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ABSTRACT

Hardware Security is at stake driven by the growing complex-
ity and integration of processors, SoCs, and diverse third-party
intellectual property (IP) hardware, all geared toward delivering
advanced solutions. To preserve the system integrity and mitigate
the post-production re-engineering costs, the Design Verification
(DV) community employs dynamic and formal verification strate-
gies. However, with the ever-increasing complexity of modern pro-
cessors, these techniques fall in short of scalability and increased
verification time. Recently, hardware fuzzing inspired by software
testing has been navigating uncharted territories in hardware bug
detection capabilities. Multiple hardware fuzzing techniques have
been recently introduced that either utilize the hardware design in
its inherent form for fuzzing or convert the hardware into software
models and perform fuzzing to detect bugs. However, the existing
techniques claim to be a silver bullet in their way, we provide some
critical insights on these techniques by reviewing the fundamen-
tal principles of hardware fuzzing frameworks, the methodologies
involved, and the diverse hardware designs in which they can be
employed. Furthermore, we discuss the challenges and limitations
of the fuzzing framework. We also present feasible future research
directions based on our observations and insights.

CCS CONCEPTS

- Hardware — Functional verification; Logic circuits; Applica-
tion specific processors.

ACM Reference Format:

Raghul Saravanan and Sai Manoj Pudukotai Dinakarrao. 2024. The Fuzz
Odyssey: A Survey on Hardware Fuzzing Frameworks for Hardware Design
Verification. In Great Lakes Symposium on VLSI 2024 (GLSVLSI "24), June
12-14, 2024, Clearwater, FL, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3649476.3658697

1 INTRODUCTION

Addressing the complexities of the global semiconductor supply
chain requires collaboration between various IC designers and ven-
dors [7]. This collaboration spans the entire IC design cycle, from
design to integration, to meet industry demands[2]. For example,
in the design and evaluation of the Apple® A17 SoC chip, more
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than 11 third-party entities have been involved in delivering sophis-
ticated solutions for the device [23]. As IC designs become more
intricate, incorporating various IPs, the risk of bugs and vulner-
abilities increases [1]. In 2021, the number of identified common
vulnerability enumerations (CVEs) reached approximately 18,439,
marking a substantial 184% surge from 2015 [22]. It is estimated
that up to 70% of the time and effort of the IC development cycle
is spent on the verification activities [11, 20], which highlights the
prominence of verification [8].

The two popular verification methods are the dynamic [13] and
formal verification [10] methods. However, both dynamic and for-
mal verification techniques have failed to match the pace of ever-
increasingly complex IC and SoC and are less efficient in detecting
bugs [5, 16, 24] due to the lack of scalability for complex SoC de-
signs. Hence, there is a need for efficient and automated verification
methodologies that can detect bugs compatible with the current
IC design and verification flow. Hardware fuzzing has been intro-
duced in recent years [15, 17, 18, 24] to surpass the limitations of
the latter. Fuzzing is a widely used software testing methodology
for bug detection in software applications. Fuzzing, in simple terms,
is bombarding the software with test cases and analyzing for any
invalid targets, such as memory crashes.

RFuzz [17] is one of the first hardware fuzzing frameworks pro-
posed in the literature. The hardware-fuzzing frameworks aim at
fuzzing CPU designs for vulnerability detection. Later, some of the
works proposed translating the hardware as software for the adap-
tion of software fuzzers [24], whereas some works proposed fuzzing
hardware as hardware [5, 15, 16] which will be discussed in Section
3. In this work, we present a comprehensive overview of the re-
search into hardware fuzzing frameworks. The main contributions
of this work are :

e We lay out the fundamental principle of the Design Verifica-
tion (DV) techniques and its limitations.

e A comprehensive overview of the research into hardware
fuzzing frameworks inspired by software fuzzing.

o We classify the several fuzzing frameworks based on their
fuzzing methodologies.

o The overlooked challenges and fundamental issues with de-
ploying existing tool flows for hardware fuzzing and the
future directions for this field of research is discussed.

2 BACKGROUND

In this section, we offer a concise summary of the conventional ver-
ification techniques utilized in contemporary IC design processes.
Furthermore, we highlight the limitations of these methods and
explore how hardware fuzzing emerges as a solution.
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2.1 Formal Verification
Formal verification is one of the conventional methods in hardware

verification techniques that ensure the correctness and reliability
of complex integrated circuits and electronic systems [12, 13]. It
encompasses a diverse range of mathematical theorems and logical
techniques to prove the correctness of hardware designs against
specified properties. Formal verification is supported by commer-
cial EDA tools such as Cadence Jasper Gold and Synopsys VCS
Formal which requires System Verilog Assertions (SVA) properties
to cover the design space for verification. Formal verification has
gained significant traction due to its ability to mitigate deep flaws
in hardware design. However, the existing formal verification tech-
niques are crippling due to their inability to cope with increasingly
large complex modern processor designs and the need for expert
knowledge [10, 16].

