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Some sharp inequalities of Mizohata–Takeuchi-type

Anthony Carbery, Marina Iliopoulou and Hong Wang

Abstract. Let † be a strictly convex, compact patch of a C 2 hypersurface in Rn,
with non-vanishing Gaussian curvature and surface measure d� induced by the Le-
besgue measure in Rn. The Mizohata–Takeuchi conjecture states that

Z
jbgd� j2 w  CkXwk1

Z
jgj2

for all g 2 L2
.†/ and all weights w W Rn ! Œ0;C1/, where X denotes the X -ray

transform. As partial progress towards the conjecture, we show, as a straightforward
consequence of recently-established decoupling inequalities, that for every " > 0,
there exists a positive constant C", which depends only on † and ", such that for all
R � 1 and all weights w W Rn ! Œ0;C1/, we have

Z
BR

jbgd� j2 w  C"R
" sup

T

⇣ Z
T

w
.nC1/=2

⌘2=.nC1/
Z

jgj2;

where T ranges over the family of tubes in Rn of dimensionsR1=2 ⇥ � � � ⇥R1=2 ⇥R.
From this we deduce the Mizohata–Takeuchi conjecture with an R.n�1/=.nC1/-loss;
i.e., that Z

BR

jbgd� j2 w  C"R
n�1

nC1
C" kXwk1

Z
jgj2

for any ballBR of radiusR and any " > 0. The power .n� 1/=.nC 1/ here cannot be
replaced by anything smaller unless properties of bgd� beyond ‘decoupling axioms’
are exploited. We also provide estimates which improve this inequality under various
conditions on the weight, and discuss some new cases where the conjecture holds.

1. Introduction

Let n� 2, and henceforth fix† to be a strictly convex, compact patch of aC 2 hypersurface
in Rn with non-vanishing Gaussian curvature; a prototypical example is the sphere Sn�1.
Let d� be the surface measure on†, induced by the Lebesgue measure in Rn. The Fourier
extension operator associated to † is defined by

g 7! bgd�
Mathematics Subject Classification 2020: 42B37.
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where
bgd�.x/ WD

Z
e

2⇡ ihx;⇠i
g.⇠/ d�.⇠/ for x 2 Rn

:

The Fourier restriction or extension conjecture [29], which lies at the heart of harmonic
analysis, aims to understand the extension operator by determining its Lp ! L

q mapping
properties. However, while Fourier extension estimates provide information on the size of
the level sets of j bgd� j, they do not reveal much about their shape. The Mizohata–Takeuchi
conjecture aims to shed light in this direction, specifically regarding the clustering of
level sets along lines. The conjecture arose in the study of dispersive PDE; see [25] for
some background. In that setting, hypersurfaces such as the paraboloid and the cone are
particularly relevant. Although the conjecture stated below arose first in the context of
hypersurfaces with non-vanishing Gaussian curvature, it is nevertheless expected that it
should hold for arbitrary sufficiently smooth hypersurfaces.

Conjecture 1.1 (Mizohata–Takeuchi). For anyC 2 compact convex hypersurface† in Rn,
the inequality Z

j bgd� j2w  CkXwk1

Z
jgj2

holds for all g 2 L2
.†/ and all weights w W Rn ! Œ0;C1/, for some C > 0 that only

depends on †.

Here, X denotes the X -ray transform, so that

kXwk1 D sup
`

Z
`

w;

where the supremum is taken over all lines ` in Rn. By the compactness of † and uncer-
tainty principle considerations, the Mizohata–Takeuchi conjecture is equivalent to

Z
j bgd� j2w  C sup

T

w.T /

Z
jgj2

where the supremum is taken over all 1-neighbourhoods T of doubly-infinite lines in Rn.
In particular, we may – and indeed we shall – assume that w is roughly constant at scale 1.

The Mizohata–Takeuchi conjecture is open in all dimensions, including n D 2 (where
the Fourier extension conjecture has been resolved).1 It would directly follow from the
truth of the stronger conjecture

(1.1)
Z

j bgd� j2w  C

Z
jg.⇠/j2 sup

`kN.⇠/

Xw.`/ d�.⇠/;

a formulation of which in the related context of the disc multipliers is due to Stein [29];
here, N.⇠/ denotes the normal to † at ⇠.

When†D Sn�1 and the weight is radial, the Mizohata–Takeuchi conjecture is known
to hold (see [2, 10, 12–14]), and the Stein-like conjecture in the same setting is a trivial

1It is a nice observation of Bennett and Nakamura, see [4], p. 129, that when nD 2, the Mizohata–Takeuchi
conjecture implies the Fourier extension conjecture.
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consequence of this. When the weight is constant on parallel hyperplanes and the hyper-
surface is arbitrary, both conjectures are true. This can be seen by using an affine change of
variables to reduce to the case of horizontal hyperplanes and a hypersurface parametrised
as .t; �.t// for t 2 Rn�1, and in this case Plancherel’s theorem in Rn�1 gives the result
directly. When†D S1 and the weight is a measure supported on S1, both conjectures are
also known [3]. Little is known beyond these three cases.

One way to measure partial progress on the Mizohata–Takeuchi conjecture is to con-
sider inequalities of the form

Z
BR

j bgd� j2w  CR
˛kXwk1

Z
jgj2;

where BR is the ball of radius R centred at 0, and to attempt to establish such inequalities
with the exponent ˛ as small as possible. By the Agmon–Hörmander trace inequality and
the local constancy of w at scale 1, we have

(1.2)
Z

BR

j bgd� j2w  CRkwk1

Z
jgj2  CRkXwk1

Z
jgj2

in all dimensions n � 2, and it is known that

(1.3)
Z

BR

j bgd� j2w  CR
1=2kXwk1

Z
jgj2 for n D 2:

The latter inequality can be traced back to works of Bourgain [7], Erdoğan [17] and also
Carbery and Seeger [11] – see Section 4 in [1] for further details of inequalities which can
be found in the literature and which have (1.3) as a consequence. We give a more direct
proof of this in Section 3 below. In more recent developments, it is a consequence of the
main result in Du and Zhang [16] that one may take any ˛ > .n � 1/=n (in fact, with the
significantly smaller functional supx; 1rR w.B.x; r//=r

n�1 in place of kXwk1) for
arbitrary n. (See also Shayya [27] and Du et al [15], who gave alternative arguments when
n D 3 for ˛ > 6=7 and ˛ > 2=3, respectively.) In Theorem 1.2 below, we show that one
may take any ˛ > .n � 1/=.nC 1/ in all dimensions.

See also [4, 5] for a tomographic approach to the Mizohata–Takeuchi conjecture, [28]
for related weighted L2 ! L

4 estimates on the extension operator, and [18] for variants
of the conjecture when the supports of g and w are respectively contained in and equal to
neighbourhoods of algebraic varieties.

Notation

The control we shall obtain on
R

BR
j bgd� j2w will be accompanied by multiplicative losses

of the form C"R
" for any " > 0. In order to facilitate expression of this, we adopt the

following notation.
For any non-negative quantities A and B (which may depend on R), A . B means

that A  cB for some constant c that depends only on † and the ambient dimension.
Likewise, A & B means that B . A, while A ⇠ B means that A . B and A & B . With
R � 1 fixed, A / B means that, for every " > 0, there exists a constant C", depending
only on ", † and the ambient dimension, such that A  C"R

"
B . Similarly, A ' B means

that B / A, while A ⇡ B means that A / B and A ' B .
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For a weight w on Rn and A ⇢ Rn, we denote by w.A/ the integral
R
A
w with respect

to Lebesgue measure on Rn.
For n � 2, an n-dimensional ball of radius r will be referred to as an r-ball. A tube

of length r and cross section an .n � 1/-dimensional ball of radius r1=2 will be referred
to as an r1=2-tube. With R � 1 fixed and 1  r  R, we let Tr be the set of r1=2-tubes
intersecting BR.

For a line ` in Rn and g 2 L2
.†/, we write ` ? suppg if the direction of ` is parallel

to one of the normals to suppg ⇢ †.
For a tube T in Rn, we write T ? suppg if the central line of T is parallel to one of

the normals to suppg ⇢ †.

Statement of results

In this paper, we present several L2-weighted inequalities for the Fourier extension oper-
ator which are related to the Mizohata–Takeuchi conjecture. To place our results in con-
text, we first observe that the Stein–Tomas inequality,

k bgd�k
L2.nC1/=.n�1/.Rn/

. kgk2;

together with Hölder’s inequality, implies that
Z

BR

j bgd� j2w .
⇣ Z

BR

w
.nC1/=2

⌘2=.nC1/
Z

jgj2

for all g and all non-negative w. The first Mizohata–Takeuchi-type estimates that we
present give a significant improvement over this inequality, and follow from the refined
Stein–Tomas-type estimate in [21]. They are given in Theorem 1.2 below. The main
inequality of this result, (1.4), is closely related to, but logically independent from, the
Mizohata–Takeuchi conjecture, and it is sharp in the sense we discuss below the state-
ment. Its consequence (1.5) is also sharp given the techniques that we employ; see [20], the
remarks at the end of this section and Section 7. Estimates which improve on Theorem 1.2
appear in Lemma 1.4 (for g with small support), as well as in Theorems 1.6 and 1.8 (for
weights that are constant on slabs), and arise as consequences of Theorem 1.2.

Theorem 1.2. Let n � 2. For every " > 0, there exists a positive constant C", which
depends only on † and ", such that

(1.4)
Z

BR

j bgd� j2w  C"R
" sup

T 2TRW T ?supp g

⇣ Z
T

w
.nC1/=2

⌘2=.nC1/
Z

jgj2;

and in particular,
Z

BR

j bgd� j2w / R
n�1

nC1

⇣
sup

`?supp g

Xw.`/

⌘ Z
jgj2(1.5)

for all R � 1, g 2 L2
.†/ and weights w W Rn ! Œ0;C1/.
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The second statement follows from the first upon noting that

sup
T 2TR W T ?supp g

⇣ Z
T

w
.nC1/=2

⌘2=.nC1/

 kwk
n�1

nC11
⇣

sup
T 2TRW T ?supp g

w.T /

⌘2=.nC1/

. R
n�1

nC1 kwk
n�1

nC11
⇣

sup
`?supp g

Xw.`/

⌘2=.nC1/

and using the approximate constancy of w at scale 1.
Notice that Theorem 1.2, unlike the Mizohata–Takeuchi conjecture itself, requires

non-vanishing curvature of †.

Remark 1.3. Inequality (1.4) of Theorem 1.2 is sharp in the following senses. Firstly, if
the exponent r is such that

Z
BR

j bgd� jq w .
⇣ Z

BR

w
r

⌘1=r⇣ Z
jgjp

⌘q=p

(which, by duality, is equivalent to an Lp-Lqr 0 Fourier extension estimate) holds, then
necessarily 1=qr 0  .n � 1/=.n C 1/p

0; so the exponent .n C 1/=2 appearing in (1.4)
(in which p D q D 2) cannot be increased, irrespective of the size of the tubes T ⇢ BR.
Secondly, fixing r D .nC 1/=2 in (1.4), we cannot reduce the width of the tubes appearing
to be significantly smaller than R1=2. These two assertions can both be seen by testing
as usual on g the indicator function of an R�1=2-cap and w the indicator of the dual
R

1=2-tube. On the other hand, we do not know whether one may take " D 0 in (1.4)
and (1.5). It is likely that when n D 2, we may be able to replace the R" term by a power
of logR; see Remark 4.3 below.

