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Theory of giant magnetoelastic effect in soft systems
Yihao Zhout, Guorui Chent, Xun Zhaot, Trinny Tat, Zhaogi Duan, Jun Chen*

Having been predominantly observed in rigid metal and metal alloys since 1865, the magnetoelastic effect was
recently experimentally discovered in a soft matter system and used as a new working mechanism for energy and
health care applications. Here, a theoretical framework is presented and proven to be universally accurate and
robust in interpreting the giant magnetoelastic effect across soft systems subjected to various deformation
modes, micromagnet concentrations, magnetization profiles, and geometric structures. The theory uncovers sub-
stantial, unique magnetoelastic phenomena in soft systems, including the magnetic pole reversal under localized
compression. This work lays a firm foundation for an in-depth understanding and practical applications of the gi-

ant magnetoelastic effect in soft matter systems.

INTRODUCTION

The magnetoelastic effect is a phenomenon delineating the alterna-
tion of a material’s magnetic properties in response to applied me-
chanical stress or strain. Primarily observed in rigid metals and
metal alloys, this effect stems from the rotation or reorientation of
the magnetic domains upon the application of mechanical loads
(1, 2). Because of the inherent rigidity of the material and the sub-
stantial force required to reorient the magnetic domains (3, 4), the
magnetoelastic effect has primarily been used in applications within
civil engineering, particularly in areas such as building vibration
control (5, 6). Recently, a giant magnetoelastic effect has been ob-
served in soft systems comprising micromagnets and a polymer ma-
trix (7). As a preliminary attempt, this effect has been coupled with
magnetic induction (MI) for the invention of soft magnetoelastic
generators (MEGs), emerging as a fundamentally new platform
technology for a broad spectrum of applications from cellular repro-
gramming and cardiovascular health monitoring to wind and water
flow energy harvesting (8-11). Despite their potential, a primary
unresolved issue surrounding the phenomena of giant magnetoelas-
tic effects pertains to the absence of a comprehensive, universally
applicable, and all-encompassing theoretical framework. Such limi-
tation becomes more pronounced when the soft system assumes an
arbitrary geometry and exhibits distinctive magnetization patterns
and complex architectures.

Modeling of mechanics in magnetic composites accounting for
magnetoelastic coupling has a long and checked history from both
the microscopic and macroscopic viewpoints (12, 13). For instance,
micromechanical models have been formulated on the basis of the
consideration of domain orientation, domain boundary movement,
spontaneous magnetization, and magnetization hysteresis of the
magnetic particles and use the Mori-Tanaka approach for homogeni-
zation to obtain the overall response of the composite (14-18). These
models are suitable for modeling the response of rigid magnetic
composites but do not account for the large deformability of soft sys-
tems. Macroscopic models have been developed either based on the
direct approach using the conservation laws of continuum mechan-
ics (19-23) or based on the energy approach using the extremization
of an appropriate potential energy (19, 24-29). These existing models
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are focused on the magnetic-to-mechanical response of magnetic
composite with soft magnetic particles and are not applicable to soft
systems with permanent magnetizations. Recently, the theory of
hard-magnetic soft systems (30-33) has been developed and has
guided the precise design of magnetic soft robotics for neurovascular
interventions (34-36). Nevertheless, these models are mainly fo-
cused on the magnetic-to-mechanical response of the soft systems.
There remains an imperative necessity for the development and re-
finement of models specially designed for simulating the magneto-
elastic effect (mechanical-to-magnetic responses) in soft systems, in
light of the recent advancements in the applications of this effect
across various scenarios.

Here, motivated by the modeling of the magnetic-to-mechanical
response of soft systems, we present a theoretical framework spe-
cifically tailored to elucidate the giant magnetoelastic effect in soft
matter systems experiencing diverse deformation modes. The devel-
oped model demonstrates a high degree of consistency and robust-
ness across a series of experiments involving soft systems of diverse
deformation modes, regardless of their arbitrary shapes, magnetiza-
tion intensities, magnetization patterns, and architectures. With this
theoretical framework, we highlight the inherent diversity as a key
feature of the magnetoelastic effect in soft systems and uncover sub-
stantial unique magnetoelastic phenomena including the magnetic
pole reversal in localized compression and a potentially record-
breaking magnetomechanical coupling (MC) factor of 2.6 x 107 T
Pa! at the system center. We summarize two critical parameters
determining efficient MC in soft systems: the ratio of initial mag-
netic flux density B: to shear modulus G (B:/G) and the system as-
pect ratio. This theoretical framework revolutionizes the in-depth
understanding of the giant magnetoelastic effect in soft systems, es-
tablishing a firm foundation for its further applications in energy,
health care, and other domains.

RESULTS

The framework

Preliminary definitions

The theoretical framework hinges on treating the soft matter system
comprising micromagnets and a polymer matrix as a homogenized,
magnetizable, hyperelastic system (Fig. 1A). In this context, the Neo-
Hookean model is chosen for the mechanical behavior of the system
which is accurate for compressive strain below 30%. System is de-
fined to occupy a volume Vj € R® in the reference configuration,
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Fig. 1. A theoretical framework to study the magnetoelastic effect in soft systems. (A) Scheme of the soft magnetoelastic system composed of oriented micromag-
nets and a polymer matrix. (B) Scheme of the decoupled approach to calculate the giant magnetoelastic effect in soft systems. MZ~ s related to rbi™ through f(F) to the current
configuration. f(F) = R is an appropriate assumption. (C) comparison of rigid and soft systems. (D) different from traditional metals or metal alloys, soft magnetoelastic

systems can have different deformation modes ranging from stretch, twist, and sheal

r to compress, bend, and local deform. (E) Magnitude of magnetization, represented

by the magnetic flux density at the surface center, increases linearly with the particle concentration. (F) Shear modulus of the soft magnetoelastic system at different

particle concentrations.

with the boundary Vyand outward unit normal vector T Corre-
spondingly, the magnetoelastic soft system is defined to occupy a
volume V € R3 in the current configuration, with the boundary V
and outward unit normal vector n@". The reference and current con-
s are ke B0, ond 72 ety B defor-
mation gradient is defined as F = V £. We assume that the defor-
mation of the considered magnetoelastic soft system is isochoric. As
a result, the volumetric transformation ratio ], as the determinant of F,
is consistently equal to 1. Thus, the reference density of the system
po is equal to the current density p. The total second Piola-Kirchhoff
stress tensor is denoted as S. The Cauchy-Green strain tensor is
denoted as C. The magnetic flux density, magnetic field, andgmarg:
netization in the current configuration are defined as b hn{ag—
1, respectively. The magnetic flux density, magnetic field, andﬁ
netization in the reference configuration are defined as B2 , ?@F -

ad M F cohedp¥
Central
We limit the study to an isolated system consisting solely of a per-

manent magnetic soft object, with no external current sources, no

applied magnetic fields, and no interaction with other permanent
magnetic objects. In this system, magnetization refers to the rem-
nant magnetization of the system after the impulsed magnetization
processes, which is a material parameter. In this system, our theory
is built upon the understanding that divergence of magnetization
represents the source of Maxwell’s equations and can be used to
calculate the magnetic field of the system. Thus, variation of the
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magnetization distribution in the system during deformation can be
used to calculate the magnetoelastic effect (fig. S1). According to
this understanding, we decouple the calculation of the magnetic
part and the mechanical part of the system into two configurations.
The mechanical aspect of the problem is addressed within the refer-
ence configuration, whereas the magnetic aspect is resolved through
the evolution from the initial configuration to the current configu-
ration (Fig. 1B). In this approach, the reference configuration
supplies the deformation gradient F for the calculation of the mag-
netization transformation. Concurrently, the magnetization distri-
bution provides the magnetic force Fr.g, which is applied as both
body and boundary stress to the reference configuration. Conse-
AHSREY ot bR mAsHe IHRPMIC KOHRUNB A Ahiiexedk e be 6
configurations. The magnetic flux density, magnetic field, and mag-
ali
netization in the initial configuration are defined as B, H, and M,
respectively. It is noteworthy that the initial and the reference con-
figurations are defined to be the undeformed state of the soft system,
which is a hypothetical state that does not exist in reality because of
the intrinsic magnetic force. This definition requires us to apply the
mechanical and magnetic boundary conditions to the system simul-
taneously. The advantages of the decoupled approach are twofold.
First, the initial configuration can be used to evolve the system to
calculate the magnetic flux density and magnetic field of the system.
In this way, the calculation of the magnetic field and magnetic flux
density can be eliminated in the reference configuration (fig. S2).
Such a methodology will be particularly advantageous in scenarios
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where the relationship between /8~ and EM is complex, and the for-

mulation of the magnetic constitutive relationship is a challenge in
the reference configuration. Second, this approach accentuates that
the magnetoelastic effect refers to the transformation of magnetic
flux density and magnetic field from the initial configuration to the
current one. This distinction helps to mitigate potential misunder-
standings that the magnetoelastic effect pertains to a transformation
between the reference and current configurations.

