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Abstract— Ankle moment estimators inform the controllers
of several assistive exoskeletons being developed in research
labs. Accurate moment estimations are critical to ensure biome-
chanically relevant assistance. In this work, we propose new
subject-agnostic ensemble Gaussian Process Regression (GPR)
models which rely on a minimal set of in-shoe force and inertial
sensors that do not require precise sensor-to-body alignment.
We systematically analyzed the effects of model type, sensor
set, and phase variable in terms of estimation accuracy by
carrying out treadmill tests with 15 healthy individuals across
a wide range of walking speeds. Our best ensemble GPR model
achieved an average root-mean-square error of 3.6%+1.2%
normalized over the gait cycle (equivalent to 8.8% +1.6% when
normalized over the stance phase). Incorporating data from the
inertial sensor and using the stance phase as the phase variable
independently contributed to superior accuracy. Overall, these
results indicate the potential of the proposed ensemble GPR
models to accurately estimate ankle moments, paving the way
for future applications to assistive powered ankle exoskeletons
in real-world environments.

Index Terms— Ankle Joint Moment Estimation, Gaussian
Process Regression, Ankle Exoskeletons.

I. INTRODUCTION

Lower-extremity trauma, neurological disorders, and age-
related muscular degeneration often lead to reduced mobility,
impacting the overall quality of life of affected individuals
[1]. Given that the ankle plays a crucial role in stabilizing
and propelling the body [2], powered ankle exoskeletons are
among the most common lower-limb wearable robotic tech-
nologies proposed to enhance or restore ambulatory function.
Most ankle exoskeletons designed for overground walking
do not rely on a target trajectory [3]. Instead, locomotion
assistance is provided based on torque templates [4], direct
joint torque estimation [5], muscle activity amplification [6],
or neuromuscular models [7], with the first two solutions
being the most commonly adopted, owing to their robustness
and ease of tuning [3]. Predefined torque assistance relies on
a simplified torque template which is triggered at specific gait
events [8], or provided as a continuous function of the gait
phase [9]. Despite its robustness, this approach encounters
challenges due to inter- and intra-subject differences and
lack of adaptability to varying walking conditions. Direct
joint torque estimation provides biomechanically relevant
assistance by leveraging real-time approximations of the
ankle’s plantar- and dorsi-flexion (PDF) moment [10]. Ankle
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exoskeletons employing this control strategy capitalize on
humans’ natural optimization tendencies, wherein individuals
adapt their walking patterns in response to environmental
cues and task demands [11]. However, the efficacy of this
method is contingent upon the accuracy of the ankle moment
estimation model, and achieving high accuracy using only
wearable sensors presents a significant challenge.

The methods proposed to date can be classified into biome-
chanical models and regression-based approaches. Choi et al.
[12] employed a planar inverse-dynamics model to estimate
ankle PDF moments. The model requires knowledge of the
mass distribution of the foot and relies on measurements of
the normal ground reaction forces (GRF), the anteroposterior
projection of the foot center of pressure (COP), and the foot
angular acceleration, which were obtained from underfoot
pressure and inertial sensors. However, because it is imprac-
tical to estimate the foot anthropometric parameters for each
individual, this method uses approximated normative data,
which affects its accuracy. In the model developed by Bishe
et al. [13] for an ankle exoskeleton, the ankle plantarflexion
moment was obtained as the product of the normal GRF
under the forefoot measured by a customized force-sensitive
resistor (FSR) and the average tangential distance between
the forefoot and the ankle joint, which was assumed to
be a fixed parameter independent of gait phase, walking
speed, or foot length. The estimator proposed by Gasparri
et al. [10] for the same exoskeleton predicts the normalized
plantarflexion moment by feeding the normalized sum of
two forefoot FSR signals as input to a best-fit quadratic
polynomial. The outputs of this model enable robust control
of the exoskeleton under different walking conditions at the
expense of biomechanical fidelity, since the estimator was
trained solely on peak FSR-to-moment data from a single
subject, neglecting both phase-dependent COP variations and
inter-subject variability.