Theorem 1.2 will follow from the more precise Theorem 4.1, in which TR is replaced
by the set of tubes featuring in the wave packet decomposition of g at scale R.

We now turn to our other results. Theorems 1.6 and 1.8 below are improvements of
Theorem 1.2 for weights that exhibit a level of local constancy along slabs. In the extreme
case where there is no such local constancy beyond on unit scale, both theorems reduce to
Theorem 1.2. Theorem 1.6 involves slabs that are ‘roughly parallel’ to caps of †, while
Theorem 1.8 addresses the general case.

Both theorems (and, in fact, the more precise Theorems 6.1 and 6.2) will follow from
a strengthened version of Theorem 1.2 for functions g with small support (Lemma 1.4
below), which we will prove for all weights.

In order to state Theorems 1.6 and 1.8, we first establish some further notation, and
introduce a quantity which is intermediate between the quantity

sup
T 2TR W T ?supp g

⇣ Z
T

w
.nC1/=2

⌘2=.nC1/

occurring in Theorem 1.2 and a quantity more directly geared towards that occuring in
the Mizohata–Takeuchi conjecture itself. This will involve considering an amalgam of
‘running averages’ of w at certain scales related to the level of constancy that we are
assuming, which is measured by a parameter 1  ⇢  R which we now fix. Let E ⇢ †.



A. Carbery, M. Iliopoulou and H. Wang 6

For each TR 2 TR such that TR ? E, we cover TR by essentially disjoint tubes S⇢ 2 T⇢

which are parallel to and contained in TR. For w W Rn ! Œ0;C1/ and E ⇢ †, we define

A⇢;R;E .w/ WD 1

⇢.n�1/=2
sup

TR 2 TRW TR?E

⇣ X
S⇢ ⇢TR

w.S⇢/
.nC1/=2

⌘2=.nC1/

;

a quantity which can be expressed more geometrically as

sup
TR2TR W TR?E

⇣ X
S⇢ ⇢TR

⇣
w.S⇢/

jS⇢j
⌘.nC1/=2

jS⇢j
⌘2=.nC1/

;

and thus is seen to increase as ⇢ gets smaller.2 For ⇢ D 1,

A1;R;E .w/ ⇠ sup
TR 2TR W TR?E

✓Z
TR

w
.nC1/=2

◆2=.nC1/

is the quantity appearing on the right-hand side of Theorem 1.2, controlling the L2
.E/!

L
2
.w/-norm of the extension operator. Theorem 1.2 fails in general for g supported on E

if the above quantity is replaced by the smaller

AR;R;E .w/ D sup
TR 2TR W TR?E

w.TR/

R.n�1/=2

(and in fact by A⇢;R;E .w/ for any ⇢ � 1, as can be seen by taking g to be the indicator
function of a 1-cap and w the indicator function of the unit ball). In the results which
follow, however, we shall show that under certain auxiliary conditions (g being supported
on a small cap, or the weight being the indicator function of a union of small slabs),
Theorem 1.2 nevertheless does hold for g 2 L2

.E/ if we replace the quantity A1;R;E .w/

with A⇢;R;E .w/ for an appropriate choice of ⇢. To further compare these two quantities,
observe that

(1.6) A⇢;R;E .w/  sup
S⇢ 2T⇢ W S⇢?E

⇣
w.S⇢/

jS⇢j
⌘ n�1

nC1 sup
TR2TR;TR?E

w.TR/
2=.nC1/

;

which becomes

A⇢;R;E .w/  sup
S⇢ 2T⇢ W S⇢?E

⇣
w.S⇢/

jS⇢j
⌘ n�1

nC1

A1;R;E .w/

when w is an indicator function (which we may well assume for our purposes).

2By Hölder’s inequality we have, for � � 1 and a tessellation of an S�⇢ by S⇢’s,

⇣w.S�⇢/

jS�⇢j
⌘.nC1/=2

jS�⇢j .
X

S⇢⇢S�⇢

⇣
w.S⇢/

jS⇢j
⌘.nC1/=2

jS⇢j:
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In situations in which we are able to bound theL2
.E/!L

2
.w/-norm of the extension

operator by A⇢;R;E .w/, inequality (1.6) leads to improved bounds in terms of kXwk1;
in particular, to a gain on Theorem 1.2 by a factor ⇢�.n�1/=.nC1/. Indeed, by (1.6),

A⇢;R;E .w/ 
⇣kXwk1

⇢

⌘ n�1

nC1

.R
.n�1/=2kXwk1/2=.nC1/ .

⇣
R

⇢

⌘ n�1

nC1 sup
`?E

Xw.`/:

A situation such as this arises when g is supported in a ⇢�1=2-cap of † (that is, the inter-
section of † with a ⇢�1=2-ball), and is summarised in Lemma 1.4 below. The lemma will
in turn be used in conjunction with a decoupling argument to derive Theorems 1.6 and 1.8
for all functions g and restricted classes of weights. Note that, in Lemma 1.4 below, the
subscript ⌧ on g⌧ is not strictly needed, but we retain it to emphasise its support.

Lemma 1.4 (Small caps). For every " > 0, there exists C" > 0 such that for all weights
w W Rn ! Œ0;C1/, whenever 1  ⇢  R, ⌧ is a ⇢�1=2-cap of † and g⌧ 2 L2

.B
n�1

/ is
supported in ⌧ , we haveZ

BR

j1g⌧ d� j2w  C"R
"
A⇢;R; supp g⌧

.w/

Z
jg⌧ j2;

and therefore also

(1.7)
Z

BR

j1g⌧ d� j2w /
⇣
R

⇢

⌘ n�1

nC1 sup
`?supp g⌧

Xw.`/

Z
jg⌧ j2:

In order to state Theorems 1.6 and 1.8, we need to make precise what we mean by a
slab, and by a slab being ‘roughly parallel’ to caps of †.

Definition 1.5. Fix R � 1, 1  ⇢  R and 0  ⌫  ⇡=2. We define a ⇢1=2-slab to be any
affine copy of the 1-neighbourhood of an .n � 1/-dimensional ⇢1=2-ball in Rn. We say
that a slab is ⌫-parallel to † if all normals to † create angle at least ⌫ with the slab (that
is, they create angle at most ⇡=2 � ⌫ with the normal to the slab).

In this definition, ⌫ is a measure of how large the angles are between the slab and the
normals to †. The larger ⌫ is, the larger these angles are, and the more ‘parallel’ † and
the slab look.

With these preliminaries in hand, we are now ready to state our remaining results.
In the first two results which follow, the implicit constant blows up as ⌫ # 0. Thus, the
interesting cases of these two results are those in which ⌫ is large, i.e., when the slabs
create large angles with the normals to †. If for instance † is roughly horizontal (i.e., all
normals to† are within angle  1=100 from the vertical direction), then Theorem 1.6 gives
meaningful results for slabs that are also nearly horizontal (e.g., creating angle � 2=100

with the vertical direction).

Theorem 1.6 (Slabs ⌫-parallel to †). For every 0 < ⌫  ⇡=2 and " > 0, there exists
C";⌫ > 0 such that the following hold. Let g 2 L

2
.†/. For R � 1 and R" ." ⇢  R,

let w W Rn ! Œ0;C1/ be a weight of the form
P

s2◆ cs�s , where ◆ is a set of disjoint
⇢

1=2-slabs ⌫-parallel to †. Then the inequality
Z

BR

j bgd� j2w  C";⌫R
"
A⇢;R; supp g.w/

Z
jgj2 /⌫

⇣
R

⇢

⌘ n�1

nC1 sup
`?supp g

Xw.`/

Z
jgj2
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holds. In fact, if
g D

X
⌧2T

g⌧ ; with suppg⌧ ⇢ ⌧ ;

for some boundedly overlapping family T of ⇢�1=2-caps ⌧ of †, then
Z

BR

j bgd� j2w /⌫

X
⌧2T

A⇢;R; supp g⌧
.w/

Z
jg⌧ j2 /⌫

⇣
R

⇢

⌘ n�1

nC1
X
⌧2T

sup
`?supp g⌧

Xw.`/

Z
jg⌧ j2:

It follows that Stein’s stronger conjecture (1.1) (and thus the Mizohata–Takeuchi con-
jecture) holds under the conditions of Theorem 1.6 when the slabs involved areR1=2-slabs.
We single this out explicitly as a corollary.

Corollary 1.7. LetR � 1 and suppose thatw is a weight of the form
P

s2◆ cs�s , where ◆
is a set of disjoint R1=2-slabs which are ⌫-parallel to † for some 0 < ⌫  ⇡=2. Then

Z
BR

j bgd� j2w /⌫

Z
jg.⇠/j2 sup

`kN.⇠/

Xw.`/ d�.⇠/

for all g 2 L2
.†/.

Stein’s conjecture continues to hold even when the slabs are curved. The precise for-
mulation of this appears in Corollary 3.4, and it is proved using a direct method, which
does not rely on Theorem 1.2, and which also featured in [20].

A substitute result for Theorem 1.6 in the case where there is no restriction on ⌫ (i.e.,
when the slabs can create arbitrarily small angles with normals to †) is as follows.

Theorem 1.8 (All slabs). For every " > 0, there exists C" > 0 such that the following
hold. Let g 2 L2

.†/. For R � 1 and R" ." ⇢  R, let w W Rn ! Œ0;C1/ be a weight
of the form

P
s2◆ cs�s , where ◆ is a set of disjoint ⇢1=2-slabs with no conditions on their

directions. Then the inequality
Z

BR

j bgd� j2w  C"R
"
A

⇢1=2;R; supp g
.w/

Z
jgj2 /

⇣
R

⇢1=2

⌘ n�1

nC1 sup
`?supp g

Xw.`/

Z
jgj2

holds. In fact, if
g D

X
⌧2T

g⌧ ; with suppg⌧ ⇢ ⌧ ;

for some boundedly overlapping family T of ⇢�1=4-caps ⌧ of †, then
Z

BR

j bgd� j2w/
X
⌧2T

A
⇢1=2;R; supp g⌧

.w/

Z
jg⌧ j2 /

⇣
R

⇢1=2

⌘ n�1

nC1
X
⌧2T

sup
`?supp g⌧

Xw.`/

Z
jg⌧ j2:

Corollary 1.9 (R1=2-slabs). Let R � 1 and assume w is a weight of the form
P

s2◆ cs�s ,
where ◆ is a set of disjoint R1=2-slabs. Then

Z
BR

j bgd� j2w / R
n�1

2.nC1/ sup
`?supp g

Xw.`/

Z
jgj2

for all g 2 L2
.†/.
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Sharpness of inequality (1.5) given the choice of technique

During the recent talk [20], which in fact partially inspired the work in this paper, Guth
explained that, using only basic local constancy and local L2-orthogonality properties
of the functions bgd� – which are indeed the only properties that we exploit in proving
Theorem 1.2 –, one cannot prove the Mizohata–Takeuchi conjecture for BR with a loss
better than ⇠ .logR/�3

R
.n�1/=.nC1/.

