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Abstract

In this paper, we first generalize the work of Bourgain (Geom. Funct. Anal.
1(4):321-374, 1991) and state a curvature condition for Hormander-type oscilla-
tory integral operators, which we call Bourgain’s condition. This condition is no-
tably satisfied by the phase functions for the Fourier restriction problem and the
Bochner-Riesz problem. We conjecture that for Hormander-type oscillatory integral
operators satisfying Bourgain’s condition, they satisfy the same L? bounds as in the
Fourier Restriction Conjecture. To support our conjecture, we show that whenever
Bourgain’s condition fails, then the L>° — L9 boundedness always fails for some
qg=q(n) > fT"l, extending Bourgain’s three-dimensional result (Geom. Funct. Anal.
1(4):321-374, 1991). On the other hand, if Bourgain’s condition holds, then we prove
L? bounds for Héormander-type oscillatory integral operators for a range of p that ex-
tends the currently best-known range for the Fourier restriction conjecture in high
dimensions, given by Hickman and Zahl (A note on Fourier restriction and nested
polynomial wolff axioms, 2020, arXiv:2010.02251). This gives new progress on the
Fourier restriction problem, the Bochner-Riesz problem on R", the Bochner-Riesz

problem on spheres S”, etc.
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1 Introduction

Let us recall Héormander’s problem in [15]. Let n > 2. Let B” be the unit ball in
R" and a : R" x R"~! > R be a smooth function supported on B" x B"~!. Let
¢ : B" x B"~! — R be a smooth function satisfying the following conditions:

(H1) rank VxVep(x;€) =n — 1 forall (x;£) € B" x B 1,

(H2) with the map G : B" x B"~! — R" defined by

n—1

Go(x; &) := [\ 9, Vxop (x; £), (1.1
j=1
the curvature condition
det V3 (Vx (x; €), Go(x; §0))]_, #0 (1.2)

holds for all (x; &) € supp(a).

Define the oscillatory integral operator
s = [ V009 f)atn £)de. (1.3)

If one takes ¢ (x; &) = (x, &) + 1|€|> where x = (x, 1), then one can check easily that
Hypothesis (H1) and (H2) are satisfied, and Ty becomes the standard Fourier ex-
tension operator for the paraboloid. Hormander [15] asked the question whether Ty
satisfies similar L?”-boundedness properties to those of the Fourier extension opera-
tor. To be more precise, he asked whether it holds that

1T Fllg Sng N7 flloos 1.4)

for all ¢ > nz%l

In dimension n = 2, the answer to Hormander’s question is affirmative, see for
instance Carleson and Sjolin [5], Hormander [15] and Fefferman [6]. However, in
dimension n = 3, Bourgain [3] showed that if one takes

1
Px; &) =x1861 + 02 +16162 + Etsz’ X = (x1,x2,1), 1.5

then (1.4) may fail for every ¢ < 4. Indeed, he showed that even if one replaces (H2)
by the following stronger assumption

(H2V) VZ(Vxp(x;§), Go(x: £0))] ¢—g, 18 positive definite, (1.6)

the estimate (1.4) may still fail for some g > 3, and it may even fail generically. Let us
be more precise about this generic failure. By some elementary change of variables,
phase functions ¢ (x; &) satisfying (H1) and (H2) can be taken to be

P(x; E) = (x, &) +1{AE, &) + O(t|IE + |x[*IE[%), (1.7)
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A dichotomy for Hérmander-type oscillatory integral operators 505

where A is a symmetric non-degenerate matrix. Condition (H2") amounts to that
A 1is positive definite. The form (1.7) is called a normal form of the phase function
¢ (x; &) at the origin (see [3, page 323]). Bourgain [3] proved in dimension n = 3 that,
if

V?Gfd)‘xzo)g , is not a multiple of vga@]xzo’sz (1.8)

= 0
where ¢ (x; £) is as in (1.7), then (1.4) fails for every g < %, which is > 3.
On the other hand, for phase functions ¢ (x; &) satisfying (H1) and (H2%"), Guth,
Hickman and Iliopoulou [10] (basing on earlier work Guth [9]) obtained the optimal
range of ¢ for which (1.4) holds. Denote

3n-3 7 1.9
26n42) © if i is even. (1.9)

20n4+D if s odd,
qn,GHI ‘=
3n—-2

Then (1.4) holds for all ¢ > g, GHi-

In the first result of the paper, we show that generic failure in the spirit of Bourgain
[3] occurs in every dimension n > 3. Let us first introduce some terminology. At a
given point (Xo; &), consider a new phase function ¢'(x; §) := ¢ (xo +x; &0+ &). Let
us use ¢”(x; &) to denote a normal form of ¢’ (x; &) at the origin x =0, & = 0. We say
that Bourgain’s condition holds at (xg; &g) if

Vo7

is a multiple of VZd,¢"| (1.10)

x=0,£=0 x=0,§=0"

where the implicit constant is allowed to depend on xq and &jy. Otherwise, we say that
Bourgain’s condition fails at this point. As normal forms are not unique, we need to
show that Bourgain’s condition is well-defined, and this is done in Corollary 2.2.

Theorem 1.1 (Generic failure) Let n > 3 and

22n2+n—1)

1.11
22 —n—-2 (11D

qn,1 :=

Let ¢ : B" x B"~! — R be a smooth function satisfying (H1) and (H2). If Bourgain’s
condition fails at some (Xo; §y) € supp(a), then (1.4) may fail for every q < qn 1.

Note that when n =3, g,,1 =40/13, which is slightly better than Bourgain’s ex-
ponent 118/39.

Based on the above theorem, we think it is very natural to conjecture that (1.4)
holds for every g > HZT"I if Bourgain’s condition holds at every point. The following
positive results provide some further evidence for such a conjecture.

For 8 > 0, we define -tubes. Fix a dyadic cube & C B"~! of side length & and let
&g be the center of 8. For v € B"! with v € 8Z"~1, let X:(p,v) € B"~! denote the

unique solution in the x variable to
Vep(x,t;89) =v. (1.12)
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By a §-tube, we mean
Top:={(x,1): |x — X;(&p, )| <6, |t| < 1}. (1.13)

For a collection T of tubes {7p ,}, we say that the tubes in T point in different direc-
tions if for two different tubes Ty, ., and Tp, ,, from T, we always have 01 # 6,.

Theorem 1.2 (Polynomial Wolff Axiom for ¢) Let n > 3. If Bourgain’s condition
holds for the phase function ¢ at every (Xo; &) € supp(a), then the following poly-
nomial Wolff axiom for ¢ holds: Let E > 2 be an integer. For every € > 0, there
exists C(n, E, €) > 0 such that for every collection T of §-tubes pointing in different
directions,

#HT eT:TCS}<Cn, E,e)|S8' "¢ (1.14)
whenever S C B" is a semialgebraic set of complexity < E.

The above polynomial Wolff axiom for ¢ satisfying Bourgain’s condition is a
generalization of that for ¢ (x; &) = (x, &) 4+ ¢|& 12, proven by Katz and Rogers [11].
Hickman and Rogers [12] used the polynomial Wolff axiom of Katz and Rogers and
proved that (1.4) holds with ¢ (x; £) = (x, &) 4 t|&|* for

A
4> qniR :=2+%+0(n*2), (1.15)
where
/\HR=4/(5—2«/§)=2.60434... (1.16)

After verifying the polynomial Wolff axiom for general ¢ satisfying Bourgain’s con-
dition, one can expect to combine the argument of [10] and [12], and prove (1.4) for
all g satisfying (1.15). We will indeed prove something stronger. Before stating the
next theorem, we first recall the result of Hickman and Zahl [13]. Let v!/2 be the real
number that solves the equation

203 +3x2—2=0. (1.17)

Denote

4
AHZ = 5= 2.59607... (1.18)

Hickman and Zahl [13] used the strong polynomial Wolff axiom by Hickman-Rogers-
Zhang [14] and independently Zahl [24] to further improve the result in [12] and
obtained that (1.4) holds for

AHZ
n

q>qnuz =2+ +0mn?), (1.19)

with ¢(x; &) = (x, &) +t|€ |2. This result gives the best asymptotic formula (as n —
00) in the literature for the Fourier restriction conjecture.

@ Springer



A dichotomy for Hérmander-type oscillatory integral operators 507

Theorem 1.3 Let ¢ : B" x B"~! — R be a smooth function satisfying (H1) and
(H2%). If Bourgain’s condition holds for the phase function ¢ (x; &) at every point
(x; &) € supp(a), then (1.4) holds for

2.5921

q > qn>2 :=2+T+0(n*2). (1.20)
Note that
4n+2 2 5
1 =2+ 5——=2+-+0@®n""), (1.21)
2nc—n—2 n

and therefore for large n, we have the order

Gn.1 <qn,2 < qnHZ < gn,HR < gn,GHI- (1.22)

When n = 3, the exponents in (1.22) are given by

1 3 1 1 1
34+ — <3+ —=<3+-<34+-<3+> 1.23
t <3ty <3 =334y, (1.23)

respectively. Here g, » with n = 3 matches Wang’s exponent [21].
As ¢(x; &) = (x, &) + t]&|* also satisfies Bourgain’s condition, we obtain the fol-
lowing immediate corollary of Theorem 1.3.

Corollary 1.4 (Improved Fourier restriction estimate) For g > gy 2, it holds that
H f GNWEHIER) £y ge H g N4 £ . (1.24)
[0, 1171 q

Recall Bourgain’s observation [3, Remark 3.43] that the phase function for the
Bochner-Riesz problem also satisfies Bourgain’s condition, we see Theorem 1.3 also
gives the currently best known bounds for the Bochner-Riesz problem. More pre-
cisely, for « > 0, the Bochner-Riesz multiplier of order « is defined by

2 o
m*© = (1-1eP) , §eRr".
+
As a corollary of Theorem 1.3 (also Theorem 4.1 below), we obtain

Corollary 1.5 (Improved Bochner-Riesz estimate on R”") For q > qyn 2, it holds that

[ D)1 gy S 1 o (129

whenever a > n(% — l) -5

Before stating the next corollary, let us discuss a prior attempt in breaking the
critical range of exponents in (1.9) for general Hormander operators. In [7], Gao, Li
and Wang, under the assumptions (H1), (H2)*, and the additional assumption

Go(x; £)/|Go(x; )] is constant in X, (1.26)

proved that (1.4) holds for g satisfying the range of Hickman and Zahl (1.19).
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By Theorem 2.1 and Lemma 2.3, one can check directly that phase functions sat-
isfying (1.26) also satisfy Bourgain’s condition. Therefore the bounds Gao, Li and
Wang obtained in [7] can also be improved to the one stated in Theorem 1.3.

The assumption (1.26) appears naturally in several interesting applications, in-
cluding the generalized Bochner-Riesz problem for non-degenerate hyper-surfaces,
the local smoothing estimates for fractional Schrodinger equations and sharp resol-
vent estimates outside of the uniform boundedness range. These applications were
worked out carefully in [7]. We include the latter two here.

Let u : R"~! x R — C be the solution to the equation

u(x,O):f(x)’ xeRn—l’ (127)

{ia,u +(=M)5u=0, (x,n)eR"™ xR,
where o > 1 and f is a Schwartz function.

Corollary 1.6 (Local smoothing estimates for fractional Schrodinger equations) Let
o > 1 and let u be a solution to (1.27). Then

”u”L‘I(R”’lX[l,Z]) fsa,ﬂ,n,é,[l ||f||L%(R"*1)’ (128)
whenever
1 1 o
p>m—na(5--)-=, (1.29)
2 q/ ¢

and q satisfies (1.20). Moreover, for each fixed q, the range of B is sharp.

The conjectured range for (1.28) to hold is g > nzT”l the same as the range in the
Fourier restriction conjecture.
The resolvent estimate for the Laplacian on R” is of the form

|(=a- Z)_lfHLfI(R") =Cpgn(@ ”fHLP(R")’ z€C\ 0, 00). (1.30)

Here C) 4., (2) is a constant that is allowed to depend on p, g, n and z. We are par-
ticularly interested in tracking the dependence on z, for fixed n, p and q.

Corollary 1.7 (Resolvent estimates) For g satisfying (1.20), we have

[ =A =27 f | o gny Sqn 2l HP0dist(z, [0, 00) 7| £l g gnys (13D
where
n+l1l n
Vg = 5 ; (1.32)

Moreover, for fixed q, the bound is optimal in 7.
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The study of resolvent estimates in (1.30) has a long history and can be dated
back to the work of Kenig, Ruiz and Sogge [17]. The authors there proved (1.30)
for optimal ranges of (p, g) for which the constant C, 4 ,(z) is independent of z.
These are called uniform Sobolev inequalities, and have found numerous applications
including unique continuation properties, limiting absorption principles, etc.

The conjectured range for (1.31) to hold is ¢ > nzT"l, the same as the Fourier re-
striction exponent. Moreover, if this conjecture turns out to be true, then by interpo-
lation with known results, it would imply (1.30) for all combinations of (p, q), with
an optimal dependence of C), 4., (z) on z.

In the last corollary, we discuss the connection of Theorem 1.3 to Sogge’s work
[18] and [20]. In [20], Sogge studied the Nikodym problem on general Riemannian
manifolds and proved that the Nikodym maximal operator satisfies better bounds on
manifolds of constant scalar curvature than on general Riemannian manifolds. This is
a strong indication that distance functions on manifolds of constant curvature satisfy
Bourgain’s condition. In the next corollary, we show that this is indeed the case for

S", the n-dimensional Euclidean sphere.

Corollary 1.8 Let a : S" x 8" — R be a smooth function supported away from the
diagonal. Let dist be the distance function on S". Then

H / NN ate ) ] SN S ey (133)

La(S
for every q satisfying (1.20).

Proof of Corollary 1.8 By cutting the support of a into finitely many pieces, we with-
out loss of generality assume that the support of a(x, y) is such that x is around the
north pole and y is slightly away from the north pole. Write

Xx=1, Xy 1= X2, y=O1, - 1= 1P, (1.34)

where x’ = (x1, ..., x,), Y = (1, ..., yn). Note that dist(x, y) = arccos(x - y). When
integrating in y on the left hand side of (1.33), we apply Fubini’s theorem and inte-
grate in y with \/1 — |y’|2 = r for some r and then integrate in r. For a fixed r, our
distance function can be written as

arccos(x1y1 + -+ -+ + Xp—1Yn—1 +xn\/1 —rr =y +r\/1 — P, (1.39)

where y” := (y1,..., yu—1). Therefore, to prove Corollary 1.8, it suffices to show
that (1.35) satisfies Bourgain’s condition in x” and y” variables. We will prove this by
checking the definition of Bourgain’s condition as in (1.10). By rotation symmetry, it
suffices to consider the phase function (1.35) near the north pole x" = 0 and y” = 0.
Next, we apply a Taylor expansion for (1.35) about x’ = 0 and y” = 0. After the
Taylor expansion, note that all linear terms in y” can be written as

14 O Py + -+ 4 Gt + O(x' 1)) yn—1. (1.36)
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We therefore apply the change of variables
XA O Py xt, s xnmt 4 O ) > e, (1.37)

to turn our phase function into a normal form. Let ¢” denote this normal form. In the
end, we just need to note that both matrices

2 a2
VZ,07¢"

V509", (1.38)

x'=0 y//:()s /=0 y//=0

are multiples of the identity matrix. This finishes the proof. O

It is conjectured (see Sogge [18]) that (1.33) holds for all ¢ > 2n/(n — 1). The
operator studied in (1.33) appears in the study of the Bochner-Riesz problem on Eu-
clidean spheres S". Let A, denote the Laplace-Beltrami operator, and

O<Ai <A <... (1.39)

the eigenvalues of —A,. Let E; be the one-dimensional eigenspace for —A, with
eigenvalue A;, and e; : L%(S") — L*(S") be the projection operator onto the
eigenspace E ;. We define the Riesz means of index o > 0 as

SE(f) :=Z(1—%)iej(f). (1.40)

j=1

One can follow the work Sogge [18] and Huang and Sogge [16], and deduce the
following corollary from Corollary 1.8.

Corollary 1.9 (Bochner-Riesz for spheres) Assume that q satisfies (1.20). We have
that

ISZCON Lagsny S NS Laggny uniformlyin L, (1.41)

whenever o > n(% — %) - % Moreover, the range of « is sharp for fixed q.

At the end of the introducion, we discuss the proof of Theorem 1.3. To prove Theo-
rem 1.3, we first prove a strong Polynomial Wolff Axiom (SPWA) for the phase func-
tion ¢ satisfying Bourgain’s condition, see Sect. 6. It is a nested version of the Poly-
nomial Wolff Axiom and generalizes the SPWA by Hickman and Zahl [13], which
was built on the work of Hickman-Rogers-Zhang [14] and Zahl [24]. One can com-
bine this strong polynomial Wolff axiom with the argument in [13], and prove (1.4)
for g satisfying (1.19).

To improve the range in [13], we further develop the idea of “brooms” in dimen-
sion n = 3 in Wang [21] for the Fourier restriction problem. In [21], the second author
introduced a notion of brooms. They enable one to exploit the feature that if the sum
of a collection of wave packets is highly concentrated locally in space, then this col-
lection must spread out on the far end, leading to new improvements on the range of
exponent for the Fourier restriction conjecture in R?.
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A dichotomy for Hérmander-type oscillatory integral operators 511

However, a key geometric argument in [21] regarding brooms relies heavily on the
space being three-dimensional. Even in the Fourier restriction setting, it was not clear
how one can most efficiently generalize the notion and construction of brooms in [21]
to higher dimensions. In the current paper, we come up with a slightly different notion
of brooms, which works in all dimensions and also in the setting of oscillatory integral
operators satisfying Hérmander’s conditions. This is done in Sect. 7.1. When proving
the relevant broom estimates (see Theorem 7.8 in Sect. 7.3), we use an argument
that can be viewed as a generalized pseudo-conformal transformation (Lemma 7.12).
By this transformation and a counting lemma (Lemma 7.10 below) the key broom
estimate is then reduced to what we call a Variety Uncertainty Principle. We state it
in the Fourier transform case below as we will use it to prove the general case.

Lemma 1.10 (Variety Uncertainty Principle) Given two (m — 1)-dimensional alge-
braic varieties Y1, Y2 in R*~! that are transverse complete intersections (see Defini-
tion 5.1 below). Let Z; C Y; be the part of Y; where every point is non-singular and
the angle formed by Ty, (Z;) and the space spanned by {€1, ..., ém—1} is < 1/(100n),
for everyi =1,2 and every z; € Z;. Here T, (Z;) refers to the tangent space and ¢
refers to a coordinate vector. Let 1 < Ry < R;. Denote!

Qi =N g (Z1), =Ny, /z5(Z2). (1.42)

Assume that F : R"~! — C satisfies supp(F) C Q5. Then

=112 Ry\"7"—9 2
<(—=
||F||Lz(QI)N(R2) | F]7, (1.43)
for every § > 0, where the implicit constant depends on n,m, deg(Z1), deg(Z>) and
3.

Lemma 1.10 may also be of independent interest as it can be viewed as a vari-
ant of the generalized Mizohata-Takeuchi Conjecture by Jonathan Bennett and Tony
Carbery, as stated in (9) in [2]. For the original Mizohata-Takeuchi Conjecture and
its influences, see e.g. the references in [2]. As one sees from the proof, Lemma 1.10
is proved by using the geometric information of neighborhoods of both the spatial
set and the hypersurface in the Fourier space at many scales, and can be viewed as
a result in the vein of Mizohata-Takeuchi but with much stronger assumptions about
the neighborhoods of the underlying sets at many scales.

Structure of the paper. In Sect. 2 we first give an equivalent characterization of
Bourgain’s condition, which is more straightforward to check, and then prove The-
orem 1.1. In dimension n = 3, the improvement of our result over Bourgain’s [3]
comes from a slightly more efficient way of constructing (curved) tubes that have
high overlapping.

In Sect. 3, we show that for phase functions ¢ (x; £) satisfying Bourgain’s condi-
tion, the corresponding tubes satisfy the polynomial Wolff axiom. We follow largely
the argument of Katz and Rogers [11].

Here A/ means neighborhood in R”~; in this lemma there is no R”.
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In Sect. 4, we introduce the standard wave packet decomposition and standard
reduction of Theorem 1.3 to a broad norm estimate (Theorem 4.2).

In Sect. 5 we apply a polynomial partitioning algorithm to decompose the broad
norm in Theorem 4.2. The algorithm is a slight variant of that in Hickman and Rogers
[12], with one difference that we need to have a better control of how fast cells shrink.

In Sect. 6, we prove the strong polynomial Wolff axiom (mentioned below Theo-
rem 1.3) for phase functions satisfying Bourgain’s condition.

In Sect. 7, we define brooms and prove the broom estimate (Theorem 7.8), which
is key to the proof of Theorem 4.2. It is worth noting that the broom estimate holds
for all phase functions ¢ (x; £) satisfying (H1) and (H2"), and does not rely on Bour-
gain’s condition.

