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Some sharp inequalities of Mizohata—-Takeuchi-type

Anthony Carbery, Marina Iliopoulou and Hong Wang

Abstract. Let 3 be a strictly convex, compact patch of a C2 hypersurface in R”,
with non-vanishing Gaussian curvature and surface measure do induced by the Le-
besgue measure in R”. The Mizohata-Takeuchi conjecture states that

/mwﬁwsawwm/mﬁ

for all g € L2(Z) and all weights w: R” — [0, +00), where X denotes the X -ray
transform. As partial progress towards the conjecture, we show, as a straightforward
consequence of recently-established decoupling inequalities, that for every ¢ > 0,
there exists a positive constant Cg, which depends only on X and ¢, such that for all
R > 1 and all weights w: R" — [0, 400), we have

— 2/(n+1)
/ |gd0|2w < CgR® sup(/ w(n+1)/2) " / |g|2,
Br T T

where T ranges over the family of tubes in R” of dimensions RYZx...x RY2xR.
From this we deduce the Mizohata—Takeuchi conjecture with an R@=D/(+1) Jogs;
i.e., that

— n—1
L|pwﬁwsaRﬁﬁwxwm/mF
R

for any ball Bg of radius R and any ¢ > 0. The power (n — 1) /(n + 1) here cannot be

replaced by anything smaller unless properties of gdo beyond ‘decoupling axioms’
are exploited. We also provide estimates which improve this inequality under various
conditions on the weight, and discuss some new cases where the conjecture holds.

1. Introduction

Letn > 2, and henceforth fix ¥ to be a strictly convex, compact patch of a C 2 hypersurface
in R” with non-vanishing Gaussian curvature; a prototypical example is the sphere S"~!.
Let do be the surface measure on ¥, induced by the Lebesgue measure in R”. The Fourier
extension operator associated to ¥ is defined by

g gdo
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where
@(x) = /ez”i(x’g) g€)do(§) forx e R".

The Fourier restriction or extension conjecture [29], which lies at the heart of harmonic
analysis, aims to understand the extension operator by determining its L? — L? mapping
properties. However, while Fourier extension estimates provide information on the size of
the level sets of | g/d\o |, they do not reveal much about their shape. The Mizohata—Takeuchi
conjecture aims to shed light in this direction, specifically regarding the clustering of
level sets along lines. The conjecture arose in the study of dispersive PDE; see [25] for
some background. In that setting, hypersurfaces such as the paraboloid and the cone are
particularly relevant. Although the conjecture stated below arose first in the context of
hypersurfaces with non-vanishing Gaussian curvature, it is nevertheless expected that it
should hold for arbitrary sufficiently smooth hypersurfaces.

Conjecture 1.1 (Mizohata—Takeuchi). For any C? compact convex hypersurface ¥ in R",
the inequality

/|gdo|2w < C||Xw||oo/|g|2

holds for all g € L*(X) and all weights w:R"™ — [0, +00), for some C > 0 that only
depends on X.

Here, X denotes the X -ray transform, so that
| Xwl|oo = sup/w,
L Je

where the supremum is taken over all lines £ in R”. By the compactness of ¥ and uncer-
tainty principle considerations, the Mizohata—Takeuchi conjecture is equivalent to

f@?ﬂzw < Csupw<T>/|g|2
T

where the supremum is taken over all 1-neighbourhoods T of doubly-infinite lines in R”.
In particular, we may —and indeed we shall — assume that w is roughly constant at scale 1.

The Mizohata—Takeuchi conjecture is open in all dimensions, including n = 2 (where
the Fourier extension conjecture has been resolved).' It would directly follow from the
truth of the stronger conjecture

(L) / gdoPw < C / g®P sup Xw(0)do ().
LIN(E)

a formulation of which in the related context of the disc multipliers is due to Stein [29];
here, N (&) denotes the normal to X at £.

When ¥ = S”~! and the weight is radial, the Mizohata—Takeuchi conjecture is known
to hold (see [2, 10, 12—14]), and the Stein-like conjecture in the same setting is a trivial

!t is a nice observation of Bennett and Nakamura, see [4], p. 129, that when n = 2, the Mizohata—Takeuchi
conjecture implies the Fourier extension conjecture.
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consequence of this. When the weight is constant on parallel hyperplanes and the hyper-
surface is arbitrary, both conjectures are true. This can be seen by using an affine change of
variables to reduce to the case of horizontal hyperplanes and a hypersurface parametrised
as (t, y(¢)) for t € R*~!, and in this case Plancherel’s theorem in R”~! gives the result
directly. When ¥ = S! and the weight is a measure supported on S!, both conjectures are
also known [3]. Little is known beyond these three cases.

One way to measure partial progress on the Mizohata—Takeuchi conjecture is to con-
sider inequalities of the form

/ gdoPw < CR"‘IIXwHoo/ 12,
Bgr

where Bp is the ball of radius R centred at 0, and to attempt to establish such inequalities
with the exponent « as small as possible. By the Agmon—Ho6rmander trace inequality and
the local constancy of w at scale 1, we have

(1.2) /B gdoPw < CRnwnoof 5P < CR||Xw||oo[ 2P
R

in all dimensions # > 2, and it is known that

(1.3) / lgdo 2w < CR1/2||Xw||OQ/ lg]? forn = 2.
Bpr

The latter inequality can be traced back to works of Bourgain [7], Erdogan [17] and also
Carbery and Seeger [11] —see Section 4 in [1] for further details of inequalities which can
be found in the literature and which have (1.3) as a consequence. We give a more direct
proof of this in Section 3 below. In more recent developments, it is a consequence of the
main result in Du and Zhang [16] that one may take any o > (n — 1)/n (in fact, with the
significantly smaller functional sup, ., g w(B(x, r))/r*! in place of || Xw]s) for
arbitrary n. (See also Shayya [27] and Duetal [15], who gave alternative arguments when
n =3 fora > 6/7 and o > 2/3, respectively.) In Theorem 1.2 below, we show that one
may take any & > (n — 1)/(n + 1) in all dimensions.

See also [4,5] for a tomographic approach to the Mizohata—Takeuchi conjecture, [28]
for related weighted L2 — L* estimates on the extension operator, and [18] for variants
of the conjecture when the supports of g and w are respectively contained in and equal to
neighbourhoods of algebraic varieties.

Notation

The control we shall obtain on || B | (@Fw will be accompanied by multiplicative losses
of the form C, R? for any & > 0. In order to facilitate expression of this, we adopt the
following notation.

For any non-negative quantities 4 and B (which may depend on R), A < B means
that A < ¢B for some constant ¢ that depends only on ¥ and the ambient dimension.
Likewise, A = B means that B < A, while A ~ B means that A < B and A = B. With
R > 1 fixed, 4 é B means that, for every ¢ > 0, there exists a constant C,, depending
only on ¢, ¥ and the ambient dimension, such that A < C, R®B. Similarly, A i B means
that B S A, while A ~ B means that A $ B and A { B.
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For a weight w on R” and A C R", we denote by w(A) the integral |’ [, w with respect
to Lebesgue measure on R”.

For n > 2, an n-dimensional ball of radius r will be referred to as an r-ball. A tube
of length r and cross section an (1 — 1)-dimensional ball of radius r'/? will be referred
to as an r/2-rube. With R > 1 fixed and 1 < r < R, we let T, be the set of r!/2-tubes
intersecting Bg.

For aline £ in R” and g € L2(X), we write £ | suppg if the direction of £ is parallel
to one of the normals to suppg C X.

For a tube T in R”, we write T L supp g if the central line of T is parallel to one of
the normals to suppg C X.

Statement of results

In this paper, we present several L2-weighted inequalities for the Fourier extension oper-
ator which are related to the Mizohata—Takeuchi conjecture. To place our results in con-
text, we first observe that the Stein—-Tomas inequality,

lgdo || 20+1/0-0@ny < 1€ ]l2s
R")

together with Holder’s inequality, implies that

/ |g/&\0—|2w < (/ w(ﬂ+l)/2)2/(n+l)/|g|2
Bgr Bg

for all g and all non-negative w. The first Mizohata—Takeuchi-type estimates that we
present give a significant improvement over this inequality, and follow from the refined
Stein—Tomas-type estimate in [21]. They are given in Theorem 1.2 below. The main
inequality of this result, (1.4), is closely related to, but logically independent from, the
Mizohata—Takeuchi conjecture, and it is sharp in the sense we discuss below the state-
ment. Its consequence (1.5) is also sharp given the techniques that we employ; see [20], the
remarks at the end of this section and Section 7. Estimates which improve on Theorem 1.2
appear in Lemma 1.4 (for g with small support), as well as in Theorems 1.6 and 1.8 (for
weights that are constant on slabs), and arise as consequences of Theorem 1.2.