This means that inequality (1.5) of Theorem 1.2, which establishes the conjecture with
a loss of / R

.n�1/=.nC1/, is essentially sharp given the techniques used.
Guth’s argument is discussed in Section 7 for purposes of self-containment.

2. Preliminaries

For our purposes, we may assume that all normals to† have angle at most 1=100 from the
vertical direction, and that the projection of † on the hyperplane Rn�1 ⇥ π0º is contained
in the unit ball Bn�1 centred at 0. This convention allows us to assume that † has a
parametrisation

† D π†.!/ WD .!; h.!//, for ! 2 Bn�1º
for some hWBn�1 ! R, and to work with the operator E instead of b� d� , where

Eg.x/ WD
Z

Bn�1

e
2⇡ ihx;†.!/i

g.!/ d!; for x 2 Rn
:

From now on, for fixed † and " > 0, we say that a quantity C.R; "/ satisfies

C.R; "/ D RapDec".R/

if for everyN 2 N there exists a non-negative constant CN;" such that uniformly in R � 1

we have
jC.R; "/j  CN;"R

�N
:

Wave packet decomposition adapted to BR

Let " > 0 and 0 < ı ⌧ ". FixR� 1, and cover Bn�1 by boundedly overlapping balls ✓ of
radius R�1=2. The set of these balls will be denoted by ‚R, and the balls will be referred
to asR�1=2-caps. Let π ✓ º✓2‚R

be a smooth partition of unity adapted to this cover. Thus,

g D
X

✓2‚R

 ✓ g

for any gW Rn�1 ! C supported in Bn�1 (and belonging to some suitable class). Now,
cover Rn�1 by boundedly overlapping balls of radius CR.1Cı/=2 and centres on the lattice
VR WD R

.1Cı/=2Zn�1. There exists a bump function ⌘, adapted to the ball B.0;R.1Cı/=2
/,

so that the bump functions ⌘v WD ⌘.� � v/, over v 2 VR, form a partition of unity for this
cover. It follows that, with y� and {� denoting the .n � 1/-dimensional Fourier transform
and its inverse, respectively,

{g D
X
.✓;v/

⌘v. ✓g/
{
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and thus
g D

X
.✓;v/

y⌘v ⇤ . ✓g/

for all g as above. Finally, restrict each of the above summands to the corresponding cap ✓ .
In particular, let

g✓;v WD z ✓ � .y⌘v ⇤ . ✓ g//;

where z ✓ WD z .R1=2
.� � !✓ // for some fixed smooth bump function z (where !✓ is the

centre of the cap ✓ ), chosen so that z ✓ is supported in ✓ and equals 1 on the cR1=2-neigh-
bourhood of supp ✓ , for some small c > 0.

The g✓;v are the wave packets of g at scaleR, while πg✓;vº.✓;v/2‚R⇥VR
constitutes the

wave packet decomposition of g at this scale. Note that the decomposition is "-dependent.
The function g is roughly the sum of its wave packets, all of which are roughly

orthogonal. More precisely, note that the function y⌘v is rapidly decaying when j!j �
R

�.1Cı/=2, so

kg✓;v � y⌘v ⇤ . ✓g/k1  RapDec".R/ kgk2; for each .✓; v/;

hence ���g �
X

.✓;v/2‚R⇥VR

g✓;v

���
1

 RapDec".R/ kgk2:(wp1)

The functions g✓;v are almost orthogonal, in the sense that
���

X
.✓;v/2W

g✓;v

���2

2

⇠
X

.✓;v/2W

kg✓;vk2

2
(wp2)

for every subset W of ‚R ⇥ VR.
It turns out that, for every .✓; v/, Eg✓;v is essentially supported in

T✓;v WD
®
x 2 BR W jx0 C xn@!h.!✓ / � vj  R

1=2Cı
¯
;

the R1=2Cı -tube in BR whose central line passes through .v; 0/ and has direction the
normal N.✓/ WD .@!h.!✓ /;�1/ to the cap †.✓/. Indeed, it follows by a non-stationary
phase argument that

jEg✓;v.x/j  .1CR
�1=2jx0 C xn@!h.!✓ / � vj/�.nC1/ RapDec".R/ kgk2;

for all x 2 BR n T✓;v;
(wp3)

a detailed analysis can be found in [19].
Due to the curvature of†, different surface caps†.✓/ have different normals, so there

is a one-to-one correspondence between the pairs .✓; v/ and the tubes T✓;v . We may thus
denote each wave packet g✓;v by gT , for the tube T D T✓;v .

Henceforth, denote

T".BR/ WD πT✓;v W .✓; v/ 2 ‚R ⇥ VR and T✓;v \ BR ¤ ;º
and

T ✓

"
.BR/ WD πT

✓ ;v
W j✓ � ✓ j . R

�1=2
; v 2 VR and T✓;v \ BR ¤ ;º
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for each ✓ 2‚R, where the implicit multiplicative constant is sufficiently large. The above
analysis ensures that

Eg.x/ D
X

T 2T".BR/

EgT .x/C RapDec".R/

Z
jgj2; for all x 2 BR;(wp4)

while also that any function g✓ supported on ✓ 2 ‚R satisfies

Eg✓ .x/ D
X

T 2T✓
" .BR/

EgT .x/C RapDec".R/

Z
jgj2; for all x 2 BR:(wp5)

We will refer to πgT ºT 2 T".BR/ as the wave packet decomposition of g adapted to BR.

Wave packet decompositions adapted to other balls

Let R" ." ⇢  R, and fix a ball B D B.y; ⇢/. For x 2 Rn, set zx WD x � y. It holds that

Eg.x/ D
Z
e

2⇡ ihx;†.!/i
g.!/ d! D

Z
e

2⇡ ihzx;†.!/i
e

2⇡ ihy;†.!/i
g.!/ d! D Ezg.zx/;

where zg.!/ D e
2⇡ ihy;†.!/i

g.!/. For every x 2 B , zx lives in B⇢; therefore, by the earlier
discussion,

Eg.x/ D
X

T 2 T".B⇢/

EzgT .zx/C RapDec".⇢/

Z
jzgj2

D
X

T 2 T".B⇢/

EzgT .x � y/C RapDec".R/

Z
jgj2; for all x 2 B:

(wp6)

From now on, we will be referring to πzgT ºT 2 T".B⇢/ as the wave packet decomposition
of g adapted to B . Note that this decomposition is y-dependent.

By the above analysis, for every ⇢�1=2-cap ⌧ , we have

Eg⌧ .x/ D
X

T 2 T ⌧
" .B⇢/

EzgT .x � y/C RapDec".R/

Z
jgj2; for all x 2 B:(wp7)

Each of the wave packets in the above summand is essentially constant in magnitude; this
is made rigorous in the subsection below.

Fourier localisation and local constancy

Let " > 0 and R" ." ⇢  R. Fix g 2 L2
.B

n�1
/ and a ⇢�1=2-cap ⌧ .

Roughly speaking, since g⌧ is supported in ⌧ , the Fourier transform of Eg⌧ is suppor-
ted in the ⇢�1-neighbourghood of†.⌧/. The uncertainty principle then dictates that jEg⌧ j
is essentially constant on each dual object, i.e., on each ⇢1=2-tube pointing in the direction
the normal to †.⌧/.

The above heuristic is made rigorous as follows. Let !.⌧/ be the centre of ⌧ . The patch
of the tangent space to † at †.!⌧ / that lives over ⌧ is the set

T⌧† WD π†.!⌧ /CM⌧ � .! � !⌧ / W ! 2 ⌧º; where M⌧ WD

In�1 0

@!h.!⌧ / 1

�
:
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The convex set

S.⌧/ WD
°
†.!⌧ /CM⌧ � .! � !⌧ /C t � N.!⌧ /

kN.!⌧ /k W ! 2 ⌧; t 2 Œ�⇢�1
; ⇢

�1
ç

±

is a ‘thickening’ of the above tangent patch by ⇢�1 in the direction normal to †.⌧/. The
Fourier transform of Eg⌧ jBR

is essentially supported in a dilation of S.⌧/. We are inter-
ested in a precise version of this for appropriate cut-offs of Eg⌧ .

In particular, let ⇣ W Rn ! R with ⇣ D 1 on B1 and ⇣ D 0 outside B2. For every ball
B D B.x; ⇢/ in Rn, define

⇣B.x/ WD ⇣

⇣
x � x
⇢

⌘
:

There exists a constant C , depending only on the dimension n, such that the following
holds.

Proposition 2.1 (Fourier localisation). Let R" ." ⇢  R, and let g⌧ be supported in a
⇢

�1=2-cap ⌧ . Then, for every ⇢-ball B in Rn,

Eg⌧ � ⇣B D G⌧ C RapDec".⇢/kg⌧ k2;

for some G⌧ W Rn ! C with the property that yG⌧ is supported in S.C � ⌧/.
The set C � ⌧ is the C⇢�1=2-cap with the same centre as ⌧ . The proof of Proposition 2.1

is exposed in full detail in [24].
When a function f is Fourier localised on a convex set (such as the slab S.⌧/), then

to some extent it can be treated as a constant function on objects dual to that convex set.
The precise statement appears in Lemmas 6.1 and 6.2 in [23]. For our purposes, we only
need the following corollary.

Proposition 2.2 (Local constancy). LetR" ." ⇢  R. Let ⌧ be a ⇢�1=2-cap, and consider
a function f W Rn ! C with yf ⇢ S.⌧/. Then, every tube T in Rn with direction N.⌧/,
radius ⇢1=2 and length ⇢ satisfies

sup
x2T

jf .x/j2 . 1

jT j

Z
jf j2wT ;

for some non-negative function !T W Rn ! R, with !T D 1 on T and !.x/ ⇠ CN .1 C
n.x; T //

�N for all x 2 Rn and N 2 N, where n.x; T / is the smallest n 2 N such that
x 2 nT . In particular, if g 2 L2

.B
n�1

/ and B is a ⇢-ball intersecting T , then

sup
x2T

jEg⌧ .x/j2 . ⇢
ı
1

j2 zT j

Z
2 zT

jEg⌧ j2 C RapDec".R/

Z
jg⌧ j2:

for all zT in T ⌧
"
.B/ intersecting T .

Proof. The first conclusion is a direct application of Lemmas 6.1 and 6.2 in [23]. We now
in turn apply this conclusion to the function Eg⌧ � ⇣B , which is essentially Fourier sup-
ported in S.C � ⌧/ by Proposition 2.1. Respecting the notation of Proposition 2.1, denote
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by TC the tube with the same central line as T , radius .C�2
⇢/

1=2 and length C�2
⇢. We

obtain

sup
x2T

jEg⌧ .x/j2 D sup
x2T

jEg⌧ .x/ � ⇣B.x/j2 . 1

jTC j

Z
jEg⌧ � ⇣B j2wTC

CRapDec".⇢/

Z
jg⌧ j2:

Since wT .x/ ⇠ wTC
.x/ for all x 2 Rn, it holds that

1

jTC j

Z
jEg⌧ � ⇣B j2wTC

. 1

jT j

Z
jEg⌧ � ⇣B j2wT . 1

jT j

Z
2B

jEg⌧ j2wT

⇠ 1

jT j

Z
2B\2 zT

jEg⌧ j2wT C 1

jT j

Z
2Bn2 zT

jEg⌧ j2wT

. ⇢
ı

j2 zT j

Z
2 zT

jEg⌧ j2wT C RapDec".⇢/
1

jT j

Z
2Bn2 zT

jEg⌧ j2wT :

The result follows as, due to the decay properties of wT ,

RapDec".⇢/
1

jT j

Z
2Bn2 zT

jEg⌧ j2wT D RapDec".⇢/ D RapDec".R/

Z
jg⌧ j2:

3. Some new cases where Mizohata–Takeuchi holds

In this section, † WD π.!; h.!// W ! 2 Bn�1º is a fixed hypersurface in Rn, all of whose
normals point within angle 1=100 from the vertical direction. There is no requirement
that † have non-vanishing Gaussian curvature.

