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1 Introduction

For o > 0, the Bochner—Riesz multiplier of order « is defined by
m* (&) := (1 — |§)Y. (1.1)

where (1 — |£]?)4 is defined to be 1 — |£|> whenever |&] < 1, and 0 otherwise. We
define the Bochner—Riesz operator m® (D) ( f) to be

m® (D) f(x) i= / AT e (&) (&) dE. (12)

Rn
The Bochner—Riesz conjecture is as follows:

Conjecture 1.1 (Bochner—Riesz conjecture) For everyn > 2 and p > ,127"1 it holds
that

lm® (D) fllLr @y Snoaop ILf e @ (1.3)

whenever a > n(% — %) -3

Let $”~! denote the unit sphere in R”. Let do denote the surface measure of S"~!.
Take f € L®(S"!, do). Define

ﬁﬁuy:/ ATHE0) f(w)do(w), x € R™. (1.4)

sn—1

The (dual form of) Fourier restriction conjecture is as follows:

Conjecture 1.2 (Restriction conjecture) Let n > 2. It holds that

I fdollLr@ny Snp 1 Lse(sn-1.do) (1.5)

whenever p > nzT"l

LetRf = f| sn—1 be the sphere restriction operator. By duality and the factorization
theory of Maurey, Nikishin and Pisier (see Bourgain [2]), the restriction conjecture is
equivalent to that

IRl Lrcsn-1y Snp I lLe ey, (1.6)

forevery 1 < p < ’12% Indeed, (1.6) is the original Fourier restriction conjecture
of Stein (see for instance [26, page 345]). Here we state the equivalent version as in
Conjecture 1.2 since it is closer to the operator under investigation in the current paper.

Tao [28] proved that the Bochner—Riesz conjecture implies the restriction con-

jecture. Moreover, he mentioned in his paper that these two conjectures “are widely
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believed to be at least heuristically equivalent”. The information we would like to con-
vey in the current paper is that, after applying the pseudo-conformal transformation
(see (2.12) below), the recently developed techniques in the Fourier restriction litera-
ture apply equally well to the Bochner—Riesz problem. These techniques include, but
are not limited to, the broad—narrow analysis of Bourgain and Guth [5], the polyno-
mial method of Guth in [13, 14], and the polynomial Wolff axioms obtained by Guth
[13], Zahl [34], and Katz and Rogers [19] that was applied in the Fourier restriction
setting in Guth [13], Hickman and Rogers [15] and Hickman and Zahl [17]. To be
slightly more precise, we will see that after the pseudo-conformal transformation, the
above-mentioned techniques do not see the differences between the Bochner—Riesz
problem and the Fourier restriction problem. As a consequence, we show that the
Bochner—Riesz conjecture holds for every p for which the restriction conjecture has
been verified in the above-mentioned papers.

To state our result, let us recall what is known about the restriction conjecture. For
n = 3, Guth [13] proved the restriction conjecture for p > 3.25; moreover, for n > 4,
he proved in [14] that the restriction conjecture holds if

3n+1

p>2- for n odd,
3n -3 17
3n+2 a7
p>2- for n even.
3n—2

These results improved prior ones due to Tao [29] and Bourgain and Guth [5]. More
recently, for certain dimensions n, in particular all “large” n, Hickman and Rogers
[15] and Hickman and Zahl [17] applied the polynomial Wolff axioms established by
Katz and Rogers [19] and further improved the results of Guth. The new ranges of p
in [15, 17] are a bit technical to state, and we refer the interested readers to Figure 2
in [17].

Let presir denote the minimum of the exponent p for which the restriction conjecture
has been verified in [13-15, 17].

Theorem 1.3 For every n > 3, the Bochner—Riesz conjecture holds for every p >

Prestr-

Before we comment on the proof of Theorem 1.3, let us briefly review some known
results about the Bochner—Riesz conjecture in the literature. Whenn = 2, the Bochner—
Riesz conjecture was resolved by Carleson and Sj6lin in [7]; see also Héormander [18]
and Fefferman [10] for alternative proofs. When n > 3, this conjecture remains open;
Fefferman [9], Bourgain [2, 3], Lee [20] and Bourgain and Guth [5] made significant
partial progress toward this conjecture; see also Christ [8], Seeger [24], Tao [27]
and Lee [21, 22] for more related results and some endpoints results. The most recent
progress was made by Guth, Hickman and Iliopoulou [11]. The approach in the current
paper has closer relation with those in Bourgain and Guth [5] and Guth, Hickman, and
Iliopoulou [11], and therefore we expand a discussion on these two papers.

In these two papers, the authors there viewed the Bochner—Riesz operator as an
oscillatory integral operator of the Hormander type with positive-definite phase. To
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be more precise, they followed Carleson and Sjélin [7]' and reduced the L? bounds
of the Bochner—Riesz operator to the L? bounds of oscillatory integral operators of
the form

T* f(x) ;:/W1 2TV ) b (1 ) F(w)dw,  x € R, (1.8)

where the phase function ¢ satisfies the Hormander condition (see for instance (H1)
and (H2) in [11, page 252]) and a positive-definite condition (see (H2%) in [11, page
2541]). For these oscillatory integral operators, it was proven in [11] that

IT* fllLr @ Sepp AN F Loty (1.9)

for every A > 1, € > 0 and every p satisfying (1.7). As a consequence, the authors
there obtained the L? bounds (1.3) of the Bochner—Riesz operator for the same range
of p. It is worth mentioning that the authors of [11] also proved that their result is
sharp, that is, the range of p in (1.7) is sharp for T* with a phase function satisfying the
above-mentioned positive-definite Hormander condition. This also means that if one
plans to prove (1.3) by viewing the Bochner—Riesz operator as an oscillatory integral
operator of the Hormander type, then the range (1.7) is the best that one can hope for.

The way that Guth, Hickman, and Iliopoulou [11] proved the sharpness of their
result is built on the work of Bourgain [3]. The sharp examples in these two papers
rely crucially on the fact that for general operators T* satisfying the Hormander
condition, wave packets may be curved. One key observation of the current paper
is that, after applying the pseudo-conformal transformation (see (2.12) below) to the
Bochner—Riesz operator, all the new wave packets admit similar behavior as those in
the Fourier restriction problem, say in [13-15, 17]. Roughly speaking, this is what
allows us to apply the recent techniques developed in the Fourier restriction theory
to the Bochner—Riesz problem. Here we would like to emphasize that the use of the
pseudo-conformal transformation in the context of the Bochner—Riesz problem is not
new. Indeed, Carbery [6] already used it to prove that the Fourier restriction conjecture
for paraboloids implies the Bochner—Riesz conjecture for paraboloids.

In the end, we would like to briefly mention some other interesting features of the
proof of our main theorem, and compare them with those in the literature aforemen-
tioned, in particular, in [11] where the latest progress on the Bochner—Riesz conjecture
were made. First, in [11], the authors there always first reduce phase functions to nor-
mal forms (see [3, page 328] for the definition of normal forms, which are also referred
as “reduced forms” in [11]) and then only work with normal forms. In our case, we
work with the phase function of the Bochner—Riesz operator directly; indeed, our proof
relies on a special parabolic rescaling structure of the phase function (see the proof
of Lemma 3.8), which makes our induction argument perhaps different from that of
[11] (see also Remark 3.1 for more discussions). Whether this is just a technical point
or not remains to be understood. Second, it is perhaps worth mentioning that the way
we prove the transverse equidistribution estimate (the content of Sect.6) is slightly

I See also Theorem 2.1 and Theorem 2.2 below where the same reduction is used.
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different from that in [11, 14]; we observe that instead of considering output functions
(for instance Hg as in (2.20)) as a medium, one can directly prove the transverse
equidistribution estimate by essentially only working with the input function g, which
gives us a slightly simpler proof. More details are included in Sect. 6.

Remark 1.4 We make a remark on the Bochner—Riesz problem and the Fourier restric-
tion problem in the case n = 3. In this case, so far the best result for the restriction
conjecture is due to Wang [31], where she proved that this conjecture holds for
p >3+ % It is not implausible that if one combines the argument of [31] with
that of the current paper, then one may be able to improve Theorem 1.3 to the same
range of p when n = 3. We do not pursue it here. Regarding the Bochner-Riesz
problem in n = 3, recently, Wu [33] proved that the Bochner—Riesz conjecture holds
for p > preser = 3.25 when n = 3. His proof partially relies on some ideas from Wang
[31]. Our Theorem 1.3 recovers the result in [33] via a quite different and a slightly
simpler approach.

Organization of the paper. In Sect. 2, we make several reductions to the Bochner—
Riesz problem, including the well-known Carleson—Sj6lin reduction and a reduction
via the pseudo-conformal transformation. In Sect. 3, we introduce the induction
hypothesis and will further reduce the desired estimate to a broad norm estimate; the
structure of our reduction argument is similar to that of Guth, Hickman, and Iliopoulou
[11] (see Section 11 there). In Sect. 4, we introduce wave packets and prove some of
their properties that will be useful in future sections. In Sect. 5, we compare wave
packets at different scales; this is to prepare for the use of the multi-scale argument as
in Guth [14] and Guth, Hickman, and Iliopoulou [11]. In Sect. 6, we prove a transverse
equidistribution property of wave packets. After developing the relevant tools in the
previous sections, one can already almost identify the Bochner—Riesz problem with
the Fourier restriction problem. This allows us to follow Hickman and Rogers [15]
and Hickman and Zahl [17], as is done in Sects. 7, 8, and 9, to finish the proof of the
desired broad norm estimate.

Notations
e We write A(R) < RapDec(R)B to mean that for any power g, there is a constant
Cg such that

A(R) < CgR™PB forall R > 1. (1.10)
e The quantities p, n and € will be called the admissible parameters as the estimates

in the paper may be allowed to depend on these parameters.
e We introduce a few other admissible parameters

€€ <8 e 8y Ke pl Ko+ Ke 8] K €0 Le €. (1.11)
Here C is some dimensional constant and the notation A <, B indicates that A <
C,. ;B for some large admissible constant C,, > 1.

e For every number R > 0 and set S, we denote by N (S) the R-neighborhood of the
set S.
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e We use B(x, r) to represent the open ball centered at X, of radius r, in R". To avoid
confusion, we also use B"~!(x, r) to denote the n — 1 dimensional ball centered at x,
of radius r.

e The amplitude function a(-) may change from lines to lines, and this is not harmful
to our argument.

2 Several Reductions

For A > 1, we define the Carleson—Sjolin operator

S F(x) = /R AT aG ) F )y, @1

where a € C*°(R") has compact support away from the origin. To prove Theorem 1.3,
it is standard to reduce it to the following theorem. For the reduction, we refer to Stein
[25, Chapter IX].

Theorem 2.1 For every n > 3, it holds that

IS* Fllzrny Se A2 N £llLege 2.2)

forevery p > Prest, A > 1, and € > 0.

Next, we will reduce the L”-boundedness of the Carleson—Sjolin operator to that
of some operator §* : g € L”(R"~') — LP(R") by freezing one variable. We define
the operator §*g by

Ste(u,t) = / 2N =10l Ayt ) g (w)d oo, (2.3)
Rn—1
where u = (uy, ..., u,—1) € R = (w1, ..., 0p—1) € R"~! and
N u ot ot
JLo)i=al - — -0, -0, 24
a“(u,t; w) a()\ )La) 3 a)) 2.4)

with a(-, -; -) being a smooth function compactly supported in all variables and away
from zero in its second variable.

Theorem 2.2 Under the above notation, it holds that
18 gl r@ny Se 2Nl oot (2.5)

foreveryn >3, p > presr, A > 1 and € > 0.

Let us prove Theorem 2.1 by assuming Theorem 2.2. We fix a in the definition of
the operator (2.1). Since a has a compact support, by a partition of unity and rotation,
we may assume that
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supp(@) C {(x", %, ¥, yn) & [xn — yul = 1}, (2.6)
where x’ = (x1,...,x,-1) and ¥y = (y1,..., yn—1). We write the Carleson—Sj6lin
operator as

§*F () = /R § oy, @)
where
S = [ ate = )£, 0/ 8)
and
o) = £ ). (2.9

By Holder’s inequality and by the fact that a has a compact support, it suffices to
prove

_ _ﬂ_,’_
183, fauller@ny S 277N f o, ooy (2.10)

uniformly for every |y,| < 1. By a translation x,, — x, — y,, we obtain an operator
independent of the variable y,. Hence, we without loss of generality assume that
yn = 0. To proceed, we write the phase function in the oscillatory integral (2.8) as

follows:
|x/ _ /|2
M) = 07, 0)] = Al [ 14— @11
n

We apply a change of variables

(ula '°"un715t) = (x_ i)’ (212)

Xn Xn
which is the pseudo-conformal change of variables (see for instance Carbery [6], Tao

[30, Section 2.3] or Rogers [23]). By the support assumption on a, the Jacobian is
comparable to one. After this change of variables, our operator S(’)\ fo becomes

S* fo(u, 1) = / AN B G —ay' 1 fo(y)dy, (2.13)

Rn—1

where y' = (y1, ..., yp—1) and a(-, -) is a smooth function that has compact supports
in all its variables and is supported away from the origin in its second variable. At
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this point, due to spatial orthogonality, we see that in (2.13), we can insert for free a
smooth cut-off function a(y’), supported near the origin, and it is equivalent to bound

fR PN R — 1y, 03 fo )y 2.14)

In the end, we pass from scale one to scale A via the change of variables (u, ) —
2~ Y(u, ). This gives an operator of the form in (2.3), and therefore finishes the proof
of Theorem 2.1.

In the end, we make a reduction to the amplitude function a)‘(u, t; w) so that it will
have a product form a{‘(u, t)a% (w). Before the reduction, let us fix the notation. In
the definition of §%, we see that the variable 7 plays a distinguished role, compared
with other variables. Therefore, from now on, we will write x = (x, ..., x,—1) and
x = (x,1) € R". Moreover, let ¢ (x, t; w) = %«/1 + (x — tw) and define

2
. x t A ‘x t ‘2
o) =M -, o =—4/1+|-—= 2.15
o7 (x, 1; w) ¢<Axw> ; +A 7@ (2.15)
Under this notation, we can write
S*g(x) = / 2T X0 g (x: ) g (w)dw. (2.16)
]Rnfl

Via a standard Fourier expansion (see for instance [28]), it suffices to consider

/ AP0 g2 (1) () g (w)d o, (2.17)
Rn—1
where
Ao =aS L (2.18)
A P! '

with a1 (-, -) being a compactly supported function in both variables and supported
away from the origin in its second variable, and a> (-) is compactly supported near the
origin. We need to prove

H / PO g (2 Nay@)g(@)de
Rr=

SANglr@-1y.  (2.19)
LP(R")

Such an estimate will be proven via an inductive argument on A. In order to set up the
induction, we need to be more quantitative about the choice of amplitude functions.
Define

H*g(x) := /R | 2P0 o () dey. (2.20)
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Let C,, be a large enough constant such that

B, (0) \ {x e < ci} with By (0) := [—A, A]" 2.21)

n
contains the support of a{‘. To prove (2.19), it is elementary to see that it suffices to
prove

Theorem 2.3 Under the above notation, it holds that

IH"gllLr (Be, Nl <h/Cop) Se A Mgl Lo o171 (2.22)

]n—l

foreverye > 0, every g : [0, 1 — C, dimension n > 3 and exponent p > Presir-

3 Reduction to Broad Norm Estimates
3.1 The Induction Hypothesis

We will prove (2.22) via an inductive argument. In this subsection, we set up the
induction and state the induction hypothesis. Let 1 < R < A.Let K g be alarge number
that is to be determined: It is much larger than one, but much smaller compared with
R<.2 Out of certain technical reason, we introduce a scale A g that is comparable to
A.For K > 2, we define Ag r: The parameter K will eventually be set to be Kz and
AR = Akp R If % < K, we define g g = CyA. If% > K, then we define

1 1
AK.R = C’1A<2+E—F"._’_—K[logk(k/m]—l)’ 3.1

where [logx (%)] refers to the largest integer that does not exceed log g (%). SetAp =
Akg,r- Note that C,A < Ag g < 3C,A. To prove (2.22), it suffices to prove

IH"gllLrBr) Snope RENGILoqo177-1) (3.2)

forevery l < R < A1=€ and every ball

R
Br C[—XAR, ARl x [C_ Cn)»]- (3.3)

n

This will be proven via an inductive argument on X and R.

