Line of 
vulnerability 0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 0.43 0.52 

% Vulnerable 
counties 40% 20% 25% 50% 40% 20% 25% 25% 30%  50%  33%  33%  

Collective 
disaster impacts 0.59 0.66 0.51 0.71 0.59 0.7 0.51 0.59 0.5 0.79 0.67 0.63 

Collective loss 
of resilience 0.19 0.18 0.21 0.15 0.2 0.21 

Notes: FL= functional loss: RT = recovery time 
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Table 4. Results of Case Study III. 
 

Variable 
Coastal Inland Urban Rural More 

vulnerable 
Less 

vulnerable 
FL RT FL RT FL RT FL RT FL RT FL RT 

Gini 
Coefficient 0.83 0.96 0.89 0.8 0.95 0.94 0.76 0.52 0.95 0.91 0.77 0.85 

Line of 
vulnerability 0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 0.33 0.37 

% Vulnerable 
counties 41% 16% 57% 28% 25% 25% 66% 33% 54%  15%  16%  50%  

Collective 
disaster 
impacts 

0.43 0.38 0.55 0.66 0.31 0.36 1.14 0.59 0.77 0.42 0.38 0.31 

Collective loss 
of resilience 0.08 0.18 0.06 0.34 0.16 0.06 

Notes: FL= functional loss: RT = recovery time 
 

Analysis of Disaster Inequality across Different Communities. Tables 2, 3, and 4 show 
the results of the three case studies. As per the results, in the three disasters, the Gini coefficients 
are all higher in the more socially vulnerable group as compared to the less socially vulnerable 
group. For example, in the context of Hurricane Michael (Case Study I), both the Gini 
coefficients for functional loss and recovery time are higher in the more socially vulnerable 
group (GFL=0.93, GRT=0.89) as compared to the less socially vulnerable group (GFL=0.72, 
GRT=0.52). The results suggest that counties with higher socially vulnerable tend to experience 
greater disparities in the distribution of disaster impacts within their communities.  

The difference in disaster inequality between the more and less socially vulnerable groups 
could be attributed to insufficient disaster relief and aid, as well as disparities in the quality and 
adequacy of infrastructure services. Socially vulnerable communities, which often have a higher 
percentage of minority, disabled, poor, and unemployed populations, may lack access to the 
limited disaster aid and assistance, which could impede their recovery processes. Existing studies 
have shown that socially vulnerable communities face barriers in receiving disaster assistance, 
leading to longer recovery times and less infrastructure reinvestment and disaster recovery aid 
(SAMSHA 2017, Nexus 2017). Furthermore, socially vulnerable communities also lack adequate 
and stable infrastructure services. Previous studies have demonstrated that socially vulnerable 
communities often have unmet infrastructure needs, such as clean water supply and electricity 
(SAMSHA 2017). In the event of disasters (e.g., hurricanes), the unstable and substandard 
infrastructure in the socially vulnerable communities is more likely to suffer from varying levels 
of damage or service disruptions and has higher uncertainty in recovery. Therefore, socially 
vulnerable communities may experience higher levels of disaster inequality due to the varying 
levels of disaster impacts on their infrastructure. 

Analysis of Disaster Vulnerability Across Different Communities. The results show that 
there is a higher percentage of disaster vulnerable counties in the rural group compared to the 
urban group in Hurricanes Michael and Irma (Case Studies I and III). For example, during 
Hurricane Irma, the proportion of disaster vulnerable counties was significantly higher in the 

Construction Research Congress 2024 390

© ASCE

 Construction Research Congress 2024 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

V
PI

 &
 S

U
 o

n 
04

/2
5/

25
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.
 



rural group (66%) compared to the urban group (25%). These results may imply that 
infrastructure serving the rural area is more vulnerable to disasters compared to the urban area in 
Hurricanes Irma and Michael. 

The greater level of disaster vulnerability across the rural communities may be attributed to 
various factors, such as aging and substandard infrastructure, insufficient infrastructure 
investment, and the socio-economic status of individuals residing in rural areas. Generally, rural 
areas have limited funding to support their infrastructure needs and lack the necessary resources 
to implement disaster resilience strategies (Kapucu et al. 2013). Furthermore, rural areas often 
have aging infrastructure that requires significant repair and maintenance. Unfortunately, 
infrastructure planning and investment programs tend to prioritize urban areas, leaving critical 
infrastructure services unreliable and inaccessible for rural communities (NCSL 2020). In 
addition, rural communities tend to have lower socio-economic conditions including higher 
poverty and unemployment rates and limited education resources. Previous studies have shown 
that the socio-economic attributes of communities are linked to the extent of damage caused by 
disasters to infrastructure. For example, during the recovery phase of Hurricane Michael, 
minority and low-income communities suffered from more severe impacts and lacked essential 
resources needed for recovery (Moens 2022). 