The truth of the Mizohata–Takeuchi conjecture for some simple weights (such as
indicator functions of neighbourhoods of roughly horizontal hyperplanes or hypersur-
faces) implies that the conjecture holds for more complicated weights (superpositions of
appropriately large patches of such surfaces). For instance, the Mizohata–Takeuchi con-
jecture holds for nearly horizontal R1=2-slabs (case ⇢ D R of Theorem 1.6) because it
holds for horizontal hyperplanes (Plancherel).

Definition 3.1. A ⇢-flake (or simply a flake) in Rn is the 1-neighbourhood of any hyper-
surface of the form π.!;Ä.!// W ! 2 Bn�1

⇢
º, where Bn�1

⇢
is a ⇢-ball in Rn�1 and ÄWBn�1

⇢

! R. A flake is nearly horizontal if all its tangent spaces create angle larger than 2=100
with the vertical direction.

Note that ⇢-slabs are ⇢-flakes. We will usually be taking ⇢ � 1. We emphasise that Ä
and h are unrelated.

Every line normal to † which intersects a nearly horizontal flake will do so along a
line segment of length about 1. Therefore, the following lemma states that the Mizohata–
Takeuchi conjecture holds when the weight is the indicator of a single nearly horizontal
flake.

Lemma 3.2. Let � be a nearly horizontal flake in Rn. For all R � 1 and g 2 L2
.B

n�1
/,

Z
BR\ �

jEgj2 /
Z

jgj2:
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Proof. The proof easily follows by induction on scales, and only a sketch is provided
here. In particular, the estimate trivially holds when R . 1. For arbitrary larger R, we
cover the flake � by finitely overlapping R1=2-balls B . For every one of these balls B , we
may assume that Z

B\ �

jEgj2 /
Z

jgB j2;

where gB is the sum of the wave packets gT of g at scale R that intersect B . The
functions gB are essentially orthogonal, as each of the tubes T in question has width
R

1=2Cı (where as in Section 2, 0 < ı ⌧ ") and creates angle & 1 with the flake, hence
it intersects RO.ı/ of the balls B . Adding up the above estimate over all B completes the
proof.

Remark 3.3. We emphasise that when � is specifically a horizontal hyperplane, then the
stronger estimate Z

�

jEgj2 D
Z

jgj2

directly follows by Plancherel’s theorem. Indeed, for every .x; t/ 2 Rn�1 ⇥ R,

Eg.x; t/ D
Z
e

2⇡ ihx;!i
e

2⇡ ith.!/
g.!/ d! D bgt .x/;

where gt WD e
2⇡ ith.�/

g and b� denotes the standard Fourier transform on Rn�1. Therefore,
Z

jEg.�; t /j2 D
Z

jbgt j2 D
Z

jgt j2 D
Z

jgj2

for all t 2 R. (Note that this directly yields (1.2).) After an appropriate change of vari-
ables, a similar argument resolves the Mizohata–Takeuchi conjecture when the weight
is the indicator function of the 1-neighbourhood of any hyperplane (independently of
orientation), and subsequently when the weight is a sum of indicator functions of such
1-neighbourhoods. See Corollary 3 in [5] for a stronger estimate (a certain identity) in this
specific scenario.

Lemma 3.2 easily implies the Mizohata–Takeuchi conjecture for superpositions of
appropriately large flakes, and in fact an estimate stronger than Stein’s conjecture (1.1).

Corollary 3.4 (MT holds for R1=2-flakes). The inequality
Z

BR

jEgj2w / kXwk1

Z
jgj2

holds for every g 2L2
.B

n�1
/ and any weightw WRn ! Œ0;C1/ of the form

P
�2F c��� ,

where F is a family of R1=2-flakes. In fact, the stronger estimate
Z

BR

jEgj2w /
X
T 2T

sup
`⇢T

Xw.`/

Z
jgT j2

holds, where πgT ºT 2T is the wave packet decomposition of g at scale R.
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Proof. Fix gWL2
.B

n�1
/ and � 2 F , and denote by T� the set of tubes in T that intersect � .

For all x 2 � ,

Eg.x/ D Eg� .x/C RapDec".R/

Z
jgj2;

where g� WD P
T 2 T�

gT . Hence, by Lemma 3.2,
Z

�

jEgj2 /
Z

jg� j2 ⇠
X

T 2 T�

Z
jgT j2

up to an error of RapDec".R/
R

jgj2. Adding up over all � 2 F , we obtain
Z

jEgj2w /
X
�2F

c�

X
T 2 T�

Z
jgT j2 D

X
T 2T

⇣ X
�2F W �\T ¤;

c�

⌘ Z
jgT j2

/
X
T 2T

sup
`⇢T

Xw.`/

Z
jgT j2

up to an error of RapDec".R/
R

jgj2 (the final ⇡ 1-loss is due to the fact that the tubes
in T have widthR1=2Cı , rather thanR1=2). The last quantity is at most kXwk1

R
jgj2.

Remark 3.5. The idea behind the proof of Corollary 3.4 also appeared in [20], where
the same result was presented in the special case where the flakes are horizontal slabs.
Moreover, it was there pointed out that the statement of the corollary also implies (1.3),
i.e., that the Mizohata–Takeuchi conjecture holds with loss / R

1=2 in R2, by replacing
each point in suppw by a horizontal R1=2-slab (a process which enlarges the maximal
line occupancy of w by . R

1=2). Perhaps an easier way to derive (1.3) is to observe that,
by Proposition 2.2, the Mizohata–Takeuchi conjecture holds with ⇡ 1-loss for each func-
tion g✓ supported in an R1=2-cap ✓ ; so (1.3) follows by the Cauchy–Schwarz inequality,
as B1 consists of ⇠ R

1=2 such caps.

4. Mizohata–Takeuchi with R.n�1/=.nC1/
-loss: Theorem 1.2

Theorem 1.2 immediately follows from the stronger Theorem 4.1 below, which takes into
account the directions in which the waves propagate. Fix n � 2. For g 2 L2

.B
n�1

/ and
T ⇢ T".BR/, define

gT WD
X
T 2T

gT ;

where πgT ºT 2 T".R/ is the wave-packet decomposition of g adapted to BR (at scale R).

Theorem 4.1. For every " > 0, there exists a positive constant C", which depends only
on † and ", such that

Z
BR

jEgT j2w  C"R
"

⇣ X
T2T

h X
B2B W B\T ¤;

w
.nC1/=2

.B/

i
kgT k2

2

⌘2=.nC1/

kgT k
2.n�1/

nC1

2

C RapDec".R/kwk1

Z
jgT j2(4.1)
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for all R � 1, g 2 L2
.†/, T ⇢ T".R/ and weights w W Rn ! Œ0;C1/ on Rn, and for

every family B of boundedly overlapping R1=2-balls.

As an immediate consequence of this, we have the following.

Corollary 4.2. For every " > 0, there exists a positive constant C", which depends only
on † and ", such that

Z
BR

jEgT j2w  C"R
"

⇣ Z
jgT .s/j2 sup

T kN.s/; T2T
w

.nC1/=2
.2T / ds

⌘2=.nC1/

kgT k
2.n�1/

nC1

2

 C"R
" sup

T 2T

⇣ Z
2T

w
.nC1/=2

⌘2=.nC1/

kgT k2

2
(4.2)

up to a RapDec".R/kwk1
R

jgT j2 error term, for all R � 1, g 2 L2
.†/, T ⇢ T".R/ and

weights w W Rn ! Œ0;C1/ on Rn.

Remark 4.3. We need the error term RapDec".R/kwk1
R

jgT j2 in these results be-
cause w may be large at some points of supp EgT which are outside

S
T2T T . The-

orem 4.1 manifestly implies Theorem 1.2 directly, since the error term is easily absorbed
into the right-hand side of the first inequality of Theorem 1.2. However, unlike in the case
of Theorem 1.2, it is definitively not possible to take "D 0 in Theorem 4.1. This is because
of the example (see p. 104 in [30], [26], [6], or pp. 125–126 in [31]) demonstrating the
necessity of a logarithmic term in the discrete `2-L6 restriction theorem for the parabol-
oid. For the argument linking the two phenomena, see pp. 355–358 in [8]. As we observe
below, Theorem 4.1 is essentially a reformulation of the refined decoupling theorem [21].
It is furthermore closely related to the improved decoupling theorem of [22]. More pre-
cisely, if one takes the natural weight w D jEgT j4=.n�1/ in Theorem 4.1, one obtains an
inequality slightly stronger than the one considered in Theorem 1.2 of [22], but with R"

loss rather than the logarithmic loss obtained there when n D 2. Notice the Stein-like
nature of the middle term appearing in (4.2).

Theorem 4.1 is actually a reformulation of the following refined Stein–Tomas or de-
coupling estimate. Theorem 4.4 was also discovered independently by Xiumin Du and
Ruixiang Zhang (personal communication).

Theorem 4.4. (Refined decoupling [21]) Let " > 0, g 2 L2
.B

n�1
/, and let T be a subset

of T".BR/ with the property that kgT k2 is roughly constant over all T 2 T . For each
k 2 N, denote by Uk an essentially disjoint union of R1=2-balls in BR each intersect-
ing ⇠ k tubes in T . Then the function

gT D
X
T 2T

gT

satisfies

kEgT k
L2.nC1/=.n�1/.Uk/

 C"R
"

⇣
k

#T

⌘1=.nC1/⇣ X
T 2T

kEgT k2

L2.nC1/=.n�1/

⌘1=2

⇠ C"R
"

⇣
k

#T

⌘1=.nC1/⇣ X
T 2T

kgT k2

2

⌘1=2

⇠ C"R
"

⇣
k

#T

⌘1=.nC1/

kgT k2:(4.3)
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Since k  #T , estimate (4.3) provides an improvement on the classical Stein–Tomas
inequality

kEgT k
L2.nC1/=.n�1/.Rn/

. kgT k2

on the ‘k-rich’ sets Uk in BR, according to their level k of richness.
If we assume Theorem 4.1, we can immediately deduce Theorem 4.4 by testing on

a weight w 2 L
.nC1/=2

.Uk/. Indeed, under the hypotheses of Theorem 4.4, we apply
Theorem 4.1 and we have

Z
BR

jEgT j2w  C"R
"

⇣ X
T2T

h X
B2B W B\T ¤;

w
.nC1/=2

.B/

i
kgT k2

2

⌘2=.nC1/

kgT k
2.n�1/

nC1

2

C RapDec".R/kwk1

Z
jgT j2

and, suppressing the error term (as we may) and letting � D kgT k2

2
=#T denote the com-

mon value of kgT k2

2
, the right-hand side here equals

C"R
"
�

2=.nC1/

⇣ X
T2T

X
B2B W B\T ¤;

w
.nC1/=2

.B/

⌘2=.nC1/

kgT k
2.n�1/

nC1

2

⇠ C"R
"
.�k/

2=.nC1/

⇣ X
B2B

w
.nC1/=2

.B/

⌘2=.nC1/

kgT k
2.n�1/

nC1

2

⇠ C"R
"

⇣
k

#T

⌘2=.nC1/

kwk.nC1/=2 kgT k2

2
;

as needed to verify Theorem 4.4.
Likewise, Theorem 4.1 will in turn follow from (4.3), as the following simple argument

shows.