Theorem 1.2. Let n > 2. For every ¢ > 0, there exists a positive constant C,, which
depends only on ¥ and ¢, such that

— 2/(n+1
(1.4) / lgdo|>w < Cy R® sup (/ w(”+1)/2> [ )/|g|27
Br TeTr:T Lsuppg T

and in particular,

(15) [ tedoPw s REH( s xuw®) [ 1P
Bgr £1lsuppg

forall R > 1, g € L*(X) and weights w: R™ — [0, +00).
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The second statement follows from the first upon noting that

2/(n+1) n—1
sup ([ ()
T

)2/(n+1)
TeTr:T Lsuppg TeTgr: T Lsuppg

n=1 -l 2/(n+1)
<RI w) & (sup Xw(o))
{Llsuppg

and using the approximate constancy of w at scale 1.
Notice that Theorem 1.2, unlike the Mizohata—Takeuchi conjecture itself, requires
non-vanishing curvature of .

Remark 1.3. Inequality (1.4) of Theorem 1.2 is sharp in the following senses. Firstly, if
the exponent r is such that

/BR gdo|?w < (/B wr)”’(/ |g|”)q“’

(which, by duality, is equivalent to an L? -L9"" Fourier extension estimate) holds, then
necessarily 1/qr’ < (n — 1)/(n + 1)p’; so the exponent (n + 1)/2 appearing in (1.4)
(in which p = g = 2) cannot be increased, irrespective of the size of the tubes 7" C Bg.
Secondly, fixing r = (n + 1)/2 in (1.4), we cannot reduce the width of the tubes appearing
to be significantly smaller than R'/2. These two assertions can both be seen by testing
as usual on g the indicator function of an R™'/2-cap and w the indicator of the dual
R1/2_tube. On the other hand, we do not know whether one may take ¢ = 0 in (1.4)
and (1.5). It is likely that when n = 2, we may be able to replace the R® term by a power
of log R; see Remark 4.3 below.

Theorem 1.2 will follow from the more precise Theorem 4.1, in which Ty is replaced
by the set of tubes featuring in the wave packet decomposition of g at scale R.

We now turn to our other results. Theorems 1.6 and 1.8 below are improvements of
Theorem 1.2 for weights that exhibit a level of local constancy along slabs. In the extreme
case where there is no such local constancy beyond on unit scale, both theorems reduce to
Theorem 1.2. Theorem 1.6 involves slabs that are ‘roughly parallel’ to caps of X, while
Theorem 1.8 addresses the general case.

Both theorems (and, in fact, the more precise Theorems 6.1 and 6.2) will follow from
a strengthened version of Theorem 1.2 for functions g with small support (Lemma 1.4
below), which we will prove for all weights.

In order to state Theorems 1.6 and 1.8, we first establish some further notation, and
introduce a quantity which is intermediate between the quantity

2/(n+1)
sup (/ w(n+1)/2)
TeTr:T Lsuppg T

occurring in Theorem 1.2 and a quantity more directly geared towards that occuring in
the Mizohata—Takeuchi conjecture itself. This will involve considering an amalgam of
‘running averages’ of w at certain scales related to the level of constancy that we are
assuming, which is measured by a parameter 1 < p < R which we now fix. Let £ C X.
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For each Tr € Tg such that T L E, we cover Tx by essentially disjoint tubes S, € T,
which are parallel to and contained in Tg. For w: R” — [0, +00) and E C X, we define

1 2/(n+1)
Ap r.E(W) := S sup ( 3 w(Sp)(”+1)/2) ’

TreTr:TRLE S,CTr

a quantity which can be expressed more geometrically as

)

|Sp

sup ( <w(Sp))(n+l)/2

)2/(n+1)
TReTr:TRLE 5 7, [Sol

and thus is seen to increase as p gets smaller.” For p = 1,

2/(n+1)
A1Rr.E(W) ~ sup (/ w("H)/z)
TrReTgr:TRLE TR

is the quantity appearing on the right-hand side of Theorem 1.2, controlling the L?(E) —
L?(w)-norm of the extension operator. Theorem 1.2 fails in general for g supported on E
if the above quantity is replaced by the smaller

w(TR)

AR rE(W) = sup Ra—D/2

TReTr:TRLE

(and in fact by A, g g(w) for any p > 1, as can be seen by taking g to be the indicator
function of a 1-cap and w the indicator function of the unit ball). In the results which
follow, however, we shall show that under certain auxiliary conditions (g being supported
on a small cap, or the weight being the indicator function of a union of small slabs),
Theorem 1.2 nevertheless does hold for g € L?(E) if we replace the quantity A1 g g (w)
with A, g g (w) for an appropriate choice of p. To further compare these two quantities,
observe that

(w(Sp))ﬁ

sup W(TR)Z/(n+1),
1Sl

TreTR,TRLE

(1.6) Ap rE(W) < sup
S,eT,:S,LE

which becomes

w(Sp)\ nFt
Ap,R,E(W) < sup (—p) AL rEW)
S,eT,:S,LE  |Spl

when w is an indicator function (which we may well assume for our purposes).

2By Holder’s inequality we have, for A > 1 and a tessellation of an S 20 bY Sp’s,

w(Sy,)\@+1)/2 w(Sp)\ r+1)/2
( lSM‘l’) swls 3 () ISl

pCO4p
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In situations in which we are able to bound the L2(E) — L?(w)-norm of the extension
operator by A, g, (w), inequality (1.6) leads to improved bounds in terms of || X w| oo;
in particular, to a gain on Theorem 1.2 by a factor p~®*~1/@+1 ndeed, by (1.6),

[ Xw (oo \ 7t R\

Ap,r.E(W) = (—>?(R(”_l)/2||Xw||oo)2/("+1) < (_)W
p o

sup Xw({).
(LE

A situation such as this arises when g is supported in a p~/2-cap of X (that is, the inter-
section of X with a p_l/ 2_pall), and is summarised in Lemma 1.4 below. The lemma will
in turn be used in conjunction with a decoupling argument to derive Theorems 1.6 and 1.8
for all functions g and restricted classes of weights. Note that, in Lemma 1.4 below, the
subscript T on g is not strictly needed, but we retain it to emphasise its support.

Lemma 1.4 (Small caps). For every ¢ > 0, there exists C; > 0 such that for all weights
w:R" — [0, +00), whenever 1 < p < R, tisa p~"/?-cap of T and g, € L*(B" ') is
supported in t, we have

[B gedoPw < Co R Ay gosuppe, (W) / 2l
R

and therefore also

n—1

— R\
(1.7) / gedoPw s (=) sup Xw(©) [ gl
Bgr P £ supp g+

In order to state Theorems 1.6 and 1.8, we need to make precise what we mean by a
slab, and by a slab being ‘roughly parallel’ to caps of X.

Definition 1.5. Fix R> 1,1 < p < Rand 0 <v < /2. We define a pl/z-slab to be any
affine copy of the 1-neighbourhood of an (n — 1)-dimensional p'/2-ball in R”. We say
that a slab is v-parallel to ¥ if all normals to X create angle at least v with the slab (that
is, they create angle at most 7r/2 — v with the normal to the slab).

In this definition, v is a measure of how large the angles are between the slab and the
normals to X. The larger v is, the larger these angles are, and the more ‘parallel” ¥ and
the slab look.

With these preliminaries in hand, we are now ready to state our remaining results.
In the first two results which follow, the implicit constant blows up as v | 0. Thus, the
interesting cases of these two results are those in which v is large, i.e., when the slabs
create large angles with the normals to X. If for instance X is roughly horizontal (i.e., all
normals to X are within angle < 1/100 from the vertical direction), then Theorem 1.6 gives
meaningful results for slabs that are also nearly horizontal (e.g., creating angle > 2/100
with the vertical direction).

Theorem 1.6 (Slabs v-parallel to X). For every 0 < v < n/2 and & > 0, there exists
Ce.y > 0 such that the following hold. Let g € L>(X). For R > 1 and R® <. p < R,
let w:R" — [0, +00) be a weight of the form ) s csxs, where S is a set of disjoint
02 slabs v-parallel to . Then the inequality

— R\ 5
[ 18doP v < Cor R Apeanmitw) [ 167 50 (5) sup xwio) [ 1P
Bg p {Llsuppg
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holds. In fact, if

g = Z gc, Wwith suppg, C 1,
€T

for some boundedly overlapping family T of p~'/?-caps t of I, then

— R\ 25t
fB 800w Sy 3 Apanmsc0) [ lerl? 5, (5)7 X s xu [l
R

reT rex tlsuppgr

It follows that Stein’s stronger conjecture (1.1) (and thus the Mizohata—Takeuchi con-
jecture) holds under the conditions of Theorem 1.6 when the slabs involved are R'/2-slabs.
We single this out explicitly as a corollary.