In Sect. 8, we define bushes and prove bush estimates. They are used to handle
“small” grain resulting from the polynomial partitioning algorithm in Sect. 5.

In Sect. 9, we put all the ingredients together and finish the proof of Theorem 4.2,
the broad norm estimate.

Notation. We use x = (x, ) to refer to a spatial points in R”, and & or w for a
frequency point in R"~!. Denote 9; = oy, if 1 <i <n—1andd, = 9.

We use d for the degree of polynomials that we will use in the polynomial parti-
tioning lemmas. It is a large constant and is not allowed to depend on parameters like
R or A.

We will use a few admissible parameters

= L0 Ke by Ke Opm1 Ke -+ Ke 81 K §p Le €60 Kc €. (1.44)

Here C is some dimensional constant and the notation A <, B indicates that A <
Cc, lB for some large admissible constant C,, . > 1. These parameters have exactly
the same meaning as their counterparts §, o, ..., 8o, € in Hickman-Rogers” work
[12]. In the current paper, we need more of these parameters. For each 1 <n’ <n, let
8 —1/2 be such that

811’ <L 8n’—1/2 <Le Sn’—l- (145)

These new parameters will be used when we modify the polynomial partitioning
algorithm of [12].

For two positive constant A, B,by A < B we mean A < RO®) B,

For a function F : R" — C and a region Q C R", we say that F is essentially
supported on € if it decay rapidly outside 2. In other words, for x € R” \ Q, and
every N € N, it holds

|IF(x)| < CpnR7V, (1.46)

for some constant C,, . Here R > 1 is as in Theorem 4.2.

2 Bourgain’s condition and proof of Theorem 1.1

This section consists of two subsections. In Sect. 2.1, we will give an equivalent form
of Bourgain’s condition; in Sect. 2.2, we will prove Theorem 1.1.
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A dichotomy for Hérmander-type oscillatory integral operators 513

Bourgain’s formulation of Bourgain’s condition in [3] requires that one first writes
a phase function in its normal form, which differs from point to point. The equivalent
form below (see Theorem 2.1) can be checked directly for a phase function, and can
be more conveniently applied later when checking polynomial Wolff axioms (see
Sect. 3).

The proof of Theorem 1.1 in Sect. 2.2 generalizes Bourgain’s argument in [3] for
n = 3. Bourgain discovered that if a phase function fails Bourgain’s condition, then
we always have “Kakeya compression” phenomenon. When reflected in the proof,
this phenomenon means that the Jacobian determinant of the map X;(£) in Lemma
2.4 can be “small”, which further means that the image of the map (the relevant
Kakeya set) can also be “small”. This ends up being how we generalize Bourgain’s
result to higher dimensions.

2.1 An equivalent formulation of Bourgain’s condition

In this subsection, we will provide an equivalent formulation of Bourgain’s condition.
This equivalent formulation will be used in a few places below; for instance, it will
play a crucial role in Sect. 3 and Sect. 6 when proving polynomial Wolff axioms for
Hormander’s operators satisfying Bourgain’s condition.

Define

T;(x; &) = O, Vxp (X £), 2.1)
and
V&) =TI E) A A Tyo1 (X ). 2.2)
The main result in this subsection is

Theorem 2.1 Let ¢ (x; &) be a phase function that satisfies conditions (H1) and (H2).
It satisfies Bourgain’s condition at (Xo; &o) if and only if

((V - Vx)*VZ@) (x0; §0) is a multiple of (V - V) VE$)(x0350).  (23)
The constant is allowed to depend on xo and &.

Corollary 2.2 Let ¢ (x; &) be a phase function satisfying conditions (H1) and (H2).
That Bourgain’s condition holds at (Xo; &y) is independent of the choice of normal
forms.

Here by V. Vx, we mean
Vix;6)01 + -+ Vu1(X,8) 01 + V(X5 §) 0, 2.4

where V = WV, .. Vn)T and for the sake of simplicity we introduced the notation
0; =0y ifi <n— 1 and 0, = 9;. It is perhaps Worthy emphasizing that because of

the dependence of V on x, the differential operator (V Vyx)? is equal to

STOViVididi+ Y Vi Y aivi-a;. 2.5)

1<i,j<n 1<i<n 1<j<n

@ Springer



514 S.Guo et al.

Proof of Theorem 2.1. We first observe that if (2.3) is satisfied everywhere, then it is
also satisfied everywhere if one replaces V by A(x; £)V where A(x; &) is any smooth
scalar function. This can be seen by the straightforward computation

AV -V f =22(V - V2 f+4- (V- V5V - Vi f (2.6)

for every smooth function f = f(x; £).

Back to the proof of the Theorem. We first prove that if ¢ satisfies (2.3) every-
where, then it also satisfies (2.3) everywhere after any diffeomorphism in x only or
in £ only. Without loss of generality, we only need to verify this at (0,0) and can
assume the diffeomorphism always preserves the origin.

In order to show that (2.3) continues to hold after any diffeomorphism in x, in light
of the above property, we just need to show the “direction” of V - Vy is invariant. More
specifically, if 4 is a diffeomorphism that preserves the origin and write h(x) =y, we
use & to denote the tangent map of £ at the origin and only need to prove

BTy Ao ATy 1) | St A+ A Spy 2.7

where Tj is the original i’j (0; 0) = Vxg;¢(0; 0) as before and Ky j = Vyd;¢(0;0) is
defined similarly in the tangent space of (0; 0) in y coordinates.

Now everything can be computed in the tangent space of (0;0) in terms of n-
variate functions 8g_j¢(~; 0) and we now check (2.7) using linear algebra. View all

vectors T', S as column vectors as before. Let J denote the Jacobian g—;lo with J;; =
dxl |0 Then

S;i=JT.Tj1<j<n—1. (2.8)

It is then easy to compute by considering the (n — 1)-th tensor product of J acting on
the (n — 1)-fold wedge algebra that

NIZLSj =det(]) - (7 - (WIZ{T)). 2.9)

Finally, note that the matrix of hy is 3 3y <lo= J~1. By (2.9) we see both sides of (2.7)

are parallel to (J 1) - (/\ T ) and thus (2.7) holds.

Next we show that (2 3) Contlnues to hold after any diffeomorphism in &. First
note that this property is preserved if we do any diffeomorphism in &. Indeed, this will
multiply a nonzero scalar (equal to the determinant of the linear change of variable in
&) to the whole vector field V, and will result in a constant congruent transformation
in V2¢ everywhere.

Hence, it suffices to show that (2.3) gets preserved if one does a change of variables
of the following shape:

Ei—>&i+ STAJ-E + higher order terms (2.10)

where A (1 < j <n—1)isasymmetric (n —1) x (n — 1) matrix. Assume the Taylor
expansion of ¢ near the origin is

P(x:£) =a(x) +bE) + Y ci ,xls,+2x, 3 Ds+Z§,

ij
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+ Z JivinjinXin Xi 6,65, + 8(X; §) (2.11)
i1,02,]1, )2
where to simplify notation we wrote ¢ = x,,, the functions a, b are polynomials of
degree < 3 and g is a sum of terms of order > 3 in x and terms of order > 3 in &.
These terms will not play roles in verifying (2.3) at the origin. Here D; and E refer
to square matrices.
We use é to denote the new expression of ¢ under the change of variable (2.10),

and use T ;j and V to denote the counterpart of TJ- and V after the change of variable
(2.10). 5
Note that ¢ has the Taylor expansion

P €)= cijuibj+ ) xi- & (Di+) cijAE+ ) & X Ejx
i,J i J J
+ Z Jiviz jrin%i X €1 € + ZETAJ'S 'XTEJX (2.12)
i1,02,J1.J2 J

+ terms playing no role

Comparing (2.11) and (2.12), we see V and V differ at the origin by terms of order
at least 1 in x or &§. Denote Vo = (Vp 1, ..., Vo) to be the common value of V and

V at (0,0). Now
(V- VO V2$(0; 0) — (V - V) V2(0; 0)

:ZZ Vo,icij(2Aj) =0
i

where the last equality is because by definition, Vo is orthogonal to each (cyj, ...,
Cp j ) r . N

Next we compare (‘7 . VX)2V§¢~> and ( V. VX)2V§2¢. We will show that they are also
equal by using (2.11) and (2.12) to compute their difference. We begin by showing
that near the origin,

v - V)(x:§) = O(E| + IxI), (2.13)

which will greatly simplify our computation. Indeed, use the definition (2.2) of V and
V', we see that both vectors have the same constant terms. Moreover, observe that in

the wedge definition (2.2) of V and \7, all T have the same linear term in X, since the

coefficients of all x;, x;,&; terms are the same for ¢ and é. Hence V and V also have
the same linear term in x and (2.13) is seen to hold.
By (2.13), if we write

Vi E)=Vo+ Y xiU; + O+ IxP), (2.14)
i=1
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we can reduce the effect of both (V V,)? and (V VX)2 at the origin to the action of a
constant coefficient differential operator Dy = (Vo V)2 + Z Vo, (U i+ Vx). Hence
(V- V)P V24(0;0) — (V - V)V (0; 0)
=Do(¢ — $)(0:0) =Y 4V E;jVo)A;j +2)  CTUVpA, (2.15)
J J

where the column vector éj =(c1,j,-» c,,,j)T and the n x n matrix U has the k-th

column equal to l}k and (-); means the j-th component.
In order to show (2.15) gives 0, it suffices to show the stronger statement

2EjVo+UTC;=0,Vi<j<n—1. (2.16)
We prove (2.16) entrywisely. Take an arbitrary 1 < k < n, we need to prove
2Ej4-Vo+Ui-Cj=0 (2.17)

where E ; ik is the k-th row (or column) of E ;. To show this we recall how one obtain
Vo and Uk Recall from (2.2) and (2.11),

Vo=CiACa A+ ACn_i. (2.18)

To compute ﬁk, note Ehat it is the coefficient of xj in (2.14). Its computation boils
down to expanding the 7; in (2.1) and (2.2) into the constant term, the x; term and
higher terms. We see

ﬁkzzél;kAéz/\-uAén_l-l-ze]/\Ez;k/\“'/\én_]—i-“'
+2C A+ ACna A En_1:. (2.19)

Now there is only one nonzero term in the above expression, namely 2C A A
E; Gk A A C,1 1, that contributes to Uk C Hence

l}k . (_jj =2det(6’1, cee, éj_l, Ej;k, 6j+1, cee, én—l, (_jj) (2.20)
But we also have

Since the two add up to 0, we see (2.17), and thus (2.16) holds. This concludes the
proof that both terms in (2.3) at (0; 0) remain the same under the change of variables
(2.10), finishing the proof that the property (2.3) is preserved under every diffeomor-
phism in X only or in £ only.

Now we just need to prove that if the phase function is in the normal form (1.7),
Bourgain’s condition (1.10) atqthe origin coincides with (2.3). Indeed, in the Pormal
form, the expression of every T has no linear term in x and thus the action of V at the
origin is the same as 9, and the action of V2 at the origin is the same as 83, verifying
the above claim. O
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The first part of the above proof immediately implies the following useful corol-
lary.

Lemma 2.3 Ler A(x; &) be a smooth scalar function that does not take value zero.
Then for a phase function ¢ (X; &) satisfying conditions (H1) and (H2), it satzsﬁes
Bourgain’s condition at (Xo; &o) if and only if (2.3) holds with 1% replaced by M - V.

2.2 Proof of Theorem 1.1

Given a phase function ¢ (x; £), we would like to show that (1.4) may fail for some
q > nZT"] and some f € L. Let us turn to the dual form of it:

/ | / g@e N Da(x; £)dx|de SN gy, (222)

for g > 2. Let § >~ N~'/2. Consider a 8-net {&,} in the & variable. For each
q n— 1

«, we will introduce a curved tube T,, whose bottom is a disc of radius § and
length is about 8* with A to be determined. Let T denote the collection of tubes
{Ty} and let #T denote the number of tubes. Moreover, we will find a function
R=(Q(),...,2,-1(&)) such that for every « and every x € T,, we have

<s. (2.23)

Ve £) - RE)
Afterwards, let us set

g0 =g () =) ege” NOEE yp (x) (2.24)

o

where x7, is the indicator function of 7,, and €, takes £1 randomly. If (2.22) holds,
then

/max‘/ eiN[¢(x;s>—¢<x;éa>]a(X;E)dx)ds
o T,

S/(Z‘/ eiN[fb(X;E)—lf)(X;Sa)]a(X;s)dx‘z)l/zd%-
o Ty

which, by Khintchine’s inequality, is bounded by

"/4( / (Z x1,) /2dx) . (2.26)

We apply Holder’s inequality, and obtain

(2.25)

(2.26) S N4 1|70 (Y T b, 2.27)
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Next, we give a lower bound for the left hand side of (2.25). Recall the function 2.
Write

G E) =P (X &) + (Vep(X: £0), & — &) + O(5)

(2.28)
= ¢ (X §a) + (R(6a). § — Ea) + O, X €T
Therefore the left hand side of (2.25) is at least
5" Tl (2.29)
We combine (2.27) and (2.29), and obtain
sH/2 5 N—n/q(s—(n—1)| U Ta|1/2—1/q_ (2.30)
o

In the remaining part, we will construct {7} so that the union of these tubes is small.

So far we have been following Bourgain’s framework in [3]. The improvement over

Bourgain’s result in dimension n = 3 comes from the construction of the tubes {7, }.
Let us write our phase function in its normal form at the origin, that is,

(X E) = (x, &) +1{AE, &) + O(r|IE + Ix[*|E ). (2.31)

The following lemma is the key for the construction of {7, }.

Lemma 2.4 [If Bourgain’s condition fails at the origin, then we can find R with
Q(0) = 0 such that the following holds: Let X,(£) : R"~1 > R"~! denote the unique
solution to Ve¢ (x, t; &) = () in the x variable, then

| det Ve X, | = 0. 6)I"). (232)

fort, & small.

Let us assume Lemma 2.4 and finish the proof of Theorem 1.1. As a consequence
of this lemma, if we define

Ty ={(x,0) ¥ — X,(5) <8,0 <1 < 8"}, (2.33)
then (2.23) holds by mean value theorems. Here the value that A > O takes is not

relevant, that is, A can even be very close to zero. Next, pick A = 1/(n + 1). Lemma
2.4 then says that the union of the tubes is small:

Claim 2.5

) U Ta‘ <, 8. (2.34)

|y | <8*
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Let us first accept the above claim. For |£,| > 8*, we will construct tubes in the
same way. More precisely, we will cut frequency & space into balls of radius 8, and
on each ball, we repeat the above construction. Therefore

‘ U Ta‘ < §2whg=(=DA (2.35)
o

Substituting this into (2.30) will give us

22n2+n—-1 2n
> >

. 236
=702, "2 " n-1 (2.36)

This finishes the proof of the theorem, modulo the proof of Lemma 2.4 and the proof
of Claim 2.5.

Proof of Lemma 2.4. Let us start with (2.31). Write

G E) = (x,&) +1({AE, &) + 17 02(5) + $a(x; §), (2.37)

where Q2 (£) is a quadratic form in £. The assumption that Bourgain’s condition fails
at the origin is then equivalent to saying that

Hessian(Q>) is not a multiple of A. (2.38)
Let = (R21(§),...,2,-1(£)) be smooth with £(0) = 0. We need to solve
X +1AE + 17V 02(8) + Veu(x; &) = Q(E). (2.39)

It is not difficult to see that when x and & are small, the solution is unique. We solve
(2.39) and write the solution as

X (£) = —1tAE —1*BE + 1Py (§) + 12 Py ()

n_ - (2.40)
+ Y 1) + R6) + 0(. 5",

j=3

where B is a (n — 1) x (n — 1) matrix that is not a constant multiple of A, B =
Ve 02(§), & depends on £, P; (&) is a polynomial of degree n — i with lowest order
term of degree 2 for i = 1,2, and P;(£) is a polynomial of degree n — i with lowest
order term of degree 1 for j > 3. Here P; (1 <i <n) depends on £, but it is important
that the matrix B does not depend on . Before computing V¢ X;, let us do the change
of variables

—AE 4+ P1(§) — An. (2.41)

Write the right hand side of (2.40) in the n variable:

n
tAn+ 2B+ 2Py + Yt/ Pi) + @ )+ 0. = X[(). (242)
j=3
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where P; (1) is a polynomial of degree n — 2 with lowest order term of degree 2, and
P]/. (n) is a polynomial of degree n — i with lowest order term of degree 1 for j > 3.
As the change of variables in (2.41) is non-degenerate, in order to guarantee (2.32),
we just need to show that

|detV, X;|= 0@ m"). (2.43)

When computing (2.43), we will see more clearly why it is convenient to do the
change of variables in (2.41). Write

X, () =tAn+1*Bn+ & () + ¢4 (t, ). (2.44)
Note that the lowest order term in ¢y, jointly in ¢ and » variables, is four. Compute
V, X, =tA+ 2B+ V,Q () + V,0,(t, ). (2.45)

Next we will compute the determinant. As A is non-degenerate, when computing the
determinant, we can without loss of generality assume that A is the identity matrix.
Moreover, by using Jordan normal forms for B, and using the fact that B is not a
multiple of A, we can therefore without loss of generality assume that B is of the
form [b;;]1<i, j<n—1 With b;; = bjz = 0 for every i > 3, and the leading principal
minor of order 2 is one of the following forms

v, 1 y', 0 Y. =W
|:0’ y:| or [0’ Oi| or |:)/2, " ] (2.46)

where v, ¥, v1,y2 € Rand y’' # 0, y» # 0. Write

*, *, ll,yv 1[,)1!
~ *, *, Ly, liy, ...
VX)) =V @ 0+ |30y 3y Loy Loy . (2.47)

30ys 3y Ly, iy,

cey ceey ceey ceey

where i; , means that the lowest order in ¢, y is i, for i =1, 3. If we are in the first
case in (2.46), then we pick Q' such that

0, 0, o
<~ |1, 0 o ..
Vi =10 0 o ... o

i _1» _17 01
o 0 o

cey ey ceey

v,Q = (2.49)
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The last case in (2.46) can be handled in the same way. These choices of Q' will

guarantee that (2.43) holds. In the end, to find 2 from S~2/, we just need to revert the
change of variables in (2.41). Il

Proof of Claim 2.5 Let us start by sketching the ideas in the proof. To begin with,
we replace the set Uazlsa‘ilgk T, by a larger set N2s(X(B)), where X is the map

(&, 1) > (X,(&),1), B is a ball of radius O(8*) around the origin and Ns refers to
the 28 neighbourhood. Now intuitively the volume of N5 (X (B)) depends on the vol-
ume of X (B) and the “surface area” of X (B). We will control the volume of X (B) by
Lemma 2.4. For its “surface volume”, we first observe that if ¢ and € are polynomi-
als, d X (B) is contained in a nice semialgebraic set of dimension < n and hence has a
controlled “surface volume” by tools in real algebraic geometry. Finally, the general
situation can be reduced to the above polynomial situation by a Taylor series approx-
imation. To establish the semialgebracity above, we will use quantifier elimination
based on the Tarski-Seidenberg theorem. For a recent application of quantifier elim-
ination in Kakeya and restriction that also helped us to motivate the present proof,
see [11]. The tools we need from real algebraic geometry can be found in references
[1,23].

We now present the proof details. First we claim that without loss of generality,
one may assume ¢ and all components of € are polynomials of degree O, (1). To
see this, let M > 5 be a large positive integer to be determined later and replace
¢ and 2 by their degree M Taylor approximations. Since M > 5, ¢ will stay as
a legitimate phase function and Bourgain’s condition continues to fail at the origin.
Moreover, whenever |t|, |£,| < 8*, the change of (&) is O (8™ *TD*)_ Thus for these
t and &, the distance between the new X;(&,) from the old one is O (8M+D*) by
the nondegeneracy of ¢. Since we only care about the volume of the union of §-
neighborhoods, it suffices to choose M > % so that each old T, is contained in the
twice-thickening of the corresponding new 7,,. Now the old situation is reduced to
the new situation where ¢ and all components of £ are polynomials of degree O, (1).