Remark 3.1 We will see that it is crucial to run an induction on both parameters A
and R. It is worth mentioning that the smaller R is, the more “singular” our phase
function ¢* behaves, which, roughly speaking, can be explained by that ¢ appears in
the denominator in (2.15). To deal with the case that R is much smaller compared with

2 1t will be chosen to be RY for some extremely small §’ < e.
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A, we will need to use very particular properties (see for instance (3.29) and (3.30)) of
the phase function ¢*. That R can be much smaller compared with A seems to indicate
that our induction is perhaps different from that of Guth, Hickman, and Iliopoulou
[11].

Remark 3.2 The requirement that R < A!~¢ will be used in the proof of Lemma 3.5.

The base case of the induction A = R = 1 is trivial. We assume that we have proven
that

||H)L g”LP(BR/) = Cn,p,e(R/)e||g||Lp([o,1]nfl)» 3.4

for every A’ < % 1 < R’ < (M), and every cube

R/
B C [ ] X [—, c,,x] (3.5)
o
Our goal is to prove the same hold with A, R.

3.2 Reduction to Broad Norm Estimate

Forx € [—Ag, Ag] X [C%, C,Alandw € [0, 17" !, we define Gauss maps and rescaled
Gauss maps. Define

Go(X; @) 1= 0, Vx A -+ - A Dy, Vx. (3.6)
Moreover, define
Go(x; w)
Gxw) = —. 3.7
|Go(X; w)]

Define rescaled Gauss map

GHx: ) = G(f- w) (3.8)
(o) =G(Zi0). .

Via some elementary computation, we obtain

Lemma 3.3 Under the above notation, we have that the rescaled Gauss map equals

(0, 1)

Vi+lo?

In particular, the rescaled Gauss map does not depend on x.

G (x; w) = (3.9)
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Proof of Lemma 3.3 For future use, we collect a few useful computations regarding the
phase function ¢*. First,

— 2 . _
Vi (x, 1 ) = & (x — 1) 9t (x, 1 @) = —ik tx- & —to)

V02 F x —tw? 2?2+ x—to?

(3.10)

Next, we compute the gradient in w:

AMtw — x)

VA2 +|x — ta)|2.

Regarding the related second-order derivatives, we have

dod™ (x, t; w) = (3.11)

AMx;: — tw; C—tw;
o, (5, 11 ) = 0 1O 3‘;)2’) ifi # J, (3.12)
(Az + |x — ta)|2)

A(kz +|x —tw]* — (xi — ta)l-)z)

By, 0y ™ (X, 13 ) = — . ta)|2)3/2 (3.13)
and
Bty ¢ (x. 11 ) = L IO (X7 10) (3.14)
(A2 +|x — r0?)
Combining all these, we obtain
By Vx@* A - A Dy, Vxp” (3.15)
is parallel to (w, 1). By normalization, we obtain the desired result. O

Let K > 1. We divide [0, 17"~ into caps 7 of side length K 2. Let g, denote the
restriction of g to . Moreover,

G'1):={G*"x;w) :w € T). (3.16)

Let V C R" be a linear subspace. Let £(G* (1), V) denote the smallest angle between
any non-zero vector v € V and v’ € G*(r). Moreover, we say that T ¢ V if
A£(G*(1), V) = K~!; otherwise, we say t g V. If the value of K is clear from the
context, we often abbreviate T ¢x V to T ¢ V. Next, let us introduce the notion of
broad norms. Fix Bg2 C [—Ag, Ar] X [C%, C,\] centered at x(. Define

B = min max Hg.|I? . 3.17
,U«Hkg( KZ) Vi VASGrk—1.m) i) I gr||Lp(3K2) ( )

for any 1<a<A
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Here Gr(k — 1, n) is the Grassmannian manifold of all (k — 1)-dimensional subspaces
in R”, and k is to be determined, and A is a parameter that is less important and its
choice will become clear later. For U C R”, define

1

|Bg2 NU| »

”H)»g”BL/f,A(U) = <Z |B—K2|//LHAg(BK2) . (3.18)
Byo

Next we should study and prove broad norm estimates.

Theorem 3.4 (Broad norm estimate) Let 2 < k <n — 1, and
6

p = pak) =2+ — (3.19)
20— D+ (k — DTS 525
Then for every € > 0, there exists A such that
2 _2
1H*gllpLp (8g) SK.c RSN N8N (3.20)

for every K > 1, 1 < R < A, where Bg is a ball of radius R satisfying
Br C [-3CpA, 3C, A1 x [C%, Cp\]. Moreover; the implicit constant depends poly-
nomially on K.

In the rest of this section, we will finish the proof of Theorem 2.3 by assuming
Theorem 3.4. We will show that Theorem 3.4 implies (2.22) whenever n > 3 and

2
<p<24—— (3.21)

2 .
+2n—k k—2

The same optimization process as in Hickman and Zahl [17, page 5] will give Theo-
rem 2.3.

Let us begin the proof. The main steps are the proofs of the following Lemmas 3.5
and 3.8. After proving these two lemmas, it is standard to deduce Theorem 2.3 when-
ever p satisfies (3.21). For the sake of completeness, we provide some details for this
step. By a restricted type interpolation, we may assume that g = yg for some set E.
Let us take K = R¢ for some 0 < € < e. By Lemma 3.5 and Lemma 3.8, and a
standard application of the broad—narrow analysis (see for instance [11, page 358]) of
Bourgain and Guth [5] and Guth [14], one obtains that

P R e
IHgllLr(Br) Snpe R2gN5 I8N0 " + RER™ClIgll - (3.22)

Since g is a characteristic function, the above term is bounded by a constant multiple
of

(R + R™C)R|g|| r- (3.23)
Since R is a large number, this closes the induction and completes the proof.
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From now on, we will focus on the proofs of those two lemma. We start with
Lemma 3.5, a decoupling inequality. The notation /(t) = K ~! will mean that the cap
7 has side length K 1.

Lemma3.5 Let2 < m < n and V be an m-dimensional linear subspace in R". Let
K = Kr and Bg> C [—AR, AR] X [C%, Cu)]. Forevery2 < p < % and every
e > 0, it holds that

L

SN.e.p RapDec(1)[1gll2

reVil(t)=K"! LP(Bg2)
9—NIf'| g (m=1)(1/2—1/p)+e
+ Z Z Z (1+ 8107 (1 + |w])100n (3.24)

BeNy~! preNg wel"

. P
: (Z | H (ge (@), (1 w>ez””3"">llipw,<z>>
T

Here x| is the center of Br (not Bg2), T € V means © €g V, and the universal
constant N can be as large as we would like. The function by, g (x1; w) satisfies the
uniform bound by, g'| < 1 in all parameters.

The proof is based on the decoupling inequality of Bourgain and Demeter [4] and
Taylor’s expansion. It is quite important that on the right-hand side we have Bg>
without any tails.

Remark 3.6 We would like to mention that it is crucial for by, g not to depend on the
location of Bg2. This will allow us sum over all balls Bg> C Bg. If by, g were allowed
to depend on the location of By, the proof of Lemma 3.5 would be much simpler and
we would not need the requirement that R < al-e,

Proof of Lemma 3.5 Let us use Xo = (xp, fp) to denote the center of Bg2. We will
approximate the phase function ¢* on By2. Write

¢ (x: ) — ¢ (X0; ®) + V™ (X0: @)X0 = Vx¢” (X0: 0)X + €} (X ). (3.25)

Here e% x 18 the second-order remainder term in Taylor’s expansion. To see what

estimates it satisfies, let us first collect some useful estimates for various derivatives.
First, from (3.10), we see that

A

2
2 |0:™(x; )| < <%> . (3.26)

Vg (x; )| <
By taking a further derivative in X, we obtain

1 A2
|V2¢" (x; w)| < = |89 (x; )| < = (3.27)
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We see the second-order derivative in x is not bad, but that in ¢ is always very bad when
R < A. In other words, we do not necessarily know that the “error” term e% 0 (x; w)
has amplitude smaller than one. One way of fixing this problem is to observe that

4

K
€5 4, (%; @) = € 4 (% 0)| S - (3.28)

which follows from

V2, Vod" (x; 0)| S 27 (3.29)
and mean value theorems; the pointwise bound (3.29) follows from taking a further
derivative in x for the terms in (3.12), (3.13) and (3.14). For later use, we record more

estimates on higher-order derivatives of the phase function. Via the chain rule, we
obtain

\VEVE ¢ (x; w)| Sp 27 1FIH (3.30)

for every multi-indices 8 and 8" with | 8|, |8’| > 1. In particular, these imply

B 2 K*
IVaes x, (X o) Sp - for every |B| > 1. (3.31)

Let us write

Y oHlg =) / PO g (0)dw

teV T

_ Zezmeé*"O(X;o) / e2niVx¢)‘(x0;w)Xez7”e%,x0(Xiw)_zmeé,xO(X;o)
T

x (g (w)ehi((ﬁk(xo;w)*vxw(Xo:w)Xo))da). (3.32)
Denote
a!);o (X @) = eZnieé"xO(x;w)fZNiea‘ny(X;O) (3.33)
and

87 1o (©) = (e ()20 Boi)=Vad oiwx0)) (3.34)

We apply the Fourier expansion to a,);0 (x; w) and write it as

> af e (3.35)
peNg™!
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the bound in (3.28) guarantees that such an expansion is meaningful. So far we have

A (g ) . )
Z H}Lgr _ Z Z eZntez.xo (x;0) f ean(thP*(XO,w))‘xagyxo (X)gih,xo (w)eZmﬁ-wdw'
T

peNa~l T

(3.36)

By the triangle inequality,

' ZHAgr < ’ Z/eZ”i(V""’X(X‘);“’”“a,’}XU(X)gi‘,xo(w)ez’“'ﬂ‘“’dw

T Lr(Bgo) g 1T LP(By2)
S Z(l + 1871 Z/ez”"(v""’k(x";‘”»‘xgﬁ,xo(w)ez”iﬂ‘“’dw
5 p LP(By2)

(3.37)

where the decay in 8 follows from (3.30) and (3.31). Via a direct computation, we
obtain (qub’\ (xp; w)) - x equals

A xp—tow L 02+ xol? —fo(xo - @) 338
10 /22 + |xo — tow|? 15/ 22 + |xo — tow|? )
Regarding the parametrized surface
A xo—tw G2+ |xol’ — 1o(xo - @) (3.39)
0 32+ |xo — o> 3VA2+ |xo — o2 ) '

we have that the Jacobian of the first (n — 1) components in  is comparable to 1;
more precisely, without loss of generality, we may assume that the first component of
X0 — fow is nonzero. Then the Jacobian matrix V,,V,¢*(Xo; @), which are explicitly
calculated in (3.12) and (3.13), has eigenvalue —13 (A% + |xo — fow|?) /2 with the
eigenvector xo — fow, and eigenvalue —2(02+ |xo— t0w|2)_1/ 2 withthen — 1 linearly
independent eigenvectors

(—(xo — tow)2, (xo — fow)1,0,...,0), ..., (=(x0 — fow)n, 0, ...,0, (x0 — fow)1),
(3.40)

where (xp — fow); is the ith component of the vector xg — fow. This can be verified
by a direct computation. Therefore, we obtain

n+2

| det V,, Vi (x0; 0)| = A" T2 (A2 + |x0 — to|?)” = =~ 1. (3.41)

As a consequence, we obtain that the above parametrized surface is regular. Next, we
will show that it has non-vanishing Gaussian curvatures. Recall the computation of
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normal directions in Lemma 3.3. Via a direct computation, we see that the Gaussian
curvature at a fixed point wg is comparable to

det (V2(Vx¢™ (x0; @), (wo, 1)))| ~ 1. (3.42)

w=w(

This, combined with the fact that

V2 (Vo™ (X0; @), (w0, 1))] (3.43)

x0=0;wp=0
is the identity matrix and a simple continuity argument, further implies that the
parametrized surface in (3.39) is elliptic. This allows us to apply decoupling inequali-
ties for surfaces of non-vanishing Gaussian curvatures, due to Bourgain and Demeter
[4], and bound (3.37) by

PRI Sl
B

1

)p, (3.44)

p

% ( Z H / eZni(Vx(p)‘(Xo;w))‘xg?’Xo (a))ezmﬂ"”dw
T

LP(wp ,)

where wp,, is given by

(1+ K 2x —xol) N, (3.45)

where N (¢) is a large constant depending on € and its choice will become clear later.

Remark 3.7 We will need N(¢) — oo much faster than % as € — 0. For instance,
taking N (¢) = €' will be more than enough. This choice of weight will be used in
the following way: If [x — xo| > K z)fm, then the weight function can be controlled
by A_E_QO, and therefore is negligible as RapDec(}).

The weight function wp, , has tails that are not allowed in the study of the Bochner—
Riesz problem, and we need to get rid of it. For w € Z", let B K2.w be the translation
of Bg2 by K?w.

H / eZni(Vx(ﬁ)‘(Xo;w))‘xgiL’xo (w)ezni,s-wdw

LP(wp ,)

<RapDec(M)lgla+ Y. (1+[whN©
wezr (3.46)

10
[w| < A€

% / ezm(vxqs*(xo;w)).xgixo (w)ez”iﬁ'wda)

LP(Bya )
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As we have a constant coefficient operator in the last display, we can modulate the
function gﬁ’XO such that the ball B , is shifted back to Bga. Let us use ey, x (Xo; @)
to denote the modulation function. Therefore,

ew k (Xo; ) = 27K (9 oi)w, (3.47)

and we have the bound

. A . .
H/eZm(deJ (Xo,w))-xgi\’XO(w)62mﬂ~wdw

LP(wg,)

<RapDec(M)gla+ Y (1+w)~N©
weZ" (3.48)

10
[w| < A€

X 81.x0

/e2ni(Vx¢)‘(x0;a)))-x Py (a))ew’K(XO;w)eZniﬂwdw

LP(By2)

Unfortunately the modulation function in (3.47) depends on xg. Let us try to get rid
of this dependence via Taylor’s expansion; we learnt this idea from Beltran, Hickman
and Sogge [1]. First, let us write the L” norm on the right-hand side of (3.48) as

, (3.49)
LP(By2)

H / PTII CODNGE ()b k (07 @) P de

with
by k (X0; @) 1= €271 K7W (Vad” (30:0) =V (x0:0)) | (3.50)
To get rid of the dependence of by, x on X, we carry out a Taylor expansion of it about

X1, an arbitrary point inside Bg; for convenience, we take x| to be the center of Bp.
Recall the bound in (3.30). As a consequence, we obtain that

[VE[K2W - (Vxd* (x; @) — Vi (x; 0))]| S K2wla ™ forevery B, (3.51)
which further implies that
VL by k (x; @) S (K2wDPIAP! for every 18] = 1. (3.52)
This allows us to write
by k (x0: @) = »_ 27 VIR WP 157 F by, 4 (x1: ) (x0 — x1)P + RapDec(2),
/B/
(3.53)

@ Springer



S.Guo et al.

where the dependence of by, g on K has been compressed, and these Taylor coefficients
satisfy the uniform bound |by, g (x1; )| < 1. We go back to (3.49) and bound it by

Z2—N|ﬂ’|(K2)L€‘°)Iﬂ’|R|ﬂ’\A—|ﬂ’l
ﬁ/

y (3.54)

81.x0

/eZni(qu))‘(xo;w))x P (@) g (13 )P Od 0

LP(By2)

Recall the assumption on R that R < A!7. It can be used to control the constant
factors in the last display. So far we have controlled (3.46) by

RapDec(M)llgllz + Y Y 27 MFI(1 4 jw)=N©
pow

X H /ez’”(v"d’l("“;“’))'xgi‘,x() (w)by, g (X1; a))ezniﬂ'“’da)HLp(B " (3.55)
K
Now each term we have is of the form
/ PTII0DX G (@) (13 @)™ deo
_ / PTI M00DX g (1) PO ()T GO0 (x0T
= /ezmh(ﬁk(xzw)_zﬂie%«"o(X;a))gr (@)by, pr(X1; w)e?™ P dg.
(3.56)

We apply a Fourier expansion “back” (compared with the one in (3.33)—(3.35)) to get
rid of e%‘»xn (x; w) and obtain

” / e2”"(v"¢k(xo;w))'xg¢,x0 (w)bw’ﬁ/(xl;w)eh"ﬁ'“’dw

LP(By2)

S 2 awppT

/ ezmw(x?a’)gf (@)by, g (X1; w)e2m(ﬁ+ﬂ”)'wdw

ﬁ”eNﬁ” LP(Bg2)
(3.57)
which, when substituted into (3.55) and (3.44), implies the desired decoupling inequal-
ity. O
Lemma 3.8 (Parabolic rescaling) Let w = (wq, ..., w,—1) € [0, 11" Yand K = K.

