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Abstract
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1 Introduction

For α ≥ 0, the Bochner–Riesz multiplier of order α is defined by

mα(ξ) := (1− |ξ |2)α+, (1.1)

where (1 − |ξ |2)+ is defined to be 1 − |ξ |2 whenever |ξ | ≤ 1, and 0 otherwise. We
define the Bochner–Riesz operator mα(D)( f ) to be

mα(D) f (x) :=
∫

Rn
e2π i⟨x,ξ ⟩mα(ξ) f̂ (ξ)dξ . (1.2)

The Bochner–Riesz conjecture is as follows:

Conjecture 1.1 (Bochner–Riesz conjecture) For every n ≥ 2 and p ≥ 2n
n−1 , it holds

that

∥mα(D) f ∥L p(Rn) !n,α,p ∥ f ∥L p(Rn) (1.3)

whenever α > n( 12 − 1
p )− 1

2 .

Let Sn−1 denote the unit sphere in Rn . Let dσ denote the surface measure of Sn−1.
Take f ∈ L∞(Sn−1, dσ ). Define

f̂ dσ (x) :=
∫

Sn−1
e2π i⟨x,ω⟩ f (ω)dσ (ω), x ∈ Rn . (1.4)

The (dual form of) Fourier restriction conjecture is as follows:

Conjecture 1.2 (Restriction conjecture) Let n ≥ 2. It holds that

∥ f̂ dσ∥L p(Rn) !n,p ∥ f ∥L∞(Sn−1,dσ ), (1.5)

whenever p > 2n
n−1 .

LetR f = f̂ |Sn−1 be the sphere restriction operator. By duality and the factorization
theory of Maurey, Nikishin and Pisier (see Bourgain [2]), the restriction conjecture is
equivalent to that

∥R f ∥L p(Sn−1) !n,p ∥ f ∥L p(Rn), (1.6)

for every 1 ≤ p < 2n
n+1 . Indeed, (1.6) is the original Fourier restriction conjecture

of Stein (see for instance [26, page 345]). Here we state the equivalent version as in
Conjecture 1.2 since it is closer to the operator under investigation in the current paper.

Tao [28] proved that the Bochner–Riesz conjecture implies the restriction con-
jecture. Moreover, he mentioned in his paper that these two conjectures “are widely
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believed to be at least heuristically equivalent”. The information we would like to con-
vey in the current paper is that, after applying the pseudo-conformal transformation
(see (2.12) below), the recently developed techniques in the Fourier restriction litera-
ture apply equally well to the Bochner–Riesz problem. These techniques include, but
are not limited to, the broad–narrow analysis of Bourgain and Guth [5], the polyno-
mial method of Guth in [13, 14], and the polynomial Wolff axioms obtained by Guth
[13], Zahl [34], and Katz and Rogers [19] that was applied in the Fourier restriction
setting in Guth [13], Hickman and Rogers [15] and Hickman and Zahl [17]. To be
slightly more precise, we will see that after the pseudo-conformal transformation, the
above-mentioned techniques do not see the differences between the Bochner–Riesz
problem and the Fourier restriction problem. As a consequence, we show that the
Bochner–Riesz conjecture holds for every p for which the restriction conjecture has
been verified in the above-mentioned papers.

To state our result, let us recall what is known about the restriction conjecture. For
n = 3, Guth [13] proved the restriction conjecture for p > 3.25; moreover, for n ≥ 4,
he proved in [14] that the restriction conjecture holds if

p > 2 · 3n + 1
3n − 3

for n odd,

p > 2 · 3n + 2
3n − 2

for n even.
(1.7)

These results improved prior ones due to Tao [29] and Bourgain and Guth [5]. More
recently, for certain dimensions n, in particular all “large” n, Hickman and Rogers
[15] and Hickman and Zahl [17] applied the polynomial Wolff axioms established by
Katz and Rogers [19] and further improved the results of Guth. The new ranges of p
in [15, 17] are a bit technical to state, and we refer the interested readers to Figure 2
in [17].