Proof of Theorem 4.1. Let " > 0, fix g 2L2
.B

n�1
/,w WBR ! Œ0;C1/ and T ⇢ T".BR/.

In order to prove (4.1), we may assume that
(a) w is supported in

S
T 2T T ,

(b) kgT k2 ⇠ 1 for all T 2 T .
Indeed, assumption (a) is possible because, by (wp3), the part of the weight supported

outside
S

T 2T T contributes at most RapDec".R/kwk1
R

jgT j2 to
R

BR
jEgT j2w. For (b),

observe that, in terms of our goal, it is trivial to control the contributions of the wave pack-
ets gT with kgT k2 < R

�100nkgk2. So, by dyadic pigeonholing, it suffices to prove (4.1)
under the additional assumption that the gT have roughly the same L2 norms over all
T 2 T . By scaling, we may assume this common value is 1.

We now fix a family B of boundedly overlapping R1=2-balls covering BR. By the
above, it suffices to prove that

(4.4)
Z

jEgT j2w /
⇣
1

#T

X
T 2T

X
B2BW B\T ¤;

w
.nC1/=2

.B/

⌘2=.nC1/
Z

jgT j2

under assumptions (a) and (b).
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Let Uk be the union of the balls in this family which meet ⇠ k members of T .
Importantly, (a) ensures that there exists some dyadic k 2 N for which

Z
BR

jEgT j2w ⇡
Z

Uk

jEgT j2w;

So by Hölder’s inequality and (4.3), we obtain
Z

BR

jEgT j2w /
⇣ Z

Uk

jEgT j
2.nC1/

n�1

⌘ n�1

nC1

.w
.nC1/=2

.Uk//
2=.nC1/

 C"R
"

⇣
k

#T
w

.nC1/=2
.Uk/

⌘2=.nC1/
Z

jgT j2 ⇠C"R
"
�
kw

.nC1/=2
.Uk/

�2=.nC1/
.#T /

n�1

nC1 :

We conclude with a simple counting argument. Indeed, let Bk be the set of R1=2-balls
comprising Uk . Then,

k w
.nC1/=2

.Uk/ ⇠
X

B2Bk

w
.nC1/=2

.B/ k ⇠
X

B2Bk

X
T 2T W T \B¤;

w
.nC1/=2

.B/

D
X
T 2T

X
B2Bk W B\T ¤;

w
.nC1/=2

.B/;

establishing (4.4) and thus (4.1).

5. Improved Mizohata–Takeuchi estimates for small caps

In this section, we prove Lemma 1.4, which will be key to the proofs of Theorems 6.1
and 6.2. It is a Mizohata–Takeuchi-type estimate which holds for functions supported in
small caps, and it represents an improvement over what we can obtain under no support
hypothesis.

Towards proving the lemma, we may assume as in Section 2 that all normals to †
have angle at most 1=100 from the vertical direction, and that the projection of † on the
hyperplane Rn�1 ⇥ π0º is contained in the unit ball Bn�1 centred at 0. It thus suffices
to establish the analogous statement (Lemma 5.1 below) with Eg⌧ in place of 1g⌧ d� ,
where E is the extension operator associated to † and g⌧ 2 L2

.B
n�1

/ is a function sup-
ported in a ⇢�1=2-cap ⌧ in Bn�1.

To simplify notation, for E ⇢ B
n�1 (rather than E ⇢ †), and any line ` (or tube T

in BR), we write ` ? E if ` ? †.E/ (similarly, we write T ? E if T ? †.E/). We also
define

A⇢;R;E .w/ WD A⇢;R;†.E/.w/:

Lemma 5.1. For every " > 0, there exists C" > 0 such that for all weights w W Rn !
Œ0;C1/, whenever 1 ⇢ R, ⌧ is a ⇢�1=2-cap inBn�1 and g⌧ 2L2

.B
n�1

/ is supported
in ⌧ , we have Z

BR

jEg⌧ j2w  C"R
"
A⇢;R; supp g⌧

.w/

Z
jg⌧ j2;
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and therefore also
Z

BR

jEg⌧ j2w  C"R
"

⇣
R

⇢

⌘ n�1

nC1 sup
`?supp g⌧

Xw.`/

Z
jg⌧ j2:

Notice that the tubes and lines featuring here have directions perpendicular to the
support of g⌧ .

Proof. Let " > 0 and R � 1. For ⇢ . R
", the conclusion of the lemma follows directly

from Theorem 1.2. We therefore consider ⇢ & R
".

In order to prove the lemma for arbitrary weights, it suffices by dyadic pigeonholing to
prove it for weights that are indicator functions. Indeed, first observe that we may assume
thatw.x/�R�2nkwk1 for all x 2 suppw. Therefore, after a dyadic pigeonholing causing
losses of ⇠ logR, we may assume thatw.x/⇠ q for some fixed q > 0 over all x 2 suppw;
and hence that w is an indicator function, due to the scaling properties of our desired
estimate.

So, letw be an indicator function of a non-empty union of unit balls. Fix a ⇢�1=2-cap ⌧ ,
and let g be a function supported in ⌧ . Let T be a family of boundedly overlapping parallel
⇢

1=2-tubes that cover suppw, and point in some directionN normal to suppg; observe that
T ⇢ T⇢. At a cost of a logR-loss, it may be further assumed that

w.S⇢/

jS⇢j ⇠ �; for all S⇢ 2 T ;

for some �  1, hence

A⇢;R; supp g.w/ D sup
TR2TRW TR?supp g

⇣ X
S⇢⇢TR

⇣
w.S⇢/

jS⇢j
⌘.nC1/=2

jS⇢j
⌘2=.nC1/

⇠ �⇢ sup
TR2TRW TR?supp g

#
®
S⇢ 2 T W S⇢ \ TR ¤ ;

¯2=.nC1/
:

It therefore suffices to prove thatZ
jEgj2w  C"R

"
�⇢ sup

TR2TRW TR?supp g

#
®
S⇢ 2 T W S⇢ ⇢ TR

¯2=.nC1/

Z
jgj2:

Proposition 2.2 ensures that, roughly speaking, jEgj is constant on each S⇢ 2 T . In par-
ticular, let TN be a set of boundedly overlapping tubes in direction N , of width ⇢1=2Cı

and length ⇢, that cover BR. For each S⇢ 2 T , fix zS⇢ 2 TN that intersects S⇢. By Propos-
ition 2.2, Z

S⇢

jEgj2w . w.S⇢/

jS⇢j

Z
2 zS⇢

jEgj2 C RapDec".R/

Z
jgj2

⇠ �

Z
2 zS⇢

jEgj2 C RapDec".R/

Z
jgj2:

By adding over all S⇢ 2 T , we obtain
Z

jEgj2w . �

Z
jEgj2 zw C RapDec".R/

Z
jgj2;
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where
zw WD

X
S⇢2T

�
2 zS⇢
:

Now by Theorem 1.2, we have
Z

jEgj2 zw / sup
TR2TR W TR?supp g

zw.TR/
2=.nC1/

Z
jgj2;

and for TR 2 TR with TR ? suppg, we have

Qw.TR/ . ⇢
.nC1/=2 #πS⇢ 2 T W 2S⇢ \ TR ¤ ;º:

Therefore,
Z

jEgj2w / �

⇣
⇢

.nC1/=2 sup
TR2TR W TR?supp g

#πS⇢ 2 T W S⇢ ⇢ TRº
⌘2=.nC1/

Z
jgj2;

as required.

6. Weights constant on slabs: Theorems 1.6 and 1.8

In this section, we will use the favourable estimates for functions g⌧ supported in small
caps which were established in Section 5 to obtain Mizohata–Takeuchi estimates which
improve on Theorem 1.2 for general functions g and weights possessing a certain measure
of local constancy. In particular, recall from (1.7) that if a function g⌧ is supported in
a ⇢�1=2-cap ⌧ , then the Mizohata–Takeuchi conjecture holds for g⌧ with an improved
.R=⇢/

.n�1/.nC1/-loss. Therefore, for any fixed g 2 L2
.B

n�1
/ and w W Rn ! Œ0;C1/, a

decoupling inequality of the form
Z

BR

jEgj2w /
X

⌧

Z
BR

jEg⌧ j2w

for a boundedly overlapping collection of ⇢�1=2-caps ⌧ (where gDP
⌧
g⌧ and suppg⌧ ⇢⌧ )

would directly imply that ?the Mizohata–Takeuchi conjecture holds for g with the inherited
loss .R=⇢/.n�1/.nC1/. The smaller the caps we manage to decouple into, the smaller the
loss.

In general, it is not possible to decouple into small caps. However, we can indeed
decouple into ⇢�1=2-caps when w is a weight of the form

P
s2◆ cs�s , where ◆ is a set

of disjoint ⇢1=2-slabs that are ⌫-parallel to †; more precisely, we show that (6.1) below
holds. This yields Mizohata–Takeuchi for such weights with an .R=⇢/.n�1/.nC1/-loss. If
the slabs in ◆ are allowed to point in any direction, then we can decouple into larger
⇢

�1=4-caps (6.3), inheriting Mizohata–Takeuchi with an .R=⇢1=2
/
.n�1/.nC1/-loss.

These results are given in Theorems 6.1 and 6.2 below, which are more precise ver-
sions of Theorems 1.6 and 1.8, respectively. As per the above discussion, the new ingredi-
ents here are the decoupling inequalities (6.1) and (6.3) which follow. Note that, as in
Section 5, we will be working with the extension operator E associated to † (rather than
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with b� d� ). When E ⇢ B
n�1, we will be using the simpler the notation A⇢;R;E .w/ in

place of A⇢;R;†.E/.w/, and ` ? E (or T ? E) to mean ` ? †.E/ (similarly, T ? †.E/)
for any line ` and tube T in Rn.