The transformation of magnetization from the initial to the
current configurations, describing the MC of soft systems, is intrin-
sically dependent on the material specifics within the system, ren-
dering it fundamentally indeterminate, which can be written as

i = f M M

where f (F) refers to a function of deformation gradient F and satis-
fiesf=I @ F = I. For our system of interest, an appropriate as-
sumption is depicted below

" = RMI @
where R is the rotation matrix in the polar decomposition of F. This
assumption is reasonable because (i) the soft system of interest can
be considered as an ideal soft magnetoelastic system whose magne-
tization should be insensitive to the pure stretch (note S1). (i) Mag-
netization can be considered as a vectorial quantity associated with
the density of the material in the reference and current configura-
tion. For incompressible materials whose density did not change
with deformation, the magnetization will only change its direction
according to the rotation matrix of the deformation but maintain its
magnitude as a constant. (iii) The intrinsic magnetoelastic effect of
magnetic particles should be minimal in the stress range of 100 kPa.
(iv) The simulation in the microscopic scale supports the proposed
assumption (note S2). (v) The rotation of materials in soft magneto-
elastic systems is analogous to the rotation of the magnetic domain
in rigid metals and metal alloys. (vi) It has been validated in the
simulation of the magnetic-to-mechanical response of soft systems,
aligning with the corresponding experimental results (33, 37).

Equation 2 and Fig. 1B exemplify our central hypothesis on the
principal genesis of the magnetoelastic effect in isolated permanent
magnetic soft systems: the rotation of material magnetization
coupling with the pronounced nonlinear geometry variation, as
schemed in Fig. 1C.

Constitutive equations
We consider the giant magnetoelastic effect as the result of magnetic

field variation under a finite deformation of the soft magnetoelastic
system from the initial to the current configuration. The mechanical

part of the soft magnetoelastic system is solved in the reference
configuration. The equilibrium equation governing the mechani-

cal behavior of the system in the referenice configliration can be

written below

V-FS=0 (3)
where S have the contributions from both the mechanical and mag-

netic parts and can be written as the function of the system’s free
energy density W ENELD BRT asbelow
r

r

oW BT, H,
A —

S=
0C

“)
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Here, W F, ]WIJE?[ . is composed of the mechanical and mag-

netic parts as below (37)

- G 1 P, . 5
W FN H = 1 1 P 4l
M 211—3 —2ur-C ﬂl,—pr-c o

©®)
where G is the shear modulus of the Neo-Hookean material, I is the
first invariant, and iy is the vacuum permeability. More details are
explained in note S3. By writing the free energy density as a function
of C, the symmetry of the total Cauchy stress tensor and the balance
of angular momentum are automatically satisfied.

The magnetic properties of the soft magnetoelastic system are
calculated using the evolution of the initial configuration and are
governed by Maxwell’s equations in their differential forms. When
the initial configuration evolves to the current configuration, ex-
cluding consideration of the electrodynamic effect and electric cur-
rent, the equations can be written as below

vV-W-o ©)
Vxh? =0

The relationship between q, A, and 11l” is governed by the constitu-
b h
tive equation

B =y W5 ®)

where pp is the vacuum permeability. With Eq. 2, the constitutive
equation transfers to

# =y, 1 +REI 9)
R is obtained by solving the deformation using the reference
configuration.
Boundary conditions

The boundary conditions of the theoretical framework can be sepa-
rated into the magnetic and mechanical parts. When the initial
configuration evolves to the current configuration, the boundary
conditions of the magnetic part, excluding consideration of surface
current, can be written as

Pr.j 1 =0 (10)

GE-f x@ =0 (11)

o’
wheke Bs apd ‘Bbﬁ%@ﬁmgﬁg&%ﬂw gemsitiesamt the outside and
h, and h; are the magnetic
fields on the outside and inside of the boundary, respectively.

The boundary condition of the mechanical part in the reference
configuration can be separated into two parts. The first part is the
Maxwell stress as surface traction applied to the deformable solid
(38), which can be expressed as

4 5
1 1
Foo.= =, + S
mag étoﬁds 3 uﬂﬁ(,@lo 2“0 ﬂo ?ﬂdS (12)
w (1%
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The @Oq is obtained using the evolution of the initial configuration.
This Maxwell surface traction arises from the contribution of mag-
netic energy outside the materials (19, 38, 39). Equation 12 is de-
fined in the current configuration but can be transformed to the
reference configuration as below (38)

To = toFT (13)
The second part of the mechanical boundary condition is deter-
mined by the different deformation modes from stretch, twist, and
shear to local deformation, compress, and bend (Fig. 1D) through
implementing different kinematic constraints on the boundary con-
ditions. For instance, boundary conditions of the shear deformation
can be expressed as

e (14)

, b b
where x82” and X" represent the coordinates of the top surface in the
t t *

current configuration and reference configuration; x;, and X, repre-
sent the coordinates of the bottom surface in the current configura-
tion and reference configuration; Ad “i indicates the shear distance of
the top surface from the reference configuration to the current con-
figuration in the X direction. Other deformation modes of the
soft magnetoelastic system can be elucidated analogously to the
shear deformation approach.

The aforementioned equations facilitate the separation of calcu-
lations related to the mechanical and magnetic components of the
soft system into two distinct configurations. An alternative method-
ology, which concurrently solves both mechanical and magnetic
components within the reference configuration, is elaborated upon
in note S4. These two approaches yield the same results. The calcula-
tion using two distinct configurations will be implemented into the
following finite element implementation and result analysis.

Finite element implementation

The developed theoretical framework is seamlessly integrated into
the COMSOL finite element environment. The arbitrary Lagrangian-
Eulerian method is applied to account for the interface movement
during deformations (note S5). Before implementation, it is impera-
tive to experimentally ascertain the initial magnetization M and the
shear modulus G of the soft magnetoelastic system, respectively. The
initial magnetization M is determined by measuring the magnetic
flux density B, of the sample with both cylinder and cuboid geome-
tries. The rationale for using samples of two distinct shapes is to
facilitate an investigation into potential shape-induced effects. As
displayed in Fig. 1E, B, of the soft magnetoelastic system is linearly
proportional to the volume fraction of the micromagnets and can be
expressed as

B =kc

z p (16)

where k is a constant representing the magnetic flux density of mi-
cromagnets and ¢, is the particle volume concentration. Notably, the
sample’s geometry exerts only a marginal influence on its magnetic
flux density. This observation aligns with expectations, given that
the surface area and height of the samples, irrespective of their
geometric form, were meticulously maintained to be consistent.
Unlike magnetic flux density, the shear modulus of the soft magne-
toelastic system demonstrates a nonlinear increase with respect to the
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particle volume concentration (Fig. 1F). Specifically, the shear mod-
ulus exhibits a pronounced acceleration in its increase when the
particle volume concentration exceeds 10%. The nonlinear correla-
tion between shear modulus and particle volume concentration can
be predicted using the Mooney model (34, 40). This model, adapted
from the Einstein equation, posits that the increase in modulus in a
composite system is analogous to the rise in viscosity in a suspen-
sion, considering interparticle inlt_ieractionf

2.5¢,

G=Gexp

0 1 —Scp

(17)

where Gy denotes the shear modulus of the pure elastomer without
particles. S is the crowding factor, and an optimal value of 1.25
provides the closest fit to the experimental results. By integrating
the experimentally obtained values of M and G into the theoretical
framework and the finite element environment, the giant magneto-
elastic effect can be analyzed in soft systems across arbitrary geom-
etries, deformation modalities, and magnetization profiles.