Let prestr denote theminimumof the exponent p for which the restriction conjecture
has been verified in [13–15, 17].

Theorem 1.3 For every n ≥ 3, the Bochner–Riesz conjecture holds for every p ≥
prestr.

Before we comment on the proof of Theorem 1.3, let us briefly review some known
results about theBochner–Riesz conjecture in the literature.Whenn = 2, theBochner–
Riesz conjecture was resolved by Carleson and Sjölin in [7]; see also Hörmander [18]
and Fefferman [10] for alternative proofs. When n ≥ 3, this conjecture remains open;
Fefferman [9], Bourgain [2, 3], Lee [20] and Bourgain and Guth [5] made significant
partial progress toward this conjecture; see also Christ [8], Seeger [24], Tao [27]
and Lee [21, 22] for more related results and some endpoints results. The most recent
progress wasmade byGuth, Hickman and Iliopoulou [11]. The approach in the current
paper has closer relation with those in Bourgain and Guth [5] and Guth, Hickman, and
Iliopoulou [11], and therefore we expand a discussion on these two papers.

In these two papers, the authors there viewed the Bochner–Riesz operator as an
oscillatory integral operator of the Hörmander type with positive-definite phase. To
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be more precise, they followed Carleson and Sjölin [7]1 and reduced the L p bounds
of the Bochner–Riesz operator to the L p bounds of oscillatory integral operators of
the form

T λ f (x) :=
∫

Rn−1
e2π iφ

λ(x;ω)aλ(x;ω) f (ω)dω, x ∈ Rn, (1.8)

where the phase function φλ satisfies the Hörmander condition (see for instance (H1)
and (H2) in [11, page 252]) and a positive-definite condition (see (H2+) in [11, page
254]). For these oscillatory integral operators, it was proven in [11] that

∥T λ f ∥L p(Rn) !ϵ,p,φ λϵ∥ f ∥L p(Rn−1), (1.9)

for every λ ≥ 1, ϵ > 0 and every p satisfying (1.7). As a consequence, the authors
there obtained the L p bounds (1.3) of the Bochner–Riesz operator for the same range
of p. It is worth mentioning that the authors of [11] also proved that their result is
sharp, that is, the range of p in (1.7) is sharp for T λ with a phase function satisfying the
above-mentioned positive-definite Hörmander condition. This also means that if one
plans to prove (1.3) by viewing the Bochner–Riesz operator as an oscillatory integral
operator of the Hörmander type, then the range (1.7) is the best that one can hope for.

The way that Guth, Hickman, and Iliopoulou [11] proved the sharpness of their
result is built on the work of Bourgain [3]. The sharp examples in these two papers
rely crucially on the fact that for general operators T λ satisfying the Hörmander
condition, wave packets may be curved. One key observation of the current paper
is that, after applying the pseudo-conformal transformation (see (2.12) below) to the
Bochner–Riesz operator, all the new wave packets admit similar behavior as those in
the Fourier restriction problem, say in [13–15, 17]. Roughly speaking, this is what
allows us to apply the recent techniques developed in the Fourier restriction theory
to the Bochner–Riesz problem. Here we would like to emphasize that the use of the
pseudo-conformal transformation in the context of the Bochner–Riesz problem is not
new. Indeed, Carbery [6] already used it to prove that the Fourier restriction conjecture
for paraboloids implies the Bochner–Riesz conjecture for paraboloids.

In the end, we would like to briefly mention some other interesting features of the
proof of our main theorem, and compare them with those in the literature aforemen-
tioned, in particular, in [11] where the latest progress on the Bochner–Riesz conjecture
were made. First, in [11], the authors there always first reduce phase functions to nor-
mal forms (see [3, page 328] for the definition of normal forms, which are also referred
as “reduced forms” in [11]) and then only work with normal forms. In our case, we
workwith the phase function of theBochner–Riesz operator directly; indeed, our proof
relies on a special parabolic rescaling structure of the phase function (see the proof
of Lemma 3.8), which makes our induction argument perhaps different from that of
[11] (see also Remark 3.1 for more discussions). Whether this is just a technical point
or not remains to be understood. Second, it is perhaps worth mentioning that the way
we prove the transverse equidistribution estimate (the content of Sect. 6) is slightly

1 See also Theorem 2.1 and Theorem 2.2 below where the same reduction is used.
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different from that in [11, 14]; we observe that instead of considering output functions
(for instance Hλg as in (2.20)) as a medium, one can directly prove the transverse
equidistribution estimate by essentially only working with the input function g, which
gives us a slightly simpler proof. More details are included in Sect. 6.