Corollary 1.7. Let R > 1 and suppose that w is a weight of the form )" s cs X5, where S
is a set of disjoint R"/?-slabs which are v-parallel to S for some 0 < v < /2. Then

/ gdoP w S / g®F sup Xw(0)do(®)
Br LN ()

forall g € L*(%).

Stein’s conjecture continues to hold even when the slabs are curved. The precise for-
mulation of this appears in Corollary 3.4, and it is proved using a direct method, which
does not rely on Theorem 1.2, and which also featured in [20].

A substitute result for Theorem 1.6 in the case where there is no restriction on v (i.e.,
when the slabs can create arbitrarily small angles with normals to X) is as follows.

Theorem 1.8 (All slabs). For every € > 0, there exists Ce > 0 such that the following
hold. Let g € L*>(X). For R > 1 and R® <, p < R, let w:R" — [0, +00) be a weight
of the form Y . cs X5, where § is a set of disjoint pY/2-slabs with no conditions on their
directions. Then the inequality

— R 5
lgdo|?>w < CeR* A2 R uppg (W) lg* S (== sup Xw(®) | |g]?
1/2
Br P {1lsuppg

holds. In fact, if

g=> g with suppg; C 1.
TeT

—1/4

Sfor some boundedly overlapping family T of p -caps T of X, then

— R \ i
[ 1880 S Y A o) 185 (575) " X swp xwi© [ el
Br TeT p rex {Llsuppgr

Corollary 1.9 (R'/2-slabs). Let R > 1 and assume w is a weight of the form Y s ¢s Xs,
where 8 is a set of disjoint RY2-slabs. Then

| 1gdoPw £ kA sup xu [ 16
Bgr £Lsuppg

forall g € L*(X).
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Sharpness of inequality (1.5) given the choice of technique

During the recent talk [20], which in fact partially inspired the work in this paper, Guth
explained that, using only basic local constancy and local L2-orthogonality properties
of the functions (g;a% —which are indeed the only properties that we exploit in proving
Theorem 1.2 —, one cannot prove the Mizohata—Takeuchi conjecture for Bg with a loss
better than ~ (log R) =3 R"—1/(1+1)

This means that inequality (1.5) of Theorem 1.2, which establishes the conjecture with
aloss of g R®~D/(+1) s essentially sharp given the techniques used.

Guth’s argument is discussed in Section 7 for purposes of self-containment.

2. Preliminaries

For our purposes, we may assume that all normals to ¥ have angle at most 1/100 from the
vertical direction, and that the projection of ¥ on the hyperplane R”~! x {0} is contained
in the unit ball B"~! centred at 0. This convention allows us to assume that ¥ has a
parametrisation

T ={Z(w) = (0, h(w)), forw € B" !}

for some h: B"1 — R, and to work with the operator E instead of -/d;, where
Eg(x):= / 27T (@) gw)dw, forxeR".
Bn—1

From now on, for fixed ¥ and ¢ > 0, we say that a quantity C(R, ¢) satisfies
C(R,e) = RapDec,(R)

if for every N € N there exists a non-negative constant Cy . such that uniformly in R > 1
we have
|IC(R.&)| < CneR7VN.

Wave packet decomposition adapted to Bg

Lete >0and 0 < § < &. Fix R > 1, and cover B"~! by boundedly overlapping balls & of
radius R~1/2, The set of these balls will be denoted by ®r, and the balls will be referred
toas R~V 2-caps. Let {g }oco » be asmooth partition of unity adapted to this cover. Thus,

g= ) vpg

96®R

for any g: R"~! — C supported in B"~! (and belonging to some suitable class). Now,
cover R”~! by boundedly overlapping balls of radius C R“'+%)/2 and centres on the lattice
Vg 1= RU+8/277=1 There exists a bump function 7, adapted to the ball B(0, R1+9)/2),
so that the bump functions 7, := n(- — v), over v € Vg, form a partition of unity for this
cover. It follows that, with = and ¥ denoting the (n — 1)-dimensional Fourier transform
and its inverse, respectively,

= Z flu(vfeg)v

0,v)
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and thus
g= ) flvx(Ypg)
(0.v)
for all g as above. Finally, restrict each of the above summands to the corresponding cap 6.
In particular, let

200 = Vo - (v * (V0 8)),

where 1;9 W(Rl/ 2(- — wg)) for some fixed smooth bump function 1/f (where wg is the
centre of the cap 0), chosen so that wg is supported in 0 and equals 1 on the cR/2 -neigh-
bourhood of supp ¥y, for some small ¢ > 0.
The gg,, are the wave packets of g at scale R, while {gg, }(9,v)e@gx V5 constitutes the
wave packet decomposition of g at this scale. Note that the decomposition is e-dependent.
The function g is roughly the sum of its wave packets, all of which are roughly

orthogonal. More precisely, note that the function 7, is rapidly decaying when |w| >
R-(+8)/2_ g4

lg6,0 — v * (V6g)lloo < RapDec,(R) | gll2, foreach (6,v),

hence

! |-
(wpl) g . g

(0,0)EOrxVg

< RapDec,(R) | g||2.

The functions gg ,, are almost orthogonal, in the sense that

(wp2) | Y wofi~ T o3

(B,v)eW O.0)eW

for every subset W of ®g x Vg.
It turns out that, for every (6, v), Egy,, is essentially supported in

Top = {x € Br : |x" + xndph(wg) — v] < RY?>TE)

the R'/2%3_tube in Br whose central line passes through (v, 0) and has direction the
normal N(0) := (dxh(wg), —1) to the cap X (6). Indeed, it follows by a non-stationary
phase argument that

|Eggy(x)] < (1 4+ R7V2|x" + x4 90h(wg) — v)) "V RapDec, (R) |l g|2.

wp3
(wp3) forall x € Br \ Tpv;

a detailed analysis can be found in [19].

Due to the curvature of ¥, different surface caps X (6) have different normals, so there
is a one-to-one correspondence between the pairs (6, v) and the tubes Ty ,,. We may thus
denote each wave packet gg , by g7, for the tube T = Ty ,,.

Henceforth, denote

Te(BRr) := {Tg’v :(0,v) € Og x Vg and Ty, N Bg # 0}

and
TS (Br) :={T;, :10 — 0] S R™'/>, v € Vg and Ty, N Bg # 0}
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for each 6 € ® g, where the implicit multiplicative constant is sufficiently large. The above
analysis ensures that

(wp4) Eg(x) = Z Egr(x) +RapDecg(R)/ |g|?>, forall x € Bg,
TeT:(Br)

while also that any function gy supported on 6 € Op satisfies

(wp5) Egg(x) = Z Egr(x)+ RapDecg(R)/ |g|>, forall x € Bg.
TET{(Br)

We will refer to {g7}7eT,(BR) as the wave packet decomposition of g adapted to Bg.

Wave packet decompositions adapted to other balls

Let R® <, p < R, and fix aball B = B(y, p). For x € R”, set X := x — y. It holds that

Eg(x) = /eZﬂi(x,E(a))) 2() do = /ezm(z,z(w)) 2TEO) g(0) do = EF(),

where g(w) = e>77Z(@) g(). For every x € B, X lives in B,; therefore, by the earlier
discussion,
Eg)= Y EFr(®)+ RapDec,(p) [ 121
TeT.(B,)
(Wp6)
= Z Egr(x—y)+ RapDecg(R)/ |g|>, forall x € B.
TeT.(B,)

From now on, we will be referring to {gr}reT,(8,) as the wave packet decomposition
of g adapted to B. Note that this decomposition is y-dependent.
By the above analysis, for every p~'/2-cap 7, we have

(wp?)  Eg.(x) = Z E§T(x—y)+RapDec8(R)/|g|2, forall x € B.
TeTE(By)

Each of the wave packets in the above summand is essentially constant in magnitude; this
is made rigorous in the subsection below.

Fourier localisation and local constancy

Lete > 0and R® <, p < R.Fix g € L2(B" ') and a p~'/2-cap 7.

Roughly speaking, since g, is supported in 7, the Fourier transform of E g is suppor-
ted in the p~!-neighbourghood of X (7). The uncertainty principle then dictates that | Eg|
is essentially constant on each dual object, i.e., on each p'/2-tube pointing in the direction
the normal to X (7).