2.2 Dynamic Verification
Evaluation
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Figure 1: Dynamic Verification

Dynamic hardware verification techniques (a.k.a runtime bug
detection) simulate or emulate the design-under-test (DUT)
with a few test cases to verify the functionality of the de-
sign. The three cardinal steps in DV are 1) Test Generation 2)
DUT Simulation 3) Evaluation as shown in Figure 1. DV engi-
neers craft a sequence/series of a few input test vectors to simulate
the DUT. Once the test vectors are generated, the HDL of the de-
sign can be simulated through various commercially available and
open-source EDA tools for extracting the output responses. Test
evaluation is performed by monitoring the outputs of the hardware
for a given input stimuli against the Golden Reference Model (GRM)
or System Verilog Assertions (SVA). The model is examined for any
violation against the defined assertion properties or the behavior
of the GRMs. However, existing DV frameworks have scalability
limitations as the input space is exponentially large for CPU designs
and deployment bottlenecks [16].
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Figure 2: Overview of Software Fuzzing

3 HARDWARE FUZZ ODYSSEY

To surpass the limitations in the existing traditional DV frame-
works, hardware fuzzing [16, 17, 24] has gained traction due to
its popularity in the software testing community. The concept of
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fuzzing primarily involves: 1) random test case generation and
mutations; 2) monitoring the DUT/program-under-test (PUT);
and 3) analyzing for bugs or errors as shown in Figure 2.

The core concept behind traditional fuzzing begins with the
generation of random acceptable test case generations (i.e.,
input stimuli). To efficiently cover the DUT’s state space, most
fuzzers apply mutation algorithms to generate new test cases
in contrast to dynamic verification. The input stimuli are then fed
to the DUT/PUT for monitoring the running status of the program
and is subjected to record any crash during the period of fuzzing.
The monitored output is analyzed for bugs. The DUT/PUT is bom-
barded with test input until a crash is recorded. Software fuzzers
analyze crashes for bug detection, whereas in hardware fuzzing,
the expected outcome from DUT is verified against assertions or
expected output from the GRM. Fuzzing incurs low deployment
costs and a reduced verification period for testing complex designs.
Depending on the available information regarding the DUT, fuzzing
techniques can be broadly classified into three types: i) Blackbox
fuzzing , ii) Greybox fuzzing, and iii) Whitebox fuzzing.

In Greybox Fuzzing (GF) such as American Fuzzy Lop (AFL) [24],
the fuzzer has limited knowledge about the DUT while extracting
the peripheral information about the data flow, control flow, data
format, protocols, and high-level architecture. These fuzzers discard
the primary source code after the necessary instrumentation for
the program is added. The instrumented binary is subjected to

monitoring based on the coverage reports.
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Figure 3: Coverage Greybox Fuzzing

Coverage-based Greybox Fuzzing (CGF): In CGF, the fuzzing is
aimed at achieving maximum code coverage through feedback en-
gines (i.e., coverage metrics). In hardware, the coverage metrics that
can be used are Finite State Machine (FSM), line, conditional, and
MUX toggle. As shown in Figure 3, a set of input seeds is stored and
passed to the mutation engine that performs mutation operations
to generate multiple input seeds. During the runtime, the coverage
reports are extracted based on the input provided to the DUT and
given as feedback to the mutation engine. Based on the coverage
feedback, the mutation engine further mutates the interesting input
seed to generate a new set of seeds. The uninteresting input seeds
are discarded from the input pool. The design is simulated with
these seed inputs, and any potential crashes are saved for analyzing
the vulnerabilities.

Directed Greybox Fuzzing (DGF): Hardware and Software de-
signs often undergo revisions for updating a component for better
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performance (i.e., incremental designs). To fuzz such incremental
designs, DGF is used for fuzzing at a particular region rather than
the whole DUT/PUT, resulting in reduced verification time.

These state-of-the-art fuzzing-based DV frameworks are compe-
tent to fuzz SoCs, CPUs, and standalone IP blocks. Based on fuzzing
methodologies, the existing fuzzing frameworks can be classified
into 1) Direction Adoption of Software Fuzzer for Hardware
2) Fuzzing Hardware as Software 3) Fuzzing Hardware as
Hardware.