Take B to be a ball of radius O(8*) centered at the origin in the (£, ) space
containing all (£, ) with |£], |¢| < §*. Let X denote the map (&, 1) — (X, (£),1). X is
smooth near the origin by the implicit function theorem. By definition, (. ¢, |<s* Tw
is contained in N5 (X (B)). It suffices to prove

[Nas (X (BY)| 55 872 (2.50)
Let us understand the geometry of X (B). For a point in d X (B), either it is in X (B)
and hence in X (Sing(X; B)) where Sing(X; B) is the singular set of X inside B, or
it is outside of X (B) and hence by a compactness argument it is in X (d B). Since
Nas(X(B)) € X(B)|_JNas(dX (B)). (2.51)
we have

Nas(X (B)) € X (B)|_JNas (X (Sing(X; BY)) | Nas (X (8B)) (2.52)

and will next bound the measures of all three sets on the right-hand side from above.
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First we bound |X(B)|. By the definition of X and Lemma 2.4, |detVX| =
dethX,| = O(|(t, &)|"). Integrating on B we get

XB)| 1Bl sup |& 0l 6™ 2.53)
&.nDeB

Next we bound |./\/25 (X (Sing(X; B))) ‘ By the chain rule and the non-degeneracy of
V. Ve near 0, we can rewrite

X (Sing(X; B)) = {(x,1) : A(E.1) € B s.t. Vegp(x, 1; §) = (&)

(2.54)
and V¢ (x. 15 §) = Ve R(E)).

We will analyze this set using tools in real algebraic geometry and first do some
setup. We recall a subset of some R is semialgebraic if it can be obtained by finitely
many steps of taking unions, intersections, or complements from algebraic sets. The
complexity of a semialgebraic set is the smallest possible sum of the degrees of all
polynomials appearing in a complete description of it. Section 2 of [11] has a good
introduction to basic properties of the above notions, as well as a quantitative quanti-
fier elimination (or a quantitative Tarski-Seidenberg theorem) that we will use below,
from analysts’ viewpoint. A semialgebraic set in RV has a dimension that is a non-
negative integer < N. See Chap. 5 of [1] for its basic properties.

Note that the ball B is a semialgebraic set of complexity O(1). Moreover, ¢ and
components of £ are already polynomials of degree O, (1). Hence by quantitative
quantifier elimination (or the quantitative Tarski-Seidenberg theorem, see Theorem
14.16 of [1]), X (Sing(X; B)) is a semialgebraic set of complexity O, (1). By Sard’s
theorem, X (Sing(X; B)) has measure zero and thus has dimension < n (by Propo-
sition 5.53 of [1]). Now by Corollary 5.7 of [23], X (Sing(X; B)) can be covered by
0.(1) x (8*~1H@=D many §-balls. Hence

[Nas (X (Sing(X; BY)| S5 8+ 2.55)

We remark that Corollary 5.7 of [23] can be viewed qualitatively as a generalization
of Wongkew’s theorem [22] to the semialgebraic setting.

Finally we bound |J\f25 (X (0 B))I via a similar application of real algebraic geo-
metrical tools. First write

X(0B) ={(x,1): (€., 1) € 0B s.t. Ve (x,1; &) = R(E)}

and we see X (0B) is a semialgebraic set of complexity O; (1). Since X is smooth
on the dilation 2B, X (d B) has zero measure and thus has dimension < n. Applying
Corollary 5.7 of [23] as before we get

N2 (X (0B))| 55, 8+, (2.56)

Combining (2.52), (2.53), (2.55) and (2.56) and noticing that our A = #, we finish

the proof of the claim. O
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3 Polynomial Wolff axiom: proof of Theorem 1.2

In this section, we will prove Theorem 1.2. In particular, we will see that Bourgain’s
condition also appears very naturally in the proof, see (3.32)-(3.34). This may not be
surprising, as polynomial Wolff axioms are “opposite” to Bourgain’s Kakeya com-
pression phenomenon (see the beginning of Sect. 2 for a brief discussion): Polyno-
mial Wolff axioms say that if a family of tubes are supported near algebraic varieties
in R”, then this family of tubes must point in a “small” number of directions; on the
other hand, Bourgain’s Kakeya compression phenomenon says that (curved) Kakeya
sets may concentrate near hyper-surfaces in R”.

In order to prove this theorem, we first state and prove a generalized version of
Polynomial Wolff Axiom by Katz-Rogers [11] as follows. We first introduce more
notation. Let n > 2. Suppose the map

ORI xRx R R (3.1

is smooth on a neighborhood of [—1, 172"~ with || ®|| o« < 1, Vk > 1.2
By a é-tube for cap 6 with respect to ®, we mean some

Tgyv,0(@, D) :={(x, 1) eR": [x — @(v,7,8)| <6, [t] <1} (3.2)

where the § in the name indicates the “thickness” and the 1 in the name indicates the
time span of the tube. For a collection T of tubes {7, , 4 (8, 1)}, we say that the tubes
in T point in different directions if all the underlying 6 for them are distinct.

Theorem 3.1 (Generalized Polynomial Wolff Axiom) Suppose that for every choice
ofvel[-1,11""Yand £ e [-1, 11"},

86
f [det(Vy @ (v,1,8) - M+ Ve D (v, 1, 8))|dr 2 8C€.VM € Mat,—1)x(n—1) R)

3.3)
for some constant C that depends only on the dimension n, where Mat(,—1)x (n—1) (R)
stands for the set of (n — 1) x (n — 1) real matrices and the bound is uniform and
independent of the choices of v,& and M. Then for every collection T of §-tubes
pointing in different directions,

#HT eT:TCS}<Cn, E,e)|S|s! "¢ (3.4)

whenever S C B" is a semialgebraic set of complexity < E.
Moreover the implied constant only depends on bounds of finitely many (depend-
ing on n, E, €) derivatives of ®.

Proof of Theorem 3.1 When first reading the proof we recommend fixing ®, and it
will be easy to see from the proof that the constant only depends on bounds of finitely
many derivatives of ® when we are allowed to change it.

2Depending on the choice of €, we will only use the boundedness of finitely many derivatives of ® in the
proof.
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In the proof we always think of € as fixed and always assume ¢ is sufficiently small
(that can depend on ¢) since otherwise the conclusion is easily seen to hold. Without
loss of generality, we always assume |S| > §"~! with a suitable absolute constant,
since otherwise no 7 can lie in S. Our proof will largely follow that of Theorem 3.1
in[11].

Our & is not necessarily a semialgebraic map and we would like to first make it
semialgebraic by a Taylor approximation. Fix a 0 < ¢; < min{0.1, €} and fix a large

3 . . .
K > iil (with more constraints to be determined on both parameters). Let N be

the quantity on the left hand side of (3.4). We may assume N > 1. Without loss of
generality we can assume

Ty 0008, 1) €T : s, 1.0(8, 1) C S, 6] <8, [v] <81} > 82~ DaN  (3.5)

and will focus on giving an upper bound of the number of these T, , (8, 1). Without
loss of generality we assume @ (0) = 0.

Now replace ® by its K-th Taylor approximation at the origin, called ®;. The new
map ®; is still in C*°. For each T, , o (8, 1) in T such that |£5| < §€! and that |v| <
8!, we form a corresponding shrunken tube T, , o, (8/2, 26!) that is defined similar
to (3.2) but have thickness §/2 and time span |¢| < 2§€!. By Taylor approximation it
is easy to see the entire

Ttpv,0,(8/2,28) C Tgy v, 0(8, 1) C S. (3.6)

Moreover, by Taylor approximation, we see that the following analogue of (3.3) con-
tinues to hold for each |§] < §¢€! and |v| < §¢! aslong as K 2 1 (when § is sufficiently
small) and M € Mat(,—1)xn—1)(R) are such that all entries of M are <5~ ":

€1
[ e o) M Ve el 20 59 G)
€l
Like Katz-Rogers did in [11], we define a set
L={&,v): Tz y.0,8/3,25) C S}. (3.8)

Now the map &; is algebraic, by definition L is semialgebraic with complex-
ity Oy, E.¢;, k(1) (for the definition of semialgebraic sets and their complexity
and how to arrive at the present claim, see Sect. 2 of [11]). Note that if a tube
Tey v,0,(8/2,28) C S, then keeping v and perturbing & by an arbitrary small dis-
tance proportional to §, the resulting (&, v) will end up in L by definition. Hence we
know the measure

HE:Tust. (5,v) e L} =2 82 Day . sn—l ~ g=DH2=Deay — (39)

Like in the proof of Theorem 3.1 in [11], next we apply the Tarski-Seidenberg theo-
rem to obtain a semialgebraic section L’ C L of complexity O, g, k(1) consisting
of a single (&, v) for each & appearing in the set in (3.9). Arguing like [11], we see L’
is an (n — 1)-dimensional subset of RZ*~2, Using Gromov’s lemma (cited as Lemma
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2.3 in [11]) in the identical way as in pages 1711-1712 of [11], we find two poly-
nomial maps F and G : [0, sl — R with deg F,degG = Oy, E ¢,k (1) and
I Fllct, IGllcr <1 such that

1G([0, 87" ™1 2 ey x 8T DTCAN (3.10)
and that
(®1(F(x),1,G(x)),1) € S,Vx €[0,81" ! and V|¢| < 8. (3.11)

For technical reasons that we replaced ® by ®; which does not need to satisfy (3.3)
but instead only satisfies the weaker (3.7), we now pass to a subset B of [0, §¢! 1l
where G has reasonably large Jacobian. Define

B={xe[0,8" 1 :|detV,G| Zp.p.e .k s" VTN, (3.12)

We see that if the implied constant above is carefully chosen, by Chebyshev we con-
tinue to have the following inequality similar to (3.10):

|G(B)| Zn,E,er,x 8" VTEON, (3.13)

Now like in [11], we look at the volume of
A={(P(F(x),t,G(x)),1):x € B, [t]| <5} (3.14)

On one hand, A is contained in S and thus
Al <1S]. (3.15)

On the other hand, we can bound |A| below by calculus. Note that @1 is a polynomial
of degree K and that F' and G are polynomials of degree O, ¢, x(1). Hence by
Bézout’s theorem for every fixed ¢ the map

x> O (F(x),t,G(x)) (3.16)

1S Oy E,¢e;,k (1) to 1. Thus

€1
N /5 / V2 (@1 (F o), 1, GO ldxdr
—s1JB
§€1
= / |det(Vy, @1 (F(x),t,G(x)) - Vo F + VSCDI (F(x),t,G(x)) - V,G)|dxdt
_s1JB

8€1

= / | det(V,G)l
B

§€1
/ |det(Vy @1 (F(x), 1, G(x)) - (Vo F - (VxG) 1)
8¢l

+Ve @ (F(x),t,G(x)))|dedx. (3.17)
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Note that | F||c1, [|G|lc1 <1 and that for all x € B,
|det VG| 2, p.ep.x 8"7VTCEAN > gn=DiCer (3.18)
we see that each entry of (V, F - (V,G) N is
SnEek 87 0TDTC <57 (3.19)

if § is sufficiently small. This allows us to invoke (3.7) to obtain
Al Zn.E.e1.K §ce / |detV,G(x)|dx. (3.20)
B

Use Bézout again and notice (3.13), the right hand side is
~nEer.k |G(B) Zn, e,k 8" VTCIN. (3.21)
Hence
Al Zn ke 8" DTEON. (3.22)
Combine (3.15) and (3.22), we obtain
N S ke k |1SI8T7C (3.23)

It suffices to take € to be a suitable multiple of € depending on the above constant C
(and fix K accordingly as in the beginning of the proof). g

Before proving Theorem 1.2, we also state and prove an elementary lemma on the
averaged size of determinants.

Lemma3.2 For A, B € Maty«(R) and a measurable E C R, we have
/ |det(rA 4+ B)|dt > |E[*F!  det(A)]. (3.24)
E

Proof of Theorem 3.2 Without loss of generality we can assume det A # 0. We may
further assume A = I since otherwise we can replace A by I and replace B by BA™!
and notice tA+B=A-(tI + BA™").

Now det(¢1 + B) is a monic polynomial gg(¢) in variable ¢ of degree k. Factorize
gp over C and notice that the set of # € E with distance > 5 against each root of

gp has measure at least % For each such ¢,

|E ¥

(3.25)

This finishes the proof. O

Note that the key point of Lemma 3.2 is that the estimate (3.24) is independent of
B. With the above preparation we now prove Theorem 1.2.
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Proof of Theorem 1.2 By the non-degenerate assumption of ¢, for sufficiently small
(v, t, &) one can find a unique ® = ® (v, ¢, x) near 0 such that

(Ved)(D,1;8) =v. (3.26)

Let us assume the above can be done for all (v,¢,&) € [—1.5, 1.5~ without

loss of generality since otherwise we can perform a constant rescaling. It suffices to
show that our & satisfies the condition (3.3) since we can then use Theorem 3.1 to
conclude the proof.

By (3.26), we get

(Ved) (P (v,1,8),1:8) =v. (3.27)
Differentiating with respect to & and v respectively, we deduce
ViVigp - Vi + Vip =0 (3.28)
and
ViVed -V, & =1. (3.29)

Note that we have adopted the abbreviation that ¢ is evaluated at (®(v,1,£),1; ).
By the non-degeneracy of ¢, we know |V, Ve¢| ~ 1. Hence

56
/ |det(Vy®(v,1,8) - M + Ve D (v, 1, 8))|de
5€

86
:/ | det(V, Vg - Vy @ (v, 1,6) - M 4 V Ve - Ve D (v, 1, £))|dt

86
:/ |det(M — ngb(d)(v,t,é),t;é)ﬂdt. (3.30)
65

Recall we only need to verify (3.3) for ®. In light of (3.30), it now suffices to show
that the right hand side of (3.30) is 2 8"¢ (independent of the choice of M, v €
[—1, 17" ' and &€ e [—1, 1] D).

From now on we fix v and omit it from place to place, and all the estimates will
be uniform in v. For simplicity we use X;(§) to denote ® (v, ¢, §) below. Denote

A(1:6) = Vi (X, (8), 15 €). (3.3D)

We claim that for all ¢ € [0, 1], & € [0, 11"1, A &) — A(0; &) as a matrix is propor-
tional to a matrix B(£) independent of ¢. This will be refered to as Claim (x). We will
prove this claim by finding B (&) explicitly. Compute

0AW§) = (Ve 8 X: ) V2 (X1 (), 1: ) + 0 VEG(X(€). 1 6)
(3.32)
=[(V-v)vig|xi@).1:8)
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where V := (0;X¢, 1). Note that if we differentiate both side of (3.26) in ¢, then we
obtain

0 X; - ViVep(X:(6),1:8) + 0, Ve p(X;(§),1;6) =0. (3.33)

This means at the point (X, (&), t; &), the vector field Vis parallel to the one defined
in (2.2). Moreover by a similar computation, we obtain that

o 4w e =[(V-w) Vo] @16 (3.34)

for every j > 1. By Lemma 2.3, 8t2A(t; &) is always parallel to 9;A(t; £). Hence
by considering the time derivative of the quotient of two entries we see d; A(t; §) is
always parallel to 9, A(0; £). By our non-degeneracy assumption (1.2) for ¢, we see
9;A(0; &) has norm and determinant ~ 1 and call it B(§). Since 9; A(z; £) is always
parallel to B(§), we see that Claim (x) holds.

Now by Claim (), we assume

A(t;8) = f(t;6)B(E) + A0; §) (3.35)
for some scalar function f. Since
0 A(t; 8)i=0 = B(), (3.36)

we see that the time derivative of f is 1 at = 0. By compactness, the range of f(¢; £)
for |f| < &€ has measure > C§€ for some universal C > 0 independent of & € [—1, 1]
and €.

We are in a position to apply Lemma 3.2 to the right hand side of (3.30). Note that

M= Vip(D(v,1,8),1:6) =M — A(t; §) = (M — A(0; §)) — f(1:£)B(§). (3.37)

We see the right hand side of (3.30) is bounded below by C§"€ det B(£§) > C§"€, thus
concluding the proof. O

4 Preliminaries for the proof of Theorem 1.3

This section is a preparation for the proof of Theorem 1.3. Materials in this section
are standard: We follow the frameworks of Bourgain and Guth [4], Guth [9], Guth,
Hickman and Iliopoulou [10], Hickman and Rogers [12] and reduce Theorem 1.3 to

a broad-norm estimate (see Theorem 4.2 below).
For A > 1, denote

¢M (% €) =rp(X/1; ), a”(x;§) =a(x/A; €). 4.1

Define an operator
T = [ 500 ) £ )ds. 42)
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Note that 7% f is just a rescaled version of the operator in Theorem 1.3, and we use
this rescaled version as we will use the wave packet decomposition and uncertainty
principles to bound 7. In the rest of the paper, we will prove the following Theorem.

Theorem 4.1 If ¢ is assumed to satisfy (H1), (H2") and Bourgain’s condition at
every point, then

7% f 1o,y Septra AN flILr (4.3)

for every p > g, 2, defined in (1.20), ball B, C R" of radius » > 1 and every € > 0.

For the sake of simplicity, we will assume that our phase function ¢ is of the
normal form. To prove (4.3), it suffices to prove

IT* £ o5 Secpstia RS Do, (4.4)

forevery | <R < Al=€ and every cube Bg C Bj. We will run an induction on both
parameters A and R. The base case of the induction A = R =1 is trivial. Let us
assume that we have proven

1% £l ooy Septia RN f 1z, 4.5)

for every A’ <1/2, R’ < (1')!~¢ and every cube By C B, . Our goal is to prove that
the same holds with A and R.

4.1 Wave packet decomposition

Let 1 <7 < R and take a collection ®, of dyadic cubes of side length %r’l/ 2
covering the ball B"~1(0,2). We take a smooth partition of unity (¥9)geo, With

supp ¥y C 156 for the ball B"~1(0,2) such that
|08 va]| oo Sa 2

for any o € Ng_l. We denote by wy the center of . Given a function g, we perform
a Fourier series decomposition to the function gy on the region %9 and obtain

172 "1 '
g)Ys(w) - Ly, (@) = (r—) Y @) T Ly, ().

2
ver!/2zn-1

Let % be a non-negative smooth cutoff function supported on 19—19 and equal to 1 on
%0. We can therefore write

172y "1 e
) > @ve) e P (w)

verl/2zn-1

g(w)Pp(w) - Yo () = (rz—n

@ Springer



530 S.Guo et al.

If we also define

1/2

n—1
g0 (w) := (rz—) (8¥0)" ()X V" Pp (w)
T

then we have

8= Z 80,v

0,v)€®, xr1/2zn-1
Forw e B" !, 7/ € B" ! and t € [0, 1], let us define a function ® = &(z/, 1; w) by
0P (P, 1 w), 1 0) =2, (4.6)

We refer to equation (4.6) in [10, page 275] for a discussion on the definition of &.
For 6 € B" ! and v € B"!, define the curve yQI’U :[0,1] — Rr-1 by

Voo (1) i= (v, 1; wp), 4.7)

where wy is the center of 6. Moreover, for given (6, v) let us define the rescaled curve

O =10(5) (48)
Yo.v 1) =AY v/a VA :
Let Fg,v be the map
5= g, (0,0, 4.9)

where ¢ € [0, A]. Define the curved r%” -tube as

Tp.p = {(x, N:lx =y, <r'/? 1t e]o, r]}. (4.10)

The curve Fé" , is referred to as the core of Ty ,. This finishes our wave packet de-
composition for a ball of radius r centered at the origin.

Next, let us define the wave packet decomposition for a ball not centered at the
origin. Fix xg € B(0, A) and consider the ball B(xq, ). For g : B" ! 5 C integrable,
define

27i9"(%0:0) g (49

g(w):=e
so that
T)‘g(x) = fkg(f() for X = x — Xxo,

where T* is the Hoérmander-type operator with phase ¢* and amplitude a* given by

P(x; ) ;:¢(X+ );_O;a)) —¢(%;a)> and a(x; w) ::a(x+ ?;w).
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If x € B(xg,r), theg X € B(0, r), and we can therefore apply the wave packet decom-
position above to T*g. Moreover, notice that the core curve of Ty , is given by the
collection of X € B(0, r) satisfying

X X v X0
h (X+7,wg>—x+3w¢ (T,w@). 4.11)
Set
v (x0; @) := 3¢ (X0; ®) . (4.12)

Under this notation, the core curve of Ty , can be written as the image of the map

T8 v xgicn) = (VQUW(XW&))O), t) @.13)
with ¢ € [0, A]. Define curved tubes
Ty.o(X0) 1= X0 + {(x, D1 = ¥ ok g D <7122 1 €10, r]}. (4.14)
Thus the function
T*(8)9,0(x —X0) (4.15)
is essentially supported on Ty ,(Xo) if we restrict ¢ € [#y, ty + r] where xo = (xp, 1)

We will use T[B(xo, )] to denote the collection {Tp,,(X0)},v). Moreover, we write
0(T) =0 for atube T = Ty ,(Xp). To simplify notation, we also define

_midht . ~
87y (x0) (@) 1= €TV (8, (). (4.16)

Under this notation, we can write

Thm= ) Trgr®. (4.17)
TeT[B(xp.r)]

This finishes our wave packet decomposition associated to the ball B(xg, r).
4.2 Reducing to broad term estimates

We define Gauss maps and rescaled Gauss maps. Define

Go(X; &) :=0¢, Vx A -+ - AN Og,_ Vxop. (4.18)
Moreover, define
Go(x; &)
G(x; &)= ———. 4.19
%8 = 1Go o) @19

Define the rescaled Gauss map

G (x; &) := G(x/1; £). (4.20)
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Let K > 1. We divide B"~! into caps 7 of side length K~!. Let g, denote g - 1. For
X € By, denote

G*x;1):={G*(x;€) : £ e T}. 4.21)

Let V C R” be a linear subspace. Let A(G)‘(x; 7), V) denote the smallest angle be-
tween any non-zero vector v € V and v’ € G*(x; 7). Moreover, we say that T ¢y g V
if £(G*(x; 1), V) > K~!; otherwise, we say T €x ¢ V.If xand K are clear from the
context, we often abbreviate 7 ¢4 x V to 7 ¢ V. Next, let us introduce the notion of
broad norms. Fix Bg2 C B centered at Xg. Define

B = min ( max T* v ) 4.22
HT'\g( KZ) Vi VreGr—1n) e Vs I gT“LI (By2) ( )
for any 1<a<A

Here Gr(k — 1, n) is the Grassmannian of all (k — 1)-dimensional subspaces in R",
and k is to be determined, and A is a parameter that is less important and its choice
will become clear later. For U C R", define

A . |Bg>NU| 1/p
IT*gllgLy W) = (Z WW%(B,@) : (4.23)
B>

This is called the broad part of T g.
For2 <k <n —1, denote

n—1 k—1"2 2
Thz(n, k) = + [T~ (4.24)
3 6 112i+1

We will prove

Theorem 4.2 (Broad norm estimate) Let2n/5 <k <n/2, and

1

p>pnk) =24+ ——-——. (4.25)
" Tz (n, k) + 155
Then for every € > 0, there exists A such that
2 1-2
1T glpey sy SKoe RENEITE N8N (4.26)

for every K > 1,1 < R <X, where Br C B, is a ball of radius R. Moreover, the
implicit constant depends polynomially on K .