The above heuristic is made rigorous as follows. Let w(7) be the centre of 7. The patch
of the tangent space to X at ¥ (w;) that lives over 7 is the set

.Y = {Z(w;) + My - (0w —w;) : w €T}, where M, := [awIZ(_al),) (]):| .
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The convex set
= _ N(w) . _ -1 -1
S(t) =13 (w;) + M; - (0 wt)+t'||N(w,)|| Twert, te[—p Lp ]

is a ‘thickening’ of the above tangent patch by p~! in the direction normal to X (7). The
Fourier transform of Egr, Br is essentially supported in a dilation of S(t). We are inter-
ested in a precise version of this for appropriate cut-offs of Eg.
In particular, let {: R” — R with { = 1 on B and { = 0 outside B,. For every ball
B = B(x, p) in R", define
ta(x) = ¢(=0),

There exists a constant C, depending only on the dimension 7, such that the following
holds.

Proposition 2.1 (Fourier localisation). Let R® <. p < R, and let g, be supported in a
p_l/z-cap t. Then, for every p-ball B in R",

Eg.-tp = G + RapDec,(p) ||g: 2.

for some G:R" — C with the property that G, is supported in S(C - 7).

The set C - 7 is the Cp~'/2-cap with the same centre as 7. The proof of Proposition 2.1
is exposed in full detail in [24].

When a function f is Fourier localised on a convex set (such as the slab S(t)), then
to some extent it can be treated as a constant function on objects dual to that convex set.
The precise statement appears in Lemmas 6.1 and 6.2 in [23]. For our purposes, we only
need the following corollary.

Proposition 2.2 (Local constancy). Let R® <, p < R. Let t be a o~ V2 cap, and consider

a function f:R" — C with f C S(t). Then, every tube T in R"™ with direction N(t),
radius p''? and length p satisfies

supl f)P % - [ 1/ Pwr.
xeT |T|

for some non-negative function wr:R" — R, with oy =1 on T and w(x) ~ Cy(1 +

n(x,T))™N forall x e R" and N € N, where n(x, T) is the smallest n € N such that

x € nT. In particular, if g € L>(B"™Y) and B is a p-ball intersecting T, then

1
sup | Ege(0) 5 ' —= | _|Eg:[? +RapDec,(R) / g2
x€T |2T|

for all T in TF(B) intersecting T.

Proof. The first conclusion is a direct application of Lemmas 6.1 and 6.2 in [23]. We now
in turn apply this conclusion to the function Eg, - {p, which is essentially Fourier sup-
ported in S(C - 7) by Proposition 2.1. Respecting the notation of Proposition 2.1, denote
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by Tc the tube with the same central line as T, radius (C ~2p)'/? and length C ~2p. We
obtain

sup | Ege (0 = sup | Ege () &0 5 o [ 1B 8ol wre +RapDecy o) [l

Since wr (x) ~ wr, (x) for all x € R”, it holds that

1
< Eg_|?

o [ VB toPwre 5 o [ 1B toPur s o [ 1Eedur

1 1

— |Eg |2 wr + — |Eg |2 wr

\T| Japra? *F 7| 2B\2f ‘

|Eg<|* wr + RapDec, (p) — |Ege|* wr.
|2T|/ ‘ |T| 2T

The result follows as, due to the decay properties of wr,

RapDee,(p) - / IEg.[? wr = RapDec,(p) = RapDec,(R) [ lgl.

3. Some new cases where Mizohata—Takeuchi holds

In this section, ¥ := {(w, h(w)) : @ € B" !} is a fixed hypersurface in R”, all of whose
normals point within angle 1/100 from the vertical direction. There is no requirement
that ¥ have non-vanishing Gaussian curvature.

The truth of the Mizohata—Takeuchi conjecture for some simple weights (such as
indicator functions of neighbourhoods of roughly horizontal hyperplanes or hypersur-
faces) implies that the conjecture holds for more complicated weights (superpositions of
appropriately large patches of such surfaces). For instance, the Mizohata—Takeuchi con-
jecture holds for nearly horizontal R'/2-slabs (case p = R of Theorem 1.6) because it
holds for horizontal hyperplanes (Plancherel).

Definition 3.1. A p-flake (or simply a flake) in R” is the 1-neighbourhood of any hyper-
surface of the form {(w, '(w)) : w € B;‘_l}, where B;’_l isa p-ballin R”~! and I': B;’_l
— R. A flake is nearly horizontal if all its tangent spaces create angle larger than 2/100
with the vertical direction.

Note that p-slabs are p-flakes. We will usually be taking p > 1. We emphasise that I"
and & are unrelated.

Every line normal to ¥ which intersects a nearly horizontal flake will do so along a
line segment of length about 1. Therefore, the following lemma states that the Mizohata—
Takeuchi conjecture holds when the weight is the indicator of a single nearly horizontal
flake.

Lemma 3.2. Let y be a nearly horizontal flake in R™. For all R > 1 and g € L*>(B"™1),

/ Egl® 5 f 2l
BrNy
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Proof. The proof easily follows by induction on scales, and only a sketch is provided
here. In particular, the estimate trivially holds when R < 1. For arbitrary larger R, we
cover the flake y by finitely overlapping R'/2-balls B. For every one of these balls B, we

may assume that
2 2
[ el 5 [ lsar
BNy

where gp is the sum of the wave packets g7 of g at scale R that intersect B. The
functions gp are essentially orthogonal, as each of the tubes T in question has width
R1/2+8 (where as in Section 2, 0 < § < ¢) and creates angle > 1 with the flake, hence
it intersects R2® of the balls B. Adding up the above estimate over all B completes the
proof. |

Remark 3.3. We emphasise that when y is specifically a horizontal hyperplane, then the

stronger estimate
2 2
[ £ = [l
14

directly follows by Plancherel’s theorem. Indeed, for every (x,7) € R"~! x R,
Eg(x,l‘) — /eZHi(x,a)) eZnith(a)) g(a)) do = g\t(x)’

where g, := ¢271'"0) g and T denotes the standard Fourier transform on R”~!. Therefore,

[1gscor = [1g2 = [1a2 = [ 168

for all ¥ € R. (Note that this directly yields (1.2).) After an appropriate change of vari-
ables, a similar argument resolves the Mizohata—Takeuchi conjecture when the weight
is the indicator function of the 1-neighbourhood of any hyperplane (independently of
orientation), and subsequently when the weight is a sum of indicator functions of such
1-neighbourhoods. See Corollary 3 in [5] for a stronger estimate (a certain identity) in this
specific scenario.

Lemma 3.2 easily implies the Mizohata—Takeuchi conjecture for superpositions of
appropriately large flakes, and in fact an estimate stronger than Stein’s conjecture (1.1).

Corollary 3.4 (MT holds for R'/2-flakes). The inequality

/|Eg|2 < 1 Xl /|g|2

holds for every g € L?(B™~') and any weight w:R"™ — [0, +00) of the form Zyeg;' Cy Xy
where ¥ is a family of RY/2-flakes. In fact, the stronger estimate

[ 1EePws > supxw) [ lerp
Br Ter T

holds, where {gT}TeT is the wave packet decomposition of g at scale R.
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Proof. Fix g:L?>(B"')and y € ¥, and denote by T,, the set of tubes in T that intersect y.
Forall x € y,

Eg(x) = Egy(x) + RapDec,(R) / 2P,

where g, ;= ZTGTy gr. Hence, by Lemma 3.2,

[1EeP 5 [16,2~ 5 [lerp
Y

TeT,

up to an error of RapDec, (R) [ |g|>. Adding up over all y € ¥, we obtain

[iEPus Yo X [laP=X( ¥ o) [lerp

yeF TeT, TeT yeF:yNT#0

<Y sup Xw(0) [ |grl
TeT LCT

up to an error of RapDec,(R) [ | g|? (the final ~ 1-loss is due to the fact that the tubes
in T have width R'/2%% rather than R'/2). The last quantity is at most || X w loof |g?. m

Remark 3.5. The idea behind the proof of Corollary 3.4 also appeared in [20], where
the same result was presented in the special case where the flakes are horizontal slabs.
Moreover, it was there pointed out that the statement of the corollary also implies (1.3),
i.e., that the Mizohata—Takeuchi conjecture holds with loss R'/2 in R2, by replacing
each point in suppw by a horizontal R'/2-slab (a process which enlarges the maximal
line occupancy of w by < R'/?). Perhaps an easier way to derive (1.3) is to observe that,
by Proposition 2.2, the Mizohata—Takeuchi conjecture holds with ~ 1-loss for each func-
tion gg supported in an R'/Z-cap 6; so (1.3) follows by the Cauchy—Schwarz inequality,
as B! consists of ~ R'/2 such caps.