Theorem 6.1 (Roughly horizontal slabs). Fix ⌫ > 0 and " > 0. For 1  ⇢  R, let
w W Rn ! Œ0;C1/ be a weight of the form

P
s2◆ cs�s , where ◆ is a set of disjoint

⇢
1=2-slabs ⌫-parallel to †, and let w? WD P

s2◆ cs�3s . For g 2 L2
.B

n�1
/, write

g D
X
⌧2T

g⌧ ; with suppg⌧ ⇢ ⌧ ;

where T is a family of boundedly overlapping ⇢�1=2-caps ⌧ inBn�1. Then the decoupling
inequality

(6.1)
Z

BR

jEgj2w /⌫

X
⌧2T

Z
BR

jEg⌧ j2w? C RapDec".R/

Z
jgj2

holds. Consequently, we have

(6.2)

Z
BR

jEgj2w  C";⌫R
"

X
⌧2T

A⇢;R; supp g⌧
.w/

Z
jg⌧ j2

/⌫

⇣
R

⇢

⌘ n�1

nC1
X
⌧2T

sup
`?supp g⌧

Xw.`/

Z
jg⌧ j2:

Note that an immediate consequence of (6.2) is
Z

BR

jEgj2w  C";⌫R
"
A⇢;R; supp g.w/

Z
jgj2 /⌫

⇣
R

⇢

⌘ n�1

nC1 sup
`?supp g

Xw.`/

Z
jgj2:

Theorem 6.2 (All slabs). Fix " > 0. For 1  ⇢  R, let w W Rn ! Œ0;C1/ be a weight of
the form

P
s2◆ cs�s , where ◆ is a set of disjoint ⇢1=2-slabs. Let w? WD P

s2◆ cs�3s . For
g 2 L2

.B
n�1

/, write
g D

X
z⌧2 zT

gz⌧ ; with suppgz⌧ ⇢ z⌧ ;

where zT is a family of finitely overlapping ⇢�1=4-caps z⌧ in Bn�1. Then the decoupling
inequality

(6.3)
Z

BR

jEgj2w /
X
z⌧2 zT

Z
BR

jEgz⌧ j2w? C RapDec".R/

Z
jgj2

holds. Consequently, we have

(6.4)

Z
BR

jEgj2w  C"R
"

X
z⌧2 zT

A
⇢1=2;R; supp gz⌧ .w/

Z
jgz⌧ j2

/
⇣
R

⇢1=2

⌘ n�1

nC1
X
z⌧2 zT

sup
`?supp gz⌧

Xw.`/

Z
jgz⌧ j2:
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Note that an immediate consequence of (6.4) is
Z

BR

jEgj2w  C";⌫R
"
A

⇢1=2;R; supp g
.w/

Z
jgj2 /⌫

⇣
R

⇢1=2

⌘ n�1

nC1 sup
`?supp g

Xw.`/

Z
jgj2:

Proofs of (6.1) and (6.3). Fix " > 0 and R � 1. Let s be a ⇢1=2 slab in BR, and fix g 2
L

2
.B

n�1
/. Let T1 and T2 be collections of finitely overlapping ⇢�1=4 and ⇢�1=2-caps,

respectively, that cover Bn�1. For i D 1; 2, write

g D
X

⌧2Ti

g⌧ ; with suppg⌧ ⇢ ⌧ :

We will show that Z
s

jEgj2  C"R
"

X
⌧2T1

Z
3s

jEg⌧ j2

and that, if additionally s is ⌫-parallel to † for some ⌫ > 0, thenZ
s

jEgj2  C⌫;"R
"

X
⌧2T2

Z
3s

jEg⌧ j2:

Note that henceforth we may assume that ⇢ &" R
"=n (as otherwise (6.1) and (6.3) follow

trivially by the Cauchy–Schwarz inequality), and that ⌫ &" R
�" (as otherwise C";⌫ may

be chosen to be an appropriately large power of R for (6.1) to follow).
For this proof, it will be useful to think of g as truly supported on †. And indeed,

due to our assumption that the normals to † create angles at most 1=100 with the vertical
direction, it suffices instead to prove the above decoupling inequalities for g 2 L2

.†/,
for bgd� in place of Eg and for Ti collections of finitely overlapping ⇢�1=4-caps and
⇢

�1=2-caps, respectively, of †.
Let ⌘ WRn ! R be a non-negative, smooth bump function with ⌘.x/D 1 for all x 2 B1

and ⌘.x/ D 0 for all x 2 B2. Denote by ⌘s a smooth bump function adapted to s. In
particular, if s0 D Œ0; ⇢

1=2
ç
n�1 ⇥ Œ0; 1ç, define

⌘s0
.x/ WD ⌘

⇣
x

0

⇢1=2
; xn

⌘
;

and let ⌘s.x/ WD ⌘s0
.Mx/, where M is a rigid motion mapping s to s0. Let s? be a ‘dual’

object to s, specifically the tube with centre 0, direction the normal to s, length 1 and cross
section of radius ⇢�1=2Cı . It is easy to see by stationary phase that 1⌘s.x/ is essentially
supported in s?; more precisely,

jb⌘s.y/j D RapDec".⇢/ k⌘sk1 D RapDec".R/ for all y2 Rn n s?
:

Therefore, for i D 1; 2,Z
s

j bgd� j2 
Z

j bgd� j2 ⌘s D
Z ˇ̌

ˇ
X

⌧2Ti

1g⌧ d�

ˇ̌
ˇ2

⌘s D
Z ⇣ X

⌧2Ti

1g⌧ d�

⌘⇣ X
⌧ 02Ti

1g⌧ 0 d�
⌘
⌘s

D
X

⌧;⌧ 02Ti

Z ⇣1g⌧ d�
1g⌧ 0 d�

⌘
⌘s D

X
⌧;⌧ 02Ti

Z
.g⌧ d�/ ⇤ .Ag⌧ 0 d�/ b⌘s;

where, for every f W Rn ! C, zf is defined by zf .y/ WD f .�y/.
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For every ⌧; ⌧ 0 2 Ti , the function .g⌧ d�/ ⇤ .Ag⌧ 0 d�/ is supported in ⌧ � ⌧
0, and thus

its contribution to the above sum is negligible unless ⌧ � ⌧ 0 intersects s?. More precisely,
Z
.g⌧ d�/ ⇤ .Ag⌧ 0 d�/ b⌘s D

Z
Rnns?

.g⌧ d�/ ⇤ .Ag⌧ 0 d�/ b⌘s D RapDec".R/ kg⌧ k2 kg⌧ 0k2

whenever ⌧ � ⌧ 0 \ s? D ;, whence
Z

s

j bgd� j2 D
X

⌧;⌧ 02Ti W .⌧�⌧ 0/\s?¤;

Z
.g⌧ d�/ ⇤ .Ag⌧ 0 d�/ b⌘s C RapDec".R/

Z
jgj2

D
X

⌧;⌧ 02Ti W .⌧�⌧ 0/\s?¤;

Z ⇣1g⌧ d�
1g⌧ 0 d�

⌘
⌘s C RapDec".R/

Z
jgj2


X

⌧;⌧ 02Ti W .⌧�⌧ 0/\s?¤;

⇣ Z
3s

j1g⌧ d� j2 C
Z

3s

j1g⌧ 0d� j2
⌘

C RapDec".R/

Z
jgj2

 Ni �
X

⌧2Ti

Z
3s

j1g⌧ d� j2 C RapDec".R/

Z
jgj2;(6.5)

where
Ni WD max

⌧2Ti

#π⌧ 0 2Ti W .⌧ � ⌧ 0
/ \ s? ¤ ;º:

Note that for the last inequality in (6.5), we used that s? is symmetric around 0.
It now suffices to show that

(6.6) N1  C"R
"

and that, if additionally s is ⌫-parallel to † for some ⌫ &" R
", then

(6.7) N2  C";⌫R
"
:

We first focus on the case i D 1. Fix ⌧ 2 T1, and let !.⌧/ denote its centre. The family T1

consists of ⇢�1=4-caps, so the ⌧ 0 2 T1 with .⌧ � ⌧ 0
/ \ s? ¤ ; cover the set

A.⌧/ WD π! 2 † W .⌧ � !/ \ s? ¤ ;º:

Let e denote the direction of the tube s?. For every ! 2 A.⌧/, there exists !0 2 ⌧ such
that !0 � ! 2 s?, which implies that

j!0 � !j . ⇢
�1=4Cı or Angle.!0 � !; e/ . ⇢

�1=4Cı
;

hence
j! � !.⌧/j . ⇢

�1=4Cı or Angle.! � !.⌧/; e/ . ⇢
�1=4Cı

:

It follows that A.⌧/ can be covered by two ⇠ ⇢
�1=4Cı -caps of †, and thus by O.⇢ı

/ D
O.R

"
/ ⇢

�1=4-caps of †. This immediately implies (6.6), which in turn establishes the
desired estimate (6.3) when combined with (6.5).
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For the case i D 2, let ⌫ &" R
". Fix ⌧ 2T2 and denote by !.⌧/ its centre. Similarly to

the previous case, the ⌧ 0 2T2 with .⌧ � ⌧ 0
/ \ s? ¤ ; cover the set

A.⌧/ WD π! 2 † W .⌧ � !/ \ s? ¤ ;º D † \ .⌧ � s?
/:

Now however the family T2 consists of ⇢�1=2-caps; moreover, s is ⌫-parallel to †, which
implies that all tangents to ⌧ create angles at least ⌫ with the (roughly vertical) direction e
of s?. Therefore,

⌧ � s? ⇢ Rs? ;

for some vertical rectangleRs? , with vertical side of length ⇠⌫ 1 (roughly the length of s?)
and all other sides of length ⇠⌫ ⇢

�1=2Cı (approximately the sum of the width of s? and
the radius of ⌧ ).

Due to our assumption that all tangents to † create angle at most 1=100 with the
vertical direction, it follows that†\Rs? (and consequently A.⌧/) is contained in a single
⇠⌫ ⇢

�1=2Cı -cap of †, and can thus be covered by O.R"
/ ⇢

�1=2-caps in T2. This implies
the desired estimate (6.7) and hence completes the proof of (6.1).

Proof of Theorem 6.1. Let ⌫, ", R, ⇢, w and g be as in the statement of the theorem. Now
that (6.1) has been established, it suffices to prove the first assertion in (6.2).

To that end, observe that w? is the sum of 3n�1 weights: the weight w0 WD w (suppor-
ted in BR), and weights wj of the form w.� � tj / (for appropriate tj 2 Rn�1 ⇥ π0º, with
jtj j  R, for j D 1; 2; : : :). It thus suffices to show that

Z
jEgj2wj  C";⌫R

"
X
⌧2T

A⇢;R; supp g⌧
.w/

Z
jg⌧ j2

for all j D 1; 2; : : : For j D 0 the inequality follows by Lemma 5.1. For j D 1; 2; : : :,

Eg D Egj .� � tj /; where gj WD e
2⇡ ihtj ;†.�/i

g:

Observe that, denoting gj;⌧ WD e
2⇡ ihtj ;†.�/i

g⌧ , we can write

gj D
X
⌧2T

gj;⌧ ; with suppgj;⌧ D suppg⌧ ⇢ ⌧ :

Therefore, by Lemma 5.1,
Z

jEgj2wj D
Z

jEgj .� � tj /j2w.� � tj / D
Z

jEgj j2w

 C";⌫R
"

X
⌧2T

A⇢;R; supp gj;⌧
.w/

Z
jgj;⌧ j2 D C";⌫R

"
X
⌧2T

A⇢;R; supp g⌧
.w/

Z
jg⌧ j2;

completing the proof.

Proof of Theorem 6.2. The proof follows the same steps as that of Theorem 6.1, but with
the family T replaced by zT .
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7. Guth’s argument: the R.n�1/=.nC1/
barrier

In his recent talk [20],
(a) Guth identified two ‘decoupling axioms’ (appropriate local constancy and local L2-

orthogonality conditions) that are satisfied by allEg, and are sufficient to ensure that
the Bourgain–Demeter decoupling inequality [8] holds in BR for every function F
satisfying them.