Compression deformation
Before comparing the results garnered from the theoretical frame-
work with experimental data, we initially ascertain the accuracy of
the proposed model by contrasting it with the analytical solution for
a cylindrical soft magnetoelastic system subjected to biaxial stretch-
ing (Fig. 2A). During this evaluative process, the incorporation of
magnetic force into the model is deliberately omitted, as its inclu-
sion precludes the derivation of an analytical solution. This analyti-
cal solution can be obtained by solving Maxwell’s equations using
Green's function (note S6). Figure 2B shows the Z-directional mag-
netic flux density (b.) at the top surface center under various biaxial
stretching conditions, while Fig. 2C presents b, at the body center,
comparing the modeling and analytical results. The modeling re-
sults align well with the analytical solution, confirming the accuracy
of the proposed theoretical framework. Additional observations re-
veal that b, decreases linearly when the system undergoes biaxial
stretch. However, a nonlinear behavior is identifiable when the mag-
nitude of the stretch intensifies. Taking a step further, b, along the
vertical axis of the soft magnetoelastic system under various biaxial
stretching conditions is depicted in Fig. 2D. Observably, there is a
decrement in the Z-directional magnetic flux density as biaxial
stretching progresses. Notably, the modeling outcomes are in con-
gruence with the analytical solution across the entire spectrum of
conditions. These findings not only bolster the validity of the model
but also enhance the confidence in comparing the modeling results
with experimental data under more complex deformation scenarios.
After validating the model under biaxial stretch conditions, the
theoretical framework is subsequently used to simulate the giant
magnetoelastic effect in the cylindrical system under practical com-
pression (Fig. 2E). Figure 2F presents the obtained simulation re-
sults of b, on the top surface and vertical cross sections of the system,
both in its initial state and after being compressed to 86% of its
original height. Figure S3 further illustrates the bulk b, and the direc-
tion of magnetic flux, which follows the rotation matrix defined in
Eq. 2. Both results reveal a decrease of b, in the soft magnetoelastic
system under compression deformation, showing the same trend as
the previously reported giant magnetoelastic effect in soft systems (7).
To quantify the precision of the proposed theoretical framework,
the correlation between b, and applied stress was further simulated
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Fig. 2. Investigate the magnetoelastic effect in soft systems with a compression deformation mode. (A) Scheme of a cylindrical magnetoelastic system subject to
biaxial stretch. (B and C) Simulation (Simu) result and analytical solution are consistent for the b, at both the surface center (B) and the body center (c) under the biaxial
stretch. Lo = 5 mm. (D) normalized b; along the axis of the cylindrical system under various biaxial stretching conditions. (E) Scheme of a cylindrical magnetoelastic system
subject to compression. (F) Simulated b, mapping on the top surface and cross section of the cylindrical system in its initial and compressed states. (G and H) Relationship
between b, and applied stress at the surface center of the cylindrical system with different micromagnet-to-polymer weight ratios includes 1:4 (G) and the summary (h).
experimental results represent the average value from three independent experiments. Shaded area represents the Sd. (I) Scheme of a cuboidal magnetoelastic system
subject to compression. (J) Simulated magnetic flux density mapping on the top surface and cross section of the cuboidal system in its initial and compressed states.
(K and L) Relationship between b, and applied stress at the surface center of the cuboidal system with different micromagnet-to-polymer weight ratios includes 1:4 (K)
and the summary (l). experimental results represent the average value from three independent experiments. Shaded area represents the Sd. (M) Prediction of the variation
of B;/G, a quantity that characterizes the Mc factor, with the particle volume concentration for the cylindrical system. (N) b; along the cylindrical axis when the system is
compressed from 5 to 4.2 mm. (O) the simulated Mc factors at distinct positions inside the cylindrical system. (P) Mapping of Mc factor with respect to the particle volume

concentration and the aspect ratio predicted by the model.

and compared to the experimental result. For a comprehensive anal-
ysis, we conduct both simulations and experiments across five soft
magnetoelastic systems with micromagnet-to-polymer weight ra-
tios ranges of 1:4, 1:2, 1:1, 2:1, and 3:1. The corresponding results are
shown in Fig. 2 (G and H) and fig. S4. It is evident that the simula-
tion results align closely with experimental observations. Such ex-
ceptional consistency between simulations and experiments across
systems with diverse compositions underscores the robustness and
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reliability of the proposed theoretical framework. It further sug-
gests that the underlying assumptions of the theoretical frame-
work aptly capture the fundamental principles of MC physics in
soft systems.

To investigate the impact of system geometry on the magneto-
elastic effect and determine whether the theoretical framework cap-
tures this influence, parallel simulations and experiments were
conducted on a cuboidal system, whose top surface area and height
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are equated to those of the cylindrical counterpart (Fig. 2I). Figure 2J
presents the obtained simulation results of b, on the top surface and
vertical cross sections of the cuboidal system, both in its initial state
and after being compressed to 86% of its original height. Meanwhile,
the bulk b, and the direction of magnetic flux are displayed in fig. S5.
Similar to the cylindrical system, decreasing b, under compression
deformation is observed. Comparing the simulated b,-applied stress
curves with experimental data for the cuboidal system, as illustrated
in Fig. 2 (Kand L) and fig. 56, yields conclusions akin to those for the
cylindrical system: The simulation aligns closely with experimental
observations. Such results robustly affirm that system geometry ex-
erts minimal impact on the model’s accuracy, underscoring the uni-
versality of the proposed theoretical framework.

Upon analysis of the b-applied stress curves, we can subsequent-
ly derive the MC factor, denoted as dss. Figure 2M and fig. S7 com-
pare the experimental and simulated ds; obtained in the cylindrical
and cuboidal systems, respectively, with different particle volume
concentrations. Besides the anticipated agreement between simu-
lated and experimental ds3 values, a noteworthy observation is the
nonlinear and nonmonotonic variation of ds3 as a function of par-
ticle volume concentration in both systems. This complex d3; be-
havior can be understood from the nonsynergic increase of the
reference magnetic flux density B, and G with the particle volume
concentration in the system. While B, increases linearly, G shows
exponential growth with the increase of the particle volume con-
centration and is further influenced by the magnetic force of the
system. A higher B, directly leads to a higher ds;, while a greater G
indicates a reduced system deformation tendency, resulting in a
lower ds;. Thus, an intuitive scaling parameter B,/ G can be pro-
posed and proven to capture the trend of ds, as evidenced by Fig.
2M. It is worth noting that B,/ G intrinsically links the magnetic and
mechanical properties of soft systems and shares the same unit with
dz. Therefore, it serves as an appropriate metric to elucidate the
magnetoelastic coupling characteristics of soft systems. A detailed
discussion of the relationship between B,/G and d3; is further pre-
sented in note S7.