Lett = [wi, wi+ K~ x X [wp—1, wae1 + K Twitht C [0, 11""". Under the
induction hypothesis, for every ball Bg with 1 < R < A'~¢ satisfying

R
Br C [—Ak R, Ak R] X |:C_ Cn)\} (3.58)

n
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we obtain
_ -2
IH g Lo By Ses RERPCKH" D" lgell ooy (3.59)

for every § > 0.

Proof of Lemma 3.8 We use a change of variables
n=—-w+w. (3.60)

Recall that our phase function is given by

A
o (x, 1 w) = ?\/ﬂ + |x — tw|?. (3.61)

Under the change of variables, it becomes

A A
—/A? —t 2=—/A? — tw) — % 3.62
C R =t wl = 22 - ) — (3.62)
Next we apply the change of variables
X—twkr X, tr>t. (3.63)

Under this change of variables, let us assume that Bg becomes B r. Note that B Risa
parallelogram: The smallest rectangle that contains it is at most twice as large as Bp.

Now our phase becomes
A
?,/AZ + |x —n?, (3.64)

and therefore we need to bound
1 n—1
| el 05, WithT = [o, E} | (3.65)
Next we apply a scaling argument and set 1 +— % Our phase becomes

A n |2
2 e ‘ —t—’. 3.66
R (3.66)

In the end, we apply the change of variables x > Kx; ¢ > K?2t. Then this becomes

o[
— _ _ 2
- (K) ¥ |x — 2. (3.67)
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It is important to keep track of the domain of evaluating the L? norm. Let us use Dg
to denote the smallest rectangle that contains the image of By after the above change
of variables. After some elementary computation, we see that

! R 1 &
X ﬁc—n,pcn s (368)

~ A Cy,R X C,RT"™
DRC[— K,R_ n K,R n ]

K K’ K K

and Dg is of dimension

R R R R
2= ) x (22 ) x - x (22 ) x —. (3.69)

Set A/ = IA(, R = and R’ = %. What is important in (3.68) is that
A C,R
’;{ R < Ny gr < N, (3.70)

which is exactly the reason of having a complicated expression of A g in our induction
hypothesis. As a consequence, we know that

"

~ R
DR C [_)\./K’RH, A-/I(’RH] X [C—

,A’Cn:|. (3.71)
n

Remark 3.9 Here we make a remark on the choice of the -interval [C%, CpA]lin (3.3)
from our induction hypothesis. In our current setup, it should not be replaced by
anything like [C%, C,R] or [C%, C,R'/(1=9)]. For instance, if we replace it by the
latter, then the analog of (3.71), which is

"

~ R
DR C [_)\‘/K,R”’ )“/K,R”] X [C_,

n

(R")Te Cn}, (3.72)

does not hold, and therefore we can not apply the induction hypothesis. If one would
really like to use a time interval of the form [C%, C, R"/1=97in the induction hypoth-
esis, which may bring some convenience like 7 is always essentially comparable to R,
then one can cut D g into smaller balls and then make use of the extra gain in K from
(3.73), which is not explored in the current setup.

From now on, we will try to bound ||H ot Lr(Dg)> Where ¢ is now a function
supported on [0, 17"~ !. It remains to prove

WHYZN ;o5 < RNY(K 3.73
g“LP(DR) ~e.d % ||8||p (3.73)

Actually we will not need the gain in K, and only need to prove
IH" 8l Lo By Ses RERNg s (3.74)
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for every § > 0 and every g.
Let us denote

D C [y grs Mg gr] X [?—N,A’Cn] (3.75)
n
a rectangular box of dimension
R' x---x R xR". (3.76)
We need to prove
IIHNgIILuDR,) Ses RERgllp- (3.77)

To prove such a bound, we need the following discrete version of the operator H i
This step is where we apply our induction hypothesis.

Lemma 3.10 [11, Lemma 11.8] Let D be a maximal (R") ™' -separated discrete subset
of [0, 17"~ Then

P A (. @
| X @), SRR Il GT8)
R//

wyeD

for every F : D — C and every ball Bgr C Dy of radius R”.

Proof of Lemma 3.10 The proof relies an approximation argument via Taylor’s expan-
sion, and is essentially the same as that of [11, Lemma 11.8], see also [5, Sect.5]. Let
xXo be the center of Bgs. Let ¢/ : R"~! — R be a function supported on the ball of
radius 2 centered at the origin, satisfying 0 < ¥ < 1 and ¢ (w) = 1 forevery |w| < 1.

For each wy € D, define ¥y (w) := ¥ (10R"(w — wy)). For every x € Bgr, the sum
on the left hand side of (3.78) is a constant multiple of

(R//)n—l / ezniw(x;w)e—zmw(xo;w)+2m¢*(x0;w9)
Rn—l

Y (3.79)
X |: Z eSO B (4 ) g (w)i|dw,

(0] eD

where
Q5 (x; w) 1= 9" (% @) — P* (% wp) — P* (Xo: @) + P" (Xo3 wp).  (3.80)
By mean value theorems and the bound (3.30), we see that
|25 (x; )| < [x = Xollo — wp| S 1, (3.81)
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whenever x € Bgr and w is in the support of . Roughly speaking, this allows

us to treat e~ 27! 2 (x;0) as the constant function 1, which can be made rigorous via
Fourier expansion. To apply Fourier expansion in x, we need to examine higher-order
derivatives of the function. Similar to how we obtained (3.81), we obtain from (3.30)
and mean value theorems that

Ve w)| <1, [VEeAmi%ixo)| < (3.82)

for every multi-index 8. As a consequence, we are able to bound (3.79) by

(R (14 k™D fi (), (3.83)
kezZn
where
fe@) =Y Flwp)cr (@) o) (3.84)
wpeD

with ¢ ¢ satisfying the uniform bound ||ck g lloc < 1. We apply our induction hypoth-

esis to H* fx on the ball Bgr; in particular, (3.75) guarantees that our induction
hypothesis is applicable. This gives us the desired estimate. O

Let us begin the proof of (3.77). Out of certain technical reason of handling tails,
we introduce new notation. For given R, A satisfying R < A€ let a,,r(x,t) bea
non-negative smooth bump function supported on [—2Ar, 2AR] x [%, 2C,\], and

equal to one on [—Ag, Ag] X [C%, C,\]. Define

H*Rg(x) := am(x,t)/ezﬂiff’k(’“w)g(w)dw. (3.85)

This notation will only be used in this section. Note that for all the x that we care
about, that is, X € [—Agr, Ag] X [C%, C, )], it always holds that

H*Rg(x) = H g(x). (3.86)

Let us return to the proof of (3.77). Cover [0, 1! by caps 6 of side length (R~
Decompose g as g = ), gg. Let wyg be the center of 0. Define

HY g(x) i= e 210" o g¥ g (x), (3-87)
and
Hy R g (%) 1= ay o (x, 1)e 270" Ko g g ), (3-88)
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so that for every x € Bgr C Dpr, it holds that

’ /' pi Y ’
H*g(x) = H R g(x) = )~ ¥ 500 5 g (x)
%
o) A R"
=Y e g g (x).
0

(3.89)

To proceed, we need the following lemma:

Lemma 3.11 For every § > 0, the following statement holds. For every x, we have
Hy ™ go(x) = Hy ™ gg % nggryi-s (x) + RapDec(1) [ g2, (3.90)

for some rapidly decreasing function n such that |n| admits a smooth, rapidly decreas-
ing majorant ¢ : R" — [0, 00) which is locally constant at scale 1.

The proof of this lemma is pretty standard, see for instance the bottom of [11, page
363] and Lemma 5.8 there.

Remark 3.12 The parameter § > 0 will be picked to be extremely small, and much
smaller compared with €. The use of the parameter § and the scale (R”)® is the
reason for K to depend on R, which further explains the necessity of the polynomial
dependence of the implicit constant on K in Theorem 3.4.

One way we will be using the locally constant property of ¢ is
Lrmyi—s(X) S (R g pry=s(y)  if [x—y] S R”. (3.91)
To control the L” norm of H* g = H*R"g on Dg/, we cover Dy by finitely over-

lapping R”-balls, and let Bg» be some member of this cover. Let x( denote the center
of By, then

|HY R g(xo +2)| < R /
Rn

. )\./ . !/ /"
D mid” (otmon) iR ge(Y)‘C(R”)” (o0 = y)dy,
6
(3.92)

for every z with |z| < R”. We follow the same lines of proof as in [11, page 364]. To
be more precise, we take the L” norm in z and see that || H g||1 »(Bg) €an be bounded

by
RS /
Rn

For each fixed y, we apply Lemma 3.10 and see that the L? norm in the above display
can be bounded by

vy . ! pl
3 Pmie" Gotzien) i Ko gy (y) Erry-d (g _yydY- (3.93)

LP({|z|=R"})

1
p

(R (R")'T ( > 1HS R g (y) |"> : (3.94)

0
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We then apply the locally constant property (3.91) again, sum over all balls Bg~ inside
Dy and obtain

/ @*ﬂ
||[-])L g”LP(DR/) Se (R//)e+0(8)(R//) 7 T

! opl! P
X(A;, Z | H* R g9||il,(DR/y)C(Ru)la(y)dy) , (3.95)
0

where Dy — y means a translation in y. It remains to prove that

n—1

I op P -4z
</R Z”HA,R ge||€17(DR,—y)§(R”)“‘S(y)dy> SR gl
0
(3.96)

This is the step where it is convenient to have a cut-off function in space and time in
the definition of H*-®" f. We will show that

n—1

> _ /+£
IH* % gollrpp—y) S (R 7 7 ligollp, (3.97)

which immediately implies (3.96). To prove this bound, we use interpolation at p = 2
and p = 0o. At p = 2, we need the following lemma:

Lemma 3.13 Forevery 1 < R < A, it holds that
IH*Rg(x, )l 2 S lglla, (3.98)

uniformly int € R.

Proof of Lemma 3.13 This estimate is well-known. As it is short, we still include it
here. By the main theorem in [18], which is proven via a TT* argument and Schur’s
text, the desired estimate follows once we verify that

|det ViV (x, 1; w)| >~ 1, (3.99)
uniformly in |¢| < 1, |x| < 1. However this has been verified and used in (3.41). 0O

As a consequence of Lemma 3.13, we obtain

7

, =1y (L_1yy1
IR ol 2Dy S BTV 2 gl (3.100)

At p = 00, we have the trivial bound that
)\/ R// —g
1H" " gollLomy—y) <R 7 lgollp- (3.101)
Interpolation implies the desired (3.97). This finishes the proof of Lemma 3.8. O
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4 Wave Packets and Their Essential Supports

The rest of the paper is devoted to the proof of Theorem 3.4, the broad norm estimate.
When we were handling the narrow part in the previous section, we used an inductive
argument, and in order to close induction we had to be very careful with the choice of
various amplitude functions ay, a», and regions of taking integrations; we also had to
introduce H* R g(x) and distinguish it from H”g(x) as it was very often inconvenient
to carry amplitude functions in our operator. From now on, these points are not as
crucial as before, and we will always work with H* R g(x), a function that is compactly
supportedin [—4Cp A, 4C, Al X[ 2%” , 2C,A]. Moreover, to simplify notation, we always
abbreviate H*'® to H”: The dependence on R will be emphasized through the region
we evaluate the L? norm of H?.

4.1 Wave Packet Decomposition

~1/2 covering the

Letr > 1 and take a collection ®, of dyadic cubes of side length %r
ball B"~1(0, 2). We take a smooth partition of unity (¥g)sco, With supp s C %9

for the ball B*~1(0, 2) such that

lo|
oy vollLe Sor2 4.1

forany o € Ng_l. We denote by wy the center of 8. Given a function g, we perform
a Fourier series decomposition to the function g on the region %9 and obtain

172\ n—1 ‘
g(w)l/fe(w)-li(l)g(w)=<r ) Y @) @ I @), (42)

2
verl/2zn-1

Let Je be a non-negative smooth cutoff function supported on %9 and equal to 1 on
%9. We can therefore write

~ Fl/2y =l L
g (w) - Yo (w) = <2—> D @V TV (). (4.3)
& verl/2zn-1
If we also define
pl/2\n—1 v~
gov(w) 1= (E) (8Ve)" (0)e”™ " Yrg (w). 4.4)
then we have

g= > 86.0- 4.5)

B,v)e®, xrl/27n-1
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This finishes our wave packet decomposition.
Let 1 <r < R. We fix aball B(xg, r) of radius r satisfying

R
B(X0,7) C [=3Cp2, 3C, A" ! x |:C—,)LCn:|. (4.6)

n

Let us fix a function f. We define a collection of tubes associated to the ball B(xg, r)
by

T[B(x0, r)] :={Tp,v(X0) : (8, v) € O X r%Z’“l}, 4.7)

where Ty , (X0) is some set that will be determined later. Given Ty ,,(xo) € T[B(xo, )],
we define a function

I, S A A e
8T o (x0) (@) 1= @™ T (X00) (6 2TIT0: )y (), (4.8)
Notice that

H'g(x.ty= Y Hgr(x.1). (4.9)
TeT[B(xp,r)]

In the rest of the section, we will define tubes T so that H” g7 is essentially supported
onT.

Remark 4.1 Itis worth mentioning the motivation and advantages of the notation g7 , .
In [14] and [11], the following notations are introduced:

X=x—-x0 and §(w) = g(w)e> ¥ xow), (4.10)
In these notations, we have
H'*g(x) = H*3®), @.11)

where

H*3(%) = / 1e2’”"f’*<’”‘+"0“">e—Z’”"f’*("O?w>g(w)dw. (4.12)
Rr—

The motivation of their notations is that the function H* g is defined on the ball centered
at the origin so that we can apply the wave packet decomposition to the function g.
However, in our proof of Theorem 3.4 (in particular, Sections 9 and 10), these notations
cause some confusion because the function g depends on the point xq, but the notation
g does not show this dependence.

To make things clear, what we have done above is to apply the wave packet decom-
position to ¢ and change back the variable X to the original variable x (see (4.8) and
(4.9)). Note that our tube Tp,, (Xo) indicates the dependence on the point Xg.
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Lemma 4.2 (L2-orthog0nality) For any set T C T[B(xq, r)], it holds that

ZgT

TeT

2
<D lerl3 S ligl3. (4.13)
2 TeT

Moreover, if T is any collection of tubes with the same 6, then

Zgr

TeT

2
~ > llgrls. (4.14)
2

TeT

Lemma 4.2 follows immediately from Plancherel’s theorem, and the proof is omitted.

Remark 4.3 In the above lemma, without the extra assumption, (4.14) may not be
correct, due to the frequency overlapping.

The definition of Ty , (Xp) relies on which of the following two cases we are in:

10C, A . 10C, A
—————— or |[v—Vu¢"Xp; wg)| £ —V—m=.
J1+10C,)2 V1+(10C,)?

(4.15)

[v — V" (x0; wp)| >

In the former case, we define 7j , to be an empty set, and show that H” fr always
decays rapidly, that is, it is bounded by A~V f||» pointwise. In the latter case, we
define Ty, to be as follows: Define a line ly , as

Afe s _
oy = 4 (1)t wpt — x = Vo (%0; 0p) — V) } (4.16)

VA2 = [Vd* (x0; wg) — v

and a r1/2%9 tube Ty.pas Ty = N, (lg.y). Here 0 < § < € is a small parameter
whose choice will become clear later, and V12, 5 means the r1/2+8_neighborhood.
Next, we show that the essential support of H* fr is T. The precise meaning of
essential supports will be made clear in the statements of the following two lemmas.

Lemmad.4 IfT = Ty ,(x0) is such that the former case in (4.15) holds, then we have

IH g7 Il Lo (Bexo.rn Sn 2V N1gll2, (4.17)
for every N € N, whenever B(xq, r) satisfies (4.6).