(b) He then constructed a function F WBR ! C which satisfies the decoupling axioms,
but for which the Mizohata–Takeuchi conjecture fails by a factor of ⇠.logR/�3

R
n�1

nC1.
Notably, FjBR

is not of the form EgjBR
for any g 2 L2

.B
n�1

/.
Guth’s decoupling axioms for allEg are also sufficient to imply the refined decoupling

Theorem 4.4 (as a careful review of its proof reveals), and thus its corollary Theorem 1.2,
which established the conjecture with a loss of /R

.n�1/=.nC1/. Therefore, our main result
is essentially sharp given the techniques used.

In this section, we outline Guth’s axiomatic approach and argument demonstrating the
existence of a counterexample [20], and briefly review our result within this context. We
emphasise that these results are not ours, and we present them only for self-containment.

FixR � 1 and " > 0. In this section, for every g 2L2
.B

n�1
/ and every cap ⌧ in Bn�1,

we denote g⌧ WD gj⌧ . In particular, gBn�1 D g.
We call a cap ⌧ inBn�1 admissible if its diameter d.⌧/ is a dyadic number that belongs

to ŒR�1=2
; R

�"
ç [ π2º. In this analysis, Bn�1 is the only admissible cap of diameter 2.

Denote by DR the set of all admissible caps.
For every ⌧ 2 DR, let F⌧ W Rn ! C be some function. Note that the caps ⌧ are simply

used for enumeration here, and may be entirely unrelated to properties of F⌧ . This is in
contrast to, say, functions of the form Eg⌧ , which are Fourier-localised close to †.⌧/.

Axiomatic decoupling (Guth [20])

If the decoupling axioms (DA1) and (DA2) below hold for the full sequence .F⌧ /⌧2DR
,

then the function F WD FBn�1 inBR can be decoupled into the functions F✓ corresponding
to the smallest possible scale, as follows:

kF kLp.BR/  C"R
O."/

⇣ X
✓2DRW d.✓/⇠R�1=2

kF✓ k2

Lp.BR/

⌘1=2

for all 2  p  2.nC 1/

n � 1 �

The decoupling axioms (DA1) and (DA2) for a sequence .F⌧ /⌧2DR
are the following

statements.
(DA1) (Local constancy). For every ⌧ 2 DR with d.⌧/  R

�", the function jF⌧ j is
essentially constant on each translate of

†.⌧/
? WD πx W jx � .⇠ � ⇠⌧ /j  1 for all ⇠ 2 †.⌧/º;

where ⇠⌧ denotes the centre of †.⌧/.3

3Formally, a function is essentially constant on translates of †.⌧/? if it satisfies estimate (24) in the state-
ment of Lemma 6.1 in [18], with ✓ replaced by the smallest rectangle containing †.⌧/.



A. Carbery, M. Iliopoulou and H. Wang 26

(DA2) (LocalL2–orthogonality). Let � 2DR, and suppose that � D t⌧2T ⌧ , where T
is a family of finitely overlapping caps in DR with diameters smaller than d.�/. Then, the
estimate Z

K

jF� j2 ⇠
X
⌧⇢�

Z
K

jF⌧ j2 C RapDec".R/

Z
jF� j2

holds for every convex K ⇢ Rn such that the sets ⌧ C K
?, over all ⌧ 2 T , are finitely

overlapping.4

It is not hard to see that, for all g2L2
.B

n�1
/, the sequence .Eg⌧ /⌧2DR

satisfies (DA1)
and (DA2). Guth’s axiomatic decoupling statement above, together with a careful review
of the proof [18] of the refined decoupling Theorem 4.4 (which directly led to our The-
orem 1.2, or equivalently to (7.1) below), reveal the following.

Fact A. (DA1 & DA2 ) MT with / R
.n�1/=.nC1/-loss for all Eg) The fact that

.Eg⌧ /⌧2DR
satisfies (DA1) and (DA2) for all g 2 L2

.B
n�1

/

implies the inequality

(7.1)
Z

BR

jEgj2w  C"R
n�1

nC1
C" kXwk1

1

R

Z
BR

jEgj2

for all g 2 L2
.B

n�1
/ and w W Rn ! Œ0;C1/.

To improve on the Mizohata–Takeuchi conjecture, one needs to reduce the lossy factor
R

.n�1/=.nC1/ in (7.1) (and ideally to remove it altogether). Up to ⇡ 1 factors, this is
impossible if one insists on only using that all .Eg⌧ /⌧2DR

satisfy (DA1) and (DA2).
Indeed, Guth [20] proved the following.

Fact B. (DA1 & DA2 6) MT with ⌧ R
.n�1/=.nC1/-loss for general F ) There exists a

function F W Rn ! C, with

(7.2) F D FBn�1 for some .F⌧ /⌧2DR
satisfying (DA1) and (DA2),

such that

(7.3)
Z

BR

jF j2w & .logR/�3
R

n�1

nC1 kXwk1
1

R

Z
BR

jF j2

for some w W Rn ! Œ0;C1/.

Proof. Let † be as earlier. The scale R�1=.nC1/ plays a key role in the upcoming argu-
ment; thus, denote by D the set of all ⌧ 2 DR with d.⌧/ D R

�1=.nC1/ (or, precisely,
with d.⌧/ equal to the smallest dyadic number that is at leastR�1=.nC1/). For each ⌧ 2 D ,
let T⌧ be a family of finitely-overlapping parallel tubes in Rn that intersect and cover BR,
of radius R1=.nC1/, length R2=.nC1/ and direction the normal to †.⌧/ (these tubes are
essentially translates of †.⌧/?). Let

T WD πT 2 T⌧ W ⌧ 2 Dº:

4Without (DA2), no relationship between the different F⌧ would be imposed. Observe that, in contrast to
the case where .F⌧ /⌧2DR

D .Eg⌧ /⌧2DR
, the equality F� D P

⌧2T F⌧ may not hold for a sequence .F⌧ /⌧2DR

satisfying the decoupling axioms.
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There exists a weight w W Rn ! Œ0;C1/ such that the following hold.
(1) w is the characteristic function of a union of ⇠ R

n�1 unit balls in BR.
(2) Each tube L of radius 1 satisfies w.L/ . logR.
(3) Each tube T 2 T satisfies w.T / . logR, and fully contains every 1-ball in suppw

that it intersects.
This is the weight that will feature in (7.3), and its existence is guaranteed by prior

work of the first author (see Theorem 3 in [9]) on aspects of the Mizohata–Takeuchi con-
jecture. The details are omitted.

The function F will be carefully defined as a sum of wave packets, so that it is large
on a big proportion of suppw; more precisely, on a large set B of unit balls in suppw.
The set B is the one appearing in the claim below. The proof is postponed to the end of
the section. (Note that the claim would be trivial if each tube in T intersected and fully
contained at most one 1-ball in suppw.)

Claim 7.1. There exist
(i) a set B D πB1; : : : ; Bmº of & .logR/�2

R
n�1 disjoint unit balls in suppw, and

(ii) sets Tj ⇢ T with #Tj & #D for every j D 1; : : : ; m,
such that the following hold.

(P1) The tubes in Tj contain Bj , for all j D 1; : : : ; m.
(P2) For j D 2; : : : ;m, the tubes in Tj do not intersect any of the balls B1; : : : ; Bj �1.

We now construct a sequence .F⌧ /⌧2DR
of functions F⌧ W Rn ! C as follows.

• For each ⌧ 2 DR with R�1=2 . d.⌧/ < R
�1=.nC1/, define F⌧ WD d.⌧/

.n�1/=2
�BR

.
• For ⌧ 2 DR with d.⌧/ D R

�1=.nC1/ (or, precisely, for each ⌧ 2 D), define

F⌧ WD
X

T 2 T⌧

cT e
�2⇡ ih � ; ⇠⌧ i

d.⌧/
.n�1/=2

�T ;

where �T is a bump function on T and ⇠⌧ is the centre of †.⌧/. The coefficients
cT 2 C are defined below.

• For � 2 DR with R�1=.nC1/
< d.⌧/  2, define

F� WD
X

⌧2D;⌧⇢�

F⌧ :

Let F WD FBn�1 D P
⌧2D F⌧ . The coefficients cT will all have modulus 1, and will

be chosen below so that

(7.4) jF j & R
n�1

2.nC1/ on
[

B2B

B:

Verifying (7.2) and (7.3). For each ⌧ 2 D , F⌧ is Fourier supported roughly in the smallest
slab containing †.⌧/. It easily follows that .F⌧ /⌧2DR

satisfies the decoupling axioms
(DA1) and (DA2).
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On the other hand, (7.4) and the small line occupancy of w imply (7.3), so F and w
do not respect the numerology of the Mizohata–Takeuchi conjecture. Indeed,

Z
BR

jF j2w & R
n�1

nC1 #B & .logR/�2
R

n�1

nC1 R
n�1

by (7.4), while
Z

jF j2 .
X
⌧2D

jF⌧ j2 .
X
⌧2D

X
T 2 T⌧

Z
T

jcT d.⌧/
.n�1/=2j2 ⇠

X
⌧2D

X
T 2 T⌧

jT j � j⌧ j

D jBn�1j � jBRj ⇠ R
n

due to the essential disjointness of the Fourier supports of the F⌧ , and therefore

kXwk1
1

R

Z
BR

jF j2 . .logR/Rn�1 . .logR/3R� n�1

nC1

Z
BR

jF j2w:

Defining the cT . For T 2 T , let ⌧.T / be the cap ⌧ 2 D with T 2 T⌧ . For B 2 B, let

TB WD πT 2 T W T intersects Bº;

and observe that, once the cT are defined for all T 2 T , it will hold that

F jB D R
�.n�1/

2.nC1/

X
T 2 TB

cT e
�2⇡ ih � ; ⇠⌧.T /i �T jB ; for all B 2 B:

The cT are thus defined via an iteration, the j -th step of which ensures that the above sum
has large magnitude for B D Bj . First, for all T 2 TB1

define

cT WD e
2⇡ ihx1; ⇠⌧.T /i;

where x1 is the centre of B1. Due to the small radius of B1,

Re
�
cT e

�2⇡ ihx; ⇠⌧.T /i� D Re
�
e

2⇡ ihx1�x; ⇠⌧.T /i� & 1 for all x 2 B1;

hence
Re

⇣
R

�.n�1/

2.nC1/

X
T 2 TB1

cT e
�2⇡ ih � ; ⇠⌧.T /i �T

⌘
& R

�.n�1/

2.nC1/ #T1 & R
n�1

2.nC1/

on B1. Therefore, once the remaining cT have been defined, we will have that

jF j � ReF & R
n�1

2.nC1/ on B1;

as desired.
Now, fix j D 2; : : : ; m. Suppose that, for each i D 1; : : : ; j � 1, we have performed

the i -th step of the iteration, by defining cT for all T 2 TB1
(when i D 1) and for all

T 2 TBi
n .TB1

[ � � � [ TBi�1
/ (when i � 2) so that

ˇ̌
ˇRe

⇣
R

�.n�1/

2.nC1/

X
T 2 TBi

cT e
�2⇡ ih � ; ⇠⌧.T /i �T

⌘ˇ̌
ˇ & R

n�1

2.nC1/
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on Bi (which ensures that, once the remaining cT have been defined, we will have that

jF j & R
n�1

2.nC1/ on B1; : : : ; Bj �1:

During the j -th step of the iteration, we will define cT for T 2 TBj
n .TB1

[ � � � [ TBj �1
/

so that ˇ̌
ˇRe

⇣
R

�.n�1/

2.nC1/

X
T 2 TBj

cT e
�2⇡ ih � ; ⇠⌧.T /i �T

⌘ˇ̌
ˇ & R

n�1

2.nC1/

on Bj (ensuring that eventually jF j & R
n�1

2.nC1/ on Bj as well). Write

TBj
WD T 1

Bj
t T 2

Bj
;

where T 1

Bj
WD TBj

n .TB1
[ � � � [ TBj �1

/ (the set of tubes through Bj for which we still
need to define the cT ), while T 2

Bj
consists of the tubes through Bj for which the cT have

already been defined. Importantly, T 1

Bj
� Tj .