The most crucial characteristic of a physical model is its predict-
ability. Having demonstrated its consistency with experimental
results in both cylindrical and cuboidal systems undergoing com-
pression deformation, we aim to leverage this established model to
delve deeper into the characteristics and underlying principles of
the giant magnetoelastic effect in a generalized soft magnetoelastic
system subjected to compression deformation. Our specific goal is
to use this model to forecast magnetoelastic behaviors that have not
yet been observed in experiments. The first insight obtained from
the model is that the magnetoelastic behavior in the soft system is
position dependent. As displayed in Fig. 2N, the b, curve along the
cylindrical axis exhibits a transformation from concave to convex
during compression deformation. This indicates that the variation
of b, is more pronounced at the body center than at the bottom and
top surface centers, as corroborated by the derived MC factor pre-
sented in Fig. 20. Numerically, the predicted MC factor increases
nonlinearly from 3.6 x 10-8 T Pa! at the top surface center to 2.6 x
107 T Pa* at the body center. Notably, the factor at the body cen-
ter is threefold the maximum recorded value observed on the sur-
face to date (7). The model thus uncovers a previously unobserved
characteristic of the giant magnetoelastic effect in soft systems: The
MC is most potent at the body center and progressively dimin-
ishes toward the surface in soft systems. Taking a step further, the
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volume-averaged b,-applied stress curve is also calculated. As il-
lustrated in fig. S8, the volume-averaged b.-applied stress curve exhib-
its a steeper slope compared to the surface b,-applied stress curve. A
more detailed calculation reveals that the volume-averaged cou-
pling factor is 5.5 x 10-8 T Pa~!, approximately 4.17 times of the
corresponding factor on the surface. This highlights the giant fea-
ture of the magnetoelastic effect in soft systems. The second insight
of the theoretical framework arises from the simulation-derived ds
mapping with respect to the geometry of the system and the particle
volume concentration as displayed in Fig. 2P. In addition to the cor-
relation with particle volume concentration as expressed by B./G,
which has been confirmed by experiments, the mapping further re-
veals an upward trend in ds; with respect to the aspect ratio of the
cylindrical system throughout the entire particle volume concentra-
tion range. This anticipated behavior is further confirmed by addi-
tional experiments on a cylindrical system with an aspect ratio of
0.118, as demonstrated in fig. S9. This affirms the effectiveness and
prediction capability of the theoretical framework. It is also note-
worthy that the discoveries obtained from the cylindrical system are
similarly observed in simulations of the cuboidal system, as evi-
denced in fig. S10. The theory has also been applied to systems with
higher aspect ratios, and the results are displayed in fig. S11. Intui-
tively, the theory predicts that the b,-compress displacement curve
transitions from a linear to a parabolic decrease, with the slope di-
minishing as the system'’s aspect ratio increases. As the aspect ratio
continues to increase, the theory further predicts that the magneto-
elastic response shifts from negative to nonmonotonic, as illustrated
in fig. S11 (C and F).

Examining the universality of the theoretical framework
Soft magnetoelastic systems under localized compression
After showcasing the accuracy and prediction capability of the theo-
retical framework for soft magnetoelastic systems under compres-
sion deformation, we took a further step to validate the universality
of the theoretical framework by verifying its applicability across soft
magnetoelastic systems subjected to various deformation modes,
diverse magnetization profiles, and different architectures. Figure
3A displays the scheme of a cylindrical system subjected to localized
compression. Here, the force is applied to a specific circular area
with a radius of 2.1 mm. The corresponding simulated b, versus ap-
plied stress curve is displayed and compared to the experimental
results in Fig. 3B. The observed consistency between simulations
and experiments suggests that the theoretical framework is perti-
nent and accurate for soft systems subjected to local compression. It
is worth noting that the experimental data reveal a magnetic pole
reversal phenomenon when the applied force exceeds 4 N. However,
the simulation ceased at ~2.5 N due to substantial distortions in cer-
tain local meshes. To elucidate the experimentally observed mag-
netic pole reversal, the simulated b, distribution at the top surface
and the cross section of the system is depicted in Fig. 3C. Meanwhile,
fig. 512 illustrates the bulk b,, accompanied by the shape deforma-
tion, and the direction of magnetic flux in the cross-sectional b,
mapping. These visuals reveal that the periphery of the compressed
area displays the same magnetic pole reversal phenomenon ob-
served experimentally. Figure 513 further confirms that such a phe-
nomenon can be attributed to the substantial rotation of magnetic
materials in the rim region. These results lead to two important con-
clusions. First, the simulated b, value of 12.75 mT at 2.5 N is a result
of averaging the values across the entire compressed area. Thus, the
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Fig. 3. Validate the universality of the framework for understanding the giant magnetoelastic effect in soft systems. (A) Scheme of a cylindrical system subjected
to localized compression. (B) comparison of the experimental and simulation b.-force relationship under local compression. (C) corresponding simulated b, mapping on
the top surface and cross section of the cylindrical system in its initial and compressed states. (D) Simulated b.-force relationship under various local compression condi-
tions, with the radius of deformation area ranging from 1.1 to 5.1 mm. dashed line represents the modeling results not incorporating the magnetic force. (E) Scheme of a
cuboidal system with three alternating magnetization domains subjected to uniaxial stretch. (F) corresponding simulated B, mapping on the top surface and cross sec-
tion of the cuboidal system in its initial and stretched states. (G) comparison of the experiential and simulated B.-stretch curves for cuboidal systems with two and three
magnetization domains. (H) Scheme of a soft lattice-structured magnetoelastic system subjected to compression. (I) comparison of the simulated and experimental b.-
applied stress curves at the surface center of the lattice structure. experimental results represent the average value from three independent experiments. Shaded area

represents the Sd. (J) Scheme of a cuboidal system subjected to bending deformation.

(K) Simulated relationship between magnetic flux density and applied stress in the

bent cuboidal system, with the thickness of the system varying from 2 to 6 mm. Solid lines depict the variation of bn, while dashed lines indicate the variation of b..

simulation accurately reflects magnetoelastic principles in soft
systems under localized compression and, absent mesh distor-
tions, is projected to concur with experimental outcomes beyond
2.5 N. Second, considering that the magnetic material rotation pre-
dominantly occurs in the marginal region of the compression do-
main, it is anticipated that a reduced compression area would
amplify the magnetic pole reversal phenomenon at lower forces.
Simulation results of local compression with different radii of com-
pression area in Fig. 3D strongly support this conclusion. When the
radius of the compression area is reduced to 1.1 mm, the magnetic
pole reversal can be simulated at only 0.6 N when the magnetic force
is not incorporated in the model.

In addition to the magnetic pole reversal phenomenon, the
theoretical framework elucidates two features in soft magnetoelas-
tic systems under localized compression. First, the magnetoelastic
effect is inversely correlated to the compression area. Not only that
this feature is reflected by the slopes of b,-applied force curves in
Fig. 3D, but it is further validated by the magnetic flux variation of

Zhouetal., Sci. Adv. 11, eads0071 (2025) 3 January 2025

systems with different compression areas, as demonstrated in fig.
514. Second, the magnetoelastic effect in localized compression is
stronger than in whole-body compression, evidenced by the differ-
ence in the magnetic flux density variation under both equivalent
displacements (e.g., 13.3 versus 2.4 mT at 0.8 mm) and applied
forces (e.g., 9.2 versus 0.22 mT at 1.5 N). This phenomenon can be
elucidated from two points. First, rotational deformation of mag-
netic materials reduces b, more effectively compared to pure com-
pressive deformation. Second, localized compression encompasses
a more substantial proportion of rotational deformation than
whole-body compression, particularly in periphery areas. In es-
sence, the theoretical framework has been proven to provide ac-
curate results to the soft systems subjected to localized deformation
modes (i.e., localized compression) and capture the underlying
magnetoelastic principle. Together with the experiments, it has
unveiled the magnetoelastic pole reversal, a unique phenomenon
in soft systems and previously not reported in rigid metals and
metal alloys, illuminating its underlying mechanism.
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Magnetoelastic effect in soft systems with patterned
magnetization profiles

Subsequent to establishing the adaptability of the theoretical frame-
work across a multitude of deformation modalities, we extend its util-
ity to soft systems characterized by patterned magnetization profiles.
Specifically, we scrutinize the simulation results of soft cuboids that
exhibit alternating magnetizations in the Z direction, subjected to
uniaxial stretching, as schemed in Fig. 3E. Figure S15 and Fig. 3F
showcase the simulation outcomes of two soft cuboids: one with two
magnetization domains and the other with three. Comparing it to the
experimental results in Fig. 3G reveals that the simulations yield a
reduction in magnetic flux density, consistent with practical situations
in both instances. This confirms the universality of the theoretical
framework in accommodating systems with patterned magnetization
domains. It is important to mention that b, does not decrease linearly
with the stretch. Alternatively, the decrement of b, exhibits a progres-
sively attenuated rate in response to continued stretching. This obser-
vation reiterates that a soft system can exhibit different magnetoelastic
behaviors under different deformation modes. In addition, the de-
crease of b, in the system with three magnetization domains surpasses
that in the system with two magnetization domains. This trend can be
attributed to the larger aspect ratio of each domain in the system with
three magnetization domains.