Proof of Lemma 4.4 For given xg, we denote gx,(®) = g ()29 (x0:0) Recall the
definition of g7 that
12

A n71 . ~
gT(w)=e2”"“("0;‘”)(8,(0%)%1;)(’27) V(). (4.18)
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Let H* act on fr and we obtain

1/2\ n—1 S e . ~
H'gr(x,1) = (2—71) (gxollfe)A(v)ax,R(x,t)/e2””’)*0(x’w)+2”w'w1/fe(w)dw,
(4.19)
where
¢l (x: ) = ¢M(x; ) — ¢ (x0; ). (4.20)

We make the change of variable w — @ + wyg and consider the oscillatory integral

/ ezni(¢§0(x,t;w+w9)+v'w) 1Z(,-%a))da)

i (4.21)
= / ezﬁi(¢§o (x”;’71/2“’+w9)+r71/2”"") J(w)dw.
Denote o’ := r~'/2w. First of all, V,, of the phase function equals
-3 A ’
ro2 (Vw¢XO(x, ;0 + wg) + v). (4.22)
We write
_ -1 A N A .
(422) =r 2 (Vw¢xO (-x3 o + w@) - Vw¢x0 (-xv N 509)) (4 23)
X .
+ 172 (Vog, (x. 1 wp) + ).
We first look at the second term. By the definition of qb%o, it equals to
r7 (Vo (x, 15 @9) — Vot (X0, 107 @9) + V). (4.24)
Recall we are in the case that
10C, 1
VW™ (x0, 10} @) — V| > —e . (4.25)
V14 (10C,)?
Moreover, recall that |¢| < 2C,A and |x| < 4C, A, and therefore we obtain
A twg — x 6C, A
[Vod" (X, t; wg)| = A < . (4.26)
VI2+1x —twp2 |~ 1+ (6C,)?
By the triangle inequality, we obtain that
10C, A 6Cp A A
4.24) > n - n ror > s (4.27)
VI+06)? 1+ (6C,)? 7
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Let us continue to compute the first term in (4.23). First,

Vobh (x. 11 ) = A fozx __ he7X (4.28)
T VR =10l a2+ v — 102 ) '

Therefore

Vodg, (x. 1 0 + wp) — Vol (x, 1 wp)

_ t(w + wg) — x fo(w' + wp) — xo
VI x —t(@ +wo)2 A2+ |x0 — fo(0 + wp)|?

twyg — X fowe — X ) (4.29)

—A —
Va2t x =t A2+ |x0 — towp |2

We use the bound (3.30) and mean value theorems, and see that the above expression
can be bounded from above by r!/2, which, together with the leading coefficient r ~1/2,
produces the bound 1 for the first term. Putting everything together, we see that

A

A
42) 2 5~ 12 5. (4.30)

The desired rapid decay follows immediately from integration by parts. O
Lemma4.5 ForT = Ty, and (x,t) € B(xo, r)\Tp,y, with B(xg, r) satisfying (4.6), it
holds that
x -1 2 -N
|H g7 (x, )] < (14772 | Vg, (x, 1; wg) + v]) " RapDec(r)||gll2- (4.31)

Here qb;‘o is defined as in (4.20).

This lemma describes the essential support of a wave packet, and it is the right-hand
side of (4.31) that motivates the definition of the core line in (4.16); see (4.36) below
that connects the expression of the core line in (4.16) with the right-hand side of (4.31).

Proof of Lemma 4.5 Note that each piece H* g7 has the expression

172\ n—1 ‘
r A (x oy~
Hgr(x,1) = (—) (gxo¥0)" (W)ar g (x, 1) / 2T n KTV G () d .,

2
(4.32)

We will see that the proof is quite similar to that of Lemma 4.4. We make the change
of variable w — w + wy and consider the oscillatory integral

/eiZn(szO(x,t;w+w9)+v'w)$(r%a))da)
(4.33)
_ it /'eizn(¢§0(x,r;r—‘/2w+wa)+r"/2v~w)J(w)dw,
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Let us compute the derivative of the phase function. We write the derivative as in
(4.23). There are two terms there. The first term contributes 1, which has been shown
in (4.28) and (4.29). We therefore have

(4.23)] Z 73|Vt (x, 13 09) + 0| — 1. (4.34)

This gives us the desired rapid decay in the complement of the set

1+6

Egy={(x.1): |Vl (x. t:09) +v| S 7 | (4.35)

It remains to show Ey , C Tp,,. We solve the equation de’,){o (x,t; wg) +v =0 for
the variables (x, ) to have

Mtwg — AMrowg —
( wp x) — v (tows — x0) — v+ Vw¢)\(x0; wp), (4.36)

W2t —twgl? VA2t 10 — tows?

which indeed is the straight line /y ,,. Moreover, we can solve (4.35) directly, and see
that it indeed lies inside our tube. Another way of seeing it is to notice that the Jacobian
of Vw¢,)(‘0 (x,t; wp) in x is comparable to 1, as has been verified in (3.41). O

4.2 L? Properties for Wave Packets

In this subsection, we prove two lemmas about L? properties of wave packets. One
of these two lemmas, Lemma 4.6, will not be directly used in our proof; however we
would still like to include it here and show that wave packets in our setting have similar
properties to those in the Fourier restriction problem.

Lemma 4.6 Let B(xo, r) satisfy (4.6). Given a tube T\ = Ty, v, € T[B(xo, r)], all but
ro® many tubes Ty = Ty, v, € T[B(xo, r)] satisfy

/I ‘ / H)‘gT1 (x, )H*gr, (x, 1)dxdt = RapDec(r)||g||%. 4.37)
t—to|<r

Proof of Lemma 4.6 Note that each piece 7* g7 has the expression

172\ n—1 ,
r A . . ~
H'gr(x,1) = (§> (8 ¥0)" (@)ax, R (x, D) / HT IO Gy (0)d.
(4.38)
To estimate (4.37), it suffices to consider the oscillatory integral
/ / P P (0= (02D g, (x, 1)dxd, (4.39)
lt—tol=<r
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with o] — wg, | < r~1/2 and |wy — wg,| < r~1/2_ and show that it decays rapidly. As
we will apply the argument of integration by parts in x, we do the change of variable
X — Ax and obtain

A"_lf /62”i)‘(¢(x’t/;w‘)_‘b(x(,)’t(/);‘”‘)_¢(X”/;“’2)+¢(x6”6;w2))a;\,1g()\x,t)dxdt,
[t—t0|<r

(4.40)

/et 1 . X0 /.ty
where we have also set ¢’ := 7> X = and 1) := =
Let us first assume that we are in the case |w; — wy| > r

partial derivative of the phase function in the x variable and obtain

—1/24% We compute the

A x —t'w; A x —twy
U Jl+lx—to>? U /1+|x —tw?

4.41)

Recall that the mixed Hessian of ¢ (x, t; ) in x and w is non-vanishing, that is,
|det V, Vi (x, t; w)| ~ 1, (4.42)
as has been verified in (3.41). This, combined with mean value theorems, implies that
[(4.41)] 2 Ao — wal. (4.43)

Now we can apply integration by parts and finish the proof of the case |w; — wz| >
—1/248
r .

—1/2+6 1/2+46

In the end, we consider the case |w; — wz| < r and |[vy —vy| > r
However, this case follows immediately from the pointwise estimate in Lemma 4.5. O

5 Comparing Wave Packets at Different Scales

In the previous section, we built up a wave packet decomposition for a function g on
the ball B(xq, ). Since our proof of Theorem 3.4 relies on the multiscale argument as
in[14] and [11], it is necessary to compare wave packets at two different scales. In this
section, we will prove lemmas in [11, Sect.9] in our setting. It is worth mentioning
that in their paper, they consider more general operators. However, their lemmas are
valid only when the operators are of “reduced form”. Since we do not reduce our
operator to reduced form, we are unable to simply cite their lemmas. Instead, we
follow their arguments and prove the lemmas in our setting. We include the details for
the completeness of the paper.

Consider another ball B(Xy, p) C B(Xg, r) for some Xg = (Xp,79) € R" and
r'/2 < p < r. Since we are considering wave packets at different scales, it would
be convenient to introduce some notations to distinguish wave packets from different
scales. We will use the notation T[B (X, p)] for the collection T[B (Xo, p)] in (4.7).
We will denote the elements of T[B(Xy, p)] by Ty 3. Here, the symbol ~ indicates that
the objects are generated at a smaller scale.
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We find it appropriate to introduce three more definitions here.
Definition 5.1 We say a function /4 is concentrated on wave packets from a tube set

Ty, if

h =Y hr + RapDec(r) ||| (5.1
TeTy

Definition 5.2 For a ball B and W C T[B], we define

hlw := Z hr. (5.2)

Tew

Definition 5.3 Let (6, v) € ®, xr'/2Z"~! and let 0,7) € ©, x p'27"~. We define
a collection of smaller tubes Tj; - that are “close to” the bigger tube Ty, as

~ ~ ~ . ~ _1
To.o[BXo. p)] = {T5y € T[BRo. p)] : dist(6,6) < p~ 2,
)

1+

|0 — (Vod}, Ko: wg) +0)| S | (5.3)

We sometimes abbreviate the collection ﬁf‘g,v[B (Xo, p)] to ﬁg’v for simplicity.

Notice that we can write
~ A _ Ao ~ A .
U — (Vg &o: wo) + v) = (Vod" &os wg) + 1) — (Voo™ (X0: @p) +v).  (5.4)

Heuristically, on the ball B(Xp, p), only those new wave packets concentrated in
Ty »[BXo, p)] would make significant contribution to our old wave packet 8Tp.,-
This will be stated rigorously in the following lemma:

Lemma5.4 Let Ty, € T[B(xo, r)]. Then it holds that
85, = (87517, (5.0 T RaPDeC() (g2 (5.5)
Proof By the definition of wave packets,

(875,05 ; o) (@)
A (. A
— o 2mi¢" Rosw) (ngyv (.)627'”¢ (Xo; ))é,ﬁ(w) (5.6)
Ak (. SR Vb (e S (-
— o279 &O,w)(62ﬂl(¢ Xo; -) =" (Xo; ))(g(,)62ﬂl¢ (X0; ))9,1)('))9",;(0))-
Since a function gy , is supported near 6 for every function g, by the above expression,
we see that

(ng,U(xo))T’éﬁ(io) =0 unless dist(9, 5) Ny 5.7
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By renaming the function g(w)e>™’ ¢" (x0.0) by g(w), it remains to show that
b ..
(%% Vg ()5 ; = RapDec(r) lgll2. (5.8)

whenever | — v + 0 — Vo Ko; wp)| 2 r1+9/2. By the definition, it amounts to
proving

(¥719% 50 ) gy () ()" (§) = RapDee(r)| gl (5.9)

The left-hand side can be written as
e 3
(Wé « (62n1¢>xo(§o, )gg’v(_))/\)(v). (5.10)

Since the function 1///\(; is essentially supported in B(0, p'/?), it suffices to show that

2i AT
(%% gy, (9) ()

(5.11)
_1 —(n+1
= (1477 2]z — v — Voo, Go; we)]) " RapDec(r) ¢ ll2

forevery |z —v— Vo5, Ro: wp)| 2 r!*+%/2. We take a function Vo) = (' (0=

wg)) for some compactly supported function 1// so that this function is adapted to ¢
but is equal to one on the support of 1//9 Since gp., is supported on the support of l/fg,
the left hand side of (5.11) can be written as

(e2ni¢¢0(§o; Jio(’)ge,u('))A(Z) _ (62ni¢io(§0; ‘)ie(.))/\ *?9\11(1) (5.12)

Since the function@is concentrated on B (v, r1+9)/ 2), by the above expression, the
claim (5.11) is reduced to

/ ittty Goion T g,
» (5.13)

1 _
= (141 2]z = Vodh Gos wo)]) """ RapDec(r)

whenever |z — Vw¢§0 (Xo; wg)| = r119/2 We apply the change of variables: &

r~12w + wy and the above integral becomes

Fo i g2z / i Pt Gorontr T PoN Ty . (5.14)

By the stationary phase method, the estimate (5.13) follows from

144

1
|2 = Voo, Roswp +r 20)| 27T (5.15)
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forevery |z — V¢, Ko: wg)| 2 r1+9/2 Using a mean value theorem with |xo—Xo| <
r, this follows from

V2Vt (x, 1; @) S 1 (5.16)

for every |x| + |t| < A, which has been verified in (3.30). O
Lemma 5.5 Suppose that Ty ,, € T[B(xo,r)]. Iffgﬁ € ’]TQ’U[B (X0, p)], then it holds
that

HausDist(T; -, Ts., N B®, p)) < r2 ™+ (5.17)

and

£(G(wg), Gwy)) < p2. (5.18)

Proof The bound (5.18) is trivial, and we only need to prove (5.17). Let us assume
that neither T 5 nor Ty, N B(Xo, p) is empty. Let lyp , and l5  be the core lines of
Ty, and T ~ respectlvely The two tubes involved in (5.17) have width < r1/248 and
therefore to prove (5.17), it suffices to consider the core lines of the tubes only. From
the definition of core lines (see also (4.36)), we can write [y, as

Vwd™ (x, 15 wg) — Vet (x0, to; wp) = —v; (5.19)

moreover, we can write the core line of /; ; as

Vot (x. 15 w5) — Vo™ (R0, T0; 05) = —7. (5.20)

Suppose that /g ,, passes through a point (x, 7o) and that lég 5 passes through (xz, 7).
Note that the angle between g, and [ ; is at most p~ /2 and that we are computing
a Hausdorff distance within a ball of radlus p. To prove (5.17), it therefore suffices to

show that |x; — x| < r1/2+8 \which, by (3.41), is the same as saying that

~ ~ 1
V™ (x1,70; wp) — V™ (x2, To; wp)| S r2 ™. (5.21)

We consider two cases p < r /248 and o> p /248 separately.

Assume we are in the former case. By the assumption that Ty , N B(Xp, p) is not
empty, we obtain |x; — Xp| < r1/2+3 Moreover, by (5.3), (5.4), (5.19), (5.20) and the
triangle inequality, we obtain that

Voo™ (x2.70; wg) — Vud™ (X0, 0: wp)|

s N - e~ (5.22)

Sr2t0 4 |V (1, 103 wg) — Vo™ (R0, To; wp)|.

This, together with (3.41) and the mean value theorem, implies that
2 — ol S P, (5.23)
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which further leads to the desired bound for |x; — x3].

Assume we are in the latter case. The starting point of the proof of this is similar as
above. By the assumption that Ty , N B(Xp, p) is not empty, we obtain |x; — Xp| < p.
This, combined with (5.22), implies that |x; — Xp| < p. Next, the proof starts to be
different.

Vot (x1, 705 wg) — Vo™ (x2, T0; wp)
= V¢ (x1,70; wp) — Voo™ (x2, T3 w5) (5.24)

+ Vod" (12, 10; 05) — Vo™ (2, To; @p).
By (5.19) and (5.20), the last expression can be written as

Vot (0, 10; 09) — Ve (R0, 10; wg) + V™ (12,10 0g) — Vud™ (x2, To; we).
(5.25)

By the mean value theorem and the bound (3.30) with 8 = 1 and 8’ = 2, the absolute
value of the last display can be bounded by

~ _1 1
|x2 = Xollwg —wg| S pp~2 S p2. (5.26)

~

Recall that p < r. This finishes the proof of latter case, thus the proof of the whole
lemma. O

6 The Transverse Equidistribution Property

The proof of the transverse equidistribution estimate requires us to study wave packets
from different scales. To make ourselves clear, we sometimes use “large wave packet”
to mean the scale » wave packet, and use “small wave packet” to mean the scale p
one.

Recall the admissible parameters in (1.11). Let us introduce more notations for the
next several sections. The first notation is about the transverse complete intersection.
The second definition is about the tangency between tubes and a transverse complete
intersection. The third definition is about collections of tangent tubes at two different
scales.

Definition 6.1 Let Py, ..., P,—; : R" — R be polynomials. We consider the com-
mon zero set

ZPy,....,Pp_p) ={xeR": Pi(x) =+ = Py_,(x) =0}. 6.1

Suppose that for all z € Z(Py, ..., Py—m), one has

n—m

/\ VPj(z) #0. (6.2)

j=1
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Then a connected branch of this set, or a union of connected branches of this set, is
called an m-dimensional transverse complete intersection. Given a set Z of the form
(6.1), the degree of Z is defined by

min <]_[ deg(Pi)>, 6.3)

i=1
where the minimum is taken over all possible representationsof Z = Z(Py, ..., Py_p).
Definition 6.2 Letr > 1and Z be an m-dimensional transverse complete intersection.

A tube Ty (x0) € T[B(xo,r)] is said to be r_1/2+‘3m-tangent to Z in B(xg, r) if it
satisfies

o Ty (X0) C N,ij2+6m (Z2) N B(X0, 7);
e Forevery z € Z N B(xXo, r), if there is y € Tp ,,(Xp) with [z — y| < rY/2tm then
one has

£(GO). T.Z) S r~ 2+, (6.4)
Here, T, Z is the tangent space of Z at z.
Definition 6.3 Let r > p > 1 and Z be an m-dimensional transverse complete inter-

section and let B(Xo, p) C B(Xp, r). Define a collection of bigger tangent tubes inside
a smaller ball as

Tz[B(xg,7r)] :={T € T[B(xg,r)]: T is r_1/2+5'"—tangent to Z in B(xg, r)}.
(6.5)

Given an arbitrary translation b € R", define

f‘b[B(io, p)] = {~ € T[B(io, p)]: T is p_%*"s’"-tangent to Z + b in B(Xp, p)}.
(6.6)

For s~implicity, we sometimes use the notation Tz and ’f‘b in short for Tz[B(xq, r)]
and Tp[B(Xg, p)], respectively.