4. Mizohata-Takeuchi with R ®~D/(+D _Jogss: Theorem 1.2

Theorem 1.2 immediately follows from the stronger Theorem 4.1 below, which takes into
account the directions in which the waves propagate. Fix n > 2. For g € L?(B"™!) and

T C Ty(BRr), define
gr = )Y gr.

TeT
where {g7}TeT,(R) is the wave-packet decomposition of g adapted to Br (at scale R).
Theorem 4.1. For every ¢ > 0, there exists a positive constant Cg, which depends only
on X and &, such that

2(n—1)

2/(n+1) 2(n—1)
[Espescr(T] X w0 )]ler)” el
Br TeT BeB:BNT40

@1 4 RapDec, (R)|w loc / grP
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forall R > 1, g € L>(2), T C To(R) and weights w:R" — [0, +00) on R”, and for
every family B of boundedly overlapping RY/2-balls.

As an immediate consequence of this, we have the following.

Corollary 4.2. For every € > 0, there exists a positive constant Cg, which depends only
on X and &, such that

2(n 1)

2/(n+
[ Eerlu < cre( [lexP st zeryas)” " ey
Bpg T|N(s), TeT

2/(n+1)
42) < C.R* sup ( / wHD/2) T g )3
TeT

up to a RapDec (R)||w| o [ |gT | error term, forall R > 1, g € L>(X), T C T¢(R) and
weights w:R" — [0, +00) on R".

Remark 4.3. We need the error term RapDec,(R)|w|e [ |gT|* in these results be-
cause w may be large at some points of supp Eg which are outside | Jyop T. The-
orem 4.1 manifestly implies Theorem 1.2 directly, since the error term is easily absorbed
into the right-hand side of the first inequality of Theorem 1.2. However, unlike in the case
of Theorem 1.2, it is definitively not possible to take ¢ = 0 in Theorem 4.1. This is because
of the example (see p. 104 in [30], [26], [6], or pp. 125-126 in [31]) demonstrating the
necessity of a logarithmic term in the discrete £2-L° restriction theorem for the parabol-
oid. For the argument linking the two phenomena, see pp. 355-358 in [8]. As we observe
below, Theorem 4.1 is essentially a reformulation of the refined decoupling theorem [21].
It is furthermore closely related to the improved decoupling theorem of [22]. More pre-
cisely, if one takes the natural weight w = |Egr|*®~1 in Theorem 4.1, one obtains an
inequality slightly stronger than the one considered in Theorem 1.2 of [22], but with R®
loss rather than the logarithmic loss obtained there when n = 2. Notice the Stein-like
nature of the middle term appearing in (4.2).

Theorem 4.1 is actually a reformulation of the following refined Stein—Tomas or de-
coupling estimate. Theorem 4.4 was also discovered independently by Xiumin Du and
Ruixiang Zhang (personal communication).

Theorem 4.4. (Refined decoupling [21]) Lete > 0, g € L2(B"™Y), and let T be a subset
of T¢(BRr) with the property that ||gr |2 is roughly constant over all T € T. For each
k € N, denote by Uy, an essentially disjoint union of RY2-palls in Bg each intersect-
ing ~ k tubes in T. Then the function

gTZZgT

TeT
satisfies
k \1/(n+t1) 1/2
|Egt ooy < CR (=) (X 1Eer Iauevon)
TeT
1/(n+1) k \1/(n+1)
(43) ~ R () (anrn) ek (=) el
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Since k < #T, estimate (4.3) provides an improvement on the classical Stein—-Tomas
inequality
IEgrllL2m+v/a-n@ny < €T 2
on the ‘k-rich’ sets Uy in BR, according to their level k of richness.
If we assume Theorem 4.1, we can immediately deduce Theorem 4.4 by testing on
a weight w € L®*tD/2(Uy). Indeed, under the hypotheses of Theorem 4.4, we apply
Theorem 4.1 and we have

2(n—1)

2/(n+1) 2(n—1)
[ Espuscr(T] X w0 e)]ler)” el
Br TeT BeB:BNT4D

+ RapDec, (R)[[w]loo / grP

and, suppressing the error term (as we may) and letting A = ||g[|3/#T denote the com-
mon value of || g7 |3, the right-hand side here equals

C, Rsk2/(n+1)< Z Z w(n+1)/2(B)

TeT BeB:BNT#O

~ Cs Rs(kk)Z/(n-l-l)( Z w(n-‘rl)/Z(B)
BeB

2/(n+1) 2(n—1)
) gl

2/(n+1) 2(n-1)
) lewl,™

k \2/(n+1)
) Il lgr I,

~ CoR (5

#T

as needed to verify Theorem 4.4.

Likewise, Theorem 4.1 will in turn follow from (4.3), as the following simple argument
shows.

Proof of Theorem 4.1. Lete >0, fix g € L2(B" '), w: Bg — [0, +00) and T C T(BR).
In order to prove (4.1), we may assume that

(a) wis supported in | Jpep T,
(M) llgrll2 ~1forall Te T.

Indeed, assumption (a) is possible because, by (wp3), the part of the weight supported
outside | Jz ¢y T contributes at most RapDec, (R) |w|loo f |gT|* to fBR |EgT|?>w. For (b),
observe that, in terms of our goal, it is trivial to control the contributions of the wave pack-
ets g7 with | g7 |l2 < R71%9%%||g|l». So, by dyadic pigeonholing, it suffices to prove (4.1)
under the additional assumption that the g7 have roughly the same L2 norms over all
T € T. By scaling, we may assume this common value is 1.

We now fix a family B of boundedly overlapping R'/?-balls covering Bg. By the
above, it suffices to prove that

1 2/(n+1)
ah  [lEaPes(EY X wenre) T [l

TeT BeB:BNT#0

under assumptions (a) and (b).



A. Carbery, M. Iliopoulou and H. Wang 18

Let Uy be the union of the balls in this family which meet ~ k members of T .
Importantly, (a) ensures that there exists some dyadic k € N for which

/ |qur|2w~/ EgrP w.
Br Up

So by Holder’s inequality and (4.3), we obtain

n—1
2+ \ nF1
/ |EgT|2w é (/ |EgT| n—1 ) (w(n+1)/2(Uk))2/(n+1)
Bpr Uy

k 2/(n+1) .
<, Rs(ﬁ w(n+1)/2(Uk)) /|g1r|2~ Co R (k™ V/2(U)) " )
We conclude with a simple counting argument. Indeed, let B; be the set of R'/2-balls
comprising Uy. Then,

k w(n+1)/2(Uk) ~ Z w(n+1)/2(B) k ~ Z Z w(n+1)/2(B)

BeB; BeB, TeT:TNB#D

— Z Z w("'H)/Z(B),

TeT BeBy: BNT#0

establishing (4.4) and thus (4.1). ]

5. Improved Mizohata—Takeuchi estimates for small caps

In this section, we prove Lemma 1.4, which will be key to the proofs of Theorems 6.1
and 6.2. It is a Mizohata—Takeuchi-type estimate which holds for functions supported in
small caps, and it represents an improvement over what we can obtain under no support
hypothesis.

Towards proving the lemma, we may assume as in Section 2 that all normals to X
have angle at most 1/100 from the vertical direction, and that the projection of X on the
hyperplane R”~! x {0} is contained in the unit ball B~ centred at 0. It thus suffices
to establish the analogous statement (Lemma 5.1 below) with Eg; in place of @,
where E is the extension operator associated to ¥ and g; € L?(B"~!) is a function sup-
ported in a p~'/2-cap 7 in B*~1.

To simplify notation, for E C B"~! (rather than E C X), and any line £ (or tube T
in Bg), we write £ L E if £ L X(F) (similarly, we write T L E if T L X(E)). We also
define

Ap,R,E(W) 1= Ap p,2(E)(W).

Lemma 5.1. For every € > 0, there exists Ce > 0 such that for all weights w: R" —
[0, +00), whenever 1 < p <R, Tisap~/?-cap in B"~" and g, € L*(B"™') is supported
in t, we have

/}; |Eg,|2 w < C.R* Ap,R,suppgz(w)f |gr|2,
R
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and therefore also

n—1

Ry=
[ Eslu<cr (3) s xwo [ 1ok,
Bg P £ L supp g

Notice that the tubes and lines featuring here have directions perpendicular to the
support of g-.

Proof. Lete > 0 and R > 1. For p < R?, the conclusion of the lemma follows directly
from Theorem 1.2. We therefore consider p = R®.