Owing to their extensive expressive capabilities, machine
learning models have the potential to enhance the accuracy of
ankle moment estimators, outperforming traditional paramet-
ric regression models. Jacobs et al. [14] used feed-forward
neural networks (NN) to estimate the normalized ankle PDF
moment from 8 custom underfoot pressure sensors and a
miniature load-cell located on the Achilles tendon. While
these models apply to both walking and calf rise tasks, they
require subject-specific training, which reduces their range
of applicability. Hossain et al. [15] introduced a subject-
agnostic deep learning model, dubbed Kinetics-FM-DLR-
Ensemble-Net, for estimating lower-extremity joint moments
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using three inertial measurement units (IMUs) attached to
the thigh, shank, and foot. This work highlights the benefits
of using ensemble learners in terms of model accuracy.
However, their estimator was trained on a predefined set of
treadmill speeds applied to all subjects, which may affect the
generalization of their models. Other authors have proposed
the use of electromyography (EMG) in their learning-based
estimators. Ardestani et al. [16] employed a wavelet NN to
reconstruct joint moments from 10 lower-body EMG signals
and 2 GRF projections. While their method is subject- and
task-agnostic and proved to be more accurate than feed-
forward NN, it requires gait laboratory equipment. Xiong et
al. [17] employed a traditional NN informed by 3 EMG sig-
nals and 5 joint angles from the lower extremities to recon-
struct ankle PDF moments during walking. Although their
approach is, in principle, applicable to wearable sensors, their
models are not subject-agnostic. Grzesiak et al. [18] used
an adaptive weighted Long Short-Term Memory (LSTM)
ensemble network to predict ankle PDF moments in different
locomotor tasks using time features extracted from 4 wireless
EMG sensors with embedded three-axis accelerometers in
each leg. Their results indicated that ensemble LSTM models
outperform individual LSTM models, however, their models
require subject-specific training. Leveraging the same sensor
setup, Sloboda et al. [19] applied parameter-based transfer
learning to train LSTM models for ankle moment estimation.
However, their approach still requires labelled data from
the target user. Recently, researchers have investigated the
use of muscle ultrasound (US) imaging as an alternative
noninvasive sensing mechanism for device control. Rabe et
al. [20] estimated hip, knee, and ankle joint moments dur-
ing treadmill walking through Gaussian process regression
(GPR) models informed by a single US transducer located in
the anterior thigh. In treadmill walking at different speeds,
Zhang et al. [21] found that subject-specific convolutional
neural networks (CNN) trained with signals from a single
US transducer located on the calf muscles could outperform
corresponding CNN models trained with signals from 3 EMG
channels in the Gastrocnemius and Soleus muscles. Despite
encouraging results, both Rabe’s and Zhang’s methods re-
quire subject-specific data to train the models.

In summary, previous research in ankle PDF moment
estimation have relied on simplistic biomechanical models,
traditional parametric regression, or machine learning mod-
els. However, to the best of the authors’ knowledge, no
work to date has developed learning-based subject-agnostic
models for ankle moment estimation that only require in-shoe
wearable sensors. Building on our previous study [22], we
introduce new subject-agnostic GPR models for online ankle
moment estimation that rely on a minimal set of affordable
in-shoe sensors, namely an 8-cell array of FSRs and an IMU,
which do not require precise sensor-to-body alignment, aside
from the natural alignment provided by fitting the foot in the
shoe. These attributes are critical to facilitate implementation
on a powered orthosis. We evaluate the accuracy of these
models with a group of healthy individuals during treadmill
walking tests at different speeds. Additionally, we analyze

INSTRUMENTED
INSOLES

SPLIT-BELT
INSTRUMENTED e )
TREADMILL

Fig. 1. Experimental setup. Features extracted from insoles instrumented
with IMU and an 8-cell FSR sensor [23], [24] were used to inform the
ankle moment estimator. An optical motion capture system and a split-belt
treadmill served as reference systems.

the effects of model type (ensemble GPR vs. Least Absolute
Shrinkage and Selection Operator, LASSO), sensor set (FSR
vs. combined FSR+IMU) and phase variable (gait cycle —
GC% vs. stance phase — ST% vs. no phase variable — NP)
in terms of model accuracy. Finally, we perform a feature
analysis to ascertain the relative importance of the input
features extracted from the FSR and IMU sensors. The
remainder of the paper is organized as follows: Section II
describes the experimental protocol. Section III introduces
the GPR models we applied to estimate the ankle moment,
and Section IV summarizes the results of the study. Lastly,
the paper is concluded in Section V.