3.1 Direct Adoption of Software Fuzzer for
Hardware
As a solution to the existing shortcomings such as deployment
bottleneck (i.e., the inefficiency of coverage tracing) for complex
designs, RFuzz [17] is the first FPGA emulation-based hardware
fuzzing technique introduced, as shown in Figure 4. The RFuzz
translates the target HDL to Flexible Intermediate Representation
of RTL (FIRRTL) such that instrumentation is leveraged through
compiler passes, enabling the test harness generator to design a
wrapper for the RTL design. The top-level hardware module input
pins, which take in values at each test cycle, are connected to
the testing tool. The input pins are concatenated to form a bit
vector and are mapped to a series of bytes representing the input
values. To ensure the tests are deterministic and repeatable, the
RTL should be reset to a known test before each test execution.
MetaReset (for resetting the registers to zero for enabling DUT reset)
and Spare memories (to reset the memory locations that have been
written in previous test execution) are deployed to enable quick
RTL reset without modifying the DUT characteristics. Furthermore,
the instrumentation is appended to enable MUX control coverage
in hardware, ensuring FPGA-synthesizable coverage extraction.
RFuzz utilizes the AFL-based mutation functions. The AFL fuzzer
efficiently communicates with the FPGA through high-speed Direct
Memory access (DMA), as shown in Figure 4.
3.2 Fuzzing Hardware as a Software
In contrast to RFuzz, Trippel et al. [24] proposed fuzzing hardware-
like software rather than porting software fuzzers directly on the
hardware designs. The cardinal aspect of fuzz hardware like soft-
ware is driven by the executable software version of the hardware
provided by the hardware simulation tools. The translated software
version of the hardware is compiled, instrumented and fuzzed using
AFL for bug detection.

In [24], the authors make use of Verilator to translate the hard-
ware to an equivalent software model as shown in Figure 4. Verilator
is a popular open-source tool that leverages the equivalent software
model in C++ for the given System Verilog of the RTL design. To
trace the hardware coverage in the software domain, it exploits
the seamless binary instrumentation provided by the AFL fuzzer
to trail code coverage. With edge coverage from AFL, both code
and functional coverage of the hardware in a software domain can
be monitored. The fuzzing cores are monitored for crashes and are
evaluated against SVAs. This work monitors for crashes such as
improper memory mapping, errors in registers, buffer overflow,
and floating-point computation for vulnerability detection, as the

hardware is modeled as software.
HyperFuzzer: In contrast to the fuzzing techniques discussed

above, works such as [9] focus on fuzzing SoCs. It employs Hy-
perproperties [9], which are higher-level properties that describe
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security policies by comparing the behavior of instances of a system.
The concept of hyperproperties is commonly employed in analyzing
security protocols and detecting bugs in a system. These hyperprop-
erties can be used for laying out the SoC security specifications.
HyperFuzzer, as shown in Figure 4 [19], encompasses defining SoC
security properties that adhere to confidentiality, integrity, and
noninterference expressed in HyperPLTL (Hyper Past-time Linear
Temporal Logic). Hyperfuzzer complies with CGF with High-Level
coverage metrics. The famous Verilator is used for SoC RTL simu-
lation, which is further instrumented to collect coverage metrics.
AFL fuzzes the instrumented code to find potential bugs and is
evaluated using a property checker by comparing it against the
security property specifications (i.e., hyperproperties) in Hyper-
PLTL. Alternatively, Soc Fuzzer [14] simulates the SoC in an FPGA
framework, which fuzzes the SoC based on the cost function.

3.3 Fuzzing Hardware as Hardware
Recent advancements in hardware fuzzing have embraced a domain-

specific approach to eliminate the need for translating hardware to
software, along with the associated preliminary tasks and equiva-
lence checks. TheHuzz [16], DifuzzRTL [15], HyPFuzz [6] and Pro-
cessorFuzz [5] adeptly integrate hardware fuzzing into conventional
industry-standard hardware design and verification workflows.

@ TheHuzz: The three pivotal components of TheHuzz include
the Seed Generator, Stimulus Generator, and Bug Detector, as il-
lustrated in Figure 4. Operating at the instruction set architecture
(ISA) abstraction level, the Seed Generator furnishes the input seed
in the form of instruction sequences. The Stimulus Generator then
mutates the instruction at the binary level, ensuring that all bits of
the instruction undergo mutation to test the processor with illegal
instructions. This includes mutating opcode bits and data bits to
unveil unexplored datapaths.