Let �Bj
be the sign of F 2

j
WD Re

� P
T 2 T2

Bj

cT e
�2⇡ ih � ; ⇠⌧.T /i�T

�
on5

Bj , and define

cT WD �Bj
e

2⇡ ihxj ;⇠⌧.T /i for all T 2 T 1

Bj
;

where xj is the centre of Bj . As earlier,
ˇ̌
Re.cT e

�2⇡ ih � ; ⇠⌧.T /i/
ˇ̌

& 1 on Bj I

and, crucially, Re.cT e
�2⇡ ih � ; ⇠⌧.T /i/ also has sign �Bj

on Bj , for all T 2 T 1

Bj
. Therefore,

the functions F 2

j
and

F
1

j
WD Re

⇣
R

�.n�1/

2.nC1/

X
T 2T1

Bj

cT e
�2⇡ ih � ; ⇠⌧.T /i �T

⌘

have the same sign on Bj , so
ˇ̌
ˇRe

⇣
R

�.n�1/

2.nC1/

X
T 2TBj

cT e
�2⇡ ih � ; ⇠⌧.T /i�T

⌘ˇ̌
ˇ D jF 1

j
C F

2

j
j � jF 1

j
j & R

�.n�1/

2.nC1/ #Tj & R
n�1

2.nC1/

on Bj , as desired.
For all T 2 T that do not contain any of the balls in B, we define cT D 1. By the end

of the iteration, (7.4) holds.

Proof of Claim 7.1. Let P be a family of disjoint unit balls inside suppw, with

#P ⇠ jsuppwj ⇠ R
n�1

:

For each B 2 P , denote by TB the set of tubes in T through B; observe that #TB D #D .

5Technically, this sign does not have to be uniform over all points of Bj ; we can however choose the
dominant sign over Bj , and eventually control the sum of the F⌧ on a large subset of Bj . We omit this additional
technicality from our exposition.
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Write P D πB1;B2; : : : ;BN º. To prove the claim, we will show that there exist indices
k1 < k2 < � � � < km such that

• m & .logR/�10
R

n�1,
• Bk1

D B1, and for each j D 2; 3; : : : ; m, at least #D=2 tubes in TBkj
do not lie in

TBk1
[ TBk2

[ � � � [ TBj �1
.

Indeed,
• let k1 WD 1,
• let k2 be the smallest j > k1 such that at most #D=2 tubes through Bj contain Bk1

,
• let k3 be the smallest j > k2 such that at most #D=2 tubes through Bj contain Bk1

or Bk2
,

and so on, until no further kj as above exists. Let P 1 be the set of ballsBkj
, over all the kj

selected via the above process. To complete the proof of the claim, it will now be shown
that

#P 1 & .logR/�2
R

n�1
;

by studying the incidences between P and T . For any ◆ ⇢ P and L ⇢ T , denote

I.◆ ;L/ WD #π.B; T / 2 S ⇥ L W B is contained in T º;

the number of incidences between ◆ and L.
Assume for contradiction that

(7.5) #P 1 . .logR/�2 #P

for an appropriately small implicit constant. Then, the set T 1 of tubes in T that pass
through balls in P 1 is not too large; in particular,

#T 1  I.P 1
;T 1

/  P 1 #D . .logR/�2 #P #D ⇠ .logR/�2
I.P ;T / . .logR/�1 #T ;

for a small implicit constant. Therefore, the tubes in T 1 only contribute a small fraction
of the total incidences between T and P :

I.P ;T 1
/ . #T 1 logR . T ⇠ .logR/�1 #DR

n�1 ⇠ #D #P  1

10
I.P ;T /

(the implicit constant in (7.5) is chosen so that this is true).
This is a contradiction, as P 1 was selected so that T 1

.D S
m

j D1
TBkj

/ contributes at
least half of the total incidences between T and P . Indeed, each Bi 2 P n P 1 is incident
to at least #D=2 tubes in

S
kj <i

TBkj
⇢ T 1; while each Bi 2 P has all the #D tubes in T

through it in T 1. Therefore,

I.P ;T 1
/ � #P #D=2 D I.P ;T /=2;

contradicting (7.5).
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[17] Erdoğan, M. B.: A note on the Fourier transform of fractal measures. Math. Res. Lett. 11

(2004), no. 2-3, 299–313.

[18] Guo, S., Wang, H. and Zhang, R.: A dichotomy for Hörmander-type oscillatory integral oper-
ators. Preprint 2023, arXiv:2210.05851.

https://doi.org/10.1017/S1446788708000694
https://doi.org/10.1017/S1446788708000694
https://doi.org/10.1006/jfan.1997.3131
https://doi.org/10.1006/jfan.1997.3131
https://doi.org/10.1007/s00208-006-0019-5
https://doi.org/10.1007/s00208-020-02131-0
https://doi.org/10.1007/s00208-020-02131-0
https://arxiv.org/abs/2212.12348
https://doi.org/10.1007/BF01896020
https://doi.org/10.1007/BF01896020
https://doi.org/10.1007/BF02772994
https://doi.org/10.4007/annals.2015.182.1.9
https://doi.org/10.1112/jlms/jdn086
https://doi.org/10.1016/0022-1236(92)90011-7
https://doi.org/10.1016/0022-1236(92)90011-7
https://doi.org/10.1093/qjmath/51.2.155
https://doi.org/10.1007/BF02656490
https://doi.org/10.1016/S0764-4442(97)82354-3
https://doi.org/10.1007/s11854-008-0004-x
https://doi.org/10.1007/s11854-008-0004-x
https://doi.org/10.1353/ajm.2021.0005
https://doi.org/10.1353/ajm.2021.0005
https://doi.org/10.4007/annals.2019.189.3.4
https://doi.org/10.4007/annals.2019.189.3.4
https://doi.org/10.4310/MRL.2004.v11.n3.a3
https://arxiv.org/abs/2210.05851


A. Carbery, M. Iliopoulou and H. Wang 32

[19] Guth, L.: Restriction estimates using polynomial partitioning II. Acta Math. 221 (2018), no. 1,
81–142.

[20] Guth, L.: An enemy scenario in restriction theory. Joint talk for AIM Research Community
‘Fourier restriction conjecture and related problems’ and HAPPY network (2022). httpsW//
www.youtube.com/watch?v=x-DET83UjFg, visited on February 2, 2024.

[21] Guth, L., Iosevich, A., Ou, Y. and Wang, H.: On Falconer’s distance set problem in the plane.
Invent. Math. 219 (2020), no. 3, 779–830.

[22] Guth, L., Maldague, D. and Wang, H.: Improved decoupling for the parabola. To appear in
J. Eur. Math. Soc. (JEMS). DOI 10.4171/JEMS/1295, published online (2022).

[23] Guth, L., Wang, H. and Zhang, R.: A sharp square function estimate for the cone in R3. Ann.
of Math. (2) 192 (2020), no. 2, 551–581.

[24] Hickman, J. and Iliopoulou, M.: Sharp Lp estimates for oscillatory integral operators of arbit-
rary signature. Math. Z. 301 (2022), no. 1, 1143–1189.

[25] Mizohata, S.: On the Cauchy problem. Notes and Reports in Mathematics in Science and
Engineering 3, Academic Press, Orlando, FL; Science Press Beijing, Beijing, 1985.

[26] Rogovskaya, N. N.: An asymptotic formula for the number of solutions of a system of equa-
tions. In Diophantine approximations, Part II (Russian), pp. 78–84. Moskov. Gos. Univ.,
Moscow, 1986.

[27] Shayya, B.: Fourier restriction in low fractal dimensions. Proc. Edinb. Math. Soc. (2) 64

(2021), no. 2, 373–407.

[28] Shayya, B.: Mizohata–Takeuchi estimates in the plane. Bull. Lond. Math. Soc. 55 (2023), no. 5,
2176–2194.

[29] Stein, E. M.: Some problems in harmonic analysis. In Harmonic analysis in Euclidean spaces
(Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, pp. 3–20.
Proc. Sympos. Pure Math. 35, Part 1, American Mathematical Society, Providence, RI, 1979.

[30] Vaughan, R. C.: The Hardy–Littlewood method. Cambridge Tracts in Mathematics 80, Cam-
bridge University Press, Cambridge-New York, 1981.

[31] Vaughan, R. C.: The Hardy–Littlewood method. Second edition. Cambridge Tracts in Math-
ematics 125, Cambridge University Press, Cambridge-New York, 1997.

Received March 25, 2023; revised November 15, 2023.

Anthony Carbery

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh
EH9 3FD Edinburgh, Scotland, UK;
a.carbery@ed.ac.uk

Marina Iliopoulou

Department of Mathematics, National and Kapodistrian University of Athens
Panepistimioupolis, 157 84 Zografou, Greece;
miliopoulou@math.uoa.gr

Hong Wang

Courant Institute of Mathematical Sciences, New York University
New York, NY 10012, USA;
hw3639@nyu.edu

https://doi.org/10.4310/ACTA.2018.v221.n1.a3
https://www.youtube.com/watch?v=x-DET83UjFg
https://www.youtube.com/watch?v=x-DET83UjFg
https://doi.org/10.1007/s00222-019-00917-x
https://doi.org/10.4171/JEMS/1295
https://doi.org/10.4171/JEMS/1295
https://doi.org/10.4007/annals.2020.192.2.6
https://doi.org/10.1007/s00209-021-02944-y
https://doi.org/10.1007/s00209-021-02944-y
https://doi.org/10.1016/C2013-0-11190-7
https://doi.org/10.1017/S0013091521000201
https://doi.org/10.1112/blms.12843
https://doi.org/10.1090/pspum/035.1/545235
https://doi.org/10.1017/CBO9780511470929
mailto:a.carbery@ed.ac.uk
mailto:miliopoulou@math.uoa.gr
mailto:hw3639@nyu.edu

	1. Introduction
	2. Preliminaries
	3. Some new cases where Mizohata–Takeuchi holds
	4. Mizohata–Takeuchi with R^(n-1)/(n+1)-loss: Theorem 1.2
	5. Improved Mizohata–Takeuchi estimates for small caps
	6. Weights constant on slabs: Theorems 1.6 and 1.8
	7. Guth's argument: the R^(n-1)/(n+1) barrier
	References