In order to prove the lemma for arbitrary weights, it suffices by dyadic pigeonholing to
prove it for weights that are indicator functions. Indeed, first observe that we may assume
that w(x) > R™2"||w||eo for all x € suppw. Therefore, after a dyadic pigeonholing causing
losses of ~ log R, we may assume that w(x) ~ ¢ for some fixed ¢ > 0 over all x € suppw;
and hence that w is an indicator function, due to the scaling properties of our desired
estimate.

So, let w be an indicator function of a non-empty union of unit balls. Fix a p~/2-cap t,
and let g be a function supported in 7. Let T be a family of boundedly overlapping parallel
p!/2-tubes that cover supp w, and point in some direction N normal to supp g; observe that
T C T,. Atacost of a log R-loss, it may be further assumed that

S
wiSe) A, forall S, €T,
1Sl
for some A < 1, hence
w(S,)\ (+1)/2 2/(n+1)
Ap,R,suppg (W) = sup ( S L ) p )
TreTg: TRLsuppg S,CTr | p|

~ Ap sup #{S, €T :S,nTg 0} ",

TRETR:TRLsuppg

It therefore suffices to prove that

/ |Egl>w < C,RéAp sup #{S,eT:S, C TR}z/(n—H) / lg|*.
TReTR:TRLsuppg

Proposition 2.2 ensures that, roughly speaking, |Eg| is constant on each S, € T. In par-

ticular, let T be a set of boundedly overlapping tubes in direction N, of width p!/2+?

and length p, that cover Bgr. Foreach S, € T, fix S, € Ty that intersects S,. By Propos-

ition 2.2,

S
EgPw < 2 [ EgP 4 RapDec,(R) [ Igl?
Sp |Sp| 28,
~ 2 / _|Eg]? + RapDec,(R) [ gl
25,

By adding over all S, € T, we obtain

/ EgPw < A/ EgP @ + RapDecs(R)/ 8P,
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where

W= Z X35,
SpeT
Now by Theorem 1.2, we have
[1EePs s s wm e [
TreTR:TrLlsuppg

and for T € Tg with Tg L suppg, we have

W(TR) S p"tV/24(S, € T : 28, N T # 0}.

Therefore,
2/(n+1)
/ |Eg|>w < )L(p("‘H)/z sup #S,eT:S,C TR}> / lg|%.
TReTR:TrLsuppg
as required. ]

6. Weights constant on slabs: Theorems 1.6 and 1.8

In this section, we will use the favourable estimates for functions g, supported in small
caps which were established in Section 5 to obtain Mizohata—Takeuchi estimates which
improve on Theorem 1.2 for general functions g and weights possessing a certain measure
of local constancy. In particular, recall from (1.7) that if a function g, is supported in
a p~Y/2-cap 7, then the Mizohata—Takeuchi conjecture holds for g, with an improved
(R/p) =D+ _oss. Therefore, for any fixed g € L2(B*™1) and w:R” — [0, +00), a
decoupling inequality of the form

/IEg|2w§Z/ |Eg:>w
Bpr T Bgr

for a boundedly overlapping collection of p_l/ 2_caps T (Where g = > 8- andsuppg, C1)

would directly imply that the Mizohata—Takeuchi conjecture holds for g with the inherited *
loss (R/p)®~ D@+ The smaller the caps we manage to decouple into, the smaller the
loss.

In general, it is not possible to decouple into small caps. However, we can indeed
decouple into p~!/2-caps when w is a weight of the form D ses CsXs. Where S is a set
of disjoint p'/2-slabs that are v-parallel to ; more precisely, we show that (6.1) below
holds. This yields Mizohata—Takeuchi for such weights with an (R/p)®~ D@+ _oss. If
the slabs in § are allowed to point in any direction, then we can decouple into larger
p~1/4_caps (6.3), inheriting Mizohata—Takeuchi with an (R /p!/2)(=D@+1)_jogs,

These results are given in Theorems 6.1 and 6.2 below, which are more precise ver-
sions of Theorems 1.6 and 1.8, respectively. As per the above discussion, the new ingredi-
ents here are the decoupling inequalities (6.1) and (6.3) which follow. Note that, as in
Section 5, we will be working with the extension operator E associated to ¥ (rather than
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with '%). When E C B"!, we will be using the simpler the notation A, g, g(w) in
place of A, g x(g)(w),and £ L E (or T L E)tomean { L X (E) (similarly, T 1 X(E))
for any line £ and tube 7" in R”.

Theorem 6.1 (Roughly horizontal slabs). Fix v > 0 and ¢ > 0. For 1 < p < R, let
w: R” — [0, +00) be a weight of the form ) g csxs, Where S is a set of disjoint
02 slabs v-parallel to %, and let w* := > ics Cs X3s- For g € L2(B™ 1Y), write

g=> g with suppg; C 1.

€T
where X is a family of boundedly overlapping p~'/2-caps t© in B*~'. Then the decoupling
inequality
6.1) [ 1EePws, 3 [ 1Eg w4 RapDec (R [ 1P
Bgr Bgr

T€T
holds. Consequently, we have

/ |Eg|2 w =< Cs,vRa Z Ap,R,suppgr(w)/ |gr|2
Bpg

TeET

R\ 35t
()Y s xw | el
P red {Lsuppge

6.2)

Note that an immediate consequence of (6.2) is

R\ 751
[ 1P w = ok s ) [ 18P 50 ()7 s xu@ [ 1s2
Br P {Llsuppg

Theorem 6.2 (All slabs). Fixe > 0. For1 < p < R, let w:R" — [0, +00) be a weight of
the form Y . Cs s, where S is a set of disjoint p'/?-slabs. Let w* := Y ¢ s x35. For
g € L2(B™™Y), write
g = Z gz, with suppgz C T,
zeT
where T is a family of finitely overlapping p_l/ 4.caps T in B"~. Then the decoupling
inequality

6.3) / EgPus Y f |Eg+/2w* + RapDec,(R) / ME
BpRr —_ ~ JBR
TeT

holds. Consequently, we have

/BR |Eg|2 w < CR* Z Apl/z,R,suppg;(w)/ |g‘?|2

7eT
(6.4) R i Y
S(om)T X e Xu [ 1l

7% £ L supp g7
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Note that an immediate consequence of (6.4) is

n—1

R n+1
[ BP0 < Cu R A g s @) [ 16 50 (575) " swp xui@ [ 1gP
Bgr 1Y £1lsuppg

Proofs of (6.1) and (6.3). Fix e > 0 and R > 1. Let s be a p'/2 slab in Bg, and fix g €
L2(B"1). Let T and T be collections of finitely overlapping p~'/* and p~!/2-caps,
respectively, that cover B™ 1. Fori = 1,2, write

g = Z g:, with suppg, C 7.
T:E?i

[iEer <cre Y [ 1Eal
K 3s

‘[E?l
and that, if additionally s is v-parallel to X for some v > 0, then

[iEek <coure T [ 1Eal
K} 3s

€T

We will show that

Note that henceforth we may assume that p 2, RE/™ (as otherwise (6.1) and (6.3) follow
trivially by the Cauchy—Schwarz inequality), and that v =, R™¢ (as otherwise C;, may
be chosen to be an appropriately large power of R for (6.1) to follow).

For this proof, it will be useful to think of g as truly supported on . And indeed,
due to our assumption that the normals to X create angles at most 1/100 with the vertical
direction, it suffices instead to prove the above decoupling inequalities for g € L?(X),

for g/d\O in place of Eg and for T; collections of finitely overlapping p~!/4-caps and
p~1/2_caps, respectively, of X.

Let n:R" — R be a non-negative, smooth bump function with n(x) = 1 for all x € B;
and n(x) = 0 for all x € B,. Denote by n; a smooth bump function adapted to s. In
particular, if so = [0, p/2]"~! x [0, 1], define

/

X
7,]S(](x) = ﬂ(pl/z 7xl’l>a

and let n5(x) := 14, (M x), where M is a rigid motion mapping s to so. Let s* be a ‘dual’
object to s, specifically the tube with centre 0, direction the normal to s, length 1 and cross
section of radius p~1/2+3 It is easy to see by stationary phase that 77/szx\) is essentially
supported in s*; more precisely,

75(»)| = RapDec,(p) [|ns]l1 = RapDec,(R) forall y€ R™ \ s”.
Therefore, fori = 1,2,

[1gdot < [1gdorn = [| & scdo| n = [ (X sedo)( ¥ godo)n
s T€D; T€T;

T'eT;

= ¥ [(sdogdo)ni= 2 [edo) s godo).