The RTL design of the processor is simulated with the binary
format of the instruction using Synopsys VCS, a tool entrenched
in the semiconductor industry for several decades. Synopsys VCS
traces code coverage through various metrics, including branch,
condition, toggle, FSM, and functional coverage. Based on these
coverage metrics (the feedback engine), optimal weights are as-
signed to each instruction-mutation pair, and uninteresting pairs
are discarded. Bugs are identified by simulating the ISA emulator
(GRM) and comparing the behavior of the RTL design against the
GRM behavior. Seamless compatibility with traditional EDA tools
and requiring minimal additional effort are some of the unique
aspects of this work.

®ProcessorFuzz and DifuzzRTL:. Other prominent works as-
sociated with hardware-specific fuzzing to detect CPU bugs are the
ProcessorFuzz as shown in Figure 4 [5], and DifuzzRTL [15]. At
an elevated stratum of hardware abstraction, a Central Processing
Unit (CPU) manifests as an intricately designed FSM. It is indis-
pensable to monitor these transitions of CPU states for potential
bug detection for a given assembly program. ISA simulators are
used to simulate the functional behaviors of the CPU, serving as a
reference model for the existing fuzzing frameworks. Rather than
using coverage metrics from the RTL simulation, ProcessorFuzz
exploits Control Status Registers (CSRs) from the ISA simulator
as coverage metrics. The CSR values and the transitions in them
represent the changes in the architectural state flow of the CPU.
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Figure 4: Hardware Fuzzing Frameworks

The input pool for the ProcessorFuzz encompasses a pool of
instruction at the assembly level adhering to the target ISA upon
which mutation operations are performed. Rather than simulat-
ing the RTL with the mutated input, ISA simulator simulates the
targeted CPU with the mutated input sequences. During the simu-
lation, the simulator initiates trace logs from which CSR transitions,
program counter, and disassembled instructions can be obtained.
The trace logs of the RTL and ISA emulators are compared to detect
CPU vulnerabilities. In contrast, DifuzzRTL captures the FSM state
transition of the RTL design through static analysis of the small
group of registers, which plays a vital role in controlling the states
of the CPU. The feedback is given through the register coverage in
RTL and is compared against the ISA for evaluation of vulnerability
detection.

O©HyPFuzz: The increasing complexity of the CPU designs man-
dates the hardware fuzzing frameworks to penetrate deeper into
the designs to reach all possible coverage points. Though the exist-
ing hardware fuzzing frameworks are proficient in bug detection,
they fail to explore the entire design space of the CPU design. For
instance, TheHuzz fuzzing framework was able to cover only 63%
of the total design space states in the processors, paving the way for
vulnerabilities in the uncovered regions. To alleviate the above, a
hybrid fuzzing framework HyPFuzz was proposed encompassing of
formal verification and fuzzing verification techniques in tandem.
In this hybrid approach, the fuzzer is led by the formal verification
tools reaching hard-to-reach design spaces, upon which the fuzzer
exploits the hard-to-reach design spaces to detect bugs and vul-
nerabilities. This can be leveraged by amalgamating commercially
available EDA tools such as Cadence JasperGold, and Synopsys
VCS Formal with the fuzzing frameworks such as TheHuzz.
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The HyPFuzz selects the uncovered region or points of the RTL
design through the point selector upon which the formal verifica-
tion tools can verify. To facilitate the formal tools with the System
Verilog Assertions (SVA) properties, a property generator gener-
ates cover properties for the selected points of the point selector.
However, the inherent nature of the formal and the fuzzer tools
is incompatible as the former relies upon the assertion properties
of the design and the latter relies upon the coverage points. To
address this challenge, a test case converter translates the boolean
assignment signals emitted by the formal tools during the property
proving stage into a seed of inputs. The fuzzer can utilize these
seeds of inputs to stimulate the DUT facilitating deep granularity.
For a seamless transition from formal tools to the fuzzer, a dynamic
timing scheduler is deployed and the fuzzing process ends when the
scheduler terminates it. This hybrid method of fuzzing is 11x faster
than TheHuzz framework and has unraveled three new hardware
vulnerabilities.