Remark 1.4 Wemake a remark on the Bochner–Riesz problem and the Fourier restric-
tion problem in the case n = 3. In this case, so far the best result for the restriction
conjecture is due to Wang [31], where she proved that this conjecture holds for
p > 3 + 3

13 . It is not implausible that if one combines the argument of [31] with
that of the current paper, then one may be able to improve Theorem 1.3 to the same
range of p when n = 3. We do not pursue it here. Regarding the Bochner–Riesz
problem in n = 3, recently, Wu [33] proved that the Bochner–Riesz conjecture holds
for p ≥ prestr = 3.25 when n = 3. His proof partially relies on some ideas fromWang
[31]. Our Theorem 1.3 recovers the result in [33] via a quite different and a slightly
simpler approach.

Organization of the paper. In Sect. 2, we make several reductions to the Bochner–
Riesz problem, including the well-known Carleson–Sjölin reduction and a reduction
via the pseudo-conformal transformation. In Sect. 3, we introduce the induction
hypothesis and will further reduce the desired estimate to a broad norm estimate; the
structure of our reduction argument is similar to that of Guth, Hickman, and Iliopoulou
[11] (see Section 11 there). In Sect. 4, we introduce wave packets and prove some of
their properties that will be useful in future sections. In Sect. 5, we compare wave
packets at different scales; this is to prepare for the use of the multi-scale argument as
in Guth [14] and Guth, Hickman, and Iliopoulou [11]. In Sect. 6, we prove a transverse
equidistribution property of wave packets. After developing the relevant tools in the
previous sections, one can already almost identify the Bochner–Riesz problem with
the Fourier restriction problem. This allows us to follow Hickman and Rogers [15]
and Hickman and Zahl [17], as is done in Sects. 7, 8, and 9, to finish the proof of the
desired broad norm estimate.

Notations
• We write A(R) ≤ RapDec(R)B to mean that for any power β, there is a constant
Cβ such that

A(R) ≤ Cβ R−βB for all R ≥ 1. (1.10)

• The quantities p, n and ϵ will be called the admissible parameters as the estimates
in the paper may be allowed to depend on these parameters.
•We introduce a few other admissible parameters

ϵC ≤ δ ≪ϵ δn ≪ϵ δn−1 ≪ϵ · · ·≪ϵ δ1 ≪ϵ ϵ◦ ≪ϵ ϵ. (1.11)

Here C is some dimensional constant and the notation A ≪ϵ B indicates that A ≤
C−1n,ϵB for some large admissible constant Cn,ϵ ≥ 1.
• For every number R > 0 and set S, we denote by NR(S) the R-neighborhood of the
set S.
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•We use B(x, r) to represent the open ball centered at x, of radius r , in Rn . To avoid
confusion, we also use Bn−1(x, r) to denote the n− 1 dimensional ball centered at x ,
of radius r .
• The amplitude function a(·) may change from lines to lines, and this is not harmful
to our argument.

2 Several Reductions

For λ ≥ 1, we define the Carleson–Sjölin operator

Sλ f (x) :=
∫

Rn
e2π iλ|x−y|a(x − y) f (y)dy, (2.1)

where a ∈ C∞(Rn) has compact support away from the origin. To prove Theorem 1.3,
it is standard to reduce it to the following theorem. For the reduction, we refer to Stein
[25, Chapter IX].