Let 1 < r'/2 < p <randXy = (X0,%) € R". For every pair (§, w) € ©, x
r1/277=1 we define a collection of bigger tubes

Tj, = {To.0 € TIB(xo, )] : dist(0.0) < p

and v+ V% Ro; wg) — w| S r2}. 6.7)

Then for every T € Té.w NTz,if T N B(Xg,2p) # <, the intersection of T and
the horizontal plane {tr = 7y} is contained in the ball B := B" '(wy, Cr'/>*%) c
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B" 1 (%), 3p), where the center wy is defined as

A Y
Wy = %w9~+ V" Ros 0g) — w) ) (6.8)

1/2
(A2 = |V Ro; wg) — w]?)"/

This is due to the coreline equation (4.16) for the tube 7', and Lemma 5.5. We remark
that if we perturb 7 by an extremely small factor B, the intersection between 7' and
the horizontal plane {t = 7o} with 7y = %) + B is still contained in the ball B.

The main goal of this section is to prove the following lemma.

Lemma 6.4 Let |b| < P12 and recall (5. 2). Suppose that h is concentrated on
large wave packetsfrom TzNTs,, for some @, w) e B, x r1272=1 Then for every

WCTb,

lnlg]5 < r”"”(%) nhn2 6.9)

As a consequence, for every function h concentrated on Tz,

_n—m

2
|l |5 < r“"”(%) 113, 6.10)

We first show that (6.10) follows from the local one (6.9). Decompose the function
h as

h= Z hg (6.11)

(0,w)

such that 2 ,, is concentrated on wave packets from Tz NTj . Since when |[w —x| >
Crl/2+s, h~ »X) = RapDec(r) |||, we have the almost L? orthogonality

Iz < 7@ 3" N wlals: 6.12)
@.w)

Finally, we use the local estimate (6.9) and Lemma 4.2 to conclude the global estimate
(6.10). ~

To prove (6.9), note that T, only consists smaller tubes T that TN B (Xo, %p) #* J.
By Lemma 4.5, Lemma 5.4 and Lemma 5.5, we can assume without loss of generality
that for every bigger tube T € T5 , N Tz, one has 7' N B(Xp,2p) # 2.

We break the proof of the local transverse equidistribution estimate (6.9) into several
smaller lemmas. The first thing we would like to find out is the location of (%l .
Consider Z, the intersection between of variety Z + b and the horizontal hyperplane
{(x,1) : t = fy}. By the transversality theorem (for example, Theorem 10.2), we
can choose 7o = 7o + f for an extremely small number S, so that Z is a transverse
complete intersection. Since the small perturbation g is harmless in our proof, to save
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us from abundant notations, let us assume 7y = 7y. Hence Zg = Z+bN{t = 7y} canbe
considered as a transverse complete intersection in R*~!, and deg(Zo) = O (deg(Z)).

If H” was the Fourier extension operator, (1 |§y)"" is just contained in a thin neigh-
borhood of Zo. While in our case, (k|g;)" is roughly contained in a thin neighborhood
of ®(Zy), where ® : R"~! — R"~! is a smooth map defined as

A(E)wé — x)
()»2 + |x — t_oa)9~|2)1/2 ’

D (x) i= = Vo' (x, 1 wg) = — (6.13)

Before proving something about the support of (h|)" rigorously, let us take a look
at the smooth function ®. The next lemma shows that ® indeed looks like the identity
map of R~ 1.

Lemma 6.5 Foranyx € R" 'andr > ¢ > 0 that B* ' (x, £) C B"1(0,3C,A), one
has

£
B <d>(x), E) C ®(B(x, t)) C B(®(x), Ce). (6.14)
The constant C only depends on the choice of C,, in Theorem 3.4.
Proof By Taylor’s theorem, we have that for any y € B(x, r),
() — P(x) = (y — ) o (x) + O |y —x). (6.15)
The Jacobian Jg isan (n — 1) x (n — 1) symmetric matrix A = (ag;), with

k('fwé — )c)k(’tva)g~ — X))

— when k # [,
e (6.16)

— 37 when k = /.

()\.2 + |x — ta)9~|2)
Similar to the argument in (3.39), we can simplify A as
A (fw; — x)T (fw; — x)

A= —~ 1/2<2n_ . ~— (6.17)

(A2 + |x — Twgl?) A%+ |x — fwg]

Inside the bracket, the first matrix has eigenvalues 1, while the second matrix has only
one eigenvalue |x — 7wy |?/(A? + |x — Tws|?) < 113”0’ < 1since x € B(0,3C,))
and since ¢ < C,A. This proves that the eigenvalues of A are all positive and have
lower bound C~! and upper bound C for an absolute constant that depends only on

C,, uniformly in x. Thus,

|D(y) — @) ~ |y — x|+ O |y —x /%), (6.18)
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which yields ®(B(x, £)) C B(®(x),Cl)since |y —x| <r < R < A1~¢ as assumed
in (3.3). For the other side, by the implicit function theorem, we know that o1

well defined in the domain ®(B"~1(0,3C,2)) and Jg-1(x) = (Jo(x))~'. So the
eigenvalues of Jg-1(x) have an upper bound C~! and a lower bound C. Hence we
can prove B(®(x), %) C ®(B(x, £)) similarly. O

A direct corollary of this lemma is the following:

Corollary 6.6 Let Zy and B be as above. Then

N v (@ (Z0) 1 <I>((é)3) C DN, 12450 (Zo) O B)
C Nepiasom (©(Zo)) N S(CB).  (6.19)

Now via Lemma 6.5 and Corollary 6.6, we can say something rigorously related to
the support of (2|¢;)”. This is shown in the next lemma.

Lemma 6.7 Let h be concentrated on bigger wave packets from Tg N Tz. Recall
that Zy was defined in above (6.13), and h|g was introduced in Lemma 6.4. Then

|1y S 1B T, 1 jses, @ zonn@emy |, + RapDec(o) 1hll2.  (6.20)

Proof By Lemma 4.2, one has
1l M5 S Y Iz 5. (6.21)
TeWw
The scale p wave packet iz\f was defined in (4.18). We use its definition to have
T - ~ nl
Y nFE = 0" D 1) P15 13 =0T D 1(hzy v )%

FeW FeW FeW
(6.22)

Since we can write (h;;owé)A(v) = 7 * (6_2”"‘&&0; ')Jé(-))A(v), and since the L!
norm of the second function (e~27 i¢* (o; ‘)1; (-)" is bounded above by O (1), one
can use Holder’s inequality for |(hx 1/f9) (v)|2 and obtain

TeW

Y —~ _ _ s Ly~
Do hzElE S f |h<y>|2< D 1t R0 D ()N (y — v)|)dy
T; ;W
(6.23)
We claim that the sum inside the bracket is O (1), and it decays rapidly outside of the
set NCp1/z+am (®(Zp)) N ©(CB). This proves the lemma.

To prove the O (1) upper bound, one just needs to notice that there are O(1) caps
6 making contribution in W. It remains to prove the rapidly decaying property.
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To prove the rapidly decaying property, we first notice that h;m = RapDec(p)||h]2

unless Téj N{t =1 C Ny p12+m (Zo) N 2B for every smaller tube Té,i e W.
This is because on one hand i N{t =% C Ny p1/2+8m (Zp) since Té 5 1s tangent
to Z + b; on the other hand, smce his concentrated on T@ w> Dy Lemma 5.4 we
know that h;m = RapDec(p)||i]l2 unless T, 5’3 € TQ,U[B(VO, p)] for some (0, v)
with Ty, € Tj . But for such Tp ,, one has Ty, N {r = %) C B as shown in
above (6.8). Hence, by Lemma 5.5, we have that hTé~ = RapDec(p)||i]l2 unless
T; 5N {t =) C 2B.

Now we only need to consider those smaller tubes T 5 with T sN{t = 0} C
Nopi/2+6m (Zp) N 2B. Using this information, we would hke to ﬁnd out the location

of 7 in the bracket of (6.23). Recall that the coreline of the smaller tube Tg ~ satisfies
(4.16), which indeed is (4. 36) On the hyperplane {r = 70}, we can rewrite (4.36) as
T =—V,o'(x,T: wgz) + Vod* (Xo: wz) =: W(x). Hence, by Corollary 6.6, one has

Ve W(T; 5N {t =10}) C W (Naypirran (Zo) N 2B) C Nepiyavon ¥ (Zo) N W(2B).
(6.24)

Finally, we know from Lemma 4.5 that the function (e~27/¢" ®o: ‘)$§(~))/\(y —7)
in (6.23) decays rapidly unless |y — 7 4+ V,¢* (X0, wp)| < pl/2H0m  that is, y —
v e B"H(=V,¢* R0, wg), Cp!/>Tm). Plugging this back into (6.24) and noticing

® + V9™ (Xo; wz) = W, we therefore can conclude that (e 2mid"Go: ) %-(-))A (y=7)
decays rapidly unless

Y € Nep2+sm P(Zo) N ®(CB), (6.25)

where @ was defined in (6.13). This proves the claim and hence the lemma. O

To conclude (6.9), we need to prove the transverse equidistribution estimate stated
below:

Proposition 6.8 Recall Zo = (Z+b)N{t =19} and B = B"~(w, r'/?Tn). Suppose
that h is concentrated on scale r wave packets in Tz, N Tz. Then

n—

o~ p 2
/|h|2'1{N 1/2+5m(<1>(Zo))ﬂ<D(CB)}<r0(5m)(r> 17215 (6.26)

Note that the desired estimate (6.9) is a direct corollary of (6.20) and Proposition 6.8.
The proof of Proposition 6.8 relies on an auxiliary lemma. Let us introduce some
more definitions. First, define

T, 55 = {Tow € Tz : dist(8,6) < p~2 and Ty, N {1 =T} N B # 2},
(6.27)
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soas proved inabove (6.8),onehas T;  NTz C T, ; 5. We will prove Proposition 6.8
with Ty, N Tz replaced by T p ;. Next for every (linear) subspace V in R”, we
define a collectlon of bigger wave packets Ty pgas

1
Ty pg:= {0.v): Ty N B # @, £(G(wg), V) S =20
and dist(6, 6) < p~ 7). 62%)

Lemma 6.9 Suppose that V is a subspace of R". Let Vo := V N {t = T} and define
V' as VOL in R"~1. If g is concentrated on bigger wave packets from Ty ga if
1 C {t =1} is any affine subspace parallel to V' and if y; € T1 N ®(CB), then

1/2 dim(V")
/ g0 (f) [ (629)
MNB(y1,p!/2om)

Proof Since g is concentrated on large wave packets from T, , 5 and since G (w) is

linear (up to a scalar depending on w) as shown in (3.9), there is a shiftwy € B" 10, 1)
such that

[0: £(G@), V) Sr 2t} o dist, Vo + wy) S r 2} (630)

It implies that g is supported in the » ~!/2+%» neighborhood of Vj + wy inside the unit
ball B*~1(0, 1). As a result, the Fourier transform of (glm)Y is supported in ann —m
dimensional /2% ball centered at proj v/ (wy), which implies (see also Lemma
3.11)

@I S 1@l * ny1/2-6m - (6.31)

Finally, we integrate |(g]n)|* inside the ball B(y, p'/>*%) and invoke Holder’s
inequality to conclude (6.29). O

Proof of Proposition 6.8 'We prove Proposition 6.8 via Lemma 6.9. Our proof is similar
to the proof of Lemma 6.2 in [14] and the proof of Lemma 8.4 in [11].

Since wave packets in T, p ; are tangent to the variety Z inside the ball B, by the
angular condition (6.4), we have

£(G(0), T.Z) < r=2tom (6.32)

foreveryz € ZN2Band Ty, € ']I‘Z B One thus can find a subspace V C R" of
minimal dimension and dim V < dim Z such that for all 6 making contribution in

PIFZ,B,Q’

£(G(0), V) < rmathn, (6.33)
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It implies that the function 4 is indeed concentrated on wave packets from T, ; 5. So
we can apply Lemma 6.9 to obtain a subspace V' that

~2 10)0) Pl/z dim(V) ~2
e C T R (634)
I1

/HOB(yn,p‘/”‘sm)
for any IT C {t = 7o} being parallel to V' and y; € IT1 N ®(C B). To finish the proof,
we need three additional claims.

Claim 1. The pushfoward ®(Z) is quantitatively transverse to V' at every point
7€ ©(Zp) NO(B(0,3CLA0)).

Claim 2. ®~!(IT) is an n — 1 — dim(V’) dimensional transverse complete inter-
section in R"~ 1.

Claim 3. TI N N¢ 1248 (©(Z0)) N ®(CB) can be covered by rO@m (r1/2/
pl/2ydim Zo=dim Vo many balls in IT of radius p!/2+n,

Assume at first that the three claims were verified. We plug Claim 3 back to (6.34)
so that

~ o\ 2 [ ~
/ |h|2-1{NC 1/246m (@(Z0))ND(CB)) 5r0(5’")<—> / 7). (6.35)
m ° r I

Integrate over all (generic) affine subspaces IT that are parallel to V’ to conclude the
proof of Proposition 6.8.

Proof of Claim 1. We follow essentially the proof strategy in [14]. Suppose that Claim
1 fails. It means that there is a point ®(z) € ®(Zp) N ®(B(0, CA)) and a subspace
Wo C Tor) (P (Zp)) with dim Zg — dim We + dim V' < n — 1, such that for any
non-zero vector w € Wg, there is a big constant C’ only depending on the C, in
Theorem 3.4 that

K(w, V') < (C)2 (6.36)

Let (dfl);k : To)®(Zo) — T,Zo be the map between tangent spaces. Then
A(v, (CI>_1)’Zk(v)) <3- (C")~! for any v € To(;)®(Zo) because of the positivity of
Jp-1 (see Lemma 6.5). Hence, if we define W as the pullback W := (dD_l)j(Wqﬂ C
T, Zy, then % (w, Vy) = 1 since Vy is perpendicular to V’. As we will show below,
this indeed implies for arbitrary non-zero vector w € W,

L(w, V) > 1. (6.37)

To prove (6.37), let w = wi + wy with w; L Vp and wy € Vp, so orthy (w) =
orthy (wy) (here we use orthy (w) := w — projy (w) in convention). Note that the
lower bound % (w, Vy) = 1 gives |wi| 2 |w|. Now for any unit vector v € V, we
write v = v; + v where vy L Vy and v, € Vj, so |vi| < 1 and 4(1}1,1&”_1) =1
due to (6.33). Hence |wy - v| = |wy - v1| < c|w;]| for some absolute constant ¢ < 1,
which implies |orthy (w)| = |orthy (w;)| ~ |wy| 2 |w| and hence (6.37). Finally,
since dim(W) = dim(Wg), one has dim(Zp) — dim(W) < dim(V). Hence, the angle
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estimate (6.37) contradicts the minimality of dim(V'), which can be seen via repeating
the proof in [14, page 115]. This proves Claim 1.

Proof of Claim 2. Since Il is an affine subspace, it is the intersection of k := n —
1 — dim(V’) mutually orthogonal hyperplanes L1, ..., L,. Suppose that each L is
parametrized as

Lj:mj~x+lj=0, (6.38)

where m ; is the normal vector of L; and /; € R. Then ®~!(L) is indeed a branch
of the quadratic variety

O (L)) [amj - (ows — x)1F — (W + |x —Towy ) = 0. (6.39)

Similar to the proof of Lemma 6.5, we can show Jg-1(x) is not degenerate for all
x € Range(®). Hence, o HLpn---nd~! (L) is atransverse complete intersection.

Proof of Claim 3. Similar to Claim 1, we know that ®~1(IT) N Z is a transverse com-
plete intersection inside B(0, C,,A) (in fact, by Lemma 10.3, the pullback o~ 1(1)
is transverse to Z for generic affine spaces IT). Note that the dimension of the
variety ®~1(IT) N Zg is dim Zg — dim V. By Wongkew’s theorem [32], the set
Nepi2+sm (@71 (IT) N Zg) N CB can be covered by

0t V1/2 dim Zp—dim Vj
yOGn <—p1 /2> (6.40)

many (n — 1)-dimensional balls. Hence, via Lemma 6.5, we know that Ncp1/2+am (N
®(Zp)) N ®(CB) can be covered by the same amount of (n — 1)-dimensional balls,
up to a constant.