O SoCFuzzer: Alternatively, SoC Fuzzer [14] directs the fuzzing
based on the security properties (generic cost function) that detects
vulnerabilities in the DUT. The SoC Fuzz leverages the fuzzing
through AFL guided by cost functions to proliferate mutations
towards unexplored regions of the design. The SoC under test is
simulated in an FPGA platform and instrumentation on the DUT is
appended based on the security policies. The FPGA-based emulation
facilitates the monitoring of real-time internal HW signals and the
instrumentation appends real-time observation points with respect
to the vulnerability point of interest. The fuzzer engine executes
the program with fuzzed inputs with evaluation metrics as shown
in Table 1 for faster convergence and will be compared against a
database of vulnerabilities.
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Table 1: Existing Fuzzing Framework

[ Framework [ Fuzzer Type [ Input [ Simulator [ Coverage Metric [ Target Design [ Evaluation [ Bugs Reported ]
RFUZZ [17] HW Fuzzer (1) Series of bits Any Mux Toggle Peripherals, Assertion 0
RISC-V
Lietal [18] HW Fuzzer (1) Series of bits PyRTL Mux Toggle RISC-V Assertion 0
Opencore 1200
DifuzzRTL [15] HW Fuzzer (1) Assembly Any Register Coverage RISC-V CPU GRM 16
Trippel et al [24] SW AFL Fuzzer (2) | Byte Sequence Verilator Edge Coverage AESHMAC SW crashes 0
KMAC, Timer
HyperFuzzer [9] SW AFL Fuzzer (2) | Series of bits Verilator High-level SoC Assertion 0
DirectFuzz [4] HW Fuzzer (3) Series of bits Verilator MUX Peripherals, Assertion 0
RISC-V
TheHuzz [16] HW Fuzzer (3) Assembly Synopsys VCS | FSM, Branch,toggle, RISC-V GRM 10
conditional
Processor Fuzz [5] HW Fuzzer (3) Assembly Verilator Control path RISC-V GRM 8
register, ISA-tranistion
SoCFuzzer [14] HW Fuzzer (3) Byte Sequence Xilinx ISA Randomness, target SoC Database 0
output, input coverage
HyPFuzz [6] HW Fuzzer (3) Assertion Cover properties, | Jasper Gold, FSM, Branch,toggle, RISC-V GRM 13
Byte Sequence Synopsys VCS | conditional
WhisperFuzz [3] HW Fuzzer (3) Assembly Synopsys VCS | FSM, Branch,toggle, RISC-V Trace Properties | 12
conditional
SIGFuzz [21] HW Fuzzer (3) Assembly Verilator NA RISC-V Trace Properties | 5

4 CHALLENGES

Nonetheless, these cutting-edge frameworks are not without cer-
tain challenges. Employing software fuzzers directly onto the RTL
poses its own set of challenges. For instance, a common definition
for a bug is an outcome marked by crashes. However, such sce-
narios do not exist in the hardware realm. Hardware, instead of
crashing, issues often manifest as malfunctions or failures in the
form of faulty output. Because of this, employing AFL directly on
the hardware may fail to detect any hardware vulnerabilities [17] as
shown in Table 1. To alleviate this, Verilator is used for translating
hardware designs to software models such as binary executables
on which AFL is deployed [24]. However, there arises a question on
the equivalency between the hardware and the translated hardware
[16]. The verilator fails to capture inherent hardware behaviors
such as signal transitions, FSMs, and floating wires described in
HDL languages to software construct. In addition, AFL instrumen-
tations and coverage metrics are not supported for HDL constructs
[16]. During the evaluation phase, fuzzing frameworks rely upon
SVAs. The insertion of SVAs for CPU designs leads to instrumenta-
tion overheads and can only examine pre-defined conditions rather
than uncover unknown vulnerabilities.

As a solution to the limitations with the latter, fuzzing hardware
as hardware was proposed [5, 16] to retain the the hardware char-
acteristics. Although this method was able to detect new bugs and
vulnerabilities, these works detect bugs associated with the func-
tional behaviors of the design but not for parametric behaviors such
as temporal characteristics and side-channel attacks. In addition,
the Huzz framework covers only 63% of the DUT’s design space
leaving one-third of the design space unexplored for a potential
vulnerability. Although Hybrid Fuzzers [6], are claimed to be 11x
faster than the Huzz framework, the increase in coverage is 1%
(64%) still leaving the remaining of the design uncovered.

These fuzzing frameworks rely upon GRMs for evaluation. The
availability of third-party GRMs and access to the source code and
internal signals are limited GRMs. The other way to depend on the
GRMs is through software models. The CPUs can be simulated in
ISA simulators (i.e., software simulations) to verify the functionality
of the processors. For instance, the RISC-V community has crafted
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ISA simulators for RISC-V processors. Even though the GRMs are
carefully curated to eliminate bugs, these software are designed by
developers and are still prone to human errors and bias.