Recall that when ¢ (x; &) = (x, £) + |€|?, Hickman and Zahl [13] proved (4.26)
for all
1

. 427
Tz (n, k) “-27)

p>2+
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Theorem 4.2 provides a slight improvement in this case. When k is outside the range
[2n/5, n/2], we also obtain improved broad norm estimates. As they are irrelevant
for the asymptotic formula in (1.20), we do not state them here.

It is standard in the literature to reduce Theorem 4.1 to Theorem 4.2. For instance,
by Proposition 11.1 in Guth-Hickman-Iliopoulou’s work [10], if

2
<p=<2+4+-—— (4.28)

2 )
* k—2

2n —k
then Theorem 4.2 (for some fixed k) implies Theorem 4.1 for the same p. To see the

asymptotic formula in (1.20), we set k = vn and

4
pnlk) =2+ —, (4.29)

solve for v, and then obtain

4 1 _n
Gn2=2+-—"-—+0mn"). (4.30)
2—vn

We refer to the appendix of [13] on how to control I'yz(n, k).
When proving Theorem 4.2, we will apply a wave packet decomposition

g= Y  gr. 4.31)

TeT[Bg]

By pigeonholing, we can assume that ||gT ||2 ~ ||gT/ , forevery T and T'.3

5 Polynomial partitioning
5.1 Preparatory work

In this subsection, we state a few definitions that will be useful in the forthcoming
polynomial partitioning algorithms.

Definition 5.1 (Transverse complete intersection) Let Py, ..., Py—;m : R" — R be
polynomials. We consider the common zero set

Z(Pi,...,P_p) = {x eER":PI(x)=--=P,_,,(x) =0}. 5.1
Suppose that for all z € Z (Py, ..., P,_n), one has
n—m
/\ VP;j(z) #0.

J=1

3This will be used in a counting lemma below (Lemma 7.10).
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Then a connected branch of this set, or a union of connected branches of this set, is
called an m-dimensional transverse complete intersection. Given a set Z of the form
(5.1), the degree of Z is defined by

min <1_[ deg (Pi)>

i=1

where the minimum is taken over all possible representations of Z = Z(Py,...,
Pn —m)-

Definition 5.2 (Tangent tubes) Recall the parameters in (1.44). Let r > 1 and Z be
an m-dimensional transverse complete intersection. A tube Ty , (Xo) € T [B (X0, 1)]
is said to be r—1/2tdm -tangent to Z in B (Xg, r) if it satisfies

1. Ty (X0) C Ny121n (Z) N B (X0, 7);
2. Foreveryze ZN B (Xp, 1), ify € Ty, (Xo) with [z —y| < r1/2+%m then one has

£ (G (y; wp), T,Z) S r1/2H0m,
Here, T, Z is the tangent space of Z at z.

Definition 5.3 Given a function f : B"~! — C, we say that it is concentrated on wave
packets from W C T[Bg] if

| frlloe SR 1], (5.2)

T¢W

Here R is from Theorem 4.2.
5.2 Partitioning algorithms: part |

In this subsection, we run the first part of the polynomial partitioning algorithm. It is
a variant of the algorithm in Hickman-Rogers’ work [12] with two main differences.

The first difference is that, after reaching an algebraic dominant case, we will not
compare contributions from the tangential case and the transverse case, but instead
keep both terms and continue to do polynomial partitioning for both terms. This will
be needed in Sect. 7 when we construct brooms.

Let us explain the second difference. In the first algorithm in [12, page 247], the
authors there did not need to control how fast cells shrink. In other words, each time
when they see a cellular case, they simply decrease the radius parameter p; by a
factor of 2 (see for instance equation (31) in [12, page 253]). If in the current paper
we simply repeat their algorithm, then we will not have good control of the non-
admissible parameters D, D,,_1, ... by R (see Lemma 5.10 below), which was not
needed in [12] and is crucial in our inductive argument in Sect. 9.

In order to control how fast cells shrink, in Lemma 5.4 we require cells to have
diameter at most r/d, instead of /2. This change also brings in changes in how the
algorithm runs. For instance, in the last equation in [12, page 255], the authors there
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simply let d—° absorb the constant 2 from the above r/2, and this steps needs to be

done more carefully in the current paper as d % certainly can not absorb the factor d.
4

By pigeonholing, we can find a collection B of balls of radius K 2 such that

1
5 ” T}\g”BLI’:’A(B;(z) = H T)Lg||BL£A(BK2) = 2” T)Lg”BLf.A(B;(Z) (53

for two arbitrary B2, B}, € Bg2 and

|| T)»g”lI;L,]zA(BR) < (log R)l() Z ” T)»gHII;L;JA(BKZ). (5.4)
' BK2 E]BKZ '
Denote
= |J B (5.5)
BK2 E]BKZ

Next, we apply polynomial partitioning to T*g restricted to ). For a polynomial
P:R" > R, welet Z(P) :={z € R": P(z) =0} and let cell(P) denote the set of
connected components of R" \ Z(P).

Lemma 5.4 (Polynomial partitioning, Guth [9], Hickman and Rogers [12]) Fix r >
1,d e N and suppose F € L' (R") is non-negative and supported on B, NN,.1/245,(Z)
for some 0 < 6, K 1, where Z is an m-dimensional transverse complete intersection
of degree at most d. At least one of the following cases holds:

Cellular case. There exists a polynomial P : R" — R of degree O(d) with the
following properties:

(1) #cell(P) ~d™ and each O’ € cell(P) has diameter at most r/d.
(2) Ifwe define
OZ:{O/\-/V;I/ZMO (Z(P)): O ecell(P)}, (5.6)

then
/ F :d_m/ F  forall O€O. 5.7
0 n

Algebraic case. There exists an (m — 1)-dimensional transverse complete intersection
Y of degree at most O (d) such that

F<

~

F

/;rﬁl\/,l/zﬂso (2) /Brﬂ/\frl/zwo )

Here the diameter of a cell in Lemma 5.4 is O(r/d) instead of O (r/2) as in [9]
and [12]. See the proof sketch of Theorem 2.12 in [21] for a discussion.

4This will be addressed at the end of Sect. 5.4.
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We now start our polynomial partitioning algorithm. This algorithm will produce
a tree consisting of many nodes. Each node will have no child (algorithm for that
node stops), one child (cellular case) or two children (algebraic case).

Let n be a node. We apply Lemma 5.4 to n, and see whether we are in the cellular
case or the algebraic case. If we are in the cellular case, then n; has only one child,
which will be denoted as nj 1,1, =1nj41,.(n;); here “L" refers to “left” and nj 1,1 is
called the L-child of n;. If we are the algebraic case, then n; will have two children,
which will be denoted as 11,y =nj41,»(mj) and nj 1 g =141 g(n;); here “M"
refers to “middle” and n ;1 p is called the M-child of n;, and “R" refers to “right”
and nj 1 g is called the R-child of n;. >

For two nodes n and w, if n is a descendant of n’, then we write n < n’; simi-
larly we define ’=. Here we make the convention that n < n and n = n. Recall the
parameters in (1.44). Moreover, define Sm_l by

(1 =8m—1)(1/2 4 8p-1) = 1/24 8. (5.8)

Note that 8,,_1/2 < 8p—1 < 28m_1.
Step 0. In this step, we create the root of the tree. Denote

1o =1{0;,}, (5.9)

with O;, = Bgr N'Y). Moreover, define dim(ng) =n, p(np) = R and j(ng) = 0. Later
we will define j for every node. It will play the role of the parameter j in the recursive
step of the first algorithm in [12, page 247]. In the end of this step, define

#4(i(no)) =0, #:(i(no)) = 0. (5.10)

[T

Here “a” is short for “algebraic” and “c” is short of “cellular”, and we use #, to
record the number of algebraic cases we have so far when applying Lemma 5.4, and
similarly, we use #. to record the number of cellular cases. Initialize

=0, V¢ eN. (5.11)

This collection will appear at almost the end of the algorithm; we will keep adding
elements to it as we run the algorithm.

Step 1. Creating nodes at the first level. The root node ny has either one or two
children, given as follows. Apply Lemma 5.4 to the function T*g - Loy, we obtain
a collection of cells {0, };, (asin (5.6)) and a wall W = N(p(no))|/2+s,,, (Z) withm =
dim(ng) for some variety Z of dimension m — 1. We without loss of generality assume
that all these regions are unions of balls Bg2>. Compare

#{Bg2 € By2: Bx2 C | J Oi} and #{By2 € Bya : By2 C W), (5.12)
i

If the former term in (5.12) is larger, then we say that we are in the cellular case
of this step, and otherwise we say that we are in the algebraic case. In the cellular

SFor readers familiar with the polynomial partitioning algorithms in Guth [9] or Hickman and Rogers [12]:
Here ny; collects transverse contributions, and ng collects tangential contributions.
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case, the node ng has only one child (defined in (5.13)-(5.14)), and will be denoted
by n1, =n1,1(np) and called the L-child; here L refers to “left”. Define

p(m,L)=pMm)/d, np={0;};, dim(ny ) =m, (5.13)
and

j,L) =jno) + 1, (5.14)

#:.0(n1,0) =#:0(np)) + 1, #,G(n1,1)) =#,((np)). (5.15)

In other words, we have had one cellular cases so far, and zero algebraic cases. Define
£1={ny 1}, thatis, we use £ to collect all the L-children in this step. Moreover, set
M =R = 0. This finishes defining the node n; 7, and its information.

If we are in the algebraic case, then the node ng has two children, which will be
denoted by ny p =1y p(ng) and ny g = ny r(np) and be called the M-child and the
R-child; here M refers to “middle”, and R to “right”. Define

p(nim) = p(ny g) = p(ng)' -1, (5.16)
and
dim(ny p) =n, dim(n,g) =n—1, niy =ni .z ={0;y}, (5.17)

where each O/ is given by W0 By, ) and we let B, ) run through a collection
of finitely overlapping balls of radius p(ny ) inside B, n,). Moreover, define

i m) =jme) +1, (5.18)
#o(iny,L)) =#:G(mo)), #,(G(n1,L)) =#.(G(no)) + 1, (5.19)

and
it r) =0, #:(G(n1,r)) =#,(G(n1 r)) =0. (5.20)

Here let us explain the rule of defining j: It is always reset to be 0 whenever we see
an R-child, and otherwise its values is increased by 1.

Let 91, Ry collect all the M-children and R-children at Step 1, respectively. As
no has no L-child and we always use £; to collection L-children, we therefore set
£1 = . This finishes the first step.

Step 2. Creating nodes at the second level. Take a node n; from the previous step.
It has one or two children.

If ny € £1 or <My, then its children, which will be named either as ny ; or as
n2, M, N2, R, Will be given as follows. For each O;, € ny, we apply Lemma 5.4 with
dimension parameter dim(n), and obtain a collection of cells {O;,};, and a wall
Wn—1= Mp(nl))l/2+8m (Zy—1) with m = dim(n;) for some variety Z,,_1 of dimen-
sion m — 1. We make a comparison similar to (5.12). If we are in the cellular case,
then define

pma L) =pMm)/d, np = U {04, }iy, dim(np 1) =dim(ny), (5.21)

Oil eny
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and

iz, L) =j(ny) +1, (5.22)
#.G(o,) =#:0n) + 1, #,G(na,1)) =#,G(ny)). (5.23)

If we are in the algebraic case, then define

(o) = p(na,g) = p(ny)! o1, (5.24)
and
dim(ny, ) = dim(ny), dim(na, ) = dim(ny) — 1, (5.25)
mu=mr= J (0}, (5.26)
0;, eny

where each O/ is given by Wy,—1 N By, ;) and we let By, ,,) run through all balls
of radius p(ny p) inside By (xn,). Moreover, define

o, m) =j(ny) + 1, (5.27)
#:.0Mm2,)) =#:0Gn1)), #,G(n2,1)) =#,G(n1)) + 1, (5.28)

and
jtna,g) =0, #:.(G(n2 R)) =#,(G(2,r)) =0. (5.29)

Let £, collect all the L-children at Step 2, and similarly, we define 21, and fA;.

Next, consider the remaining case nj € 1. This step is quite similar to the above
case where n; € £; or 91, with the main difference in how ny s will be defined.®
The children of n; are given as follows. For each O;, € ny, we apply Lemma 5.4
with dimension parameter m = dim(n;) and §, = §,,, and obtain a collection of cells
{0i,}i, and a wall Wy,_| = J\/(p(nl))l/z+am (Zy—1) for some variety Z,,_; of dimen-
sion m — 1. If we are in the cellular case, then define p(nz 1), n2 1, dim(ny 1) in
the same way as in (5.21) and j(n2,1.), #.(G(n2,1.)), #,(3(n2,1.)) in the same way as in
(5.22). If we are in the algebraic case, then define

p(a.i) = p(ng. ) = p(ny) ~on-1, (5.30)
and
dim(na_y) = dim(n}), dim(ny, g) = dim(n;) — 1, (5.31)
mr=J {04y (5.32)
Oilenl

The difference comes from the fact that the dimension parameter dim(ny) drops by one whenever we
meet an R-child, which of course means that we are in the algebraic case when applying Lemma 5.4. In
this case, we need to cut walls into thinner layers to define new nodes, see (5.35).
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where each O;; is given by Wi,—1 0 By(n, ) and we let By(n, ;) run through a col-
lection of finitely overlapping balls of radius p(n2 ) that intersect O;,. Our choice
of parameters guarantees that

p (g, g) /2ot = p(ny)!/2H0m, (5.33)

We still need to define np 3. Roughly speaking, for each Oié given by W,,_1 N

B (n,.5)» which is of thickness p(ny)1/7+0n we will cut it into thinner layers Win—1.6
of thickness p(na,p7)'/?+%" . Then we set

mv= |J Jl0ynWu1sh. (5.34)

0,‘1 eny Oy
2

To make this precise, we follow Hickman-Rogers’ treatment [12]. For each By

we follow page 258 in [12], find a finite set of translates B C B(0, p(nl)l/ 2J”S'") and
then set (following the last equation in [12, page 258])

o= |J 0y NNy 120 (Zini +b) b eBY. (5.35)

0,‘1 eny Oié

In the end, define j(ny, a7), j(n2.r), #4, #. in the same way as in (5.27)—(5.29).

Let £, be the collection of all the L-children at Step 2, and similarly, we define
M, and R,. This finishes Step 2.

Step L. Creating nodes at the {-th level. How we proceed in a general step is
similar to what we did in Step 2, with one difference mentioned at the beginning of
this section that we need to control how fast cells shrink. We will sketch the part in
this step that is similar to Step 2, and explain in more details the difference. ’

Take a node ny_; from the previous step. There are a few parameters associated to
it: A dimension parameter dim(ny_1) =: m, a radius parameter p (ny_p), the parame-
ters j(ng—1), #.(j(ng—1)) and #,(j(ng—1)) satistying

j(ne—1) =#((ne—1)) +#.(G(ng—1)). (5.36)

Before we proceed, we need to introduce new notation. Let nz_l denote the closest
ancestor (itself included) to ny_ that belongs to 9%/, zm;/ or Ry for some ¢'. (Recall
the initialization of 9, in (5.11).) Note that

dim(ng—1) = dim(n]_)). (5.37)

For each O;, , € ny_, we apply Lemma 5.4 with dimension parameter m and §, =
8o(ng—1) satisfying

1 1
plne-1)?M = p(n] )7 (5.38)

TThis is the second difference explained at the beginning of Sect. 5.2: We need to apply (for a second time)
the transverse equidistribution properties in [10, Lemma 8.4], see (5.44)-(5.50). In (5.115)-(5.116), it will
become clear why this step is necessary.
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and obtain a collection of cells {O;,};, and a wall
Win—1 Z'N‘(p(nz_,))l/z*‘sm (Zm-1) (5.39)

for some variety Z,,_. If we are in the algebraic case, then ny_; has two children,
called ng_ps and ng g, and similarly to (5.30)—(5.35), we define

p(em) =per) =pme-D' > ner= | {0)i; (5.40)

Oy €ng—y
moreover, define

nev= U{oi; NN,y a2+ (Zm—1 +b) : b € B}, (5.41)

0,‘571 €eny_1 Oié

where ‘B is a finite set of points in B(0, p(ng_1)1/2+5°), and
dim(’ﬂLM) = dim(ng_l), dim(ng,R) = dim(ng_l) — 1. (5.42)

If we are in the cellular case, then we proceed differently. ® There are two further
cases. If we are in the case

pme_1) 0 T_1)178m71/2, (5.43)

where 8,12 is as in (1.45), then we define ny 1, p(n¢, 1) and dim(ng ) in the same
way asin (5.21), and j(ng ¢), #.(j(ng, ¢)) and #, (j(ne, ¢)) in the same way as in (5.22).
If (5.43) is violated, then we first update

My =0 (fne.n (o). (5.44)
The next step is to cut each O;, into thinner layers, in a way that is essentially the same
as in (5.35). Let us be more precise. By the way we run the partitioning algorithm, in
particular, due to the choice of the parameter §, in (5.38), we know that
1 1
p(m)2H = p(n] )z *om (5.45)
for every node n with ny_; xn< “271 . Therefore we have
Oi, C Bp(ng 1) mNp(nLl)l/Ham (Zm), (5.46)

where

pne L) = phe_1)/d, (5.47)

8Indeed Step 2 also falls into the same framework; the forthcoming difference only occurs when £ is large.
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and similarly as before we define p(ng ;) before defining ny ;, and Z,, is an m-
dimensional variety. Note that as (5.43) is violated, we have

p(n)_ 'TO121d < p(ng ) < p(n) )01z, (5.48)

We will cut the right hand side of (5.46) into thinner layers of thickness p (ng, 1)1/248m
and apply transverse equidistribution properties (for instance Lemma 8.4 in [10]).
This can be done in exactly the same way as in (5.35) and (5.41), with the only differ-
ence that the parameter gm_l that appears in the radius p (n2, »r) is replaced by &, 1,2
(which appears in the radius p(ng ;) because of the relation (5.48)). Therefore, we

follow [12, page 258] and find a finite set of translates 6 C B(0, /o(nz_1 Y1/2+0my "and
then set

nee= J U0y NN, y12eim (Zino1 + ) 1 b € B). (5.49)

0,

ig—y ST-1 01‘2

Moreover, define

dim(ng, 1) = dim(ng—1), j(ne,r) =j(ne—1) +1, (5.50)
#((ne,L) =#c(e—1) + 1, #,(G(ne,2)) =#a(ne—1). (5.51)

In the end, we let £, collect all the L-children at the £-th level, and similarly we let
My collect all the M -children and Ry collect all the R-children. This finishes the £-th
step of the algorithm.

Before we proceed to the next step, we make a remark on the size of the parameter
8o 1n (5.38). By (5.38) and (5.43), we have

p(n]_ )T = p(ney) = dp(n]_ ) on, (5.52)
which further implies
O <86 < 6m-12. (5.53)
In other words, &, is still quite close to &,,, and is very far from &,,—1.