Magnetoelastic effect in soft architectured systems

The theoretical framework can also be applied to soft architectured
systems whose structure, dimension, and micro-computed tomog-
raphy (micro-CT) are displayed in fig. 516. As schemed in Fig. 3H,
parallel experiments and simulations are performed on a soft cuboi-
dal system with a square lattice structure. Figure 3I displays the
variation of b, at the surface center of the system under compressive
stress obtained from both the experiments and the simulations, with
detailed results presented in fig. S17. It is evident that the simulation
closely aligns with the experimental results, reaffirming the robust-
ness and universality of the theoretical framework. Moreover, a
meticulous analysis of the b,-applied stress curves discerns an in-
creasing rate of b, attenuation in both experiments and simulations.
Such an observation starkly contrasts with the behavior exhibited by
unstructured soft systems, thereby dictating the unique magneto-
elastic characteristics of architectured systems. Another observation
is the increase of b, within the voids of the lattice structure (fig. S17,
F and G) despite the concomitant diminution of b, in the surround-
ing magnetoelastic materials. One conceivable hypothesis posits that
the overarching contraction of the voids amid compression defor-
mation culminates in the intensification of magnetic flux lines. Yet,
a more exhaustive exploration is imperative to provide a holistic elu-
cidation of this observed phenomenon. Nevertheless, the accuracy,
universality, and robustness of the theoretical framework are further
strengthened through the investigation of soft magnetoelastic archi-
tectured systems.

Magnetoelastic effect in soft systems under bending and
shearing deformations

After validating the universality of the model in soft magnetoelastic
systems subjected to various deformation modes, diverse magneti-
zation profiles, and different architectures, we aim to fully harness
the underlying potential of the theoretical framework by conducting
bending and shearing simulations to the soft magnetoelastic sys-
tems. In this way, major deformation modes will be covered to en-
able a more generalized insight into the magnetoelastic effect in soft
systems. Figure 3 (] and K) and fig. S18 display the scheme of a soft
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bent cuboid along with its corresponding simulation results. In con-
trast to the compression and stretch deformation modalities, the
bending deformation leads to a pronounced alteration in the orien-
tation of the surface. Consequently, using b, as a parameter to char-
acterize the magnetoelastic effect is not apt in this context (fig. 518,
A to D). A more fitting parameter is the normalized component by,
which can be calculated through )" - n2” and effectively represents the
bending-induced magnetic flux variation. On the basis of the results
from computational simulations, three salient features pertaining to
the magnetoelastic effect in soft systems under bending deforma-
tion can be delineated. First, to achieve analogous magnetic flux
density variations on the surface, the required applied stress is sub-
stantially reduced in comparison to the compression and stretch
modalities, as illustrated in Fig. 3K. Second, the MC factor of the
soft system under bending deformation demonstrates a nonmono-
tonic correlation with the height of the system, as illustrated in fig.
S19A. Third, the bending modality manifests an asymmetric posi-
tion dependence on the magnetoelastic effect, as corroborated by
fig. S19B, in contrast to the compression situation. After the bending
simulation, a shearing deformation simulation is performed on the
soft cuboidal system, and the results are displayed in fig. S20. It can
be seen that b, decreases with increasing shear stress. In addition,
the magnetoelastic effect caused by shear deformation demonstrates
a positive correlation with the system height. A primary difference
between shearing modality to other deformation modes is the am-
plified significance of whole system rotation in dictating the overall
magnetoelastic effect, as confirmed in fig. S20D. To further elucidate
the influence of whole system rotation on the magnetoelastic effect
in the context of shearing modality, the relationship of Z-direction
magnetization with respect to applied shear stress is calculated and
displayed in fig. S21. It is intriguing to observe that m,/M, is almost
identical to b,/ B:. This implies that the decrease of b, in the system
predominately results from the rotation of materials. This distinc-
tive feature of shearing modality highlights the diversity of the
magnetoelastic effect in soft systems arising from the different de-
formation modes.

Magnetoelastic effect in soft systems with different initial
magnetization directions

In previous discussions, the initial magnetization direction was con-
strained to the z axis. However, magnetization is a vector quantity
that can assume any arbitrary direction. To evaluate the impact of
initial magnetization direction on the magnetoelastic effect, addi-
tional calculations were conducted on the cuboidal systems. As
depicted in fig. S22 A, simulations were conducted for various
scenarios in which the initial magnetization was varied from the
positive Z direction to a 45° deviation from the positive z axis. The
corresponding cross-sectional b, mapping, along with the mapping
of magnetic flux density directions, is displayed in fig. S22B. It is
observed that for systems with initial magnetization directions not
aligned with the positive z axis, the application of compression sub-
stantially alters the orientation of the magnetic flux density, particu-
larly within the deformable systems. However, the variation in the
surface Z-direction magnetic flux density is highest when the initial
magnetization is in the positive Z direction, evidenced by both the
b,-compress distance curves in fig. 522C and the corresponding
coupling factor in fig. S22D. This phenomenon occurs because when
the initial magnetization deviates from the positive Z direction, its
Z-direction component decreases due to the conservation of the to-
tal magnetization amplitude. The results indicate a direct correlation
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between MC in a given direction and the magnetic field along that
axis. Consequently, to maximize the coupling factor in a particu-
lar direction, the initial magnetization should be optimally aligned
with that direction.

Overall, the versatility of the theoretical framework to capture
the vast spectrum of magnetoelastic phenomena across a range of
soft systems has been validated. Through meticulous simulations,
we elucidate the vast array of magnetoelastic effects inherent to var-
ious soft systems. This achievement lays a firm foundation for the
in-depth understanding and practical applications of the giant mag-
netoelastic effect in soft systems.

Technological impact of the framework

To showcase the technological impact of the theoretic framework
for the giant magnetoelastic effect in soft systems, we took a further
step to use a deformable soft coil to convert the pressure-induced
magnetic field variation in the soft magnetoelastic materials into
electricity and invented an all-in-one soft MEG for mechanical pres-
sure to electricity conversion, as depicted in Fig. 4A. Technically, the
soft magnetoelastic materials act as the MC layer to transform me-
chanical perturbations into distinctive variations of magnetic flux
density. Subsequently, the coil operates as the MI layer to convert
the variation of magnetic flux density into useful electrical signals.
In this way, the soft MEG emerges as a new platform technology for
mechanical-to-electrical conversion with a wide range of applicabil-
ity from energy, and sensing, to therapeutics. To elucidate the elec-
trical output of soft MEG using diverse magnetoelastic materials
under assorted deformation modes, a general theory is developed by
integrating the theoretical framework for the magnetoelastic effect
of the MC layer and Faraday’s law for the MI layer (note S8). This
integration yields the following equation (41, 42)