II. EXPERIMENTAL PROTOCOL

Fifteen able-bodied individuals participated in this study
(13 M, age 24.08 £ 4.97 years, height 1.72 £ 0.07 m,
weight 72.12 +15.04 kg, comfortable walking speed (CWS)
1.02 + 0.26 m/s). Prior to data collection, each participant
selected an appropriate size of instrumented insoles among 8
available sizes, and fit them into their own shoes. The insole
system, which features a 9-DOF IMU and a 8-cell array
of FSRs, is a custom device developed by our group [23],
[24]. This sensor configuration was selected for developing
the ankle moment estimator owing to its minimal setup time
and ease of integration with a portable ankle exoskeleton
featuring external shoe brackets [25], [26]. An optical motion
capture system with 9 cameras (Vicon Motion Systems,
Oxford, U.K.) and a split-belt force-measuring treadmill
(Bertec, Columbus, OH) were used to extract reference ankle
PDF moments (Fig. 1). To this end, 16 reflective markers
were placed on the participant’s body, following the VICON
Plug-in Gait lower body marker set. The participant was then
instructed to complete a 10-minute familiarization session
on the treadmill during which their comfortable walking
speed was determined using the iterative procedure described
in [27]. Afterwards, each study participant walked on the
treadmill at 3 fixed speeds (CWS, 85% CWS, 115% CWS),
for 3 minutes each, with 1-minute rests in-between bouts
[28], Fig. 2. Marker and force-plate data were sampled at
100 Hz and 900 Hz, respectively. Insole data were stored in
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Fig. 2. Experimental protocol. FAM: familiarization bout, SS: standing
still; R: resting; CWS: comfortable walking speed.

each insole’s electronic pod, at a sampling rate of 333Hz.
Synchronization between the reference equipment and the
insole system was achieved through a custom wireless board
[28]. The study was approved by the IRB of Stevens Institute
of Technology, and all participants provided written informed
consent.

III. METHODS
A. Data pre-processing

To ensure steady-state gait patterns, we considered only
the last 30 seconds of each fixed-speed walking bout, for
each participant. Marker positions were employed to scale
the generic OpenSim musculoskeletal model to each par-
ticipant, following which ground-truth ankle PDF moments
were estimated from inverse dynamics [29]. Heel-strike (HS)
and toe-off (TO) events were identified from force plate
data using a fixed threshold algorithm with a 5% body
weight threshold [14]. Subsequently, HS and TO events were
used to segment FSR and IMU signals into gait cycles and
stance phases. Based on preliminary tests, we considered the
following candidate input features for the ankle estimator:
all FSR signals from the 8-cell array, magnitudes of the
acceleration and angular velocity vectors (am, gy;), vertical
projection of the acceleration (az), mediolateral projection
of the angular velocity (gy), and participant’s shoe size (EU
size). The latter was used as a surrogate measure for the
participant’s foot size. The eight FSR signals were scaled to
the range [0, 1] using the range of the FSR readings collected
over the three fixed-speed walking bouts. Subsequently, all
candidate input features were segmented into N = 101
equally spaced points (i.e., [0%, 100%)]), either in the ST%
domain or in the GC% domain (see Sec. III-C). Participants’
shoe sizes were also normalized within the range [0, 1].

B. Ankle Moment Estimators

Leave-one-out cross-validation (LOOCV) was used to
train LASSO and GPR models, subject by subject, using
data from all the other subjects (Fig. 3).

1) LASSO: These generalized linear models were intro-
duced as a baseline to evaluate the extent to which the
complexity of GPR models is justified by their enhanced
accuracy. We trained N independent models with weights
W; given by

Wi = moin(Yi" = XIrw)T (V" — XIrw) + Mlwl|1, i € [1,N], (1)

where 7 indicates the phase index (GC% or ST%), A is a
non-negative regularization parameter, and Y;'", X!" are the
reference ankle moment and the vector of input features in
the training dataset at phase i. Vector X!" was augmented
with the constant 1 to account for the intercept, and the
tuning parameter A was chosen as the largest value resulting
in a non-null model. For NP models, we set N=1 in (1).