7,77€T; 7,77€T;

where, for every f:R"” — C, fis defined by f(y) = f(—y).
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For every 7,1’ € Tj, the function (g, do) * (g do) is supported in T — 7/, and thus
its contribution to the above sum is negligible unless t — 7’ intersects s*. More precisely,

/ (g0d0) * (godo) 7 = [R | (80d0) (5. do) T, = RapDec, () Il g -
n Si
whenever 7 — 7/ N s* = @, whence
[lg@ol = 3 [(ecdo) s (gudo) i + RapDecy() [ leP
S

T,7/€Ti (r—t)Ns* #£P

= Y [ (evdo godo)n + RapDecy(m) [ 1P

T,77€T;: (t—1/)Ns* #0

Y ([ el [ 1gedal) + Rappec, ) [ g
S

7,7 €T (r—t)Ns*#0 3s

65 =N Y [ lgdol + RapDec, ) [ leP.

T€T; 3

IA

where
Ny :=max #'€T; : (r — 1) Ns* # 0}
‘L’E%i

Note that for the last inequality in (6.5), we used that s* is symmetric around 0.
It now suffices to show that

(6.6) Ny < C.R®
and that, if additionally s is v-parallel to ¥ for some v >, R, then
6.7) Ny < CeyR®.

We first focus on the case i = 1. Fix t € T, and let w(7) denote its centre. The family T
consists of p~1/*-caps, so the t/ € T with (t — /) N s* # @ cover the set

Ar) ={w e X: (t —w)Ns* # 0.

Let e denote the direction of the tube s*. For every w € A(t), there exists wg € T such
that wg — w € s*, which implies that

—1/4+46 —1/4+8

lwo —w| < p or Angle(wy—w,e) Sp
hence
o —w(t)| S p*1/4+5 or Angle(w — (1), e) < p71/4+3.

It follows that A(t) can be covered by two ~ p~1/4+8_caps of 3, and thus by O(p?) =
O(R?) p~'/*-caps of X. This immediately implies (6.6), which in turn establishes the
desired estimate (6.3) when combined with (6.5).
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For the case i = 2, letv 2, R®. Fix T € T, and denote by w(t) its centre. Similarly to
the previous case, the t’ € T, with (t — ') N s* # @ cover the set

A) ={weX: (t—w)Ns* # 0 =X N (t —s).
Now however the family T consists of p~'/2-caps; moreover, s is v-parallel to X, which
implies that all tangents to t create angles at least v with the (roughly vertical) direction e
of s*. Therefore,

T —s" C R+,

for some vertical rectangle R+, with vertical side of length ~,, 1 (roughly the length of s*)
and all other sides of length ~, p~'/2+% (approximately the sum of the width of s* and
the radius of 7).

Due to our assumption that all tangents to ¥ create angle at most 1/100 with the
vertical direction, it follows that ¥ N Ry« (and consequently A(7)) is contained in a single
~y p~ Y28 _cap of %, and can thus be covered by O(R?) p~'/2-caps in 5. This implies
the desired estimate (6.7) and hence completes the proof of (6.1). ]

Proof of Theorem 6.1. Letv, ¢, R, p, w and g be as in the statement of the theorem. Now
that (6.1) has been established, it suffices to prove the first assertion in (6.2).

To that end, observe that w* is the sum of 3"~! weights: the weight wo := w (suppor-
ted in Bg), and weights w; of the form w(- — ¢;) (for appropriate z; € R"~! x {0}, with
|tj| < R, for j =1,2,...). It thus suffices to show that

/|Eg|2 wj < CenR® Z Ap,R,suppgr(w)/ g
TeT
forall j =1,2,...For j = 0 the inequality follows by Lemma 5.1. For j = 1,2,...,
Eg=Egi(-—t;), whereg; = 2T 0)

Observe that, denoting g; ; := 2™l 20) g we can write

g = Z gjx» with suppgj. =suppg: C 7.
TeT

Therefore, by Lemma 5.1,
[ £l w; = [1Eg - P ue—1) = [1EgPu
< CenRE Y Ap R suppgy (W) / 18j.c> = CewR* D Ap R suppge (W) / lg|%.

TeT TeT

completing the proof. ]

Proof of Theorem 6.2. The proof follows the same steps as that of Theorem 6.1, but with
the family T replaced by T. |
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7. Guth’s argument: the R#~D/@+D harrier

In his recent talk [20],

(a) Guth identified two ‘decoupling axioms’ (appropriate local constancy and local L2-
orthogonality conditions) that are satisfied by all E g, and are sufficient to ensure that
the Bourgain—Demeter decoupling inequality [8] holds in Bg for every function F
satisfying them.

(b) He then constructed a function F: Bg — C which satisfies the decoupling axioms,

but for which the Mizohata—Takeuchi conjecture fails by a factor of ~ (log R) 3R A
Notably, Fjp, is not of the form Eg|g, forany g € L?(B"1).

Guth’s decoupling axioms for all E g are also sufficient to imply the refined decoupling
Theorem 4.4 (as a careful review of its proof reveals), and thus its corollary Theorem 1.2,
which established the conjecture with a loss of $ R®~1/®+1)_Therefore, our main result
is essentially sharp given the techniques used.

In this section, we outline Guth’s axiomatic approach and argument demonstrating the
existence of a counterexample [20], and briefly review our result within this context. We
emphasise that these results are not ours, and we present them only for self-containment.

Fix R > 1 and & > 0. In this section, for every g € LZ(B"~!) and every cap 7 in B"~!,
we denote g; := g|;. In particular, ggn-1 = g.

We call a cap T in B"~! admissible if its diameter d(t) is a dyadic number that belongs
to [R™1/2, R7¢] U {2}. In this analysis, B"~! is the only admissible cap of diameter 2.
Denote by Dr the set of all admissible caps.

For every t € Dp, let F;:R"” — C be some function. Note that the caps t are simply
used for enumeration here, and may be entirely unrelated to properties of F;. This is in
contrast to, say, functions of the form E g, which are Fourier-localised close to X (7).

Axiomatic decoupling (Guth [20])

If the decoupling axioms (DA1) and (DA2) below hold for the full sequence (Fi)repp,
then the function F := Fgn-1 in BR can be decoupled into the functions Fy corresponding
to the smallest possible scale, as follows:

2(n+1)‘

1/2
o 2
IFllLr(se) < CeR “”( > ||F0||Lp(BR)) forall2 < p < =—

0eDg:d(0)~R~1/2

The decoupling axioms (DA1) and (DA?2) for a sequence (F;)ep, are the following
statements.
(DA1) (Local constancy). For every t € Dg with d(t) < R7%, the function |F| is
essentially constant on each translate of
() i={x:|x-(E—&) = lforall§ € Z(r)},

where &; denotes the centre of X (7).’

3Formally, a function is essentially constant on translates of 3 (z)* if it satisfies estimate (24) in the state-
ment of Lemma 6.1 in [18], with 8 replaced by the smallest rectangle containing X (7).
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(DA2) (Local L?-orthogonality). Let y € D g, and suppose that y = L¢3 T, where
is a family of finitely overlapping caps in D with diameters smaller than d(y). Then, the

estimate
JIEE ~ 2 [ 1FP + Rapec, () [ 15,2

tCy
holds for every convex K C R” such that the sets T + K*, over all T € T, are finitely
overlapping.*

Itis not hard to see that, for all g € L?(B"~!), the sequence (Eg:)rcpj satisfies (DA1)
and (DA2). Guth’s axiomatic decoupling statement above, together with a careful review
of the proof [18] of the refined decoupling Theorem 4.4 (which directly led to our The-
orem 1.2, or equivalently to (7.1) below), reveal the following.

Fact A. (DA1 & DA2 = MT with § R®~D/+D _loss for all Eg) The fact that
(Egr)reny satisfies (DA1) and (DA2) forall g € L*(B" Y

implies the inequality

n— 1
. | 1Bl w = CREH Xl 5 [ 1EgP
Bpr R Br
forall g € L>(B" 1) and w:R" — [0, +00).

To improve on the Mizohata—Takeuchi conjecture, one needs to reduce the lossy factor
R®=D/@+1) i (7.1) (and ideally to remove it altogether). Up to & 1 factors, this is
impossible if one insists on only using that all (Eg;);cp, satisfy (DA1) and (DA2).
Indeed, Guth [20] proved the following.

Fact B. (DAl & DA2 % MT with « RO=D/+1D Joss for general F) There exists a
Sfunction F:R" — C, with

(7.2) F = Fgn-1 for some (Fr)cepy satisfying (DA1) and (DA2),
such that
n— 1
a3 [ 1P wz tog RZRET Xl 3 [ 1FP
Br R Br

for some w:R" — [0, +00).