_ T U

E 00 4 - -
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05
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where ¢, represents the voltage output of the soft MEG, repre-
sents the number of coil turns in the MI layer, 5() represents the

time-varied integration area in the MI layer, ﬁb °r,t denotes the

magnetic flux density perceived by the MI layer, and v8” represents
the instantaneous velocity of the movement of every line element
in 5(#) at time t. Equation 18 elucidates that the voltage generated
by soft MEGs comprises two salient components. The first term
epitomizes the contribution ascribed to the magnetoelastic effect
inherent to the MC layer. In juxtaposition, the second term de-
scribes the voltage generation due to the deformation of the MI
layer, resulting from an intersection of the coil with the magnetic
field. Within the context of the established theoretical framework
addressing the magnetoelastic effect in the MC layer, the precise

determination of % 7r,t becomes achievable. Thus, upon specify-

ing v@”, the entirety of the electrical output for the soft MEG can be
determined by Eq. 18. Correspondingly, the short-circuit current
I of soft MEGs can be derived in the low-frequency range as
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where R represents the internal resistance of the MI layer. When ap-
plying Egs. 18 and 19 to various deformation modes of soft MEGs, a
classification of deformation modes (Fig. 4B) arises naturally based
on whether the deformation of MI layers is restricted to mere trans-
lational movement (type 1) or encompasses additional deformative
characteristics (type 2). For deformation modes categorized as type
1, where the MI layer experiences strictly translational movement
(e.g., shearing and compression), it can be substantiated that the
electrical output of the soft MEG is exclusively correlated with the
alterations in magnetic flux density discerned by the MI layer (note
59). For deformation modes classified as type 2, which include
bending, stretching, and local deformation, the contribution of mo-
tional voltage cannot be neglected, and each mode is associated with
a specific analysis leading to distinctive voltage expressions detailed
in note S10. Notably, the analysis reveals substantial motional volt-
age in stretching deformation, particularly in biaxial stretching.
Nevertheless, it should be emphasized that the generated voltage
arises from the magnetic flux variation perceived by the MI layer,
regardless of the origin being motional or induced.

The developed theory of soft MEGs is poised for validation
against empirical results to underscore its accuracy and tenacity.
However, before this comparative assessment, it remains paramount
to confirm the consistency between simulated magnetic flux varia-
tions and the analytical solutions. Analogous to the exploration of
the magnetoelastic effect in soft systems, biaxial stretching deforma-
tion of a cylindrical configuration is chosen, because the analytical
solution can be readily derived for this system (note S11). Figure 4C
displays the comparison of simulated magnetic flux and the analyti-
cal results. First, the simulation outcomes align with the analytical
solution, affirming the precision and resilience of the advanced the-

HRHeplFAMaY Gl faeamasnetic Thx.cone talion fRssuenty.

quent electrical output estimations. Second, the total magnetic flux
increases with increased stretching in the biaxial stretch deforma-
tion. Since the induced change of magnetic flux density contributes
negatively to the total magnetic flux, this observation directly re-
veals that the motional voltage dominates the electrical output of the

soft MEG under biaxial stretch deformation. i
After validating the theoretical framework for magnetic flux cal-

culation, the accuracy of the theory in soft MEGs is then evaluated
using a practical cuboidal MEG under compression deformation. The
particle-to-polymer weight ratio of the MC layer is assigned to be 1:1.
The Ml layer contains 90 turns of the coil in a plane with a linewidth
of 76.2 pm, as shown in Fig. 4D and fig. 523. In the experimental set-
up, the soft MEG is subjected to a sinusoidal displacement. The range
of this displacement, along with the simulated magnetic flux variation
derived from the theory of the magnetoelastic effect, is illustrated in
Fig. 4E. In accordance with the theoretical framework, the electrical
output of the soft MEG under compression deformation can be ap-

proximated as the induced voltage resulting from magnetic flux varia-

tions within the MI layer. Figure 4 (F and G) displays the calculated
and experimental results of the short-circuit current and open-circuit
voltage of the soft MEG under compression, respectively. Both the

FEERLARd-Y HRgR e RRE RS R antfest d aommpsir bl dige:

tion, the theoretical framework successfully captures the frequency

dependence of the output of a soft MEG, with corroborative evidence
provided for the 5-Hz scenario in fig. 524. Notably, both theoretical
and experimental results display the asymmetric feature of the signal

90of 14

620T ‘ST [HUdy uo sa[aSuy S0 BIUIOJI[E)) JO AJSIOATU() J& S10°90UI0S MMM/ SNy w01y papeo[umo(


http://www.science.org/

Science AdvAnceS | ReSeARch ARticle

A B c
| Type 1 - Ml layer displacement Type 2 - Ml layer deformation 6.4 e
J ) = o nalytical
| 3 @>\ //@‘ 6.2 " o Simu
‘ :
" 4 2?60 %
‘| Compress fend to
| 58
Deformed MC layer o
5.6
Synergistically deformed MI layer Stretch " 06 07 08 08 10
’ LiL,
E F G
T 1g/Simulation_ z 2 Experiment S 120] —— Experiment
= 31 Experiment region 2 —— Theory = Theory
5 12 g ! g 60
N 2:1 = °
21 00000
x 20 Z 0
= 8 5 =
L 1:1 o K
& 4l 12 | e 2 %0
3 : S 1Hz 2Hz & o0l 1Hz 2Hz
= oL 14 wn -2 o .
00 01 02 03 04 05 0 1 0 1 2 3 4 5
H | AL (cm) - J - K Time (s)
0.8
o Experimental 40| © Experimental ? 6 ? 4 ——2mm
061 Theoretical Theoretical =] 5 - = ——3mm
g |° S 30 £ 5 2 —
2 32 ol S 2 ——5mm
= 0.4 T g © |
5 % 201 § il E 0 6 mm
E | 8 3
3 02 o = 10 e 422 2 -2 =
o % 4 i
= —— 5mm = \
001 0 2° 6mm 4 > Simulation
1 10 100 1000 1 10 100 1000 2 00 02 04 06 08 1.0 2 00 02 04 06 08 10
o= L Resistance (ohm) M Resistance (ohm) & N Time (s) s 0 Time (s)
2 6 :
Y Simulation | < 200 ——2mm ,'.g Compress n; Compress
2 1 : 2 ——3mm = Shear i = i al Shear
b = ha ./
5 & 100 4 mm = & : . s 4
= 0 £ 5 mm 2 Bend =5 Bend/ , £ o
E g 0 6 mm = 4 A, e 2 oo g
[} i @ ! ; Iz
; _1 E ; 2 8 ﬁ'A a ol - i 2 8 .'A:A" nrg,.—"'a
I ——3mm © 5 § L " e, 3 %} g
o — i 2-100 5 A 5 W ° ey
G L5 = gA£M3' Y o = ﬁ ota
E -21 ——5mm o = Simulation 2 09 o % 0 o
T T T T T T - T T T T T T o T T T T T T
= 00 02 04 06 08 10 00 02 04 06 08 1.0 = 0 20 40 60 80 100 £ 000 002 004 006
Time (s) Time (s) Applied stress (kPa) Input energy (J)

Fig. 4. Validate the theoretical framework by showcasing a soft MEG. (A) Scheme of a soft MeG with a deformed Mc layer and a synergistically deformed Mi layer.
(B) the voltage expression of soft MeGs can be classified into two categories based on the deformation modes. type 1 includes compression and shearing. type 2 includes
bending, stretching, and local deformation. (C) comparison of simulated and analytically derived magnetic flux when the system is subjected to various biaxial stretching
conditions. (D) Photograph of the flexible Mi layer used in the validation experiments. Scale bar, 3 mm. (E) Simulated magnetic flux variation of cylindrical MeGs with dif-
ferent micromagnet concentrations under compression. AL is half of the compressed distance. the gray region indicates the range of sinusoidal compression exerted
upon MeG in the experiment. (F and G) Short-circuit current (F) and open-circuit voltage (G) of the soft MeG under sinusoidal compression. (H and I) Peak current (h) and
voltage (i) of the soft MeG with different external loads under 1-hz sinusoidal compression. (J to L) calculated variation of magnetic flux in cuboidal systems under diverse
deformation modalities including stretching (J), shearing (K), and bending (l). (M) calculated voltage of the cuboidal system under stretching. (N) comparison of output
capability and applied stress among different deformation modalities of soft MeG. (O) comparison of output capability and input energy among different deformation
modalities of soft MeG. the output capability is characterized by the magnetic flux variation.

outputs, indicating that the theoretically predicted nonlinear de-
crease of magnetic flux is in consonance with the practical mani-
festation. This observation provides convincing evidence to justify
the robustness of both the theory of soft MEG and the theoretical
framework for the magnetoelastic effect in soft systems. Taking a
step further, the current, voltage, and power outputs of the soft MEG
are obtained experimentally with different external loads from 1 to
1000 ohms. A comparison between the experimental measurement

Zhouetal., Sci. Adv. 11, eads0071 (2025) 3 January 2025

and the theoretical calculation is presented in Fig. 4 (H and I) and fig.
525. The same trend between theory and experiment can be observed
across all three electrical parameters. The theoretical optimal resis-
tance also matches the experimental data impeccably. These results
reiterate the accuracy of both the theory concerning soft MEGs and
the magnetoelastic effect in soft systems.