Theorem 2.1 For every n ≥ 3, it holds that

∥Sλ f ∥L p(Rn) !ϵ λ
− n

p+ϵ∥ f ∥L p(Rn) (2.2)

for every p ≥ prestr, λ ≥ 1, and ϵ > 0.

Next, we will reduce the L p-boundedness of the Carleson–Sjölin operator to that
of some operator S̄λ : g ∈ L p(Rn−1)→ L p(Rn) by freezing one variable. We define
the operator S̄λg by

S̄λg(u, t) :=
∫

Rn−1
e2π iλt

−1√λ2+|u−tω|2aλ(u, t;ω)g(ω)dω, (2.3)

where u = (u1, . . . , un−1) ∈ Rn−1, ω = (ω1, . . . ,ωn−1) ∈ Rn−1, and

aλ(u, t;ω) := a
(
u
λ
− t

λ
ω,

t
λ
;ω
)
, (2.4)

with a(·, ·; ·) being a smooth function compactly supported in all variables and away
from zero in its second variable.

Theorem 2.2 Under the above notation, it holds that

∥S̄λg∥L p(Rn) !ϵ λϵ∥g∥L p(Rn−1) (2.5)

for every n ≥ 3, p ≥ prestr, λ ≥ 1 and ϵ > 0.

Let us prove Theorem 2.1 by assuming Theorem 2.2. We fix a in the definition of
the operator (2.1). Since a has a compact support, by a partition of unity and rotation,
we may assume that
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supp(a) ⊂ {(x ′, xn, y′, yn) : |xn − yn| ≃ 1}, (2.6)

where x ′ = (x1, . . . , xn−1) and y′ = (y1, . . . , yn−1). We write the Carleson–Sjölin
operator as

Sλ f (x) =
∫

R
S̄λ
yn fyn (x)dyn, (2.7)

where

S̄λ
yn fyn (x) :=

∫

Rn−1
e2π iλ|x−y|a(x − y) fyn (y

′)dy′ (2.8)

and

fyn (y
′) := f (y′, yn). (2.9)

By Hölder’s inequality and by the fact that a has a compact support, it suffices to
prove

∥S̄λ
yn fyn∥L p(Rn) ! λ

− n
p+ϵ∥ fyn∥L p

y′ (Rn−1) (2.10)

uniformly for every |yn| ! 1. By a translation xn 0→ xn − yn , we obtain an operator
independent of the variable yn . Hence, we without loss of generality assume that
yn = 0. To proceed, we write the phase function in the oscillatory integral (2.8) as
follows:

λ
∣∣(x ′, xn)− (y′, 0)

∣∣ = λ|xn|
√

1+ |x ′ − y′|2
x2n

. (2.11)

We apply a change of variables

(u1, . . . , un−1, t) :=
(
x ′

xn
,
1
xn

)
, (2.12)

which is the pseudo-conformal change of variables (see for instance Carbery [6], Tao
[30, Section 2.3] or Rogers [23]). By the support assumption on a, the Jacobian is
comparable to one. After this change of variables, our operator S̄λ

0 f0 becomes

S̃λ f0(u, t) :=
∫

Rn−1
e2π iλt

−1√1+|u−t y′|2 ã(u − t y′, t) f0(y′)dy′, (2.13)

where y′ = (y1, . . . , yn−1) and ã(·, ·) is a smooth function that has compact supports
in all its variables and is supported away from the origin in its second variable. At
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this point, due to spatial orthogonality, we see that in (2.13), we can insert for free a
smooth cut-off function ã(y′), supported near the origin, and it is equivalent to bound

∫

Rn−1
e2π iλt

−1√1+|u−t y′|2 ã(u − t y′, t)ã(y′) f0(y′)dy′. (2.14)

In the end, we pass from scale one to scale λ via the change of variables (u, t) 0→
λ−1(u, t). This gives an operator of the form in (2.3), and therefore finishes the proof
of Theorem 2.1.