Remark 5.5 In (5.40), each element Oy, in ng g is given by By(n, z) N Win—1, where
By (ng p) is a ball of radius p(ng,g) and Wy, is given in (5.39). Their counterpart in
[12] is given by B N /\fpl_ s2+sm (Y) at the bottom of [12, page 256], where B is a ball
of radius p;41 and ,oj+1]= p(ng r) in our notation, p; = p(ng—1), Y = Wy,_1. The
slight difference is that the neighborhood scale (p (ng_l))l/ 2+dm in (5.39) is bigger
than ,ojl./ 2+5’". However, by (5.43),

p(an—l) T Nom—1,2
m=1/2 5.54
(1) =< p(n[_l) ( )

We will lose about 8":1_ | many of these multiplicative factors. As 6,12 e Sm—1,
we see that they are harmless.
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Stopping condition. Suppose we have arrived at the £(-th level. Take a node n,.
The algorithm will not continue at this node (but may still continue at other nodes at
the same level) if either p(ng,) < R% or dim(ng,) < k — 1. Here § is given in (1.44)
and k is given in Theorem 4.2. In other words, we will not continue our algorithm if
the radius of the node is too small, or the dimension is too small.

We state one lemma that will be used later.

Lemma 5.6 We have

#(U(m uml)) s . (5.55)

L

Proof of Lemma 5.6 Note that the left hand side of (5.55) would not change if we
assume that there is no cellular case in the algorithm. In this case, each node has
either zero or two children. The total number of levels £y < §~!. Moreover, note that
the algorithm stops at a node n if dim(n) < k — 1. As a consequence, we see that the
left hand side of (5.55) is <nd~!. O

5.3 Therelated case

The proof of Theorem 4.2 relies on a two-ends argument. This requires a relation,
denoted by ~, which is defined between tubes T € T[Br] and balls B, C Bg of
radius R'~%. The definition of ~ is a bit complicated and relies on the definition of
brooms; it will be given in Sect. 7. At this point, we only need the fact that

#{B,CBr:B ~T}<1, (5.56)
for every tube T € T[Bg].

Definition 5.7 For each ball B, C By of radius R!~% and x € B,, define

Th~ = ) Trer®, (5.57)
TeT[BR],T~B,

and define T*g™ (x) to be the difference of 7*g(x) and T*g™ (x). Moreover, for a
given ¢, define

g = Z er. (5.58)

TeT[BR], T»B,
Under the above notation, it holds that
T'g™(x) =T"g(x). (5.59)

whenever x € B,. Recall the definition of B> at the beginning of Sect. 5.2. Denote
[ . Ay A%
K2~ [BK2 €By:: [T"g ”BL,f‘A(BKz) <|1*s ”BLQA(BKZ)}' (5.60)
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If |B/K2| < |Bg=2|/2, then we say that we are in the related case (of Theorem 4.2), and
otherwise we say that we are in the non-related case. Because of the pigeonholing
step in (5.3), if we are in the related case, then the contribution to the broad-norm
BL,‘Z 4(Br) from By \ IB%’K2 is bigger. In this case, we can use the induction hypoth-
esis (4.5) and the fact that there is only a small number of balls related to each tube,
as in (5.56), to finish the proofs of Theorem 4.2 and Theorem 4.1.

Lemma 5.8 If we are in the related case, then (4.26) holds.

The proof of this lemma is a standard induction-on-scales argument, and is the
same as that of Lemma 2.20 in [21]. We leave out the proof.

5.4 Partitioning algorithm: part I

The rest of the paper is to handle the case that
IB»| > [Byol/2 (5.61)

that is, the unrelated component T* g™ dominates. Recall that we need to bound

24 ~ A o p
5 ;}B 2 ”T 8 ”BL/I:,A(BKz) _;3 ~, HT 8, HBL?,A(BKz)- (5.62)
K K P ,

We run the previous algorithm again with T*g replaced by T*g™. Note that in the
algorithm in Sect. 5.2, we did not compare contributions between the transverse case
and the tangential case, which is exactly because we will further run the algorithm
below. In what follows, we often abbreviate g™ to g,.

Step 0. Define nj = no.

Step 1. We will define three quantities; they correspond to contributions from the
cellular case C(£1), the transverse case C(9)11) and the tangential case C (31). Take
B, C Bg, aball of radius R'=%, and ny, a child of ng withny € £y, take O;; € ny with
0;, C B,, C B, with p; = p(ny) for some B, x,), denote

g0, = > (er (5.63)

TET[BR],TQO,'I #0

Define

cen= Y Y |r*s0,

0,‘1 eny

p
I, . (5.64)
BL,’(YA(O,-I NB,)

If n does not have any children in £;, then we simply set C(£); =0.

To define the other two quantities, we need more notation. Let n; be a child of ng
with n; € 9 or PRy, and take Oii € nj given by Oii = B, NW for some B,, C By,
with p; = p(ny) and pp = p(nj). Similarly to (5.63), we define gt,ol_i. Let ']I‘Oii

denote the collection of all T € T[B,,] for which

TN B, NW #0. (5.65)
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Moreover, we will partition T, into two parts
1

To, =To, To, , 5.66
01.1 Oll,tangU OII,trans ( )

where

_%+8m—|

To, tang := {T €To, :Tis p, -tangent to Z on B, }, (5.67)
B B

where m = dim(né). We refer the definition of T¢, tang to Definition 9.3 in [12, page
B

257]; it needs some clarification as T is a wave packet at the scale pp and we are
talking about tangency at the smaller scale pj.
After defining To,, tang, We will just set
b

Tol.i Jtrans += Toii \ Toii Jtang- (5.68)

Moreover, define
g.ogae= ) (807 (5.69)

TGTO./ ,tang
B
and

/ = LT 5.70
8,0, trans Y. Guo)r (5.70)

TGTOI./ Jtrans
1

We continue to define the other two quantities. Define

P
COM) e HT/\ § 5.71
M) Z Z g"oll’”ans BL! , (0, NB) ©71)
Oi/lenl.M(ﬂé) t oo
and
p
CR) e HTA § ) 5.72
(PRo) Z Z g[,oll,tang BL;’;,A(OiimB[) ( )

Oii Eﬂl,R(l‘ls) L
In the end, we compare C(£1), C(911), C((R1) and see which one is the largest. For
the one that is the largest, its node n; will be called nT. This finishes the first step.
Before we proceed to the next step, we introduce more notations which will be
used later and also in the forthcoming broom estimates. If n’f € L1, then
8.0, = 8u.0;> (5.73)
for which we refer to (5.63). If nj € M, then
gl*»Oil = 81,0;, ,trans (5.74)
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for which we refer to (5.69). If n} € Ry, then
gl 0’1 = 84,0, ,tang (5.75)

for which we refer to (5.70).

Step 2 < £ < {£y. Here £y € N is the last step in the algorithm in Sect. 5.2. Step £
will be similar to Step 1. Our goal is to define C(£¢), C(My), C(R¢). We consider
the case ng 7 (nj_,) and the case ng p(nj_;), ng g(nj;_,) separately.

Take ny = ng,L(n;f_l) and O;, € ny. Suppose that O;, C B,, N O;,_, with p; =
pne), O;,_, € n}‘_l and O;,_, C By, ,, pe—1= p(nz‘_l). For a given ¢, denote

g.0,= ) (8o, )1 (5.76)
TeT(By,_,]
TNO;, 40

Define

(5.77)

ceo=Y Y|rs0,]

Oj,eny ¢ BLP 404 mB‘)'

Next, take ng = ng p(nj_,) or ng g(nj_,) and Oifz € ny. Suppose that O,v/g C B, N
O, with py =p(ny), Oy €ny_yand Oy C By, pr—1=p(ny_y). Let ']I‘Oié
denote the collection of all T € T[B,,] for which

TN By N W1 # 0, (5.78)

with m = dim(nj_,). Moreover, we will partition T¢, into two parts
‘e

To, =To, To, , 5.79
OiZ Ole,tang U Oll,trans ( )
where
. _l+8m—l
To, tang := {T €To, :Tisp, 2 -tangent to W,,_1 on B, }, (5.80)
‘e ‘e
and
TOiz,trans = TO% \ TOiz,tang- (5.81)

We continue to define the other two quantities. Define

comy= Y Y| 80w BL,,A(OHHB[) (5.82)
0. /ew M(nz Dot 1
and
C(Re) = Z ZHT 8, O/ Jtang BLPA(O/DB) (5.83)

OZEW rRMMG_ ¢

@ Springer



546 S.Guo et al.

In the end, we compare C(£,), C(OMy), C(R¢) and see which one is the largest. For
the one that is the largest, its node ny will be called nj.
In the end, we define g 0, in the same way as in (5.73)—(5.75).

The above algorithm outputs a sequence of nodes

ng, ny, ..., nzfo. (5.84)
The parameter dim(nz‘) is non-increasing in €. If nz‘ is an R-child, then
dim(n}) =dim(nj;_,) — I; (5.85)

otherwise the dimension does not decrease. Denote m := dim(n}ﬁo). We know that
m > k, where k is as in Theorem 4.2, as otherwise the desired estimate (4.26) there
would be trivial. Let

GpGnts..., B (5.86)

denote the nodes from (5.84) that are R-children, where &, := ng is also included.
Here & is short for “surface”, as elements in G, are neighborhoods of algebraic
varieties for each n’. We therefore have

dim(&,) =n', Vm <n' <n. (5.87)
Moreover, denote
e i=p(6,), Ym<n' <n, rp_1:=1. (5.88)

Elements in &, are of the form B,, " ﬂ./\/ 1 /2+5 , (S,7) where S,/ is some algebraic vari-
ety of dimension n’. To simplify notatlon we will often identify B, , ﬁ./\/ 1 /2+5 , (S)

with S, if it is clear from the context that we are talking about the node S,. We
follow [12] and introduce a few new notions.

The pair (S, By,,) is called a grain, with its dimension given by n’ and degree
given by the degree of S.

A multigrain 3‘,,/ is a tuple of grains

§n’:(gnv---7gn’)9 gi:(SiaBr,-) forn/gign

satisfying

1. dim(S;) =i forn’ <i <n;
2. 8,D8-1D--DSy;
3. Brn D Brn—l IDERERD Brn/-

Sometimes we also write S‘n/ =(Sy, ..., Sy). The parameter n — n’ is referred to as
the level of the multigrain S,/. The complexity of the multigrain is defined to be the
maximum of the degrees deg S; over all n’ <i < n.
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Definition 5.9 (Nested tubes, [13]) Let 3’,,/ =(Gy, ..., Gy) be a multigrain and

Gi=(Si,B,) forn <i<n.

- I T
Define T, [S,/] to be the set of length r; tubes T € T[B,,] that are r, il '-tangent to
S; on By, (see Definition 5.2 above or Definition 9.3 in [12], page 257) and satisfy
that there exists T € T[B,j] for n’ < j < i such that

Tj CN 1219, Sj, dist(e(Ti),e(T,-))grj‘”z, (5.89)
r.
J

and
dist(7;, T; N B,,) S !0 (5.90)
hold true for all i, j with n’ < j <. The direction set of T, [S’n/] is defined to be
O, [Syl:=1{60(T): T € T, [S‘nr]}. (5.91)
For each m < n’ < n, define
D,y = d#c(j(n))’ (5.92)
where n is the parent node of G,,;. Moreover, define

#eGOnf))

Dp_1=d D,=1. (5.93)

This defines the same quantity as Dy— in [12, page 265].

Lemma 5.10 For each n’ > m — 1, it holds that
n
T H D; <R. (5.94)
i=n

Proof of Lemma 5.10 Tt suffices to show that
D; <riy1/ri, Vi <n. (5.95)

Recall that i1 = p(G;+1) and r; = p(G;). As G4 is an R-child, by definition (see
equation (5.20) and the line below), we have

1(Giv1) =#.0(6i11) =#:(G(Si41)) =0. (5.96)
Let n be the parent node of &;, and therefore D; = d#<0(™), When the algorithm runs

from G; 4 to n, the radius parameter p decreases to p/d each time #, increases by
1, and (5.95) follows immediately. Il
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In the end of this subsection, we describe a few output functions of the above
algorithm. Take n’ with m < n’ < n and consider the node &,/. As &,/ is an R-
child, it means the tangential case C(R¢), which was defined in (5.83), dominates.
Here ¢ is the level that G, belongs to. As elements in &, are neighborhoods of
algebraic varieties, from now on we will always use S, to refer to an element in G,,.
Consequently, g;’f 0, will be called gfj e and its wave packets in the ball B, , with

1
S, C B, , are all tangent to S,,/.
Regarding these functions, we have the following properties. Let p,s with n’ >
m > k be a Lebesgue exponent that is fixed later. These exponents satisfy

Pm = Pl == pp=p=>2, (5.97)

where p is the exponent in Theorem 4.2. Define «,,, 8,/ € [0, 1] by

1 1 — oy oy o
Tl 2 B= [ e (5.98)
pn/ 2 Pn 1 -
i=n’
form+1<n"<n-—1,and a, = B, = 1. We have
Property 1. The inequality
- 1B,
17*8llpLr () S M Gors Ddligl 2" (5.99)
By
> 2| (5.100)
Sy e6, L An’ (Br”/)
where B, , is the ball of radius r,/ that contains S, and
7n’ =P Tty o5 Tt), n/ =Dy, Dy—1, ..., Dy), (5.10D)

holds for

n—1 (n=n')s n—1
MG, Dyy) = <]‘[ D,-) (]‘[ rl.(ﬁ"“"3")/213[(’3”"’3"’)/2) L (5.102)
i=n’

i=n’
Property 2. Forn’ <n — 1, we have

Z ‘ng’ DH_(S Z ||gLS/+1 H2’ (5.103)

Sn/ GGn/ Sn’-H GGn/

for every B, C By of radius R'~%. Here when n’ =n — 1, g ,,, Was not defined
before and we simply set g;" ¢ =&
Property 3. Forn’ <n — 1, we have

n'—1

2 ¥y == /
< ('n'+1 2 —n'+6
AT B ma
n n +1€0 0 +1

max (5.104)

S”/ EGn/

gt*,Sn/ Hgt Sn/+1 ||2
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and
2
max Inax‘gl*S, (5.105)
Sye6,, 0 on Lgvg(g)
n—n'—1

"W+1\" 2 8 . 2
§<—) D, ~max max|g's, |2 4. (5.106)

' Sw+1€6w41 0 w1 ave

where 0 is a frequency cap defined in Sect. 4.1 of side length p~!/2, hold for all
1 <p=<ry.
Property 4. For n’ <n” < n, it holds that

ron—1 n  n—1
2 n—n_ _1 _n—n 1 "o
Hgt*,sn/ 5 Sery” (Hi’i z)rn,, 2 (l_[rl.z)RO(€°) gig;,) 5 (5.107)
i:n’ l‘:n//
where
gs)= > (o (5.108)

TeT, ,[Sy]

and ']I‘,n,, [3',,/] is from Definition 5.9.

If one takes n” = n, then gl*(;)/ becomes g’; . in the last equation in [13, page 9].

*(n//)
If n” =n’, then gt’fsn, =85, -

These four properties are taken essentially from [13, page 9]. The only main differ-
ence is that Hickman and Zahl [13] only introduced and used n” = n in (5.108). The
proofs of the first three properties are given in [12], the proof of the fourth property
is the same as that of Property iv) in [13, page 10] and relies on transverse equidis-
tribution properties (for our setting, the needed property is in [10]), and therefore we
will not repeat it.

The only explanation that is needed is as follows. In the last equation in [12, page
255], the authors there used the fact that p;; >~ p;, where the implicit constant
is universal. In our case, these two radius parameters differ by d, which is a large
constant. Consequently, Property (III); in [12, page 250] may not hold as is written
there. However, we can still obtain some good substitute for it. For a node n, let nl
denote the closest ancestor (itself included) that is an R-child. Let n; be a node in
o, UM, with ng = &,,. We will prove

n—n’

2 Ty - —#.( r_ 2
||gt,0«||zSC?fs-(p('l’w) i U P (5.109)

for every Oy € ng and ball B, of radius R 1-8 where

CIL = e GOOISHHLGO (,  Fa GO OBy 1)+ (1) OBy) (5.110)

and

#,G(m) :=#n:n, <n<6G,,ne M, for some £'}. (5.111)
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Note that
[log 8,1 . [log 8,7 —1,2]
— T #s(me) S el

#a(i(ne)) S
¢ S —1 511’—1/2

(5.112)

and therefore by applying Lemma 5.10, we always have (5.110) < 1.

Let us prove (5.109). Let £; be the largest integer smaller than £ such that there
exists ng, € im%] U Mg, with ny < ny, and n?l = &,;; if no such nodes exist, then
we simply take ng, = &,. Assume that (5.109) has been proved for n;,, and we will
prove it for ng. There are two cases: ng € M, or ny € Dﬁz We only prove the latter
case, and the former case can be done in a similar way. List all the nodes between ng,
and n, in a descending order:

o, Mg 415 00 M—1, Ny (5.113)

Note that ny is an L-child for every £; < £’ < £. By orthogonality between wave
packets and the fundamental theorem of algebra, we have

lgoy 3 Sd V)20, |3 (5.114)

forevery ¢/ < €, Oy €y, Op_1 € npr_1 and Op C Oy _;. This further implies

n—n’

2 Vs - _# (i I 2
l & 00 HQSCEl,a'(p(:gl)) PO =D o2, (5.115)

Here note that the denominator is o (ng, ) instead of p(n¢—1), as remarked at the begin-
ning of Sect. 5.2. When passing from ny_1 to ny, recall that in (5.46) and (5.49), we

cut the neighborhood ./\fp ] 12sim = Nog 1/2em into thinner layers N, o (ng) /245 -

Therefore by transverse equidistribution properties (for instance Lemma 8.4 in [10]),
we have

”gt,Og H; S (rn/)O(Sn/)d—(n’_l)(%)_T ng,oi,l

2
27

(5.116)

for Oy € ny with Oy, C Oy_;. This, combined with (5.115) and the choice of the
constant in (5.110), gives us the desired bound.

6 Strong polynomial Wolff axioms

The goal of this section is to prove a strong polynomial Wolff axiom (see Theorem
6.2 below), a stronger version of the polynomial Wolff axiom in Sect. 3. As a direct
consequence, we will obtain the key Lemma 6.1, which controls the number of tubes
concentrated near a multi-grain. Strong polynomial axioms already appeared in ear-
lier works in [14, 24] and [13]. The proof in this section combines the argument in the
papers mentioned above and Bourgain’s conditions as formulated in Theorem 2.1.
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Lemma6.1 Let g‘n/ be the multi-grain given in Definition 5.9 with complexity at most
d. We have

i—1 i1
P —1/2 ]| 5 +e
#0,,S0) Seoa | [ 1772 ]2 75 6.1)
j=n

foralln’ <i <n,where ¢, is given in (1.44).
As with Theorem 1.2, we will deduce Lemma 6.1 from a geometric theorem.

Theorem 6.2 [Strong Polynomial Wolff Axiom for our ¢] Let n > 3. If Bourgain’s
condition holds for the phase function ¢ at every (Xo; £&0) € supp(a), then the follow-
ing strong polynomial Wolff axiom for ¢ holds: Let E > 2 be an integer and we fix
an integer k. For every € > 0, there exists C(n, E, k, €) > 0 such that if we have a
sequence of balls

1 1 1
B(x1,51) C 5B(x2,52) €+ C g Bk, s1) C 5 B”, (6.2)
numbers k0 < k| < --- <k < k and subsets S; C B(xj,s;), j=1,2,...,k satis-

fying:
o kj <s;,V1<j<kandg;:=-L satisfy o1 = @2 > -+ = ¢,
J
o §; is a semialgebraic set of complexity < E whose « j-neighborhood has volume
~ 151,
o The intersection between S; and any ball of radius r € [kj,s;] has volume
< erdfk;lfd"‘,
then the following holds uniformly:
For every collection T of k-tubes pointing in different directions (defined before
Theorem 1.2), if we use c(T) to denote the core curve of T, then

1
#HT eT: (7)) B, 350 C S V1< j <k}

k
<C(Co.n, E.k, o) [N d-1(Fyntyee 63)
j=t ¥ *
where ¢y = 1 and the horizontal slab’ B(x i %s j) is defined to be n,ﬁl(n,(B(x s
%sj))). Here 7t : R" — R is the orthogonal projection to the t-variable.
Moreover the implied constant only depends on bounds of finitely many (depend-
ing on Co,n, E, k, €) derivatives of ¢.

Like in Sect. 3, we are going to deduce Theorem 6.2 when the phase function
satisfies a concrete derivative condition. Then we simply check that the condition is
satisfied by our phase function.