In addition, we apply the developed theory to evaluate the mag-
netic flux variation and the electrical output characteristics of the
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cuboidal MEG. Predominantly, the investigation centered on the
influence of deformation modality and the aspect ratio of the sys-
tem. The variations in magnetic flux and the resulting open-circuit
voltage for soft MEGs of various aspect ratios subjected to sinusoi-
dal stretching, shearing, and bending are plotted in Fig. 4 (J to M)
and fig. S26. First, the variation of magnetic flux falls within the

range of 107 to 10-° Wb, indicative of the determinative boundar-
ies for the MEG's output potential. Second, the dependence of
magnetic flux variation on the aspect ratio is determined by the
deformation mode. In stretching, shearing, and bending, the mag-
netic flux variation shows positive, negative, and no correlation with
the system’s aspect ratio, respectively. This observation reemphasiz-
es the diversity of magnetoelastic effects in soft systems. It is impor-
tant to note that different deformation modalities are enabled by
different forcing approaches such as the top surface displacement in
the shearing deformation and the applied stress in the bending de-
formation (fig. 526). To directly compare the performance metrics
of various deformation modalities in the soft MEG, the calculated
magnetic flux variation, which characterizes the output capability, is
uniformly plotted against the applied stress and input energy for dif-
ferent deformation modalities, as shown in Fig. 4 (N and O), respec-
tively. These figures reveal that bending has the highest efficiency of
mechanical-to-electrical conversion in terms of both applied stress
and input energy among all four deformation modes. In contrast,
stretching displays the lowest efficiency when accounting for both
applied stress and input energy. Compressing and shearing each of-
fer unique advantages. For instance, shearing can produce higher
output when subjected to lower levels of applied stress. However,
when evaluated in the context of input energy, compression mani-
fests enhanced efficiency, a consequence directly attributable to
fewer surface displacements. It warrants further emphasis that while
bending manifests the pinnacle of efficiency, it concurrently pres-
ents a conspicuously lower upper conversion threshold compared to
the other three deformation modalities. The above results highlight
that each deformation mode has its specific domain of optimal per-
formance, and the choice between them should be contingent upon
the desired outcomes and constraints of a particular application.

Overall, the developed theoretical framework lays a firm founda-
tion for understanding and optimizing the performance of soft
MEGs. Through the analysis of the established theory, we identify
the advantages and disadvantages of each deformation modality,
paving the way to customize the future design of high-performance
soft MEGs.

DISCUSSION

Having established comprehensive theoretical frameworks for the
magnetoelastic effect in soft systems, we revisit the distinction
between the traditional magnetoelastic effect in metal/metal alloys
and the magnetoelastic effect in soft systems within the proposed
theoretical paradigm. The traditional magnetoelastic effect can be
summarized by the constitutive Eq. 20,

b4=u W+ =u 0 ok+#l o =u 1+k AT o
0 o () () o )0

where is the applied stress and k is a constant, denoted as a demag-
netization factor related to the geometry of the system. Because of
the material brittleness, compression is the major approach to in-
duce the magnetoelastic effect in metal/metal alloys. During the

(20)
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compression process, the geometric configuration persists nearly
invariant in the system. Hence, magnetic flux density is a single
function of magnetization, which, in turn, is contingent upon the
applied stress. In stark contrast, the constitutive equation for the
magnetoelastic effect in soft systems can be summarized in Eq. 21

B <py W 4t =y 10 (RKF)+ 00 (R) = ol (R) 1+KB) 1)

Different from the situation of rigid metal/metal alloys, soft sys-
tems can have large deformations. As a result, the demagnetization
factor k is not a constant but a function of the deformation gradient
matrix F. In addition, the magnetization of the soft materials is a
function of the rotation matrix R. Thus, magnetic flux density in soft
systems is a function of both the demagnetization factor and mate-
rial magnetization. This dual dependence of magnetic flux density,
together with the versatile deformability, gives rise to a key feature of
the magnetoelastic effect in soft systems: diversity. A wide range of
unique magnetoelastic phenomena, not present in rigid systems,
can emerge in soft systems. For instance, soft systems exhibit vari-
ous magnetoelastic deformation modalities, while rigid systems
have only compression. Each modality in soft systems further dis-
plays unique magnetoelastic characteristics manifested as the dis-
tinctive relationship between magnetic flux density and applied
stress (e.g., linear, concave, convex, and nonmonotonic); different
position dependence behavior; different contribution from &2~ (R)
and k(F); distinguishing aspect ratio dependence; and the peculiar
magnetic pole reversal observed in local compression. A compre-
hensive summary of the magnetoelastic effect across different defor-
mation modalities in soft systems is displayed in table S1.

A central concept of our theoretical framework is to define
the magnetization transformation between undeformed and de-
formed states of the soft system. This concept helps elucidate the
non-uniqueness of magnetic constitutive relationship in the La-
grangian form (43). Within the context of our theoretical frame-
work, the non-uniqueness of the magnetic constitutive equation in
the reference configuration is a consequence of using different
magnetization transformations between the initial and current con-
figurations. As a result, the MC and calculated magnetoelastic ef-
fects will be different. In other words, the non-uniqueness of the
magnetic constitutive relationship in reference configuration is a
direct result of disparate soft systems exhibiting distinct magneto-
elastic behaviors. Note S12 discussed the outcomes derived from
using various magnetization transformations within the theoretical
framework. The analysis confirms that the application of the trans-

formation 78" = RBI produces the most precise alignment with
experimental results.

One important feature of our proposed theoretical framework is
that it is rooted in the fundamental constitutive equations, Maxwell’s
equations, and mechanical equilibrium equations with appropriate
assumptions. Consequently, the framework is universally robust
and accurate (i.e., validated through a set of experiments) across
various soft magnetoelastic systems subjected to various deforma-
tion modes, different micromagnet concentrations, diverse magne-
tization profiles, and distinct geometric structures. As a result,
several important features of the magnetoelastic effect in soft sys-
tems can be summarized and predicted. For example, a scaling pa-
rameter B,/ G can be sublimated from the theoretical framework.
This experimentally obtainable parameter quantifies MC entirely for
systems with varying micromagnet concentrations and a constant
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geometry. In addition, the theory points out that the MC factor at
the body center of a soft system can reach up to 2.6 x 107 T Pa.
This surpasses the highest experimentally reported values by three-
fold, underscoring the substantial and underexplored potential of
the magnetoelastic effect in soft systems.

Our proposed theoretical framework is a macroscopic model fo-
cusing on the modeling of the magnetoelastic effect in soft systems
with large deformability. In such systems, the magnetoelastic effect
can be mainly attributed to the macroscopic deformation and the
magnetization redistribution. On the other hand, micromechanical
models are suitable for modeling rigid magnetoelastic composites
whose magnetoelastic effect mainly arises from the domain re-
orientation inside the magnetic particles (14-16, 18). Both our
approach and the micromechanical approach are two equally im-
portant methodologies focusing on different aspects of the magne-
toelastic effect in composite systems (note S13).