In the end, we make a reduction to the amplitude function aλ(u, t;ω) so that it will
have a product form aλ

1 (u, t)a
λ
2 (ω). Before the reduction, let us fix the notation. In

the definition of S̄λ, we see that the variable t plays a distinguished role, compared
with other variables. Therefore, from now on, we will write x = (x1, . . . , xn−1) and
x = (x, t) ∈ Rn . Moreover, let φ(x, t;ω) = λ

t

√
1+ (x − tω) and define

φλ(x, t;ω) := λφ

(
x
λ
,
t
λ
;ω
)
= λ2

t

√
1+

∣∣∣
x
λ
− t

λ
ω
∣∣∣
2
. (2.15)

Under this notation, we can write

S̄λg(x) =
∫

Rn−1
e2π iφ

λ(x;ω)aλ(x;ω)g(ω)dω. (2.16)

Via a standard Fourier expansion (see for instance [28]), it suffices to consider

∫

Rn−1
e2π iφ

λ(x,t;ω)aλ
1 (x, t)a2(ω)g(ω)dω, (2.17)

where

aλ
1 (x, t) := a1

(
x
λ
,
t
λ

)
(2.18)

with a1(·, ·) being a compactly supported function in both variables and supported
away from the origin in its second variable, and a2(·) is compactly supported near the
origin. We need to prove

∥∥∥∥

∫

Rn−1
e2π iφ

λ(x,t;ω)aλ
1 (x, t)a2(ω)g(ω)dω

∥∥∥∥
L p(Rn)

! λϵ∥g∥L p(Rn−1). (2.19)

Such an estimate will be proven via an inductive argument on λ. In order to set up the
induction, we need to be more quantitative about the choice of amplitude functions.
Define

Hλg(x) :=
∫

Rn−1
e2π iφ

λ(x,t;ω)g(ω)dω. (2.20)
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Let Cn be a large enough constant such that

BCnλ(0) \
{
x : |t | ≤ λ

Cn

}
with Bλ(0) := [−λ, λ]n (2.21)

contains the support of aλ
1 . To prove (2.19), it is elementary to see that it suffices to

prove

Theorem 2.3 Under the above notation, it holds that

∥Hλg∥L p(BCnλ(0)\{x:|t |≤λ/Cn}) !ϵ λϵ∥g∥L p([0,1]n−1) (2.22)

for every ϵ > 0, every g : [0, 1]n−1 → C, dimension n ≥ 3 and exponent p ≥ prestr.

3 Reduction to Broad Norm Estimates

3.1 The Induction Hypothesis

We will prove (2.22) via an inductive argument. In this subsection, we set up the
induction and state the induction hypothesis. Let 1 ≤ R ≤ λ. Let KR be a large number
that is to be determined: It is much larger than one, but much smaller compared with
Rϵ .2 Out of certain technical reason, we introduce a scale λR that is comparable to
λ. For K ≥ 2, we define λK ,R : The parameter K will eventually be set to be KR and
λR = λKR ,R . If

λ
R < K , we define λK ,R = Cnλ. If λ

R ≥ K , then we define

λK ,R := Cnλ

(
2+ 1

K
+ · · · + 1

K [logK (λ/R)]−1

)
, (3.1)

where [logK ( λ
R )] refers to the largest integer that does not exceed logK ( λ

R ). Set λR :=
λKR ,R . Note that Cnλ ≤ λK ,R ≤ 3Cnλ. To prove (2.22), it suffices to prove

∥Hλg∥L p(BR) !n,p,ϵ Rϵ∥g∥L p([0,1]n−1) (3.2)

for every 1 ≤ R ≤ λ1−ϵ , and every ball

BR ⊂ [−λR, λR]×
[
R
Cn

,Cnλ

]
. (3.3)

This will be proven via an inductive argument on λ and R.

Remark 3.1 We will see that it is crucial to run an induction on both parameters λ

and R. It is worth mentioning that the smaller R is, the more “singular” our phase
function φλ behaves, which, roughly speaking, can be explained by that t appears in
the denominator in (2.15). To deal with the case that R is much smaller compared with

2 It will be chosen to be Rδ′ for some extremely small δ′ ≪ ϵ.
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λ, we will need to use very particular properties (see for instance (3.29) and (3.30)) of
the phase function φλ. That R can be much smaller compared with λ seems to indicate
that our induction is perhaps different from that of Guth, Hickman, and Iliopoulou
[11].