Proof. Let ¥ be as earlier. The scale R~/®*1 plays a key role in the upcoming argu-
ment; thus, denote by D the set of all 7 € Dg with d(r) = R~V@+D (or, precisely,
with d(7) equal to the smallest dyadic number that is at least R~'/®*+1)_For each r € D,
let T; be a family of finitely-overlapping parallel tubes in R” that intersect and cover Bg,
of radius RY®+D length R?/®*+1 and direction the normal to X(t) (these tubes are
essentially translates of X (7)*). Let

T:={T €T;:1eD}.

4Without (DA2), no relationship between the different F; would be imposed. Observe that, in contrast to
the case where (Fr)repy = (Eg€c)re Dy, the equality Fy = )" .+ F; may not hold for a sequence (Fr)repp
satisfying the decoupling axioms.
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There exists a weight w: R” — [0, +00) such that the following hold.
(1) w is the characteristic function of a union of ~ R”~! unit balls in Bg.
(2) Each tube L of radius 1 satisfies w(L) < log R.
(3) Each tube T € T satisfies w(7T") < log R, and fully contains every 1-ball in suppw
that it intersects.

This is the weight that will feature in (7.3), and its existence is guaranteed by prior
work of the first author (see Theorem 3 in [9]) on aspects of the Mizohata—Takeuchi con-
jecture. The details are omitted.

The function F will be carefully defined as a sum of wave packets, so that it is large
on a big proportion of suppw; more precisely, on a large set B of unit balls in suppw.
The set B is the one appearing in the claim below. The proof is postponed to the end of
the section. (Note that the claim would be trivial if each tube in T intersected and fully
contained at most one 1-ball in suppw.)

Claim 7.1. There exist
(i)aset B ={By,..., By} of = (log R)"2R"! disjoint unit balls in suppw, and
(ii) sets T; C T with#T; Z #D forevery j =1,...,m,
such that the following hold.
(P1) The tubes in T contain B;, forall j =1,...,m.
(P2) For j =2,...,m, the tubes in T; do not intersect any of the balls By, ..., Bj_1.
We now construct a sequence (F;)rep, of functions F;:R” — C as follows.
* Foreach t € Dg with R™Y/2 < d(r) < R™Y@+D define F, := d(v)"* /2 yp,.
e Fort € Dg withd(r) = R~V@+D (or, precisely, for each © € D), define

Foi= Y cpe 28 g(r)n=D/2 g
TeT,

where ¢7 is a bump function on 7 and &; is the centre of X (7). The coefficients
cr € C are defined below.

 Fory € Dg with R7V/+D < 4(1) < 2, define

F, = Z F.

e, tCy
Let F := Fgn1 = ZIE o Fr. The coefficients cr will all have modulus 1, and will
be chosen below so that
(7.4) |F|z R+ on | J B.
BeB

Verifying (7.2) and (7.3). For each t € D, F is Fourier supported roughly in the smallest
slab containing X (7). It easily follows that (Fr).cp, satisfies the decoupling axioms
(DA1) and (DA2).
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On the other hand, (7.4) and the small line occupancy of w imply (7.3), so F and w
do not respect the numerology of the Mizohata—Takeuchi conjecture. Indeed,

/ |F|?w = Ritt #8 > (log R)"2 R+ R"™!
Bgr
by (7.4), while

/|F|25 YIRPY Y lech<r)<"—”/2|2~ ST

ted teDTeT, €D TeT,
= |B""'|-|Bg| ~ R"

due to the essential disjointness of the Fourier supports of the F;, and therefore
1 n—
Yol [ 1FP 5 Gog DR 5 tog R [ (PP,
R Bgr Bpg

Defining the cr. For T € T, let t(T') be the cap t € D with T € T,. For B € B, let
Tp :={T € T : T intersects B},

and observe that, once the c7 are defined for all 7 € T, it will hold that

—(n—1)

F|p = R20#D) Z crp e 2 EM) g o forall B € B.
TeTp

The cr are thus defined via an iteration, the j-th step of which ensures that the above sum
has large magnitude for B = B;. First, for all T € Tp, define

cr = e2milxt, &(T))’

where x; is the centre of B;. Due to the small radius of B,
Re(cr e 2milx, Sfm)) = Re (e2”i(x1_x’$f(T>)) >1 forall x € By,
hence - I
Re(Rm 3 epe il Ea) ¢T) > R0 #T, > R26D
Te TBI

on Bj. Therefore, once the remaining c7 have been defined, we will have that
n—1
|F| > ReF z R2¢+D  on By,

as desired.

Now, fix j = 2,...,m. Suppose that, foreachi = 1,..., j — 1, we have performed
the i-th step of the iteration, by defining c7 for all T € Tp, (when i = 1) and for all
TeTp \(Tp, U---UTp,_,) (wheni > 2) so that

~(n=1) il Eur) a1
‘Re(Rz(n-H) Z cre s Eur) ¢T)‘ > R26+D
TETBi
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on B; (which ensures that, once the remaining c7 have been defined, we will have that
n—1
|F|2R2(”+1) onBl,...,Bj_l.

During the j-th step of the iteration, we will define ¢ for 7€ Tg; \ (Tp, U---UTp,_,)
so that

—(n—1)

’Re R2(n+1) Z cr e 2w Eun) ¢T)’ > RIGID
TGTB]

on B; (ensuring that eventually |F| 2 R 205D on Bj as well). Write

Tp, = Tp, U T,
where Tl :=Tg; \ (Tp, U---U Tp;_,) (the set of tubes through B; for which we still
need to deﬁne the c7), while T _ consists of the tubes through B; for which the c7 have

already been defined. Importantly, T B 2 T;.
Let op; be the sign of F := Re(ZTele?j cr e 27 &m) gr) on® B;, and define
cr := og; TR forall T € Ty,
where x; is the centre of B;. As earlier,
|Re(cT e—27ti(~,§r(T)))’ >1 onBj;
—2mi(-,

and, crucially, Re(cr e gr(T))) also has sign op; on Bj,forall Te T éj. Therefore,

the functions sz and
Fl .= Re(RZ65D 3 cpentmiltEmlg
i T T
TGTBj

have the same sign on Bj, so

tid) —2mi(-, k) 1 2 1 S h i
‘Re<R2("+1> Z cre > §u(r) ¢T)‘ — |FJ + F; | > |Fj | = R26FD #7T; > R20+D

TETBj

on Bj, as desired.
For all T € T that do not contain any of the balls in B, we define cr = 1. By the end
of the iteration, (7.4) holds. ]

Proof of Claim 7.1. Let & be a family of disjoint unit balls inside suppw, with
#P ~ |suppw| ~ R L.
For each B € £, denote by Tp the set of tubes in T through Bj; observe that #Tp = #D.

STechnically, this sign does not have to be uniform over all points of Bj; we can however choose the
dominant sign over Bj, and eventually control the sum of the F; on a large subset of B;. We omit this additional
technicality from our exposition.
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Write P = {B1, Ba, ..., By}. To prove the claim, we will show that there exist indices
ki1 < ky < -+ <k, such that

e m = (log R)“1OR"1,
* By, = By, and for each j =2,3,...,m, at least #9/2 tubes in TBkj do not lie in
TBkl U TBkz U---u TBj—l'
Indeed,
e letk; =1,
* let k, be the smallest j > k; such that at most #: /2 tubes through B; contain By,

* let k3 be the smallest j > k, such that at most # /2 tubes through B; contain By,
or By,,

and so on, until no further k; as above exists. Let 1 be the set of balls By, over all the k;
selected via the above process. To complete the proof of the claim, it w111 now be shown
that

#P' 2 (log > R"™,

by studying the incidences between J and T. Forany § C 2 and L C T, denote
I(S,L) :=#{(B,T) € S xLL : B is contained in 7'},

the number of incidences between § and L.
Assume for contradiction that

(7.5) #P1 < (logR) 2 #P

for an appropriately small implicit constant. Then, the set T! of tubes in T that pass
through balls in £ is not too large; in particular,

#T! < I(PL,TY) < P1#D < (log R) ?#P#D ~ (log R) 21(P,T) < (log R) ' #T,

for a small implicit constant. Therefore, the tubes in T! only contribute a small fraction
of the total incidences between T and

I(P,T") S#T'logR ST ~ (logR) ' #D R"™' ~ #D#P < +
(the implicit constant in (7.5) is chosen so that this is true).

This is a contradiction, as ! was selected so that T! (= U =1 TBk ) contributes at

least half of the total incidences between T and &. Indeed, each B; € # \ £1is incident
to at least #D /2 tubes in | _; Tp, C T !; while each B; € £ has all the # tubes in T

through itin T 1 Therefore,
(P, TYHY > #P#D/2 = (P, T)/2,

contradicting (7.5). ]
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