2) GPR: We regard the ankle moment estimation as the
output of a noisy observation model
y=[f(x)+e 2)
where « is the input vector, y is the observed target value,
f(x) represents the latent function value with added Gaus-
sian noise € ~ N(0,02) and o2 is the noise variance of the n
observations. A Gaussian process (GP) defines a distribution
over functions with a mean function m(x) and a covariance
function k(x, ') between two random variables « and ' :
f(@) ~ GP(m(x), k(z, z')). 3)
In this work, the mean function m(x) was chosen as a
fixed constant function H (3, with H being a n;,.-by-1 basis
vector of ones and 3 a coefficient inferred from the training
data. Given ny, training data points X" = {z;}7* and
corresponding response observations Y, a GP predicts the
latent values f, for the ns. test points X = {x;}7% as
£ XY X ~ N(F,, cov(f,)). 4)
The covariance function defines the covariance matrices
between the training data points K £ K (X', X'"), test
and training data points K, & K (X%, X'"), and the test data
points K, £ K (X', X*). The optimal hyperparameter set
6 and [ are optimized from the training data to maximize
the marginal log-likelihood function
logp(Y'"| X", 3,0) =

1 _
—5 (V"= HB) (K + o) 'Y — HB) (5
1
S loglK + 021 - glogQW

To this end, we use the Symmetric Rank 1 (SR1) quasi-
Newton gradient method [30]. The predictive mean and
covariance for new test data points are then calculated as

f.=Hp+KI(K+o,])"(Y" —HB), (6)

cov(f,) = K. — KI'(K +021) 'K, (7)
where H., is an ns.-by-1 vector of ones and f, is the expected
value of the estimations Y% for the test data points.

A Genetic Algorithm (GA), was employed as a wrapper
method to determine the optimal subset of input features
Iopt and the optimal covariance function k,,: for the GPR
models. To this end, we implemented a nested 10-fold cross-
validation loop within the LOOCYV (Fig. 3), using the average
mean absolute error (MAE) across the 10 folds as the
GA cost function. The candidate input features comprised
those outlined in Sec. III-A. For GC% and ST% models,
we included the phase index ¢ as an additional input. To
expedite the feature selection process, we grouped the eight
FSR signals into four categories: Heel (encompassing medial
and lateral heel FSRs), Arch (represented by the mid-foot
FSR), Met (including the 1Ist, 3rd, and Sth metatarsal FSRs),
and Toes (encompassing the hallux and toe FSRs). This
grouping ensured that all FSR signals within a group would
either be retained or discarded together. Based on preliminary
tests, we restricted the candidate covariance functions for
GPR to exponential, exponential with automatic relevance
determination (ARD), Matérn kernel 3/2 with ARD, Matérn
kernel 5/2 with ARD, and rational quadratic with ARD [31].
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C. Data Anafli%‘i’f optimized ensemble GPR models.

A 3-way repeated-measures ANOVA was used to identify
significant (o = 0.05) effects of model type — M (LASSO
vs. ensemble GPR), sensor set — S (FSR vs. combined
FSR+IMU), and phase variable — P (GC% vs. ST% vs.
NP) on prediction accuracy. Post-hoc analyses were carried
out where appropriate, using Bonferroni-Holm correction.

nt range in our

Lfﬁbdei’ateikﬁtdmpoﬂa@t (@ﬁl@@tmm(brxﬂdéﬁag across speeds.

SA/SS: subject-agnostic/specific; LG/TM: level-ground/treadmill walking.
pres\oreSEIS:ILOMDIAND CONCLUSION

Combining FSR and IMU sensors and using ST% as the
phase variable yielded the best results for both the ensemble

IThe selection ratio of one feature is defined as the ratio between the
number of times the feature has been selected by the GA optimizer in the
LOOCY loop, and the total number of subjects (LOOCV loops).
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Fig. 4.  Average ankle moment trajectories for a representative study
participant at three walking speeds. Dashed lines indicate +1SD.

GPR models (NRMSEgr+SD: 8.8% =+ 1.6) and the LASSO
models (13.2% +2.5), with the former clearly outperforming
the latter. These results confirm that learning-based models
outperforms conventional parametric regression models for
ankle moment estimation. The stance-phase ankle PDF mo-
ment is associated with the GRF and the distance between the
foot COP and the ankle joint. The results in Fig. 5(b) suggest
that FSRs underneath the calcaneous and the metatarsal
heads can effectively capture changes in that distance, and
shoe size effectively reflects its maximal range. The results
also indicate that the stance-phase ankle PDF moment is
more influenced by foot acceleration than foot angular ve-
locity, which can be explained by the correlations between
the body’s weight-bearing and propulsion actions, and the
foot acceleration in the vertical [32] and anteroposterior [33]
directions. Our findings also indicate that ST% increased the
accuracy by approximately 3.5% and 5.9% compared with
GC% and NP, respectively. A phase variable informs the
models about the temporal dynamics of walking, thereby
contributing to smaller errors relative to NP. Furthermore,
because the relative duration of stance and swing phases
changes across subjects and walking speeds [34], using GC%
as opposed to ST% as the temporal reference is less infor-
mative. This also explains the nonsignificant improvement in