Remark 3.2 The requirement that R ≤ λ1−ϵ will be used in the proof of Lemma 3.5.

The base case of the induction λ = R = 1 is trivial.We assume that we have proven
that

∥Hλ′g∥L p(BR′ ) ≤ Cn,p,ϵ(R′)ϵ∥g∥L p([0,1]n−1), (3.4)

for every λ′ ≤ λ
2 , 1 ≤ R′ ≤ (λ′)1−ϵ , and every cube

BR′ ⊂ [−λ′R′, λ
′
R′ ]×

[
R′

Cn
,Cnλ

′
]
. (3.5)

Our goal is to prove the same hold with λ, R.

3.2 Reduction to Broad Norm Estimate

For x ∈ [−λR, λR]×[ R
Cn

,Cnλ] andω ∈ [0, 1]n−1, we defineGaussmaps and rescaled
Gauss maps. Define

G0(x;ω) := ∂ω1∇xφ ∧ · · · ∧ ∂ωn−1∇xφ. (3.6)

Moreover, define

G(x;ω) := G0(x;ω)
|G0(x;ω)|

. (3.7)

Define rescaled Gauss map

Gλ(x;ω) := G
(
x
λ
;ω
)
. (3.8)

Via some elementary computation, we obtain

Lemma 3.3 Under the above notation, we have that the rescaled Gauss map equals

Gλ(x;ω) = (ω, 1)
√
1+ |ω|2

. (3.9)

In particular, the rescaled Gauss map does not depend on x.
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Proof of Lemma 3.3 For future use, we collect a few useful computations regarding the
phase function φλ. First,

∇xφ
λ(x, t;ω) = λ

t
(x − tω)

√
λ2 + |x − tω|2

; ∂tφ
λ(x, t;ω) = − λ

t2
λ2 + x · (x − tω)
√

λ2 + |x − tω|2
.

(3.10)

Next, we compute the gradient in ω:

∂ωφλ(x, t;ω) = λ(tω − x)
√

λ2 + |x − tω|2
. (3.11)

Regarding the related second-order derivatives, we have

∂xi ∂ω j φ
λ(x, t;ω) = λ(xi − tωi )(x j − tω j )

(
λ2 + |x − tω|2

)3/2 if i ̸= j, (3.12)

∂xi ∂ωi φ
λ(x, t;ω) = −λ

(
λ2 + |x − tω|2 − (xi − tωi )

2)

(
λ2 + |x − tω|2

)3/2 , (3.13)

and

∂t∂ω j φ
λ(x, t;ω) = −x jω · (x − tω)+ ω j x · (x − tω)

(
λ2 + |x − tω|2

)3/2 . (3.14)

Combining all these, we obtain

∂ω1∇xφ
λ ∧ · · · ∧ ∂ωn−1∇xφ

λ (3.15)

is parallel to (ω, 1). By normalization, we obtain the desired result. ⊓⊔

Let K ≥ 1. We divide [0, 1]n−1 into caps τ of side length K−2. Let gτ denote the
restriction of g to τ . Moreover,

Gλ(τ ) := {Gλ(x;ω) : ω ∈ τ }. (3.16)

Let V ⊂ Rn be a linear subspace. Let>(Gλ(τ ), V ) denote the smallest angle between
any non-zero vector v ∈ V and v′ ∈ Gλ(τ ). Moreover, we say that τ /∈K V if
>(Gλ(τ ), V ) ≥ K−1; otherwise, we say τ ∈K V . If the value of K is clear from the
context, we often abbreviate τ /∈K V to τ /∈ V . Next, let us introduce the notion of
broad norms. Fix BK 2 ⊂ [−λR, λR]× [ R

Cn
,Cnλ] centered at x0. Define

µHλg(BK 2) := min
V1,...,VA∈Gr(k−1,n)

⎛

⎝ max
τ /∈Va

for any 1≤a≤A

∥Hλgτ∥pL p(BK2 )

⎞

⎠ . (3.17)
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Here Gr(k−1, n) is the Grassmannian manifold of all (k−1)-dimensional subspaces
in Rn , and k is to be determined, and A is a parameter that is less important and its
choice will become clear later. For U ⊂ Rn , define

∥Hλg∥BLp
k,A(U ) :=

(∑

BK2

|BK 2 ∩U |
|BK 2 | µHλg(BK 2)

) 1
p

. (3.18)

Next we should study and prove broad norm estimates.