9In general, we call a set to be a horizontal slab if it is 7rfl (I) for some interval 1.
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Theorem 6.3 [Generalized Strong Polynomial Wolff Axiom] Let n > 3. Suppose for a
® as in the beginning of Sect. 3:

(a) For every choice of v € [—1, 171, & el[—1, 17", subinterval I C [—1, 1] and
t € [—1, 1], we have both

|det(Vy @ (v,1,8) - M+ Ve D (v,1,8))|

. n—1
5(1+%) ﬁ |det(Vy @ (v,5,8) - M+ VeD(v,s5,8))lds (6.4)
1

and (3.3) for some implied constants independent of the choices of v, &, 1 and
M.
(b) If ty # 1, ®(v,11,8) =x1,and ®(V', 11,8")) = x1, then

1P, 10,8)) = P, 02, ENI S|t — 1] - 1§ = &l. (6.5)

(© If h # 1t and ®(v,11,§)) = x1, P(v,12,§)) = x2, then for x} with distance
wlty — | from xy (u < 10), there are v' and &' with ®(V', 11, &) = xy,
OO, 1,8) =x;and |§' —&| S .

Then the conclusion of Theorem 6.2 (with the notion “pointing in different direc-
tions” now defined as in the beginning of Sect. 3) holds with the implied constant only
depending on bounds of finitely many (depending on Cy, n, E, k, €) derivatives of ®
and the implied constants in (a) - (c).

Remark 6.4 We explain the intuition behind (b) and (c) a bit. For convenience we
introduce the following notation. For fixed v € R"! and £ e R"1, we call the curve

cog={(x,1) eR" I x [~1,1]:x = D(v,1,£)) (6.6)

to be a @-curve. Intuitively, if we know a ®-curve passes through (x1, #1) and want to
perturb the “direction variable” & and the “initial position variable” v so that (xy, t1)
is still on the curve, then (b) says whenever the perturbation on the direction & is
O (1) we always have the perturbation of the curve at time ¢t =5 is O(|t] — 2|u),
and (c) says if we want the x coordinate at time ¢ = t, to be shifted by a distance
>~ ul|t; — 12|, we can always succeed with the amount of the perturbation needed on
& being O ().

Proof of Theorem 6.3 Similarly to the proof of Theorem 3.1, we only do the proof
when @ is fixed and after seeing the proof it will be clear that the estimate only
depends on finitely many derivatives of ® (in particular since the smallest scale (k€0)
we consider is polynomial in «, in the approximation argument described below one
only needs a Taylor approximation of order Oc »,E ke (1)).

Like the proof of Theorem 3.1, we can reduce the situation to the case where ®
is a polynomial of degree Oc ., E k(1) by a Taylor approximation argument. For
general ® by this argument one reduces to a problem with two modified conditions:
(a’) a slightly weaker condition than (6.4) in (a) (similar to (3.7) versus (3.3)) that
has very small error term (of the form ¢ ~1000n(1+Co)) which makes no difference (see
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the proof below and how to deal with this issue in the similar situation in the proof
of Theorem 3.1), and (b’) (¢’) two slightly weaker conditions than (b) and (c) with
an error term « ! T€0 for |7| < k€, both not affecting our framework (for (b) and (c),
note that the only place they are needed is the verification of a claim in the beginning
of the induction step). From now on we always assume @ is a polynomial of degree
OCO,n,E,k,e(l)-

Let us assume « and «; are all sufficiently small (allowed to depend on derivatives
of ®). Otherwise we simply ignore some constraints. This assumption will enable us
to use the implicit function theorem at scales « or «; freely.

We make one more comment before starting: the present theorem is a generaliza-
tion of Lemma 3.7 in [13], which was in turn developed based on Theorem 1.4 in
[14] or Theorem 1.9 in [24]). Our proof will have a lot in common with these, and
will be a natural generalization of Theorem 3.1.

We also refine the slabs B(x;, %sj) a bit before starting. Since each B(x;, s;) is
contained in %B(Xj+1, sj+1) (Vj < k), we can take horizontal slabs By, ..., By such
that:

(i) B; C B(xj, 4s)).
(ii) The thickness of B; is ~s;.
(iii) The distance between B}, and B, is 2 s}, for all pairs j; < j».

Forl1 <l <kandr e [—1,1], we define
S ={ye R*':3a® —curve Cpk St
cos[\BjCSj.VI<j<land (y.1) €cye) 6.7)
and we are going to prove inductively that

my_(S1) < C(Co,n, E, k,€)(d (1))~

l

x [TEL G2 e e (-1, 1) 6.8)
g
j=1

where d;(t) is defined to be s; plus the distance between B(x;, s7) and the hyperplane
{xn =1}, and m},_,(-) is the (n — 1)-dimensional Lebesgue outer measure.

For convenience, we choose a large constant K depending on the implied constant
in (b) and (c) and also consider a companion set

Siy={yeR":3ad —curvec,; s.t.
ot [ B CNke;(S).V1 < j <land (y.1) € cy ) (6.9)

Note that once we prove (6.8), by the same reasoning and the assumption about
NKj (S;), we also prove the same upper bound for m;:_l (S’l,t).

Base case. Our base case is when [ = 0. Since ® has a C!-derivative bound, we
observe that all S, lie in a uniformly bounded set €. We make the convention that
So.: 1s the part of the set defined in (6.7) with / = 0 (hence with a vacuous condition)
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lying in 9. (6.8) then trivially holds for / = 0 with the convention dy(¢) = 1. We will
see the first induction step is similar to the steps afterward with this setup.

The inductive step. Suppose we have (6.8) for some [ in [1, k). Next we prove it
forl+1.

Integrate the induction hypothesis over ¢ and temporally ignore measurability is-
sues, by Fubini we formally deduce

mi(( St Bin)
1

<C(Con, E k. €) ]‘[(‘p’ Lydi=tgn=tgn 277" (6.10)
j=t ¥

We assert a stronger conclusion: In fact, (Ul S1.1) () Bi+1 is contained in a set U; such

that U is a union of (n-dim) balls of radii ¢;s;+1 and that

m*(Uy) < C(Co.n, E. k, e)l_[((p; Lydi=lgn=tgn =277 611
j=1 7

To construct such a U;, we take the ¢;s741-neighborhood of (U[ S1..0)( Bi+1 and
cover it by a finitely overlapping collection of balls of radii ¢;s;41. Define the union
of these balls to be Uj.

It remains to derive the volume bound (6.11). We claim that we can take K in (6.9)
large (and the constraint here will be the only one affecting the choice of K') such that
this U; is contained in | J, S'l,,.

To verify this claim, by definition we see U; is contained in the 3¢;s;41-
neighborhood of (|J, S;,;) () Bi+1. This means for every point (¥, t) in U;, we can
find a ®-curve that is 3¢;s;41-close to this point and the part of that curve in B; com-
pletely lies in S;, V1 < j <I. Now keep a point of that ®-curve in B; fixed and by
assumption (c) (see Remark 6.4 for more intuition), one can change the “direction”
& by up to O(g¢;) so that the new ®-curve now passes through (¥, #). By assump-
tion (b) for each t € m;B;(1 < j <), the perturbation amount of the x variable is
Seisj Sejsj = k. Hence the intersection between the new ®-curve and 3; lies
in \V, k«; (Sj) if K is sufficiently large depending on the implied constants in (b) and
©). For this choice of K we just proved that the claim holds. Applying the induction
hypothesis to each ¢-slice of S’l,, and integrate, we deduce (6.11).

Our U; is a union of ¢;s;41-balls that contains (|, Si.¢) () Bi+1 and obeys the
volume bound (6.11). By a covering lemma we may assume without loss of generality
that the ¢;s;1-balls are finite-overlapping. Now we use the volume upper bound of
the intersection between S;4+; and r-balls in the assumption of Theorem 6.2. We

deduce
my (S0 () Bi+)
t

<C(Co.n, E. k, e)]_[(¢’ Lydi=tgn=tgn | (L yn—dis o —27"1e
=1 (1 P181+1
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l
Pi—1d;~ Pi+1 _pl—k=1,
=C(Co.n, Ek ) [T 0 sy (020 ™
j=t M

I+1
@i-1 _ _pl—k—1
=C(Co,n,E,k,e)n(#)d oty e (6.12)
j=t

We will use (6.12) to close the induction step by an argument developed in [14]
and [24]. Below we fix an arbitrary ¢ = £y to do the proof. This step is a lot similar to
the proof of Theorem 3.1. So we will present some steps in sketch only.

Define the set

Livis={8) :coe[ \BjCSj VI <j<l+1}). (6.13)

We already assumed @ is a polynomial of degree Oc, . E k,e(1). Thus in the ex-
pression of a ®-curve, x is polynomial in v, ¢, § with the same degree bound. For
simplicity we use by, to denote the hyperplane {x, = fp}.

By effective quantifier elimination (i.e. the Tarski-Seidenberg theorem) we find
a semialgebraic subset Ll 410 C Liy1,; of complexity Oy k¢, k(1) such that all
vt [\ by, are distinct for (v,&) € Ll+1 ;» and that {c, ¢ by : (v,8) € L;+l,t} =
{ev.e by : (v,E) € L4y} (To see this one can first add (n — 1) more coordinates
to each (§, v) € L;41,; denoting the “position”, i.e. the first (n — 1) coordinates, of the
intersection ¢, ¢ () by,. This is still a semialgebraic set of bounded complexity. Then
one applies the quantifier elimination to find a subset such that the last (n — 1) coor-
dinates are distinct among different points in the subset and the set of the last(n — 1)
coordinates does not change. From the construction we see easily that L] has
dimension <n — 1.

Using Gromov’s lemma to approximate L, +1,; by images of smooth maps in the
same way as we did to prove Theorem 3.1, we see (for arbitrary €; > 0) there exist
two polynomial maps F and G : [0, k11"~ — R"~! (whose images are the v and
the & variables, respectively) with deg ', deg G = O, g ¢, (1) and || F| o1, |Gllc1 <1
such that

+1,t

cr.Go [ |Bi SN (S).Vx, VI <j<l+1 (6.14)

and that
H' ™ Herm.Goo [ Vb X €10, ™Y Zu ke k €CImi_ (Si1s)  (6.15)
where 7"~ !(-) stands for the (n — 1)-dimensional Hausdorff measure on the hyper-

plane by, .
Now look at the n-dimensional volume of

M= {(@(F(x).1,G@)). 1) :x € [0, () B

= (U CF(x),G(x)) ﬂ31+1 (6.16)
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and the (n — 1)-dimensional volume of

H = {(®(F(x), 10, G(x)), t0) : x € [0,y = erem.co) [ by 6.17)
and compare them.

Suppose the time interval (i.e. the range of the last coordinate) of By is Ij41.
Then using Bézout like in the proof of Theorem 3.1, we have

|M|'\’n,E,51/ / Vi (®(F(x),t,G(x)))|dxds
41 J[0,k€1]1

= / / [det(Vy, @ (F(x),t,G(x)) - Vi F
L4 J[0k€1]]

+ Ve®(F(x),t,G(x)) - V,G)|dxdt

Z/ [det(V:G)|
[O’Kel]n71
/ |det(Vy @ (F (x), £, G(x)) - (Vo F - (VxG) ")
I141

+ Ve®(F(x),t,G(x)))|drdx. (6.18)
On the other hand,
Hn_l(H)

nia [ V@F@.0. G
[O,Kel]"71
=/ [det(Vy ®(F (x), 10, G(x)) - Vi F + Ve @ (F(x), 10, G(x)) - VxG)ldx
[O,Kq]n_l

=/ |det(V,G)| - | det(V, ®(F (x), fo, G(x)) - (Vo F - (V2 G) ™)
[O’Kq]n—l

+ Ve®(F(x), 19, G(x)))|dx. (6.19)

Now by assumption (a), the left hand side of (6.18) is > [I;11|" - dj41(tg) "~V ~
spy - di1(to) =D times the left hand side of (6.19). Note that (the Sy41,, version
of) (6.12) gives an upper bound of the left hand side of (6.18). Moreover (6.15) gives
a lower bound of the left hand side of (6.19) in terms of m; _,(Si+1,4). Combin-
ing everything, we can take €] to be a sufficiently small multiple of € to finish the
induction step and (6.8) is proved.

From (6.8) the conclusion will follow easily. Take the union of all Sy ; for ¢ €
[—1, 1]. We notice by the definition and effective quantifier elimination that this is a
semialgebraic set of complexity O, g (1). Use (6.8), we see its measure is

k
<C(Coon, E ko) [[EydiTgrlie2e, (6.20)
L g
j=1
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Note that we already have (3.3) holds. In exactly the same way as we proved Theorem
3.1 (the only difference is that Theorem 3.1 was stated for tubes and we need a version
for ®-curves but notice that in Theorem 3.1 in fact a ®-curves version was proven),
we can bound the left hand side of (6.3) by

k
C(Coon, Bk, o) [ J(ELL)ditgpmti=m—e, 6.21)
1 i
]7

This concludes the proof. g

Proof of Theorem 6.2 The proof will be similar to the proof of Theorem 1.2 in §3. As
with that Theorem, take unique smooth ® = ®(v, ¢, x) near 0 such that (3.26) holds.
We can assume the above can be done for all (v, t, &) € [—1.5, 1.51%"—! without loss
of generality like in the other proof. It suffices to show that our @ satisfies conditions
(a)-(c) in Theorem 6.3. That Theorem then immediately leads to the desired conclu-
sion. When reading the proof one naturally sees the implicit constants in (b) and (c)
only depend on finitely many derivatives of ¢. We also note that (b) and (c) comes
from the non-degeneracy property of ¢, and (a) comes from Bourgain’s condition.

For (a), (3.3) is already verified in the proof of Theorem 1.2. Recall we defined
A(1;8) = Vip(X(§), 1; €) in (3.31) and deduced A(1; §) = f(1;£) B(§) + A(0; §)
and the time derivative of f is 1 at # = 0 around (3.35). We make one more harmless
assumption that the time derivative of f is always in (%, 2) since otherwise we can do
a constant rescaling that only causes loss of a constant. Now we can do the reduction
to both sides of (6.4) like in the proof of Theorem 1.2, which reduces (6.4) to proving
that for every polynomial P(¢) of degree n — 1,

d D\ ' 1
|P(t)|§<1 187(11 )> |I|/|P(s)|ds (6.22)

which is an elementary Theorem proved in e.g. Lemma 3.8 in [14]. We have com-
pleted the verification of (a).

As before, (b) and (c) are more general properties that do not depend on Bourgain’s
condition. Next we verify them.

Differentiate (3.26) with respect to 7, we see

V. Vig- 8, D+ 3 Ve =0. (6.23)

Hence ®-curves can be viewed as integral curves of the vector field Ve (x, 1) =
(ViVed(x,t, E)_l - 0, Vep(x,t,§),1) parameterized by &. Note that the non-
degeneracy of ¢ implies |V, Ve¢| ~ 1 and a p-perturbation on & only causes a
O (n)-perturbation of the above vector field. We see (b) follows from stability of
ODE solutions.

Next we check (c), which is the “opposite direction” to (b). When checking it we
can assume #; and 1, are sufficiently close and that x; is sufficiently close to 0 (and in
application the honest (c) will always be satisfied after a harmless constant-rescaling
of (x,1)). (c) basically asks: if we start from

x0 = P (vo, 11, &0) (6.24)
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and start to change £ and solve v from the equation
xo=®(v,1,8), (6.25)

how would y = ®(v, 12, §) change? For convenience denote yg = P (vp, t2, ). We
use differentiation to compute this change. Differentiating (6.25), we see

Vo @l 11.5) * VeVl + Ve Plwg.11.6) =0 (6.26)
Hence by the chain rule,

Vey = Vo®lwpno - (—VoPlwone) ™ - VePlwrr s + VePlwpng-  (627)

By (3.28) and (3.29), this simplifies to
Vey = (VxVedlyyinee) "+ (Veblronr.eo — VEDlyo.60)- (6.28)

The first factor (VxVed|y, s, go)_l has entries < 1 and determinant >~ 1 and
is harmless. We focus on the second factor. It is equal to (- — #1) times some
(Z'}-;} Cjdy; VS2¢ + 8ZV52¢)|xo,t1,So plus a higher order term in (#, — t1), where each
lcj| < 1. By a familiar technique of parabolic rescaling (see for example the reduc-
tion Lemmas 4.1-4.3 in [10]), one can assume all || 9, ngﬁ || are uniformly very small
and since we have the nondegeneracy condition on o, ngb from (1.7), we see Vg is
equal to (2 — #1) times a nondegenerate matrix of bounded entries. From here we see
(c) holds by an application of the implicit function theorem.

Now that (a)-(c) are all verified, we apply Theorem 6.3 and conclude the proof.
O

Proof of Lemma 6.1 At this point, the Lemma is just a straightforward consequence of
Theorem 6.2. We rescale the whole B, , to the unit ball and rescale all A 1/2+s ;S in
r.

Definition 5.9 accordingly (to be our S; in Theorem 6.2). For each possibjle 6(T) in

O, [5',,/], we pick the core curve of the corresponding 7},, rescale it into the unit ball
and extend it into a ®-curve (® defined from ¢ as in the beginning of §3). Then we

choose k = R™2 and see by Definition 5.9 that the set of x -tubes around all above ®-

curves satisfies the assumption of Theorem 6.2 with the balls having radii s; = r’;%
n
1
p2 01 TN
: L i=l4j R 2 =1ty s
and corresponding «; = T Hence ¢; =1, Fioj By Wongkew’s theorem

[22] of intersections between neighborhoods of algebraic varieties we can take d; =
i — 14 j. Lastly we can surely take £ = Oy (1) to be a constant by the definition
of §; in Definition 5.9.

By Theorem 6.2, we see the left hand side of (6.1) is

j—1

n'—1 i I 2

< 0.2 J

STy | | (7"1) (6.29)
j=n'+1 N

and is thus bounded by the right hand side. O
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As a corollary of Lemma 6.1, we obtain

Corollary 6.5 Form <n’ <n”, we have

"

2

_n=n"-1

n 1
=< 1_[ r._i)r 2 max
2 & ( Y15 v

j=n T:Z(T):rn//

*(n//)
t,Sn/

(6.30)

L%vg(t)

7 Brooms
7.1 Definition of brooms

Let (S, B(xg, 7)) be a grain of dimension n’ with S € &, and assume that it is the
last entry of a multi-grain S. Throughout this section, we always assume that

r>+/R. (7.1

Recall Definition 5.2 and Definition 5.9. Define T[S] C T[B(xg, )] to be the collec-
tion of tubes that are tangent to S in the ball B(xg, r). Define

O[S]:={6(T) : T € T[S]}. (7.2)

Moreover, define Tg[S] := TR[g].

Before we define brooms, we cut each S into Oy ,(1) many pieces so that the
tangent spaces of each piece form a small angle with each other. Let us be more
precise. For each z € S, let T, S denote the tangent space of S at z. We cut § into
O4.,(1) many pieces {S’, S”, ...} so that for each such piece, say S, it holds that

L(T,, S\ T, S' (7.3)

<
)_IOOn’

for z1,z; € S’. Similarly, we define T[S’], ®[S’] and T g[S’]. Such a decomposition
only appears in this section. To simplify notation, in the rest of this section we will
still use S to refer to each such piece, and still call it a grain.

Fix t € O[S] and a grain S satisfying (7.3). Define

T, z[S]:={T € Tr[S]:60(T) C t}. (7.4)

We let R-tubes T € T g[S] intersect S. Morally speaking, 7 N S can be thought of
as a “curved” rectangular box of dimensions

Fox RV s oo RIVFFS s p17280m o p 1240 (7.5)

(n'—1)copies (n—n’)copies
For two tubes 71, T € T, r[S], we say that

T,NSNBXy,r)~T,NSNBXp, ) (7.6)
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if
TN SN B(xo,7) C (10nT>) N S N B(xo, 1), (7.7)

or the other way around. Before we study the geometry of Sy :=7 N SN B(Xp, ),
let us assume without loss of generality that the tangent space 7,(S) forms an angle
< 1/(100n) with the subspace spanned by {€, ..., €,_1, €,}, the first (n’ — 1) vectors
from the orthonormal basis and the vertical ¢ coordinate direction é,, for every z € S.

Lemma7.1 (1) We can write

s2(Jso (7.8)
O

where Sq =T NSNB(xg, r) for some T € Ty r[S]and {So}q is a disjoint collec-
tion. Moreover, for every T € T gr[S], we can find Sty such that TSN B(xp, r) ~
So.

(2) Take (x1,t1) € S. For each SO, we can find an algebraic variety Z C {t =t}
of dimension n' — 1 and complexity O(deg(S)) satisfying that the angle between
T,(Z) and the subspace {€1, ..., €é,y_1} is < 1/(100n) for every z € Z N Sy, such
that

(B(x1,7) x {n}) N Sg C N12(2). (7.9)
Here B(xy,r) is the ball in R" of radius r centered at x1.

Proofof Lemma 7.1 If T gr[S] is empty, then define the right-hand side of (7.8) as an
empty set. Now assume that T g[S] is nonempty. Pick T € T g[S] and define S =
T NS N B(xp,r). If there exists T’ € T; g[S]and T NT' N SN B(xo,r) # &, then
TNSNB(xg,r)~T' NSNB(xg,r). Tosee this,if xe TNT" and 8(T),0(T") C 7,
then

T N B(x, 10r) =~ T' N B(x, 10r)

and B(xg,7) C B(x,r).