Since T, @ (Zy) is quantitatively transverse to [T atevery pointz € ®(Zg)NP(2CB)
by Claim 1, one can argue similarly as in [11, Lemma 8.13] to conclude

1N Nepi/2+om (P(Z0)) N P(CB) C Projp[Nepi/2+sm (TT N P(Zg)) N @ (CB)].
(6.41)

Therefore, TT N N¢,1/245n (®(Zg)) N ®(CB) can be covered by rO@m(r1/2/
p!/2ydim Zo=dim Vo yyany Jower-dimensional balls in IT of radius p!/2%97 This proves
Claim 3. O

7 Multigrains and Functions Concentrated Near a Variety

In this section, following [15] and [17], we introduce some definitions and propositions
for later use in Sects. 8 and 9. In contrast to [17], the definitions and propositions are
stated in terms of the “dimension” of the transverse complete intersection instead of
the codimension so that the notations are consistent with those in the previous sections.

@ Springer



S.Guo et al.

7.1 Multigrain and Nested Structure

Here we introduce some definitions and lemmas about grains and multigrains, follow-
ing [17, Sect. 3].

Definition 7.1 A grain is defined to be a pair (S, B,) where S C R” is a transverse
complete intersection and B, C R” is a ball of some radius r > 0. The dimension
of a grain (S, B,) is the dimension of the transverse complete intersection .S, and its
degree is the degree of S.

Definition 7.2 Let (S, B(xq, r)) be a grain of dimension m. A function f is said to
be tangent to (S, B(Xo, r)) if it is concentrated on wave packets belonging to the
collection

{TQ,U(X()) € T[B(xo0, )] : Tp.v(X0) is r_%""s"’-tangent to S in B(xo, r)}.
(7.1)

Definition 7.3 A multigrain 5‘,,1 is an (n — m + 1)-tuple of grains
Sn=Gn:--.Gn), Gi=(S;, By) form <i=<n

satisfying

e dim(S;) =i form <i <n,
e S, DS—1D:-D Sm,
e B DB, ,D---DB

Tm:*

The parameter n —m is referred to as the level of the multigrain S‘m . The complexity of
the multigrain is defined to be the maximum of the degrees deg S; overallm <i < n.
Finally, the multiscale of Sy, is the tuple 7 = (r,,, 41, . . ., ;). For two multigrains
3‘1 and S’m with m < [, we write

§m = 31
if the first » — [ 4+ 1 components of S'm agree those of 5’1.
Definition 7.4 Let §'m = (Gn, - .., Gp) be a multigrain and
G = (Si, B(x,-,ri)) form <i <n.

Define ']I‘[S‘m] to be the set of scale R := r,, tubes Ty
the following hypothesis:

(x,) € T[B(x,, ry)] satisfying

nsUn

Nested tube hypothesis. There exists Ty, ,, (x;) € T[B(x;, r;)] form < i < n such
that

(1) dist(6;.0;) <r; "%,
. 146)/2
@) dist(Ty;.0; (X)), Ty, (%) N B(xj. ) S i,
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(3) Ty, v; (xj) C Nr1/2+6_; S;
j
hold true for all i, j withm < j <i <n.

The direction set of T[gm] is defined by
OS] := {0 € Ok : Ty, € T[S, ] for some v € R2Z"~}. (7.2)

A main ingredient of the proof of Theorem 3.4 is the following lemma.

Lemma?7.5 [17, Lemma 3.7] Let S’m be a level n — m multigrain with multiscale
Fm = (fp, ..., rm) and complexity at most d. If R = r, and the constants in (1.11)
are chosen appropriately, then

n—1 1
#O[Sy] geo,d ( 1_[ Vl-_2>anl+Eo. (7.3)

1=m

Since our tubes Ty, are straight, and the tubes T , corresponding to the same 6
indicate the same direction (see the definition of the tube Tj_, (4.16)), the above lemma
can be proved using the nested polynomial Wolff axioms of Zahl [35] and Hickman,
Rogers and Zhang [16]; for instance, one can follow the proof of [17, Lemma 3.7].
We leave out the details.

7.2 Some Lemmas

There are more definitions and lemmas that we will need in Sects. 8 and 9. Let us state
them here, following [15, Sect. 8] and [17, Sect.5]. In this subsection, we fix a scale
r > 1 and a smaller scale r'/2 < p < r, and we consider balls

n—1 R
B(Xp, p) C B(xg,r) C [-3CuA, 3C,A] X o CuR|. (7.4)

n

Recall some definitions in Sect. 6:

Tz[B(xp, )] = {T € T[B(xg,r)]: T is r_%“”‘-tangent to Z in B (X, r)},

ﬁb[B(i'o, = {~ € T[B(io, ] : T is p_%H'"-tangent to Z + b in B(Xp, ,o)}.
(1.5)

For some technical issue and rigorousness, we introduce a “thickening” of an arbitrary
subset of T[B(xg, 7)]: Given any W C T[B(xg, r)], we define

W* = {Ty., € T[B(xo, r)] : dist(®, 6") < r ™2

and v — /| < 3" for some 0',v) C W} (7.6)
Note that W* is a set slightly larger than W. Intuitively, one can identify W* with W.
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Definition 7.6 For W 'E‘[B('io, p)], we define TW to be a collection of all pairs
Ty,v(x0) € T[B(xq, r)] such that there exists a non-empty set 7 ﬁ('io) € W satisfying

(1) dist(0,0) < p~'/2,
(2) dist(T; ;(Xo), To,u(x0) N B&o, p)) S r'/2H.

This definition naturally appears when comparing wave packets at different scales
by the following property: For every W C T[B(Xo, p)] and g € L',

gls = (g1l + RapDec(r) g 2. (7.7)

It can be thought of as a reverse version of Lemma 5.4. Since the proof is straightfor-
ward, we leave out the details.

Lemma 7.7 For every set Wi, W, C T[B(xq, r)] and function g, it holds that
I(glw)lw,llz2 < lglw,nwsll L2 + RapDec(r)llgll2. (7.8)
Proof We split our function into two parts:
&lw)lw, = (glw,nws) lw, + (&lw,\ws)lw, - (7.9)
We apply Lemma 4.2 to the function g|yy, AW and obtain

(g lw, ) lw, ll2 < gl w2 (7.10)

On the other hand, by the proof of Lemma 5.4, we see that

Il (glww\ws)lw, ll2 = RapDec(r)||g|l2- (7.11)
This completes the proof. O
Lemma7.8 Let Z = Z(Py,..., P,_y) be a transverse complete intersection, with

deg P; < d. Let b € R" with |b| < r1/2+0m  Suppose that B(?L), p) C B(xo,r). If g
is concentrated on wave packets from Tz[B(xo, r)] and W C Tp[B(Xg, p)], then

n—m

r 72
gl 13 Sa r"“m(;) llgl 7113 + RapDec(r) I3 (7.12)

The above lemma is a corollary of Lemmas 6.4 and 7.7. The same lemma for the
Fourier extension operator for paraboloid is stated and proved in [17]. We refer to [17,
Lemma 5.4] for the details of the proof.
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Lemma7.9 Let Z = Z(Py,..., P,_y) be a transverse complete intersection, with
degP; < d. Suppose that B(Xo, p) C B(xo, r) and B(Xo, p) N Nyipvn Z # Q. Let g
be concentrated on wave packets from T z[ B (xq, r)]. Then there are a set of translates
B C B(0, 2r'/?*3mY and functions {gp}pes such that

A P < 2p A P
1H 8l p (3o, ¢ (087 >_IH g””BLf,A(B(io,p)mNpl/m,,, (Z+b))

beBB
+RapDec(r) | gll5. (7.13)
> llgslls Sa ligll3, (7.14)
beB
#\ (3 +0m)
#B <y (—) , (7.15)
P
and?
g = g|1~r;)[3(§0’p)] for some set TT;Q[B(')ZO, o)l c Tp. (7.16)

The proof of Lemma 7.9 requires the lemma below:

Lemma7.10 Let p < 5 and Z C R" be a transverse complete intersection. Let

Ty € Tz[B(xo. 1)) and b € B(0, 2r'/>+om) If T5 () € To o[ BRo. p)] satisfies
Ts s@0) N N yi2sm p(Z + b) # 2, (7.17)

then fégﬁ € P]Afb[B(.fo, Pl

The rigorous proof of Lemma 7.10 is quite technical, and we refer to the proof of
[11, Proposition 9.2] for the details. We do not reproduce the proof here.

Proofof Lemma 7.9 We first apply [11, Lemma 10.5].* Then there exist a finite set
B C B(0, 2r'/?%%m) with cardinality at most 0((%)"(1/ 2+9m)y and a collection B’ of

finitely overlapping K 2-balls By intersecting B(Xy, p) such that

3 We refer to (7.22) for the explicit definition of ’T;)[B (Xp, p)].

4 We cannot directly apply the lemma because our operator is not of the normal form. However, one can
prove the lemma for our operator by following the same argument. We leave out the details here.
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S0 p gy oy S 1081 D0 g (By2), (7.18)
' BKZEB/

and for each Bg2 € B’ the following holds: there exists some b € B such that
Bg2 C Njipssm jp(Z + b), (7.19)
and there exist at most O (1) vectors b € B for which
Bg2 NN 12450 (Z + b) # . (7.20)

For every b € B, we let B;, denote the collection of all the balls By satisfying (7.19).
By (7.18) and (7.19), we know that

Ao P < 2p
V8 l5p ppn S B0BN™ D D tiig(By2). (7.21)
bGBBkzeBZ

We define

TG m={Te U TusGo:Tn U serol
Tp,veTz[B(X0,r)] By2€B,
(7.22)

Since every element of T;[B(io, p)] intersects N y1/2+5m /o(Z + b), by Lemma 7.10,
we know that T} [B(Xo, p)] C Tp[B(Xo, p)]. Let us define g, := g|qf;7[3(i0’p)]. By the

proof of Lemma 5.4, the construction of the collection ']~T;7[B (X0, p)], and the triangle
inequality of the broad norm [11, Lemma 6.2]), we also know that

Wirg(Bg2) S g g, (Bg2) + RapDec(r) gll} (7.23)

for every B2 € B),. Therefore, by combining the above inequality with (7.21) and
the cardinality condition on B, we obtain the first inequality (7.13).
Let us now show the second inequality (7.14). By Lemma 4.2 and (7.20), we obtain

Dleslz=>"| > 87252 > llggl3

beB beB " TeT,[BRo.p)] beB T T, [BRo,p)]
SO lerla Sliglis. (7.24)
TeTB®o,p)]
This completes the proof. O
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8 Finding Polynomial Structures

In this and the next section, we build a big algorithm to break down the quantity
| H* g”BL,’:A (Bg) N our main estimate (3.20), and use it to prove our main result,

Theorem 3.4. The whole algorithm is involved, so we split it into two smaller ones.
This section is devoted to the first one, and we follow [17, Section 6.1]. See also [15,
Sect. 9].

Recall the following admissible parameters introduced in (1.11)

€ K8 K] K- K8 K€ K €. 8.1

We define Sm,] to be
- 1 1
1—=68,_1) §+5m_1 = §+6m' (8.2)

Notice that 8»174 < Sm,l < 28;;,—1. This constant gmq is introduced for some tech-
nical reasons and plays a minor role in the proof.

8.1 Polynomial Partitioning Lemma

For a polynomial P, we denote by cell(P) a collection of the connected components
of R" \ Z(P). We state the polynomial partitioning lemma used in [14].

Lemma 8.1 ([14]) Letr > 1 and d, m be positive integers. Let 0 < 8, <K 1. Suppose
that Z = Z(Py, ..., Py_y) is an m-dimensional transverse complete intersection,
with degP; < d. Suppose that F € L' (R") is non-negative and supported on B, N
N,1/2+sm Z. Then at least one of the following cases hold true:

(1) (Cellular case) There exists a polynomial P of degree at most O(d) with the
following properties:

(a) #cell(P) ~ d™.

(b) Foreach O’ € cell(P), define the shrunken cells O := O’ \ Ngi/24n (Z(P)).
Then there exists a subcollection cell,(P) of cell(P) such that for every O
generated by O’ € cell,(P)

/ F~d’m/ F.
0 n

Moreover, the number of the shrunken cells O generated by cell,(P) is com-
r

parable to d™, and the diameter of O is smaller than 5. We denote by O a
collection of the shrunken cells.
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(2) (Algebraic case) There exists (m—1)-dimensional transverse complete intersection
Y, defined using polynomials of degree at most O(d) such that

/ F< / F.
BON 17245, (2) BrON 17248, (Y)

Suppose that a function g and a grain (Z, B,) of dimension m are given. We will
apply the above lemma to the function

1
Fx)y=Y" g (Bi2) g 1Bl ON, e (2)(5) (8.3)
B K

K2
with a number d. This number d will be much larger than the degrees of polynomial

defining Z. If the cellular case holds true, then

Hg|? < d"|Hg||” 8.4
V81500 (.0 1o 20 S @ TH 8510 o) (8.4)

for all O € O. Here, every O € O has a diameter at most 5 and #O ~ d" for some
sufficiently large number d, which will be determined later. If the algebraic case holds
true, then

s A
1" 8lBLy (B, 121 20 S NH 8IBLY (8,08, 17215, (V) ®8.5)

for some (m — 1)-dimensional transverse complete intersection Y, defined using poly-
nomials of degree at most d.

8.2 The First Algorithm

Let us illustrate the first algorithm. This algorithm is the counterpart of the first algo-
rithm in [17, Sect. 6.1]. Let 1 <m < n.

Input The algorithm [alg 1] takes as its input:

e A grain (Z, B(xo,r)) of dimension m with B(xo,r) C [—=3CyA,3C,A" ! x
[&, Curl.

e A function g € L! which is tangent to the grain (Z , B(xg, r)).

e An admissible large integer A € N.

output The jth stage of [alg 1] outputs:

o A choice of spatial scale p; > 1.
e Certain integers #5(j), #.(j) € Ny satisfying #5(j) + #-(j) = j.5

5 The integers #4 (j) and #<(j) indicate the number of occurrences of algebraic cases and cellular cases,
respectively.
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o A family of subsets O; of R" referred to as cells. Each cell O; € O; is contained
in some pj-ball Bo; := B(Xo;, p;)-

e A collection of functions {g0p;}0,e0;. For each cell O; there is a translate Zp, :=
Z+ Yo, such that 80, is tangent to the grain (ZO/, BO ).

e Alargei 1nteger deN Wthh depends only on the adm1551ble parameters and deg Z.

All the outputs will be constructed so that for some constants
Csd. ), Cls@), Cls.r), CYsd.r) Sasréed™V?, (8.6)

which will be defined explicitly in (8.13), and A; = 27 *2(/) A the following properties
hold true:
Property I: For some fixed N € N,

s A . —N P
18510 axpry = Cral@r) D I1H 80,15, wop T I L g,
0;€0;
8.7
Property II:
> ligo,li = CHs(@yd* D g|3. (8.8)
OjEO_,
Property II1:
I —#.(j)(m—1) 2
”gOJ ||L2(B" 1y = C 6(d r)(pj) d Jum ”g”LZ(Bn—l)- (89)

To state the last property, we need to introduce some notations. For W <
[B(XO pj)]let T/ W denote the set of wave packets Ty ,,(X¢) € T[B(Xo, r)] satis-

fying

~ _1
dist(, 6;) < cjp; 2 and dlSt( (xO ). To.v(x0) N Bo, ) < er%“
(8.10)

for some T9 i (xo ) € W. Here {c /} o 1S an increasing positive sequence that
each of Wthh is bounded above by an absolute constant C,. In fact, one can take
cj =Co(l — 277/2) for some big constant C,. We introduce this sequence only for
the sake of rigorousness. Heuristically, one can take ¢; = 1.

Property IV: For any W € T[B(xo,, p;)], each go; satisfies

n—m

r — 72
lgo; ll3 < C}Y5(d, r)(;) lglss7l3 + RapDec(r)lgll7,.  (8.11)
J
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Stopping conditions
Suppose that we have the jth stage of [alg 1] outputs. We stop our algorithm if
one of [tiny] and [tang] holds true.