The impact of magnetic forces can be elucidated through a com-
parative analysis of simulation results that either incorporate or
omit the magnetic contribution to the system’s free energy. In sum-
mary, the influence of magnetic force on the behavior of an isolated
permanent magnetic soft system can be understood from two key
aspects. First, the magnetic force leads to an increase in the system'’s
modulus, with the magnitude of this increase being positively
correlated with particle concentration. Second, it induces self-
deformation in the system, which is most pronounced in systems
with specially designed geometries and magnetization distributions.
A detailed analysis of these effects is provided in note S14. Never-
theless, for isolated permanent magnetic soft systems with regular
geometry and low particle concentration, the magnetic force dem-
onstrates a minimal influence on the simulation of the magnetoelas-
tic effect. This can be ascribed to the relatively weak magnetic fields
of soft systems incorporating hard magnets.

Besides the theoretical framework for the magnetoelastic effect
in soft systems, we also propose and study the theory of soft MEGs.
Commencing with a comprehensive theory designed to encompass
a broad spectrum of deformations in soft MEGs across diverse de-
vice architectures, we subsequently undertake an in-depth investi-
gation into four fundamental deformation modalities: compression,
stretching, shearing, and bending. Our results highlighted that each
modality has distinct strengths and limitations, as summarized in
table S2. Together with the result of the magnetoelastic effects in soft
systems, we can conclude four key points to optimize the design
of high-performance MEG. First, localized deformation enhances
magnetoelastic coupling efficiency, as it involves increased rotation-
al deformation, which is more effective in altering the magnetic flux
density. Second, the initial magnetization direction of the MC layer
should be oriented perpendicular to the MI layer to maximize mag-
netic flux density variation. Third, when designing the structural
MC layer, minimizing the effective modulus while maximizing the
initial magnetic flux density should be a guiding principle to achieve
optimal magnetoelastic coupling efficiency. Fourth, the aspect ratio
and deformation modality are critical parameters that influence
both the trend and magnitude of magnetic flux density variation
and should be considered in MEG design.

Last, we should emphasize that although the model demonstrates
adequate concordance in soft magnetoelastic systems, some devia-
tions are observed for the systems of high micromagnet concentra-
tions, particularly the 28.57 vol % system. The discrepancy observed
in the model for systems with high micromagnet concentrations can
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be attributed to three aspects. First, the intrinsic magnetoelastic ef-

fect of magnetic particles may start to emerge. Second, the assump-
tion that B = RN may have its limitations in systems with a

micromagnet concentration of 28.57 vol %. In those systems, it is
anticipated that a substantial portion of micromagnets may inter-
connect with one another and not be entirely encapsulated by the
polymer matrix. On one hand, the close distance between micro-
magnets leads to a heightened perceived magnetic field for individual
particles, undermining the validity of the ideal hard ferromagnetism
assumption. On the other hand, the collision-induced magnetoelas-
tic effect inside the particle is not considered in the current frame-
work. Third, the isochoric assumption may not be valid in systems
of high micromagnet concentrations due to the increased incidence
of entrapped air bubbles inside the system. Therefore, there re-
mains substantial merit in the exploration of a more sophisticated
theory founded upon meticulously refined assumptions. A viable
approach involves refining the magnetization transformation equa-
tion and the system’s free energy, using the representation theory in
macroscopic models (19, 22) and the constitutive relationships de-
veloped in micromechanical models (15, 18).

We have developed a theoretical framework to study the magne-
toelastic effect in soft systems. The theory is proven to be universally
accurate and robust across various soft magnetoelastic systems sub-
jected to various deformation modes, different micromagnet con-
centrations, diverse magnetization profiles, and distinct geometric
structures. Through analysis of the proposed theory, we show the
diversity of the magnetoelastic effect in soft systems and uncover
substantial new phenomena including the magnetic pole reversal
and the record-breaking MC factor of 2.6 x 10”7 T Pa~! at the body
center of the system. To show its technological impact, we further
develop a general theory of soft MEGs capable of elucidating their
electrical outputs. In summary, the theoretical framework enhances
our understanding of the giant magnetoelastic effect in soft systems.
It would provide an essential roadmap for the strategic design of
future high-performance soft magnetoelastic devices.

MATERIALS AND METHODS

Fabrication of different magnetoelastic systems

Soft magnetoelastic systems were fabricated by mixing NdFeB micro-
magnets (5 pm) with the Ecoflex 00-30 (Smooth-on Inc.). The micro-
magnet volume concentrations were controlled to be 3.22, 6.25, 11.76,
21.05, and 28.57%. These micromagnet volume concentrations cor-
respond to micromagnet-to-polymer ratios of 1:4, 1:2, 1:1, 2:1, and
3:1, respectively. For compression deformation, cylindrical and cu-
boidal magnetoelastic systems were fabricated. The cylindrical system
has a radius of 8.5 mm and a height of 5 mm. The cuboidal system’s
dimensions are set at 15 mm in both length and width, with a height
of 5 mm. For the local compression experiment, the cylindrical sys-
tem with a micromagnet volume concentration of 11.76% is used. For
stretch deformation experiments, cuboidal systems with two and
three alternating magnetization domains are fabricated. The length,
width, and height of the system are set to be 44, 15, and 2 mm, respec-
tively. A lattice-structured magnetoelastic system is also fabricated
with its specific dimension and micro-CT displayed in fig. S16. All the
soft magnetoelastic systems are magnetized using impulse magnetiza-
tion at ~2.6 T. Given the linear relationship between magnetization
and particle volume concentration, it is reasonable to infer that all the
systems under investigation are in their magnetically saturated states.
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Simulation of magnetoelastic effects in soft systems

Air space was simulated using a spherical space with a radius of 40 mm
together with infinite elements. Arbitrary Lagrangian-Eulerian formula-
tions were used in the model to ensure accuracy. The total second
Piola-Kirchhoff stress and boundary Maxwell stress were input manu-
ally into the model. When simulating the influence of magnetic
force on the initial geometry of the sample, we have used weak con-
straints according to the symmetry of the geometry and magnetization
distribution of the samples. When comparing simulation results
with analytical results, we have excluded the contribution of mag-
netic force. The nonsmoothness in the generated voltage signals origi-
nates from irregularities in the magnetic flux-stretch curves, which
result from the automatic remeshing during the simulation process.

Fabrication of the MI layer

The Ml layer was fabricated on a flexible printed circuit board using
patterned conductive traces of copper. The MI layer features an in-
plane square coil with 90 turns: 45 turns on the top side of the poly-
imide substrate and 45 turns on the bottom side. The linewidth of
the coil measures 76.2 pm, while the intercoil spacing is consistently
maintained at 76.2 pm. Consequently, the total surface area occu-
pied by the coil is approximately 14 mm by 14 mm.

Characterization of the soft magnetoelastic

systems and MEGs

The mechanical shear modulus and stretchability of the soft magneto-
elastic systems are measured using an advanced force testing system
(TCD-225, Chatillon) with dog bone sample geometry. The micro-CT
image of the magnetic lattice was scanned at 80 kVp/140 pA with
500-ms exposure using a pCT scanner (HiCT) developed by the
Crump Institute for Molecular Imaging at the University of California,
Los Angeles (UCLA). The magnetic flux density versus applied
stress curve of each soft magnetoelastic system was obtained using a
customized instrument that integrates a force gauge and a three-axis
magnetic hall sensor (MLX-90393). The magnetic hall sensor was
modified through a photocurable resin and sandpapers to ensure a fully
smooth and flat surface. For local compression deformation mea-
surements, a rod-shaped magnetic hall sensor (Tunkia, TD8620)
was used in conjunction with the force gauge. Each soft magnetoelastic
system was characterized independently three times. In the MEG
electrical output characterization, a shaker (HT-126) was used to apply
a sinusoidal compression deformation to the tested MEG. Short-circuit
current signals were measured by a current preamplifier (SR570,
Stanford Research). Open-circuit voltage signals were measured by
an electrometer (Keithley 6514). A resistance box is used to evaluate
the MEG's electrical output across varying external loads ranging from
1 to 1000 ohms. The MEG's power output is determined on the basis of
the measured voltage and current for these respective loads.

Supplementary Materials
This PDF file includes:

Figs. S1to S41

tables S1to S3

notes S1to S14
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