If there exists 7’ € T; g[S], then we add Sty := 7' NS N B(xo, ) to the right-
hand side of (7.8). Continue until for every T € T g[S], there exists S from the
right-hand side of (7.8) such that S; =7 NS N B(xg, r).

For each S, define Z = SN {r =1}. O

To define brooms, we fix (S, B(xg, 7)), 5, T and S. Write xg = (xo, fo). Define
T; rISOl :={T € T r[S]: T N S # 9}. (7.10)
Let us record the following lemma that will be useful later.

Lemma 7.2 Under the above notation, we have that

U (Tﬂ{(x,tl)eR”:xe]R”_l}> (7.11)
TeT, 2150
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is contained in an (n — 1) dimensional ball of radius R'*r=1/2

R.

,forevery |t] —to| <

Proof of Lemma 7.2 By translation, we assume that S contains the origin. Let wg be
the center of t. For w € 7, let x = X, (¢) denote the solution to

Voo (x,t; w) =0, (7.12)
for |t| < 1. Then we need to show that
| Xan (1) = Xo (O S 77172, (7.13)
for every . Note that
Vod (X)), t; 0) — Voo (X (1), t; wp) = 0. (7.14)
By Taylor’s expansion, this further implies
ViV (&, 1 0) (X () = X (1)) + Visp Xy (1), 15 ) (@ — 00) =0 (7.15)

for some x’,w’. The desired bound follows from the fact that V,V,¢ is non-
degenerate. g

We apply the following algorithm. Initialize
To: =T rlSOl, Do={T N{t=10+R}:T €T, r[SOl}. (7.16)

Suppose we are at the ¢'-th step of the algorithm and from now on £’ > 1. Let
Z C {t =ty + R} be an algebraic variety of dimension n’ — 1 and complexity
O (deg(S)) which satisfies that the angle between 7,(Z) and the subspace spanned
by {€1,...,&y_1}is < 1/(100n), for every z € Z. Find such a Z that maximizes

#{Do € Do : Do C Nig,g1/2+8(Z)}: (7.17)

use by to refer to the number in (7.17). Remove the discs (7.17) from Dy, use T to
collect the tubes T from T for which T N {¢t =ty + R} is removed from Dy in this
step, and repeat this process until there is no any discs left.

Suppose this algorithm terminates after L steps. We obtain a collection of positive
integers

by=by=---=bg (7.18)
and a collection of tubes
Ty, Ty, ..., TyL. (7.19)
We group {b}¢ by checking which interval from

[, RS), (RS, st], (R28, R38], L (7.20)
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they belong to:

{bog+1s -5 be 3, {bey+1, ... by}, e (7.21)

with £o = 0, and therefore two by, byr in the same group are comparable up to factor
R®. Now we are ready to define brooms.

Definition 7.3 (Brooms) Fix (S, B(xo, r)), 3’, 7 and SO. Each

Bep = U T (7.22)
£m+lff,§em+]

(see (7.19) for definition of T,/), with level
¢:=|R"|, withweN, R <11 — £, < R¥+D3, (7.23)
is called a broom. Here
b:=R"? with w’ € N, R <by, 1 < R® D3, (7.24)

will be called the length of the broom. For the broom By in (7.22), we say that it is
rooted at Sg.

In the previous definition, we used tubes from Tg[S]. For some perhaps technical
reasons, we need to introduce the notion of brooms by using a sub-collection of tubes
from TRr[S]. Fix (S, B(xg,7)), S, T and S, and a sub-collection ’H"R[S] C TgrI[S].
We repeat the above definition of brooms with Tz[S] replaced by ']I‘/R[S], and obtain
a unique decomposition

Tg[S1= ) Be.s(TRISD). (7.25)
l,b

where each By 5 (T, [S]) is called a broom of level £ and length b, and generated by
tubes from T’y [S].

7.2 Definition of the two-ends relation

Recall the algorithm in Sect. 5.2. For each node n € UR,, we will define a relation
~n; Lemma 5.6 guarantees that we have a small number of these relations.

We define a few auxiliary functions xn . = X, taking values O or 1, where k =
((1,b1), i1, ..., (€, b)), ), € N and £,, by, s € (R¥ : w € N} for every 1 <
' <. Denote

r=p). (7.26)
Step 1. For S e n and atube T € T[Bg], we say that

X, o (S, T)=1 (7.27)
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if T belongs to a broom rooted at some S C S with level £1 and length b;. Moreover,
we say that

X b (8, T) =1 (7.28)
if
X, (S, T) =1 (7.29)
and
11 <Y X b (S T) < R (7.30)
S'en

A general step. Suppose we have defined y, forx = ((¢1, by), n1, ..., (€, b)), 1,),
and ¢ > 1. Let us define

X, (g 1,biy1) s Xie,(Cop1obin)otegr - (7.31)
For fixed S € n, define
Ts, :={T" € T[Bg]: xc(S.T") = 1}. (7.32)
Recall (7.25). Write
Tse= | U BunbirosoTsio). (7.33)

Lit1,bi41 7,50
where 7 runs through all frequency caps of side length p(n)~'/2, S is as given in
Lemma 7.1, By, .b,.1,7,55(Ts,«) is a broom of level £, 1, length b, 1, rooted at Sr
and generated by tubes from T ,. We then say that

Xie,(bir1,be) S, T) =1iE T € By, b1 o550 (Tse,0)s (7.34)

for some t and S. Next, set

Xic, (Cs 1 b Dsptr = 1 (7.35)
if
Xie, (s, b (S, T) =1 (7.36)
and
Mot < Xl b (8 T) < 1 R, (7.37)

S'en

This finishes the definition of the auxiliary functions we need.
For k = ((¢1,b1), 11, ..., (€, b)), i,), we say that « is admissible if there exists
exactly one pair (t1, tp) with ¢ # 1 such that

((Zmbzl): ML]) :((glza btz)’ M12)~ (7.38)
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Lemma 7.4 The number of admissible k is Os(1).

Proof of Lemma 7.4 Note that by (7.23), the number of values that £, can take is §!;
the same is true is for b, and ., for each /. The lemma follows. O

Definition 7.5 For a ball B C By of radius R'~%, a tube T € T[Bg], a node n € U,%R,
and an admissible multi-index «, we say that B ~y , T if B maximizes

#HS en:S' CB (S, T)=1}, (7.39)
among all B’ of radius R'~%.

Definition 7.6 (Relation) For a ball B of radius R'~% and a tube T ¢ T[Bg], we say
that B ~ T if

B~n, T, (7.40)
for some node n € UK, and admissible «.
By a simple inductive argument on «, we have:

Lemma 7.7 Let S be a multi-grain with the last component given by S. For every
T € TRr[S], there exists exactly one admissible k such that T € Tg .

7.3 Broom estimates

Let S‘n/ be a multigrain from Definition 5.9 with the last component given by S,,.
Let B, C By be the ball of radius R'~9 that contains S,. Recall the definition of

* . from Sect. 5.4 and the definition of £*" ) with n’ <n” < n from (5.108). The
Ju,8,, (S
notation *(n’") means that we start with the function 1 ,» which is defined via wave

packets from ’JI‘[Brn,, ], and “trace” back by Definition 5.9 along the nodes in (5.86) to
wave packets in 'JI‘[Br”,,]. Note that

FR = e whenn” =, (7.41)
Define

f$ =, (7.42)

Here we have suppressed the dependence on ¢ and replaced it by ~, as B, is uniquely
determined by S, and we would also like to emphasize that we are in the non-related
case. Moreover, define

FENT =00 (7.43)
The main goal of this subsection is to prove the following broom estimate.
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Theorem 7.8 Let §,,/ =Sy, ..., Sy) be a multi-grain and S,y = N 1248, (Zy) N By,
r ’

with ry > ~/ R, where Z, is an n’'-dimensional algebraic variety of degree <,/ 1 in
R". Then, for T of scale rrzl/z and n’ <n" < n, it holds that

1515 5 (%) T sl (7.44)
Here ri = p(S;) foreachn’ <i <n.

Proof of Theorem 7.8 We will first write down the details for the case n”/ = n’, as it
requires less notation and contains all the ideas of the proof; the general case n” > n’
will be remarked in the end. Our goal is to prove

PR
151325 () 7 0l (7.45)

To simplify notation, we will abbreviate S, to S, S‘n/ to S and ry to r. For the ball B,
of radius R'~% containing S, the node n containing S and each admissible multi-index
i, recall the notation in (7.32) and define

']I‘gf’,(’r ={T €T, :0(T) Ct, B, *ny T}, (7.46)

and

KST:_ Z fr and fST:_(fKS‘L'tS'

TeTY

Sk, T

Then we claim that

f8 =) 175 (7.47)
K

To see this, note that for every T' € T[Bg] that is tangent to S, by Lemma 7.7, there
exists exactly one admissible « such that T € T . Moreover, if T ~ B,, then for the
above given n and «, we also have T~y , B,.

By the Cauchy-Schwarz inequality,

T D Ve 2 (7.48)
K

Here we used Lemma 7.4. Next, we localize f, ¢ further in space. Recall from
Lemma 7.1 that S = U S. Denote

Sowr =T €Ts, :TNSg#P,0(T) C T, Boensc Th, (7.49)
and then
Fosoar= D0 froand [7 =T s (7.50)
Te?l‘g“DKI
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By spatial disjointness of {SH}4, we have
2
748) S Y Y £ s (7.51)
kO

Let (x1, 1) be a point in S, then
ok 2 A opoek 12
”fK,SD,‘E”LZ S ”T fK,SD,f||L2((B(X1,2r,,/)x{t1})mSD) (752)

Here B(x1, 2r,/) is an n — 1 dimensional ball. Indeed, inequalities of the form (7.52)
hold for more general data. Let &, be supported on 7. Assume that T*he (-, 1) is
essentially supported on B /5 C R"~!, a ball of radius ~/R. Then

2 A
T L . 7.5
To see this, we first apply the change of variables
X Xx+xp,t—>1t+1,E- &4+ &, (7.54)

where xg is the center of B VR and & is the center of t. We obtain

T he(x +x0,1+11) = / hy (& + Eg)e'® CHOTERR) gh (x4 ot 4111 & + £o)dE.

(7.55)
Its absolute value can be written as the absolute value of
/ Fe(©)e IO (x4 xo, 1 4+ 111 € + E0)dE (7.56)
where
O (x, 18) 1= (x +x0. 1 + 115 & + &) — ¢ (x0, 11 £ + £0) a5
— @™ (x +x0, 1 + 115 £0) + ¢ (x0, 11 &0)
and
Re(€) 1= he (§ + go)el (01560 (7.58)
This change of variables tells us that, if we denote
Ty (. 1) = / he (€)1 (x; £)d (7.59)

then to prove (7.53), it suffices to prove it for the operator as defined in (7.59) with
t1=0,x0=0,§=0.
We apply Taylor expansion to ¢(’} in the x variable about the origin, and write

GG (x,0;£) = Vi) (0; &) - x + wy (x5 £). (7.60)

@ Springer



A dichotomy for Hérmander-type oscillatory integral operators 567

Note that
V2921 < 1/A, IxI SVR, (7.61)

and therefore |w1(x; &) < 1. We apply Taylor expansion in the & variable about the
origin, and obtain

B (6, 0; ) = (x, ) + wa(x; &) + wy (x; €) . (7.62)
=w(x;§)

Note that

IV VEgs1 <p 1. (7.63)

for all multi-indices B and therefore |w;(x; §)] < r~ VR < 1. Now the claimed es-
timate (7.53) follows from Plancherel’s theorem and Taylor’s expansion.
Suppose that

k={1,b1), pm1,...,«;,bj), ;). (7.64)
For each plank Sr,
TT,R[SD] N TS,Ka

where T r[Sm] was defined in (7.10), is contained in a broom ng,bj. Recall the
definition of brooms and the notation in (7.19). Write

Biw= |J Te. (7.65)
15(/§@j
and
U Tnit=1+R} CNgugi12+5(Ze) (7.66)

TeT,

for an algebraic variety Z, of dimension n’ — 1 and complexity O (deg(S)) satis-
fying that the angle between T,(Z,) and the space spanned by {e1,...,¢&,_1} is
< 1/(100n), for every z € Zy. Write

g —
fK,SD,r,Z/ - Z fT

"
TETSD.K,IQTW

and
Lk .
fK,SD,r,K’ = (fKO,OSD,r,Z’)iS'
Then by the triangle inequality and Cauchy-Schwarz inequality,

A ook 2
Ir fK,SD,t ||L2((B(x1 2r)x{t1HNSH)

) A opeo,k 2
S Y T o s amx sy

1 Se/fej

(7.67)
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Claim 7.9 For each ¥’ , it holds that

A
Ir fK Naf a4 ||L2((B(x1 2ryx{t1HhNSyo)

’ (7.68)
)‘l )\
<(R ”T f,( S0, TZ/”LZ({I =f})
where t, :==1t; + R.
We first accept Claim 7.9, and continue with the L? estimate:
(7.68) S ( )2 IIfK ot (/”Lz (7.69)

Summing over all £ and S, we obtain

N r n— n
1T f3" t||L2(B(x1 2r)x{1}) s )

2
”fKO,OS,T”LZ‘

By Lemma 7.10 below and the assumption that all wave packets have comparable
coefficients, we conclude that

2 —1 pO(né 2
1772 S € RO f2117

This finishes the proof of the theorem, modulo the proofs of Lemma 7.10 and Claim
7.9. 0

Lemma 7.10 Let « = ((£1,b1), 1, ..., (£, bj), uj) be an admissible multi-index
and T;K,T be defined as in (7.46). We have

T ol S € ROUIT,,
where T collects tubes T € T[Bgr] with 6(T) C t.

Proofof Lemma 7.10 Since k is admissible, there exists

K= ((C1,b0), o, (€, D) ) (7.70)
such that
K=" @1, bjryr) mjrgrs ... (€. bj), i1j) (7.71)
and
(@€ by, mj) = ((€j, b)), ). (7.72)

Let B be a ball of radius R'~% containing § and n be the node containing S, then for
each S enand S’ ¢ 2B, we have

Yo (S D xns (S, TY S RO Y™y (8, T) (7.73)
T~B,TeT, TeT:
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Summing over all S" e n, S’ Z 2B,

YooY xek(S D (S, T)

Sen,S¢2BT~B,TeT,

1 (7.74)
<ROMGE DT Y knwr (ST,
Sen,SZ2BTeT,
On the other hand, for each T » B and xn (S, T) =1,
> w8 T) = piR™.
S'en,S'¢2B
As a consequence,
TF < RuFY D0 Y s (S Tt (S, T).
S'en,S'¢2B T=B,TeT,
Moreover, note that
> xS T) S Ry |Te|
S’en,S'¢2B TeT,
The conclusion follows from (7.72). O

In the rest of this section, we will prove Claim 7.9. We will start with the proof
of Lemma 1.10, and this lemma will be an important ingredient in the forthcoming
proof of Claim 7.9.

Proof of Lemma 1.10 Denote o := +/R1/+/R2, Q] = N1(Z1) and Q) := N, (Z2). By
scaling, let us assume that supp(F) C €2/, and we need to prove

”F”iZ(Q’I) S o"mb ”F“iz (7.75)

Let K be a large number depending on n, deg(Z;), §, which is to be determined. We
cut Z3 into Oy deg(2,),5 (1) many pieces so that for each piece Zé C Z», there exists a
linear subspace of dimension m — 1 satisfying that the angle between 7;(Z}) and the
linear subspace is < 1/K for every z € Z}. As our constant is allowed to depend on
K, we only need to prove Lemma 1.10 for each Z}.

Claim 7.11 Fix Z), as above and K' > K. Let V C R"! be an (n — m)-dimensional
affine subspace such that the angle between T,(Z)) and VL is < 1/K for every
ze Z). Let Sy denote the 1/K'-neighbourhood of V. Then Z), N Sy is contained in

a union of O(deg(Z>)"~") many rectangular boxes of dimensions

1 1 1 1 (7.76)
— X...— X —— X...—— .
K’ K’ KK’ KK’

(m—1) copies (n—m) copies

whose long sides are parallel to V.
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Proof of Claim 7.11 Without loss of generality, we may assume K = e~ " (all we need
here is a small constant) and K’ = 1 since we can do an (anisotropic) rescaling oth-
erwise. Since the angle between every TZ(Zé) and VL is < e, we see the an-
gle between every T(Z}) and V is 2 1. Hence if we take the union of all points
z € Z>() Sy such that the angle between T,(Z;) and V is 2 1, it suffices to prove
this whole set can be contained in a union of O(deg(Z>)"~') many unit balls. Note
that when n — m = 1, this is proved by Guth as a special case of Lemma 5.7 in [9]
(when one takes r >~ « >~ 1 there). For general n and m this can also be proved by
induction on dimension exactly in the same way as in the proof of Lemma 5.7 in [9]
and we thus omit the details. O

We continue to prove Lemma 1.10. We start with a trivial estimate:

~2 ~12
“FHLZ(NI(Zl)) = ”F”Lz(/\/K(Zl))' (1.77)

For a given K’ > 1, let Pg- be a partition of ), into disjoint pieces {SZ/2 k) so that
the orthogonal projection of each 9’2 o into span{éy, ..., €,_1} is roughly a dyadic
cube of side length 1/K’. Denote

FQ;.K/ =F. ]lQrz o (7.78)
By local L? orthogonality (see for instance [8, Appendix B]) and Claim 7.11,
=2
TINDS D N Fey N2z (1.79)

/
QZ,K

When applying the local orthogonality lemma in [8, Appendix B], the L? norm on
the right hand side of (7.79) carries a weight that is associated to Nk (Z1) and decays
rapidly outside N'x (Z;); this is standard and we leave out the technical description.
By the assumption of Lemma 1.10, we see that 9’2 x 1s contained in a rectangular
box of dimensions

1 1 1 1 (7.80)
— X .. —=X—=X...—, .
K K = K? K?

(m—1) copies (n—m) copies

such that its long axes span a subspace that has angle < 1/K against span{e, ...,
én—1) the for every z.
We now use the uncertainty principle to analyze FQ/Z . again with the help of

—

(the K >~ K’ ~ 1 version of) Claim 7.11. Each |FQr2 K| is essentially a constant on

dual boxes of dimensions K x ... K x K x ... K% If we use Claim 7.11, set all
—— —
(m—1) copies (n—m) copies
parameters in that claim to be ~~ 1 and rescale the conclusion by K times, we see that
if we tile any given K x ... K X K? x ...K? box as above by K-balls, then Z; only
[ —— —_———
(m—1) copies (n—m) copies
intersects >~ 1 of them.
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Therefore, the uncertainty principle (for instance the version in [8, Appendix B])
and the above geometric observation imply that

1 — 2
(779 < m Z [ Foy HLZ(NKQ(ZI))

 k
| (7.81)
=2
N Kn—m Z |7 Q) 2 H L2WN 2 (Z1))
Q/z,k2
where in the second inequality we use L orthogonality. Similarly to (7.80), 9’2 K2 18
contained in a rectangular box of dimensions
1 1 1 1
(m—1) copies (n—m) copies
with nearby directions.
We continue this process repeatedly, and in the end arrive at
—~ 1 n—m 2
w
1Pl =€ (=w) IF]G2: (7.83)
where KW = 1/0. In the end, we pick K to be large enough. U

Next, we will prove a simpler version of Claim 7.9, see Lemma 7.12 below. The
proof of this lemma contains the main idea of that of Claim 7.9, and indeed we will
apply Lemma 7.12 iteratively to prove Claim 7.9. To simplify notation, let us denote

Foun i= [ f@e? 0100 e, (7.84)
where 7 is a frequency cap.

Lemma 7.12 Let VR <r < R| < R, < R. Let t© be a frequency cap of side length
r~12. Given t1,t) € [0, \] with R = |t; — t2]. Assume that we are given two (m — 1)-
dimensional algebraic varieties Z1 C {t = t1} and Z> C {t = tp} satisfying that the

angle formed by Ty, (Z;) and the space spanned by {é1, ..., éy—1} is < 1/(100n), for
everyi =1,2 and every z; € Z;. Here T,,(Z) refers to the tangent space. Denote
Q=N —(Z))NB_, (7.85)
R0

for a given ball B s of radius V'R; denote

Q ZNR/@(ZZ) N BR/ﬁ‘ (7.86)

Assume that F (-, 1) is essentially supported on B /i and F (-, 12) is essentially sup-
ported on 2, then

R/l ) n;m 70(5)

||F(x,t1)||iz(9|) S (R_é |F(x,12) ||iz(szz)' (7.87)
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Proofof Lemma 7.12 Let x( be the center of B/ and & the center of T. We apply
the same change of variables as in (7.54). Recall the new phase function in (7.57). If
we denote 10

F(x,1):= / Fr(E) 1D (x; £)dE, (7.88)

then to prove the lemma, we need to prove it for the function F(x,¢) as in (7.88)
with #{ =0, xg = 0 and &y = 0. Before we finish this reduction step, let us do another
linear change of variables so that V, V¢ ¢6‘ (0; 0) is the identity matrix.