Stop: [tiny] The algorithm terminates if p; < rS'"—l.
Stop: [tang] Let Crang and Cyyg be large, fixed dimensional constants and p :=
]1._6’”’1. The algorithm terminates if there exist
e Sa collection of grains (S, Bj) of dimension m — 1, scale p and degree at most
Calgd§
e An assignment of a function gs, B;) to each (S, B;) € & which is tangent to
(S, Bs)

such that the following four conditions hold:

Condition I:
2 by P
> IH g0, (0 = Crang 2 IH ssmpllyy
OjEO] ’ (S,B[a)ES o
Condition II:
8 2
Z ||g(S,B5)||L2(Bn hy = Ctangr Z ”ng ”LZ(B”’I)'
(S,Bﬁ)GS 0./601'
Condition III:

2 2
max S.B- <C max |go,; 5.
S 18687 = Ceang ma g0, 13

To state the last condition, we need to introduce some notations. Let us denote
by X the center of B;. Given W ¢ ']T[B(x 0)], we denote by T W the set of all
Thv(x0;) € T[B(Xoj p;)] for which there exists some T~ ;(X) € \ satisfying

- ~ 1
dist(@.0) < 572, dist(T; ;). Tou(xo) NBE D) S o). (8.12)
Condition IV: Given (S, B(X, p)) € S there exists some O; € O; such that

2 2
||g(S,B/3)|W”2 = Ctang”ng |TK\7V”2

holds for all W € T[B(X, §)].

8.3 A Construction of Outputs in the First Algorithm
In this subsection, we construct outputs and show that they satisfy the desired prop-

erties. Let d be a sufficiently large number, which will be determined later. We first
define the constants
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ct sd,r) = d#c(j)5(10gr)2p#a(j)(1+5)
jeld,r): )

CUi(d) := deDP+mka(40) .
CUL(d, r) 1= e DD Ha(),Chalilin

Ci\a; (d, r) = d'/arc#a(j)gm )

and define the initial outputs

e po :=r,#,(0) = #:(0) :=0,

e Oy :={R"}and Zp, = Z,

® gRrn 1= &.
Note that (8.6) holds true. Properties I, II, ITI, and IV are also vacuously true with the
initial outputs.

Let us now assume that we have the outputs of jth stage and the stopping conditions
fail. We need to construct the outputs of (j + 1)th stage satisfying all the desired
properties. For each function g¢;, by the tangency assumption and Property III of
go;, we obtain

A A
1H 20, lpLr . (0, = I1H 80,510 (0,
ilBLy 0 HBLE 010N, 1203m .,

)+ RapDec() gl

J

(8.14)

Hence, we can apply the polynomial partitioning lemma to the first term on the right-
hand side as in the discussion of Sect.8.1. Let us denote by O; cc11 the subcollection
of O; consisting of all the cells for which the cellular case holds. We define O; a1, :=
O;j\Oj cenn- By Property I of the jth outputs, we have

P I A p
I1H glIBLf‘A_(B(XO,r)) = Cj,é(d’r)( > IH g0, lsLz , o))
! 0;€0; cell o

H"go.|I”
+ >l go,nBLg_Al_(Oj))
0;€0; ayg :

+ (jr~ + RapDec(r) g3 - (8.15)
There are two cases depending on which term dominates.
Cellular-Dominant Case

Consider the case that the first term on the right-hand side of (8.15) dominates the
second term. In this case, we have

AP 1 A p
V815 p | o = 2C10@ 1) D 1H 80, o)
J Ojeoj,cell !

+(jr™ + RapDec(r))||gll5 . (8.16)
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We take the outputs
Pj . ; . .
Pj+1 = 7’ #(J+D=#()+ 1, #(+D=4#()). (8.17)

Let us now construct the collection of step j 41 cells O and {80,,110;,1€0;4,
so that they satisfy the desired properties mentioned in the algorithm. Since we are in
the cellular case, for every O; € Oj cell, We have a polynomial P, depending on the
choice of O}, of degree at most d and we have the following properties:

e The number of connected components of R” \ Z(P) is comparable to d".
e For each connected component O’ of R" \ Z(P), define the shrunken cell O =
O’ \ Ng12+5, (Z(P)). Then

T (8.18)

A p

e The number of the shrunken cells O is comparable to d™.
e The diameter of O is at most 5.

We denote by O(0;) the collection of the shrunken cells. As mentioned above, we
know that #0(0;) ~ d™ and each O € O(0O)) has diameter at most p; 1, and

18780,y (msd'”nH*go o, o (8.19)
and thus,
1H"80, g,y (O)NZHHAgo]nBLp o (8.20)
0e0

Let us denote by B(xp, pj+1) the ball containing O. Define

To :==TolB(xo;, p)1 :={T € Tz4y, [B(X0;, pp1: TNO # 2}, (8.21)

To :=TolB(x0, pi+1] = U ﬁ"e,u[B(Xo,,0j+1)], (8.22)
T,v€To

where %Q’U[B(Xo, 0j+1)] was defined in (5.3). By Lemma 5.4, it holds that
IHg0,lIpLr (0= S IH (g0, 1m0) 17, lgLr (0 RapDec(n)ligll2. (8:23)
By Lemma 5.5 and a simple calculation, we know that

U T C N |/2+5m(Z+y0 )
TETO
1/248 (8.24)

Pjt1
C U Np1_/2|+3m/2 (Z +y0j + ( J 5 >b)

;
bezmp|<t
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Thus, every tube T e Ty intersects N /142|+5m P (Z +¥o, +( p}f;ram /2)b) for some b

depending on the choice of T. We now write

To= || Tous (8.25)
beZ:|b|<1

where ’Iﬁ‘o,b is some sub-collection of T satisfying®

1/246m

~ Y
Top C {T € To TNN |/2+5,,,/2<Z +y0j + (%)b) * @}. (8.26)
Define
1/248

p.
0j41(0)) = {O NN 1/2+6m/2<Z +Yo, + ( -/"'21 )b) :
0 € O(0)), b € Z" with |b| < 1}, (8.27)

Ojri=|J 0j1100)). (8.28)
0;€0j cell

For every O;41 € O}, there exist corresponding O}, b, and O. Define a translate
of the variety

1/248,
. : Pjt1
20y =24 Yo, = Z+Yo, |~ )b (8.29)
and a function
80,1 = ((80)Im0)|5,,- (8.30)

Letusdefinexop,,, := xo.ByLemma7.lO,wehaveﬁ0,b C 'TZOHI [B(X0;,,: Pj+1)]-
Via Lemma 4.2 (the L? orthogonality), one has

Do lgoalBS Y. Y o ltlE,, I3

0;+1€011(0)) 0€0(0)) b:|b|<1

S Y lsolmol 831)
0€0(0;)

S Y D) oyt

0€0(0)) TeTo

1/2+8m

6 Possibly a tube T intersects Npl /248m /2(2 +y 0; + (pj O / 2)b) for many b. We simply choose one
j+1 ’

out of them.
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By the fundamental theorem of algebra, we know that each tube 7y , € T[B (X0 i Pj )]
can intersect at most O(d) cells O € O11(0;). Therefore, we further have

YT D loprlz S D) > I(go,)713

0€0(0;)) TeTo 0€0(0)) TET[B(x0;.p)):TNO#D

s ) > lioprl3

TGT[B(XQ]. Nl OEO(OJ')ZTQO#Q

<Sdligo, 3
(8.32)

The above two estimates lead to

S llgon 3 S dlgo, 3. (8.33)
0;1+1€0;41(0))

Since we know that #0;,1(0;) ~ d", by pigeonholing argument, we can take a
subcollection of O} 1(0;) such that the cardinality is similar to O} (0;) and every
element O of the subcollection satisfies

g0, 1153 < d~ " Vlgo, 3. (8.34)

By abusing the notation, we still call such subcollection O;1(0;) and their union
Oj+1. This completes the construction of our outputs.

It remains to show that our outputs satisfy the desired properties. The function go,
is tangent to the grain (Zoj+1 s BO_;+1) because of TNI"o,b C TNI’ZOHI [B(xo_/erl P+
Properties I, II, and III follow from the arguments in [15, pages 254-256]. We follow
[17, pages 26-28] for Property IV. Our proofs are very similar to theirs, so we only
give a sketch of the proof.

Let us start with Property 1. By (8.16), (8.20), (8.23), (8.25), and (8.30) with the

triangle and Holder’s inequality, we obtain

A A
I 8l51y by = < CCjy(d.r) cho 180,01 l517, (0,00
0j11€0j41

+G 4+ DrVglb. (8.35)

Property 1 follows by taking d sufficiently large so that C CI sld.r) = c! i1, sd, 7).
To prove Property II, we take the sum over O; € O; to the 1nequa11ty (8.33) and
obtain

D0 lgoali Sd Y lgo,lls S Cllsd ™ Dgl3,  (8.36)
0j+1€0j+1 0,€0;j

where the second inequality follows from Property II of the jth outputs. Property
II follows by taking d sufficiently large so that C CII sd) = CI +1.5(d). Similarly,
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Property III follows from the inequality (8.34) and Property II of the jth outputs. We
leave out the details. ~ ~

Finally, let us prove Property IV. Recall that the notations 1/ W and 4 W were
introduced in (8.10) and in (8.12). By an application of Lemma 7.7, (7.7), and Property
IV of the jth outputs, we obtain

1201 1113 < llgo; 147113 + RapDec(r) g3

_n—m

< N, ) gl eni 12 + RapDec(r g2
~Gsla,r 8lriptny 12 p N8I 2-

p
Pj
(8.37)

It is proved that 1/ (TW) M 19 in 17, page 28]. Therefore, by arguing similarly
as in the proof of Lemma 7.7, and by modifying the constant c¢; appropriately and
taking d sufficiently large, we obtain Property IV. This finishes the discussion on the
cellular-dominant case.

Algebraic-Dominant Case

Consider the case that the second term on the right-hand side of (8.15) dominates the
first term. Recall (8.14):

A _ A ) P
| H 80; ”BLII:.A_/-(OJ') =|H 80; ||BLI,<.A_j(0ijpjl_/2+5m (Z+Y0j)) + RapDeC(")”é’”z-
(8.38)

Since we are in the algebraic case, we have

AP Yol Ay P
IH* gl ) < 2C) 5. r) > IHgo, 152 , (0, y2eom (YO
! 0j€0; .1 !
+ (jr~ + RapDec(r))l|g|l? (8.39)

for some (m — 1)-dimensional transverse complete intersection ¥ (O) that is defined
using polynomials of degree at most d. Abbreviate Y (O;) to Y for simplicity. We take
the outputs

pivt =0 " He( D) =He(), #al+ D) =Ha()+ 1. (8.40)

It remains to define O and {go i+110;41€0;,,, and prove the desired properties.
Given O; € Oj g, we take a collection B(O) of finitely overlapping balls of p; 41
covering O; N Npu /2+sm Y . For every B € B(0;), we record tubes intersecting B;

j

Tg:={T € TZoj [B(x0;,pj)]: T NB # T} (8.41)
Let us define tangent and transverse tubes.
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Definition 8.2 We denote by T g, tang the collection of all the tubes Tp,, € Ty such
that

(1) To,,N2B C N2p1/2+5m,1 (Y);

Jj+1

(2) Forevery x € Ty, and y € Y N 2B satisfying |y — x| < p}ffrsm" , it holds that
A _%+8m71
(G (wp), TyY) S pj 1 . (8.42)

We define a collection of transverse tubes by T trans := T \ TB,tang, and define
functions

8B tang -= (go_,-)|1r3,ta,,g, 8B, trans ‘= (gO_,-)|']I'3,nans~ (8.43)

Since for any ball B € B(0;) the wave packets not intersecting B are negligible, we
have

H)Lng (x) = HAgB,tang(x) + HAgB,trans(x) + RapDec(r)|lgll2, x € B.
(8.44)

By the finite sub-additivity of the broad norm (see [11, Lemma 6.1]), we obtain

g P
H .
> lH g0, ”BL,';A (O[ON 1248, (V)
0;€0; a1z !

N A P
2 2 g0l

OjGOj,alg BEB(Oj)

A 14 A P
S Y Y (M el I sl )
0;€0; a1g BEB(O;) AR AR

+ RapDec(r)||gl|5. (8.45)

Note that by the failure of the stopping condition of [tang], it holds that

A p —1 A p
2 2 IHgnanelly, ) = Can 1 20,5 p (g, (3:46)
0; BeB(0)) A 0;€0; A

Indeed, we take collections of grains S(O;) = {(Y(0;),B) : B € B(0;)} and
S:= Uoj S8(0;), and take functions gy, g) := gB,tang- By Lemma 5.5 and (8.43), the
function g tang is tangent to (¥ (O;), B). Also, one may see that Conditions II, III,
and IV of the stopping condition are satisfied. By this and the failure of the stopping
condition, Condition I fails and it gives (8.46).

Since we are in the algebraic case and the constant Ciayg is sufficiently large, the

contribution from the tangential wave packets can be absorbed into the left hand side
of (8.45) and we obtain
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A
> IH g0l 0N i ) > 2 IH sl L
OjEOj,alg O EO, alg BEB(O )
+ RapDec(r) ||g||2. (8.47)

We apply Lemma 7.9 to each gp 1rans and obtain a collection B of points such that

2p
IH gnamsliyy ) S ogr) D_NH gpunsb g, o BOW i, (Zo 40
j+

beB
(8.48)
and
> lguwans.bll3 S 11gB.wransl3- (8.49)
beB
where 8B, trans,b = (gB,trans)b-
We define the collection of step j + 1 cells by
0;+1(0;) :== {BnN N2 (Z+Yo,+b): B €B(O)) andb e B},
J+ :
(8.50)
Ojri= |J 0/1100). (8.51)
0./€ija]g
Forevery O;41 € O}, we define a function 80,1 *= &B,trans,b andapointyojH =

Yo. + b.

It remains to show that all these outputs satisfy the desired properties. We will
follow arguments in [15, pages 259-261] for Properties I, II, and III, and [17, pages
26-28] for Property IV. These arguments are also similar to the counterpart of the
cellular-dominant case. Hence, we give only a sketch here. First, it is straightforward
to see that Property I follows from (8.39), (8.47) and (8.48) together with Property I of
the jth outputs. Before proving Property II, we recall that our tubes are straight. We
apply [14, Lemma 5.7] to the wave packets at scale p;+1, and by the L?-orthogonality,
we obtain

> lIgojall; < d Z lgo, 113 (8.52)

j+l

Property II now follows from the above inequality with Property II of the jth outputs.
To prove Property III, we apply Lemma 7.8 to the function gp trans With W = T}, in
defined (7.22) and by the L2-orthogonality, we obtain

n—m

pi\ 2
g0, 15 < r@em (p—’l> lgo; I + RapDec(r)[igl5.  (8.53)
j+
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It suffices to combine this inequality with Property III of the jth outputs. Property IV
also follows from an application of Lemma 7.8. We leave out the details.

9 A Proof of Theorem 3.4

In this section, we prove Theorem 3.4, that is, we prove
2

2 1-2
I llnr ey Se RGN gl ©.1)

forevery 1 < R < A andball Bg C [-3C,A, 3C, A1 x [C%, C, 1]. We follow the
proofsin [17, Sects. 4, 6.3, and 6.4]. Note that (9.1) is obviously true unless g satisfies
the non-degenerate hypothesis:

IH 8lBLr (8 2 RENGI L2 9.2)

Hence, in this section, we always assume that g satisfies the non-degenerate hypothesis.
Consider a family of Lebesgue exponents p; for k < i < n satisfying

Dk = Pk41 = =py=1p=>2

and define 0 < «;, B; < 1 in terms of the p; by

1 1\ /1 1 | TN B
o=z —— ———— ) and Bii=|=z—— - - —
2 pi 2 piy1 2 pi 2 pa

fork <i <n—1and o, = B, :=: Bu+1 := 1. All the exponents p; will be
determined later.

9.1 The Second Algorithm

Let us explain the second algorithm [alg 2].

Input The algorithm takes as its input:

e Aball B(xg, R) C [-3C,2,3C,A1" ! x [Ci,,’ CyAl.
e An admissible large integer A € N.
e A function g € L' satisfying the non-degenerate hypothesis (9.2).

Output The (n + 1 — [)th step of the recursion will produce:
e An (n + 1 — [)-tuple of:

— Scales 7 = (ry, ..., r;) satisfying R = r,, > ry—1 > >
— Large anq (in general) non-admissible parameters D; = (Dy,, ..., D;);
— Integers A; = (A, ..., Aj)suchthat A=A, > A1 > --- > Aj.
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e Forl < I’ < n a family S'y of level n — I’ multigrains. Each 5’1/ € 3’1/
has multiscale 7y = (ry,...,ry) and complexity O.(1). The families_have
a nested structure in_the sense that for each [ < I’ < n and each Sy €
Sl/ there exists some Sl/ 1 € Sl/ 1 such that S[/ =< §1/+1

e For! < I’ < n an assignment of a function 83, to each Slr S Slr Each 83,

tangent to (Sy, Br,,), the final component of Sl/. Moreover, Sy is of dimension /.