Recently, to detect the bugs associated with parametric behaviors
such as timing and side-channel attacks, SIGFuzz [21] and Whisper-
Fuzz [3] were proposed. Though these works detect bugs with the
timing behaviors, these frameworks require a deep knowledge of
micro-architectural event details of the design. The current fuzzing
frameworks are limited to fuzzing either a CPU or a standalone
peripheral IP or an SoC. None of the fuzzing frameworks provide
flexibility to be adaptable across the spectrum of IC designs. Hence,
there is a need for a unanimous fuzzing framework to fuzz all the
entities associated with hardware design considering all functional
and timing behaviors.

5 FORWARD PATH FOR FUTURE FUZZING

The coverage metrics play a vital role for exploring uncovered
regions of the designs to detect functional vulnerabilities and thus
require meticulous planning for design-based coverage selection.
Machine Learning (ML) has proved its prominence in bug detection
capabilities at a reduced verification time. On the other hand, the
current generation ICs are becoming complex by adopting third-
party IPs and the unavailability of GRMs should not impede the
fuzzing. Based on these factors, we lay out three promising future
directions of hardware fuzzing.

Design-aware selection of coverage metrics: In the hardware
fuzzing and verification, the coverage metrics play a prominent role
in not only defining the input seed corpus but also in bug detection
capability. The existing works solely consider logical metrics to
define the coverage. The coverage metrics in the existing literature
range from the simple multiplexer (MUX) toggling to the control
path status register (CSR) values. On the other hand, capturing all
the coverage metrics from all the coverage sites introduces moni-
toring and analyzing overheads. Considering the emerging attack
patterns relying solely on logic functionality is inefficient, as such
one needs to consider parametric properties (such as temporal be-
havior) of the system. Capturing the pre-defined coverage metrics
from all or statically defined sites (gates or nodes) of DUT leads to
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large instrumentation overheads, redundancy, inefficient bug detec-
tion, and state explosion challenges. In other words, it is pivotal to
consider relevant coverage metrics from coverage sites for efficient
vulnerability detection with low overheads. To circumvent this, a
design-aware selection of coverage metrics is a potential solution
that one could explore.

ML-based Hardware Fuzzing: In the evolving landscape of hard-
ware security and verification, the rising prominence of Machine
Learning (ML) has opened avenues for minimizing human inter-
vention in verification engineering, marking a recent stride in ad-
vancement. Hardware verification, executed at abstraction levels,
necessitates precision in defining ML models to accurately encap-
sulate architectural specifications. ML algorithms can be leveraged
to craft mutation engines for generating novel test seeds, thereby
enhancing coverage and encompassing various functionalities. An
intriguing avenue lies in the application of ML algorithms to fuzzing,
presenting an unexplored domain ripe for exploration.

In the realm of hardware verification, recent strides have seen

the integration of graph learning methods to represent circuits in
terms of nodes. This innovative approach facilitates the deployment
of hardware verification techniques for bug detection. The primary
impetus behind embracing graph learning lies in its capacity to
generalize, accommodate diverse topologies, exhibit scalability, and
possess structural awareness. Given the inherent ability of graph
learning to extract structural topologies, a thought-provoking idea
emerges: deploying this methodology to ascertain design-aware
coverage metrics, thereby pushing the boundaries of what is cur-
rently conceivable in the field.
Fuzzing in the Absence of Golden Reference Model: As dis-
cussed in earlier sections, the availability of GRMs and access to the
source code and internal signals are impeding the efficiency and ef-
ficacy of hardware fuzzing. So, how to fuzz in the absence of GRMs
is a thing one can explore. Can transfer learning be adopted in the
absence of GRMs? Transfer learning has been used in different tasks,
including in EDA applications. These are the possible research gaps
still existing in the present hardware fuzzing frameworks.

6 CONCLUSION

In this survey paper, we have detailed the fundamental principle
of hardware fuzzing inspired by software fuzzing and the frame-
works of different fuzzing methodologies. In addition, we have
illustrated the coverage metrics, target designs, EDA tools chosen
by the fuzzing frameworks, and the number of bugs reported by
each of them. This paper also states the limitations of each of the
frameworks and their corresponding mitigations proposed to date.
Lastly, we have also laid out the future research direction of hard-
ware fuzzing for exploring uncharted territories in hardware design
verification.
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