[H(FSR+IMU)-GPR

CIFSR-GPR (FSR+IMU) !
BI(FSR+IMU)-LASSO ST%
FSR-LASSO
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Fig. 5. (a) Group averages of the NRMSEgr for the ankle moment
estimators. Error bars indicate 4+-1SE. (b) Selection ratio of the input features
for the optimized ensemble GPR models.

TABLE III
ACCURACY OF ANKLE MOMENT ESTIMATION DURING WALKING.

Ref.  Method  Sens. Set  WIk. Task NRMSEs(SD) NRMSEgc(SD)
2] SA  dpres, IIMU LG 12.1%2.2%)% -

[10] SA 2 FSRs ™ 13.5%(4.0%)

[13] SA 1 FSR ™  11.1%(4.3%)"

[20] SS 1 US ™  >6.9%(0.9%) -

[14] SS  8pres, ILC TM - >7.29%(-)
[15] SA 3 IMUs ™ - 3.2%(2.1%)
Our work SA 8 FSRs, 1 IMU TM 88%(1.6%)  3.6%(1.2%)

“Estimated as the ratio between the reported RMSE and the max ankle moment
range in our dataset; bEstimated as the avg. reported NRMSEgt or NRMSEgc across
speeds. SA/SS: subject-agnostic/specific; LG/TM: level-ground/treadmill walking.
pres: pressure sensors; LC: load cell.

accuracy between GC% and NS. Individual ankle moment
trajectories, shown in Fig. 4 for a representative participant,
suggest that the estimator is less accurate during the first
peak occurring in the early stance phase. Since this peak is
linked to the contralateral foot’s push-off [35], and therefore
it involves dual-limb interactions, future work will need to
evaluate whether the addition of bilateral sensor data may
improve the model accuracy in this phase.

The accuracy of several ankle moment estimators re-
ported in the literature is summarized in Tab. III. Because
some authors reported the NRMSE normalized over the
entire gait cycle (NRMSEgc), as opposed to the stance
phase (NRMSEgr), we computed both metrics for our best-
performing ensemble GPR models. These GPR models
yielded smaller NRMSEgy than the models in [12] and [13],
despite not relying on knowledge of the foot anthropometric
parameters. This confirms the superior explanatory capa-
bility of learning-based models compared with simplistic
biomechanical models. The GPR models also outperformed
the results in [10], which nonetheless were obtained with
pathological gait. In contrast to their model, which was
extracted from observed correlations between FSR peaks and
ankle moment peaks, the proposed GPR models take into
account the changing pattern of ankle moment within the
stance phase, and therefore likely more accurately reflect
speed-dependent changes [2]. Although the subject-agnostic
deep learning model recently presented in [15] achieved
better NRMSEgc than our GPR models, their results were
obtained using three IMUs attached to the main segments of
the human leg, which require a more extensive subject setup
compared with in-shoe sensors. Interestingly, the approach
presented in [14] resulted in larger NRMSEgc compared to
the proposed GPR models, despite requiring subject-specific
training. This could be attributed to the different pressure
sensor technology, or the absence of a sensor underneath the
toes, potentially impacting the accuracy of ankle moment
estimation in the late stance. The authors of [21] reported
smaller NRMSEgr, but their approach requires training a
separate model at each walking speed, which may limit its
applicability. Nonetheless, we note that the comparisons in
Tab. III should be interpreted with caution, given the hetero-
geneity of sensor technologies and protocol procedures.

This study provides initial evidence that ensemble GPR
models, using only in-shoe sensors, can accurately estimate
ankle PDF moments during walking tasks. Study limitations
include a small sample size and dependence on force-plate
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data for gait segmentation. The effectiveness of the GPR
models relying on ST% or GC% will be influenced by
the accuracy of real-time phase estimators, thus diminishing
the benefits of phase-informed models compared to simpler
non-phase (NP) models. This assessment will be part of a
future study implementing the proposed models on an ankle
exoskeleton currently being developed in our laboratory [26].
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