All these outputs will be chosen so that the following properties hold true.
Property I: The inequality holds true:

ﬁl

A S 2\ p0(e 1- 2
I Hgllg1p (80 S MG DR <f>||g||szgnl)(Z 1H” g5, 'Bw @ )> :
NI
9.3)

where the pair (S, B,,) is the last component of the multigrain §1 and

D - D =B S B
M7y, D)) = (HDi> (Hri2 i1 ,Diz ] ,>.
i=l

i=l

Property II:

Y legla S (HDIM)RO(%)nguLz(Bn " 9.4)

S]ES] =l
Property III: For I’ with [ + 1 <1’ < n,

-1 —nsi

Fitl) * -its
max les, I3 S (H <V—> D"t )RM max [gz 3. (95
i=l

1 €0/ 1 S[/ESI/

To state the last property, we need to introduce some notations. Let us consider a
multigrain S; = (Gn,...,G)) € Sl and denote G; = (S;, B(X,—;, ri)). Given W -

T[B(x,_7,11)], let TTIW denote the set of wave packets Tp , € T[B(Xn—1—1, "1+1)]
for which there exists some TQ,ﬁ eW satisfying

dlst(9 0) < C, T .2 and dlst(T ~(Xp—1), Tp.v(Xpn—1—1) N B(X— l,rl)) < C, r12+(S

9.6)

Here, the constant C, is the constant mentioned in the discussion below the inequality
(8.10).
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Property IV: Let [ < I < n — 1. For every 51/ € 3’1/, §1/+1 S 3‘1/“ with §1r =< §1'+1,
and W C T[B(x,,_y, rp)], it holds that

_n=l’

2 T +1 : 8 pO(eo o2
”g§1/|W”L2(B"_]) 5 (r_l’> (D)°R (€ )||g§1,+| |(TT1,W)*”2
+ RapDec(R) g7 ©9.7)

Here, the notation % was introduced in (7.6).

Stopping conditions
Suppose that we have the outputs of the (n+1—/)th stage of [alg 2].We terminate
our algorithm if the following condition [tiny-dom] is satisfied.

Stop: [tiny-dom] The following inequality holds true:

A 2 )2
D IH 85 g o =2 2. IH g5l By 9.8)
SieS SIESI Jtiny

where the right-hand summation is restricted to those 5’1 € 3’1 for which [alg 1]
terminates due to the stopping condition [tiny].

9.2 A Construction of Outputs of the Second Algorithm

In this subsection, we construct the outputs and show that they satisfy the desired
properties in the algorithm. We first define the initial outputs as follows:

o rpi=R, Dy =1, A, = A.
e S, :=1{S,) and S, := (R", B(xo, R)).
® g5 =g

These outputs vacuously satisfy the desired properties.

Let us now assume that we have the outputs of the (n + 1 — I)th step for some
1 <1 < n and the stopping condition [tiny-dom] fails. We need to construct the
outputs of the (n + 2 — [)th step so that they satisfy the desired properties. By the
failure of the stopping condition [tiny-dom], we know that [alg 1] stops due
to [tang]. Hence,

A Pl A P
2 W 5l g, <2 20 WH 5l 99
SI€S SZESI Jtang

where the right-hand summation is restricted to those 3‘1 € :S‘l for which [alg 1]
stops due to [tang]. By the definition of [tang] and the first three properties of
[alg 1], for each multigrain Sl € Sl .tang» there exist

e a collection 81_1[S1] of grains of dimension / — 1, some scale r;—; and degree
o(1),
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e an assignment of a function 8(s.8,_p to each (S, B, |) € 81_1[3’1] tangent to the
grain (S, B,,_,),

e some parameter D;_j := d#<(0) where [alg 1] terminates at the Jjoth stage,

e some parameter A;_| = A;/2%a(0),

such that
A O(eo) A . p
15851 s, < RO > MG )Gy
(B, )eS-115]] o
+RapDec(R)| g, 115, (9.10)
> s, I3 S DR g5 113, ©.11)
(S.Br,_)ESI1[8)]
n—I
T\ 2 o —(-D4s
max  [(g5)cs.8, )3 S (—) D TVTPRO) s 13, (9.12)
(8,Bry_)ESI—1 [S/] ri—1
n—I
o\ 2z
1(85)¢s.8,_ 113 < (ﬁ) D} Rl L1413 + RapDec(R)llg, I3

(9.13)

for every sub-collection W of the wave packets at scale r;_;. Here, we recall that the
notations 1/ and 4 are defined in (8.10) and (8.12), respectively.

Note that the parameters r;_1, D;_1, and A;_; may depend on the choice of the
multigrain Sl To take uniform parameters independent of the choice, we apply a
pigeonholing argument by losing some (log R)€. By takmg a sub-collection of S; tang
and abusing the notation, we may say that for every Sl € Sl,tang the collection S;_ [S;]
has the uniform parameters r;_1, D;_1 and A;_.

We define a family of multigrains by

St = {Si-1 := (51, (S, By)) £ (S, By ) € SimalSi1) (9.14)
and the function g 5., = (85)is.B, -1t is elementary to see that Property II follows

from (9.11) and Property III follows from (9.12). Also, using Holder’s inequality
(see [15, pages 266-267]), Property I follows from (9.11). We leave out the details.
It remains to show Property IV. Since our outputs at the (n + 1 — [)th step satisfy
Property IV, it suffices to prove for the case that I/ = / — 1. By (9.13) and Property
I11, it suffices to prove that

185, lstriy 122 S 1185l p 1,y 122 + RapDec(R) 1812 (9.15)

where the notatlon ?TZW was introduced in (9.6) and W* was defined in (7.6). If we
can show 1/ (TW) M- 1W then the estimate above follows from Lemmas 4.2 and
7.7. In fact, in [17, page 28], it is proved that M (TW) ! W By the definition
of 14,_1W, we also know that /=1 W c14,_; W, hence, 1/(1W) c14;_1W. This
gives Property IV and finishes the proof.
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9.3 A Proof of Theorem 3.4

Let us prove the broad norm estimate (9.1). We first state the vanishing property of
the broad norm.

Lemma9.1 Letl <r < R,andlet1 <m < k < n, and let Z be an m-dimensional
transverse complete intersection. Suppose that g is concentrated on wave packets
from T 7[ By, r)]. Then for every ball B(Xq, r) C [=3Cpx, 3C, A" x [Ci, CuAl,
it holds that ’

IH* 8512 (8. = RapDec(r)lgll2. (9.16)

The proof is straightforward and we leave out the details here. The interested reader
should consult the proof of the analogous result in [11, page 339].

As a consequence of [alg 2] and Lemma 9.1, we will obtain the following
multiscale grains decomposition, which is the counterpart of that in [17, Sect. 4.1].

Input The algorithm takes as its input:

e Aball B(xg, R) C [-3C,A,3C, A" ! x [C%, CyAl.
e An admissible large integer A € N.
e A function g € L! satisfying the non-degenerate hypothesis (9.2).

Ooutput The algorithm produces:

O a finite collection of open subsets of R” of diameter at most R.

A dimension m with k < m < n and an integer parameter 1 < A,,_; < A.
Scales iy = (Fy, ..oy T'm) satisfying R = ry > rp—1 > -+ > .

Large non-admissible parameters Dy, —1 = (Dp, ..., Dp—1).

Form <[ < n afamily S, of level n — [ multigrains. Each 5‘1 € &7 has multiscale
Fi = (rp, ..., r) and complexity O(1). The families have a nested structure in
the sense tllat f(lr eachm <1 < n and each §l € &), there exists some §l+ 1 € S14+1
such that §; < Sj41. o

e Form <[ < nan assignment of a function g3, to each S; € S;. Each 83, is tangent

to (S, By,), the final component of S‘l. Moreover, S; is of dimension /.
All these outputs will be chosen so that the following properties hold true.

Property I: The inequality holds true:

Bm.
A < MG D\ ROE) | o =P rao | "
18 llg1p 5y S M Da)R ||g||L2(Bn_.)<Z||H go||Bme(0)> :
0e0
9.17)

where

- n (n—m)8 , n Y Bivi=B) L (Bir1—Bm)
M(;:m, Dm) = <l_[ Dl) (1_[ riz i+1—Pi Dl'z i+1—Pm )

i=m i=m
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Property II:

n

> ||go||%§< [1 D}+3>R0<€°>||g||iz(3n1). (9.18)

0e0 i=m—1

Property III: Form <1 <n,

-1
_n—i _1 .
max llgoll3 S 7y ( [T~ 2DE’+’S>RO(€°’ max gz 3. (9.19)

i—m—1 NV

Property IV: Form <l <n —1,

nel n—1

1
2 T —218 ) pOco) || # 112
||g§1”L2(Bn—l)§r1 <1_[ri 2D,‘>R (€)||g§[||2, (9.20)

i=l

where
# . B
ggl = g'T[S[]' (9.21)

Here, T[§1] is defined in Definition 7.4.

Let us explain how we obtain the multiscale grains decomposition. We first note that
[alg 2] terminates at (n + 1 — m)th step with m > k. Otherwise, [alg 2] does
not terminate at (n 4+ 1 — k)th step, and as an application of Lemma 9.1, we obtain that
I H)‘g||BL£A(BR) = RapDec(R) | g||2. However, since we are assuming that g satisfies
the non—dégenerate hypothesis (9.2), this does not take place.

By the stopping condition of [alg 2], we know that [alg 1] terminates due
to [tiny]. Let us denote by O a final collection of cells and define A,,—1 and D,
as in [15, pages 267-268]. Then it is straightforward to see that Properties I, II, and
II follow from those of [alg 2]. Let us explain how Property IV can be deduced
from that of [alg 21].Letus fix an n — [ level multigrain S;. Since S; has a nested
structure, we can take n — i level multigrains 3‘,- such that

S| < St < <5, 9.22)
Forl <i < n,if (S;, B(X,—i, ri)) denotes the (n — i 4+ 1)th component of §1, then
let Tang[Si] denote the set of all wave packets of scale r; tangent to S; in B(X,—;, 7;).
We construct sets W; C Trang[S;] for I < i < n as follows: We first set
Wi := Trang[S11, (9.23)
and define recursively

Wit = Teang[SI1 0 (11 W)™ (9.24)

@ Springer



S.Guo et al.

By Property IV of [alg 2], we know that

Tit1 7
g, lw; 172 gn-1) S (T) D! RO“ligs, . Icrt,w) 113 + RapDec(R)llg -

(9.25)

for I < i < n. Recall that 85, is concentrated on wave packets belonging to
Ttang[Si+1], and thus, we know that

85, = &5, | Tungss,, ;) + RapDec(R) g5, [l2- (9.26)

By (9.24), (9.25), (9.26), Lemma 7.7, and Property III, we obtain that

n—i

r'+1 7
llgs, lw; ”%12(31171) S <lr_,) DY RO lgs,, 1w I3 + RapDec(R)|gl17>.
(9.27)
We iterate this inequality, and it suffices to set the function gg = glw, and notice

that this function satisfies the nested tube hypothesis in Definition 7.4. We refer to [17,
page 31] for more details. This completes the proof of Property I'V.

Let us now see how the multiscale grains decomposition can be applied to prove
Theorem 3.4. Recall that (9.1) is vacuously true unless g satisfies the non-degenerate
hypothesis (9.2). Hence, we may assume that g satisfies the non-degenerate hypothesis.
We now apply the above multiscale grains decomposition and obtain

Bm

> = 1— - m Pm
||H*g||BLgA(3R>5M(rm,Dm)Ro“o)nganan_l)(Z IH g0l 1 (0)) :
' 0e€0 k. Am
(9.28)

Since each element of O has a diameter at most R, we obtain
)\4 C o
|H goIIBLf»Z ) S R*llgol. (9.29)

By combining these two inequalities, we obtain

Bm

L = 1—Bum - pm
IH gllgrp () S RECM @, Dm>||g||szB,,_1)( > ||go||;”2)
' 0e0

S5 = 1— B
S REM G, Dalglatge, (9:30)

Bm
P (3= 50)Bm
x(ZugouiQ) (sup ligol)* ™.
0O 0e0
— ————

Part T Part IT
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We apply (9.18) to Part I. Then by the definition of S,,, the right-hand side is bounded
by

n 1 Bixl _,1_ 1 2
3 (Biv1—Bi) (3= p,)HC8 o
“ng"mmmﬁ( | B A R I S P X

i=m—1

1
2 n
x( sup ligoll3 )7 ©31)
0e0
~———
Part I

where r,_1 := 1. This inequality is the counterpart of the last inequality of
[17, Sect. 4.1].

To deal with Part II, we need the following lemma, which is the counterpart of [17,
Lemma 4.3]. This lemma is a corollary of the nested polynomial Wolff axioms.

Lemma9.2 (cf. [17, Lemma 4.3]) For m <l < n, and the functions gg defined in
[
(9.21), it holds that

n—1

1
max lgg 7> S (1_[ r 2>R€°||g||ix. 9.32)

NEN i=l

Proof By the L2-orthogonality, we know that

lf13< >0 > lsm.li. (9.33)

0€@[S)] v:Tp,, T[]

Since g7, , is supported on 6, by taking the maximum over 6, this is bounded by

#0[5] max( > ||grg,v||iz(0)>. 9.34)

feor veR!/2zn—1

By the L2-orthogonality and replacing the L?-norm by the L*-norm, it is further
bounded by

- n—1
#O[SIR™7 |lgl%. (9.35)

It suffices now to apply Lemma 7.5 and bound #@[3‘1]. O
After applying (9.19), (9.20), and this lemma to Part II, we obtain
-1

n—1 1 n—1 1 )
ré]g()é ||gO||i2 <c ( 1_[ r; 2D?>(Hri 2)( 1_[ D;1>RCE°||8||%OC
i=l i

i=m—1 i=m—1

(9.36)
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for every m <[ < n. This inequality is the counterpart of the inequality (4.2) of [17].
We now combine (9.31) and (9.36) as in [17, Sect. 4.3] and obtain the desired estimate
(9.1). Since the proof is identical to theirs, we leave out the details.

10 Appendix: A Transversality Lemma

The appendix is devoted to a transversality lemma. First, let us introduce one more
definition.

Definition 10.1 Let M, N be smooth manifolds. Assumethat f : M — Nand A C N
a submanifold. Then f is said to be transverse to A, which is denoted by f M A, if
for any x € M with f(x) = y € A, the tangent space Ty, N is spanned by 7, A and the
image Df(TxM).

Now recall the follow version of the transversality theorem.

Theorem 10.2 ([12, page 68]) Let X, S,Y be smooth manifolds without boundary
and A C N a smooth submanifold. Let F : V. — C®°(M, N) satisfy the following
condition:

(1) the evaluation map F® : X x S - Y, (x,s) — Fs(x) is C*.
(2) F*® is transverse to A.

Then the complement of the set
M (F; A):={seS: F A} (10.1)

in 'V has measure zero.

Let @ : R” — R” be a smooth map and let Z C R" be a smooth submanifold. Fix
k vectorsmy, ..., my € R", 1 <k < n.Consider a family of parallel affine subspaces
{IT¢}.cre in R” formed by (my, ..., my):

mp-x —c; =0,
e §: (10.2)

mp-x —cp =0.

We show that ®~!(IT,) is transverse to Z for generic I1,.

Lemma 10.3 The complement of the
Co :={ce RF - <I>71(1'[C) is transverse to Z} (10.3)

in Rk has measure zero.
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Proof We first take X = Z, S = RK, Y = RK, A = 0, and F& = (m; - (2) —
vy, ..., mg - P(z) — vx) be the evaluation map in Theorem 10.2. Then the complement
of the set

Cr:={ceR:F.MA (10.4)

in R* has measure zero. Then we take X = R", § = R¥, Y = RF, A = 0, and
G = (my - P(z) — vy, ..., mg - P(z) — vg). One can argue similarly to get that the
complement of

Co:={ceRF:G.h A} (10.5)

in R¥ has measure zero. Take C = Cr N Cg. We claim that C C Ce, which proves the
lemma.

To prove our claim above, first note that ®~1(1,) c R" is a smooth embedding of
dimension n — k when ¢ € C, since G, h A. Take any z € Z N &~ 1(I1,). We need to
show T,Z + T,®~!(I1.) = R". Notice that

(1) GlZ = F, SO DZG 1.Z = DZF.
(2) D F is surjective since F, th A.
(3) G(@~(Iy)) = 0, which implies D-G|z.¢-1r,) = 0.

Thus, we have

(1) D,G is surjective on T, Z.
(2) ker(D,G) = T.®~(I1,), since both ®~!(I1.) and ker(D,G) have dimension
n—k.

Hence 7. Z and ker(D,G) = T.d~ 1 (I1,) span the whole space R" as desired. O
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