Analysis of Collective Resilience of Infrastructure Serving Different Communities. The 
results show that, in Hurricanes Michael and Irma (Case Studies I and III), the collective loss of 
resilience of infrastructure serving the inland group (CLR = 0.14) is higher than the 
infrastructure serving the coastal group (CLR= 0.07). In contrast, the collective loss of resilience 
of electric power infrastructure serving both the inland (CLR=0.18) and the coastal groups 
(CLR=0.19) is similar in Hurricane Sally (Case Study II). These results suggest that greater 
disparities in collective infrastructure resilience between inland and coastal counites may be 
observed in the face of more intense hurricanes (e.g., Category 5 hurricanes). 

This phenomenon may be explained by the characteristics of these hurricanes. First, both 
Hurricanes Irma and Michael were Category 5 hurricanes, capable of travelling up to 100 to 200 
miles inland after making landfall (Raizner 2021). These hurricanes brought strong winds and 
extreme rainfall, leading to severe inland flooding. For instance, Hurricane Michael maintained 
Category 3 intensity as it moved across seven inland counties in Florida, including Calhoun, 
Liberty, and Gadsden counties (NOAA 2019). It continued to bring excessive rainfall, causing 
flash floods in the inland counties which resulted in substantial damage to roads and highways 
and interrupted communication and electric power services. In contrast, Hurricane Sally, a 
Category 2 hurricane, primarily caused damage to infrastructure in coastal areas due to storm 
surges and heavy rainfall (NOAA 2021a). After making landfall, Hurricane Sally weakened and 
moved towards inland areas of Florida as a tropical storm, resulting in less severe impacts on 
electric power infrastructure serving inland counties than those serving coastal counties. 
 
CONCLUSIONS AND FUTURE WORK 
 

This paper presents three case studies that analyze infrastructure resilience while accounting 
for disaster inequality and disaster vulnerability. We leveraged the social-welfare based 
infrastructure resilience assessment (SW-Infra-RA) model introduced by Dhakal and Zhang 
(2023) to evaluate the level of disaster inequality, disaster vulnerability, and overall resilience of 
infrastructure serving counties with different spatial, demographic and socio-economic 
characteristics. The study reveals three key findings. First, infrastructure serving socially 
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vulnerable counties experienced greater levels of disaster inequality. Second, in high-intensity 
hurricanes, a higher percentage of disaster vulnerable counties were found in the rural group. 
Finally, infrastructure serving inland counties had poorer resilience performance compared to 
infrastructure serving coastal counties in high-intensity hurricanes.  

This study makes a valuable contribution to the existing body of knowledge on infrastructure 
resilience assessments by integrating the crucial equity-related factors – disaster inequality and 
disaster vulnerability. By incorporating these factors, we gained a systematic understanding of 
(1) how disaster impacts are distributed unevenly among communities, (2) the types of 
communities that may experience more severe impacts, and (3) the collective resilience of 
infrastructure. In addition, the study offers comparative analyses across communities with 
different spatial, demographic, and socio-economic characteristics. These analyses enhance our 
understanding of the complex relationship between community attributes and infrastructure 
resilience in a quantitative manner.  

Practically, our study offers theoretical and quantitative analyses that can inform more 
equitable and effective infrastructure planning and resilience strategies. By considering disaster 
inequality and vulnerability, decision-makers can better prepare for and address the diverse 
challenges posed by disasters, leading to more resilient and inclusive outcomes for communities 
at risk. For example, our findings highlight the need to consider the spatial, demographic, and 
socio-economic characteristics of communities when assessing infrastructure resilience. This can 
help decision-makers identify communities that are more vulnerable and in need of additional 
support during and after disasters. Additionally, the results can be used to guide the allocation of 
resources and investments in infrastructure improvements that can enhance resilience and reduce 
disparities.  

The present study focuses on hurricane disasters in Florida counties, and a primary limitation 
of the study is the relatively small number of counties analyzed. Consequently, the 
generalizability of the results to other disaster contexts or geographic locations is restricted. 
Moreover, due to the scarcity of available data, the analysis was limited to the county level, 
thereby preventing the examination of disaster inequality at finer scales such as the city or 
community levels. In the future/ongoing work, the authors will conduct additional case studies to 
analyze the resilience of diverse types of infrastructure serving a more extensive range of 
communities across various regions in the country. Additionally, the authors will further explore 
methods for modeling the interdependencies among infrastructure systems serving multiple 
communities, with the goal of integrating such interdependencies into the analysis.  
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