We claim that f, is essentially supported on 2B /5. By the same Taylor expansion
as in (7.60)—(7.62), we can write

fo) = / Fo€)ei*dE = f Fo(€) 000 v () g
(7.89)

=2 ffr(é)e’d’o O W (x; £)dE.

k!
keN

Next, we do Fourier expansion for wk(x; £)a’(x,0; &) in the & variable at the unit
scale, and write it as

> crp)ePs, (7.90)
ﬂGN”’l
where the coefficients satisfy
ek ()] Sn 241817, (7.91)

for every large N, uniformly in x. Now the claim that f, is essentially supported on
2B /i follows from the assumption on F" and the rapid decay in (7.91). Moreover, by
a similar Taylor expansion, we obtain

2 <2
|FCe )20, S 12 720y (7.92)

It therefore remains to control ” ft HiZ(gzl) by ” F(x,t) HiQ(QZ).
Consider ¢t = t,, and write

F(x,n) = / Fr(E)el? OO (x 1y £)dE

(7.93)
= f Fe)( f eV (x, 1y; £)dE ) dy
Consider the critical point of the phase function:
Ve (x, 12 €) = y. (7.94)

10Here we still use F just to avoid new notation.
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Let &, = &.(x, t2; y) denote the critical point. Note that by (7.57) and the assumption
that d))‘ is in its normal form, we see that

ng&é‘(x, ;&) =1t - I(n—1)x(n—1) + small perturbation (7.95)
where 1, _1)x (n—1) 1s the identity matrix of order (n — 1). Denote
Ul y) = (x. 11 E) — ¥ - & (7.96)

Then by the stationary phase principle (see for instance Sogge [19, Theorem 1.2.1]),
we obtain

_n—l “ .
F(x,n)=t, ° f f,(y)e”ﬁé(x’”a}z (x, y)dy (7.97)
where
Xy
ag(x, y) = atz(x, X)’ (7.98)

and ay, is a compactly supported smooth function in both variables. To continue, we
apply Taylor expansion of wt); (x,y) in y. Take V, on both sides of (7.96):

Vyl//é(x, V)= Veh(x, &) - Vyke — Ec — y - Vybo = —&.. (7.99)
Hence
Vo =—V,&.
‘We claim that

1
[Vy€e| < —. (7.100)
5]

Here by | - | of the matrix V,&., we mean the maximum of all the entries. To see this,
we go back to the definition of &, in (7.94), and differentiate both side:

ngsé(x’tz;gc)vysc:1(n—l)><(n—l)- (7.101)

The claim now follows from (7.95). Moreover, taking V, on both sides of ng% (x,
ty; €.) =y, we obtain

ViV + Vi) - Viée =0. (7.102)

If we keep differentiating both sides of (7.101) and (7.102) in x, y, then we will be
able to obtain

VeV e | Sa 1,15 (7.103)
for every «, @’ € N. The proof is left out.
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From (7.100) and the fact that f, is essentially supported on B/, we see that we
can “ignore” the quadratic term in the Taylor expansion of wé (x, y) in the y variable.
Write

F(x,t) = V20 / Fe e IVEEORIL G G (o gy, (7.104)

for some error function w3, (x, y). Next, we do Taylor’s expansion for V, 1//}2 (x,0)
in the x variable. Recall our assumption that F(x, t2) is essentially supported on a
ball of radius R/./7; let xo denote its center. Write

Y Vy Wl (x,0) =y - Vo (x0,0) + y - Vi Vy i (x0, 0)x + wa iy (x, y),  (7.105)
for some error function wy 4, (x, y). In particular,
1 /R

gy (. 1)1 S RZ(I> YIS (7.106)

Next, by (7.99), (7.102) and (7.95), we see that V, V,, IMZ (x0, 0) is a small perturbation
of L i Ln—1)x(n—1)- The desired bound

< R/ n—m m 0( ) )
I 7el e < (R/ )T e, (7.107)
now follows from Taylor’s expansion and Lemma 1.10. O

In the end of this section, we prove Claim 7.9. As mentioned above, the main idea
is already explained in Lemma 1.10 and the proof of Lemma 7.12. The extra work we
need to do is to take care of the refinement process of wave packets in the polynomial
partitioning algorithm. In other words, in the partitioning algorithm, each time we
have an algebraic dominating case, we will need to remove certain wave packets, and
therefore the input function fI:,QSD,r, o also changes as the algorithm proceeds.

Proof of Claim 7.9 To simplify notation, let us write

fR= s (7.108)

Here we use R to emphasize that the function fr is built on wave packets from
T[BRr]. Our goal is to prove

A
”T (fR) S”LZ((B()C] 2r)x{ll})ﬂSD)N( ) “T fR||L2({l =t} (7109)

We apply Lemma 7.1 and find an algebraic variety Z; C {r = t1} satisfying that the
angle between Ty, (Z)) and {ey, ..., &y_1} is < 1/(100n), such that

(B(x1.2r) x {(n) NSO CN H(Z1) N B zN{t=1)=:Qi, (7.110)
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for some ball B /s of radius VR. Moreover, by Lemma 7.2 and the definition of
brooms, we can find an algebraic variety Z, C {t = t; + R} satisfying that the an-
gle between T, (Z>) and {1, ...,&,_;} is < 1/(100n) for every z; € Z, such that
T* fr(-, 12) is essentially supported on

Nﬁ(Zz)ﬂBR1+8/ﬁﬂ{t=t2} =: Q. (7.111)

Under the above notation, (7.109) can be written as

n—n’

.
IT (FR s, S (F) 7 1T frllg2q,): (7.112)

To proceed, we need to recall notation and definitions from Sect. 5.4. Let n €
{ng.n7, ...} be such that § € ny. Collect all the ancestors of n that are in U; (91; U
R;), and list them in descending order

“7?1»"7?27---7“76W_17 (7.113)

where R > Ry > Ry > --- > Rwy_1 > r. Moreover, denote Ry := R, n}o =ng,

Rw :=r and nj}w :=n’. Note that we have the trivial bound W < §, 10 Next, find
Sk, € “;w for each 1 < w < W such that

S =S8Ry CSry_, C---C Sk, C Sgry = Bk, (7.114)

and each Sg, is contained in a ball By, of radius R,,.
We will prove Claim 7.9 by applying Lemma 7.12 iteratively. Denote

Ny @)t =n)= Q%) Np, (@) N{t=n+Rj=Q%, (7115
for every w. Recall that T* SfRry(:, 12) is supported on ng) By Lemma 7.12 with
m =n', R| = Ry and R} = Ry, we obtain

R1>"‘T"’—0<6)

” T)‘fRO ”LZ(le)) 5 (R_O ” T)LfRo ||L2(Qg3) (7.116)

On the ball Bg,, we have the new wave packet decomposition

fro= Y (r)r- (7.117)

TET[Bg, ]

Let T'[ Bg,] be a subset of T[Bg, ] such that

(fR)se, = D, (fR)TS (7.118)

TeT'[Bg,]

that is, we throw away certain wave packets, depending on whether we are in the
tangential case or the transverse case. Denote

fro= Y. (fro)T- (7.119)
TG'H‘/[BRI]
TNQY) 40
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Therefore by L? orthogonality, we have
“ T)‘le ||L2(QS‘€1])) Sj H T)‘fR() ||L2(Q§el]>) (7120)

Note that by the construction of f, , the function T f r; (-, 11) is essentially supported

on le) Therefore, by (7.53) and L? bounds for Hérmander’s operator at fixed time
(see for instance Hormander [15]), we have

| 7% fr )| 2 oty S [ il S 1T Fry | 20y (7.121)
1

The main observation is that T f R, (-, 12) is essentially supported on Q%) Once this

is proven, we see that we can repeat the above process: By Lemma 7.12 with R = R,
and R, = Ry, we obtain

Rz)"z"’—ow

” T)‘le HLZ(ng)) 5 <R_1 H T)\fl HLZ(le))

(7.122)

()

N RO H T)‘fRo HLZ(Q;Z(;)

We define fg, similarly as above, and then observe that T* fr, (-, 12) is essentially

supported on Qg). This allows us to repeat the above iteration one more time. In the
end, we will obtain the desired bound (7.112).

It remains to prove that T* fg (-, ) is essentially supported on Qg) for every
w. We will only prove the case w = 1, and the other cases are the same. Recall the
definition of fg, from (7.119). Write

fro= Y. i (7.123)

ToeT (B, ]
for some T'[Bg,] C T[Bg,]. Denote
fror= Y, (fr)r. (7.124)

TeT'[Bg,]
0
TNQY) 49

It suffices to prove that for each Tp, we have

suppT™ fr.&, (. 12) C N/ ymr (SuppT™ f1,(-. 12)), (7.125)

where by A/ we mean neighborhood in (n — 1) dimensions. Note that f1,, R, consists

of wave packets of frequency scale R;l/ % In order to see where T)‘fTO, R, (-, 1) 1s

supported, we do a wave packet decomposition for f7; g, by using wave packets of

frequency scale R, 12,

form= ) ez (7.126)

T €TIBg,]
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In order for TO/ € T[Bg,] to have non-trivial contribution, we need that Tp N T(; #*
¢ and dist(0(Tp), G(TO’)) < R;l/ 2. Under these two conditions, by the same Taylor

expansion argument as in Lemma 7.2, (7.125) follows immediately. g

8 Bushes: small grains

Let S be a grain with its last component given by (S, B(Xo,7)). In the previous
section, we considered the case r > +/R. In this section, we will consider the case
r< VR. As the grain S is small, in particular, it is smaller than the scale VR of a
wave packet T € T[Br], we will see that this case is much easier to handle.

The goal of this section is to prove the following result.

Theorem 8.1 Let 3',,/ = (S, ..., Sw) be a multi-grain with S, = N 1245, (Zy) N

r
n

By,,rw <~Rand Z, an n’-dimensional algebraic variety of degree <,/ 1 in R".

Then for frequency caps t of side length rrzl/z andn’ <n" <n, we have
175013 5 (%) T sl 8.1)

where f; /(”:/) is defined in (7.42) and (7.43), with the definition of ~ given in Defini-
tion 8.3 below.

In Theorem 8.1, the scale r,,/ is so small that we do not see the broom structure;
we will replace brooms by bushes.

Definition 8.2 (Bushes) Given a grain (S, B(xg, 7)) with r < /R, a collection of
tubes T'[Br] C T[Bg] and a frequency cap t of side length r~!/2, the collection of
tubes

B(T'[Bg]) :={T € T'[Bg]:6(T) Ct, T NS #0) (8.2)

is called a bush generated by T'[ Bg]. The size b of the bush B(T'[Bg]) is defined to
be R™® with w € N, R¥® < #B(T'[Bg]) < R®tD% Often B(T'[Bg]) will be written
as By, (T'[Bgr]). In particular, if T'[Bg] = T[Bg], then we will simply write B} for a
bush.

Next, we define a two-ends relation ~, for nodes n € U, with p(n) < +/R. Sim-
ilarly as above, we start by introducing a few auxiliary functions xn . = x«, taking
values O or 1, where k = (b1, i1, ..., be, e) and by, iy € {R™® : w € N} for every
1 < ¢ <{.Denote r = p(n). For S € nand a tube T € T[Bg], we say that

xb, (S, T) =1, (8.3)
if T belongs to a bush of size by rooted at S. Moreover, we say that

Xbr, (8, T) =1 (8.4)
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if
X (S T) =1, 1 =Y 3, (8. T) < R°. (8.5)
S’en
Now let us assume that we have defined y, with x = (b1, u1, ..., be, i) already,

and we would like to define X p,,; and Xic,po,1,pp4, - FOr a fixed S € n, define
Ts.:={T" € T[Br]: (S, T") =1}. (8.6)

We write T , as a disjoint union of bushes

U UBbg+1,‘L'(’]TS,K) 8.7)

bey1 T

where t runs through all caps of side length p(m)~1/2 and Bpy1,7(Ts,i) is a bush of
size by with tubes coming from 7. We say that

Xichey) (8, T) =1, if T € By, (Ts), (8.8)

for some 7. Moreover,

Xiebpsrmen (S T) =1, (8.9)
if
Xichen S T)V=1, 10011 <Y Xieben (8 T) < g1 R, (8.10)
S’en

This finishes the definition of the auxiliary functions.
For k = (b1, p1, ..., be, Le), we say that k is admissible if there exists exactly one
pair (£1, £») with €1 # £, such that

(bey, pgy) = (bey, phey). (8.11)

Similarly to Lemma 7.4, it is elementary to see that the number of admissible « is
Os(1).

Definition 8.3 For a ball B C By of radius R! =%, a tube T € T[Bg], anode n € U,R,
with p(n) < +/R and an admissible «, we say that T ~y , B if B maximizes

#S €n:S' CB k(8. T)=1}, (8.12)

among all B’ of radius R 1-8 Moreover, we say that T ~y B if T ~y  for some
admissible «; we say that T ~ B if T ~,, B for some node n € U R,.

Now we are ready to prove Theorem 8.1.
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Proof of Theorem 8.1. Similarly to what we did in the proof of Theorem 7.8, we will
write down more details for the case n” = n’, and the case n” > n’ is essentially the
same. _ _

We abbreviate S,y to S, S,y to S and r,; to r. Let B, be the ball of radius R' %
containing S; let n be the node such that S € n. For an admissible multi-index « of
the form (by, i1, ..., b, i), denote

Ty :={T € Ts.c:6(T) C 1}, (8.13)
T, o ={T € Ts.,c:0(T) C 1, B oen, T}, (8.14)
and
Flse= Y fr oand [ = (ks (8.15)
TET?KT

Then similarly to (7.47), we have
fE=> 1T (8.16)
K
Next, similarly to (7.48) and (7.52), we have

“fS’)or||2N‘SZ|T)L KS‘[”LZ ({r=1}NS)’ (8.17)

where (x1, #) is a point in S. By the definition of k, T  ; is contained in a bush By, .
Write

fosh = Z (fr)is. (8.18)

Te mee

S/(r

By the Cauchy-Schwarz inequality, we have

2
17 125 2 sy < e Z 17 s 22 e ns)- (8.19)
Te mel

S/cr

It is elementary to see that!!

” T)L(fT)t S||L2({t =1}NSs) ~ S ( ) H fr ||L2 (8.20)

By summing over 7', we obtain

r Sl 2
”T)L KS‘L'”L2({I =t1}NS) ~ <b <R> i ”fKo,OS,r”LZ' (8'2])

HThis can be viewed as a trivial version of Claim 7.9.
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In the end, we just need to show that

ITF | S by ' ROMIT, |, (8.22)
which is an analogue of Lemma 7.10. As the proof of (8.22) is also more or less the
same as that of Lemma 7.10 (indeed simpler), we leave it out. O

9 Finishing the proof of Theorem 4.2

In the last section, we combine the polynomial Wolff axiom in Lemma 6.1 and Corol-
lary 6.5, Properties 1-4 in Sect. 5.4, the broom estimate in Theorem 7.8 and the bush
estimate in Theorem 8.1 to finish the proof of Theorem 4.2.

First of all, by Property 1 and repeated applications of Property 2 in Sect. 5.4 in
the same way as [12, page 269] obtain equation (56) and (57), we obtain

n—l g8 m,(1,¢>
A < > 2 2 pn
Ir g”BL;’;,A(BR)% 1_[ r; D, .1
i=m—1
2 -2
lglly" max [g.of, ™ 9.2)
¢o

where ¢ refers to B, C Bp, the ball of radius R'~® containing O, the parameter m
comes from (5.86) and n;fo is as in (5.84). Next, by repeated applications of Property
3, we obtain

;N
2o - ~1/2 1y —i+b 2
max gl,()”2 Sry H r; / D; 0 max g |- 9.3)
Oenj , S €6, 2
0 i=m—1
By Property 4,
2 n—zn/ n—1 _% _n—2n// n—l % 0(e) *(n") |2
* < €o
lets, 5= (TTr)re = (T177)RO 1S5 ©4
i=n' i=n"
We then apply Corollary 6.5 and obtain
"
2 n 1 n—n""=1 2
") |17 < -2), *(n")
8.5 S r. 2, max g s . 9.5)
Lon’ i 1_[ J " T;g(f):ry;/l/z b/ L}, (D)

j=n'

Recall the notation (7.42) and (7.43). By the broom estimate in Theorem 7.8 and the
bush estimate in Theorem 8.1, we have

e, () el 96

L3g(0) ™ \rpr

*(",//)
L,Sn/
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Putting everything together, we obtain

n'—1 n'—1 n—1
2 i 3 _
mgxugl,ouzgzemea( [To)IA)(I+") o
i=m—1 j=m—1 i=m—1
n—1 —n
e —1 R 7}12)1 2
o >( I rl-)(r ) el 9.8)
i=n"+1 "
We pick n” such that
/
n—n"=1""0 41, 9.9
bound r; by R and obtain
5 n—1 n'—1 n'—1 R n—n’ 5
- 1/2 —i 5
max [g.ol3<( TT ) TT #7)( TT 27)(=) © Il ©10
i=m—1 i=m—1 i=m—1 n
Note that when
n' <n/100 +99m /100 =: W), (9.11)

it holds that

2n n’ 67n  33m
(= R LY 2 9.12
=3T3 =700 100 ©-12)
and therefore we have

n—1 n'—1 n'—1

m(‘;‘X”gt»O”ié( ]_[ ri_1)< 1_[ ri1/2)< 1_[ Di_i) (9.13)

i=m—1 i=m—1 i=m—1
R 7% 2 e n
x (W) lslls it n" < Wy (9.14)
H g H o otherwise
By taking a weighted geometric average inn’ € {m,m+1, ..., n — 1}, and substitut-
ing into (9.1), we obtain
= X; nY, 2 1-2
I7*8lup o S B TT 200 )slFlelc?. ©19)
i=m—1
where
W}’L
(N 1 1330 —m)
A‘(g”«/)(z p) 200 ©.16)
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.BH-I .31 1 1 1 i 1 1

U J— —_—_— — — J— . —_—_— —
Xi= 2 (2 p)+ 2(1 /Zmyj)(Z p)’ ©.17)

0ifi #M,
X =X 9.18
i=A {Aifi:M ©-18)
Y, = ’3’“ (1 +i(l— Z Vi) (— - —)) (9.19)
and

Ym-1=0, 0=V, .... " <L, Yu+-+wm=1, (9.20)
tme1=1, Dy=1, By =1, By =Bu_1>---> Bn. (9.21)

Lemma 5.10 suggests that we write the coefficients on the right hand side of (9.15)

as
(Z n—1 X
RMND,_ )G (]‘[ p;' &=t )]_[ (r,- ]_[Dj) (9.22)
i= i=m j=i
We pick y; and B; so that
B 11
Y _Xn—l_"'_sz"‘ZYm_Xm—T_m(__;)_ (9.23)
XMZA, X,’:O, WhGI‘li?ﬁM. (924)
One can check directly that if we set p,, =2m/(m — 1),
1 20—t
yim et [ vm=izn-1, 925)
20 —1) 2j+1
j=m
and let y; be given by the solution to the system
vi=y/,Vm<i<M—1,
1 , n 33(n — "
(M+§)(VM—VM)=FmT, with T'), Z)/],
2i+1 M+i—1
M +=——=)rmsi = Vi) +35 D, j—vp=0, Vi<isn—M-1,
j=M
(9.26)

then (9.23) is satisfied.
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Claim 9.1 Let y; be given as above. Then y; > 0 for everym <i <n — 1 and
n—1
Y ovisl 9.27)
i=m
Proof of Claim 9.1 By taking the logarithm and Taylor’s expansion, we see that
n—1
> vl =1y (9.28)
i=m

Moreover, under the assumption that k£ > 2n/5 in Theorem 4.2, it holds that

;1 2m—1)2m...2( — 1)
Vi = 20— D Cm+1D2m+3)...Q2i+1) 9.29)
1 2(m — 1)2m 2n ’
> > —,
T2—-1)Qi—-D@i+1) " 25
and
C M4 12ipn e m 1 (9.30)
MY = mTT200 24 '
The claim now follows from checking the system (9.26). g

So far we have picked the values for y; withm <i <n — 1 and 8,,. By Claim 9.1,
we can choose y, =1 — v, — -+ — ¥u—1. Now we pick B; satisfying (9.21) so that
(9.24) is satisfied. Elementary computation shows that

R ) o
j=m

Therefore, to prove Theorem 4.2, it remains to prove that p < p,(k), where p is
given in (9.31). This can done by using the trick in the appendix of [13], together
with elementary but tedious computation, which will be skipped.
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