Theorem 3.4 (Broad norm estimate) Let 2 ≤ k ≤ n − 1, and

p ≥ pn(k) := 2+ 6

2(n − 1)+ (k − 1)
∏n−1

i=k
2i

2i+1

. (3.19)

Then for every ϵ > 0, there exists A such that

∥Hλg∥BLp
k,A(BR)

!K ,ϵ Rϵ∥g∥
2
p

L2∥g∥
1− 2

p
L∞ , (3.20)

for every K ≥ 1, 1 ≤ R ≤ λ, where BR is a ball of radius R satisfying
BR ⊂ [−3Cnλ, 3Cnλ]n−1× [ R

Cn
,Cnλ]. Moreover, the implicit constant depends poly-

nomially on K .

In the rest of this section, we will finish the proof of Theorem 2.3 by assuming
Theorem 3.4. We will show that Theorem 3.4 implies (2.22) whenever n ≥ 3 and

2+ 4
2n − k

≤ p ≤ 2+ 2
k − 2

. (3.21)

The same optimization process as in Hickman and Zahl [17, page 5] will give Theo-
rem 2.3.

Let us begin the proof. The main steps are the proofs of the following Lemmas 3.5
and 3.8. After proving these two lemmas, it is standard to deduce Theorem 2.3 when-
ever p satisfies (3.21). For the sake of completeness, we provide some details for this
step. By a restricted type interpolation, we may assume that g = χE for some set E .
Let us take K = Rϵ′ for some 0 < ϵ′ ≪ ϵ. By Lemma 3.5 and Lemma 3.8, and a
standard application of the broad–narrow analysis (see for instance [11, page 358]) of
Bourgain and Guth [5] and Guth [14], one obtains that

∥Hλg∥L p(BR) !n,p,ϵ R
ϵ
2 ∥g∥

p
2
2 ∥g∥

1− 2
p

∞ + RϵR−Cϵ′ ∥g∥p. (3.22)

Since g is a characteristic function, the above term is bounded by a constant multiple
of

(
R−

ϵ
2 + R−Cϵ′)Rϵ∥g∥L p . (3.23)

Since R is a large number, this closes the induction and completes the proof.
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From now on, we will focus on the proofs of those two lemma. We start with
Lemma 3.5, a decoupling inequality. The notation l(τ ) = K−1 will mean that the cap
τ has side length K−1.

Lemma 3.5 Let 2 ≤ m ≤ n and V be an m-dimensional linear subspace in Rn. Let
K = KR and BK 2 ⊂ [−λR, λR] × [ R

Cn
,Cnλ]. For every 2 ≤ p ≤ 2m

m−1 and every
ε > 0, it holds that

∥∥∥∥
∑

τ∈V :l(τ )=K−1
Hλgτ

∥∥∥∥
L p(BK2 )

!N ,ε,p RapDec(λ)∥g∥2

+
∑

β∈Nn−1
0

∑

β ′∈Nn
0

∑

w∈Nn

2−N |β ′|K (m−1)(1/2−1/p)+ε

(1+ |β|)10n(1+ |w|)100n

×
(∑

τ

∥Hλ(gτ (ω)bw,β ′(x1;ω)e2π iβ·ω)∥pL p(BK2 )

) 1
p

.

(3.24)

Here x1 is the center of BR (not BK 2 ), τ ∈ V means τ ∈K V , and the universal
constant N can be as large as we would like. The function bw,β ′(x1;ω) satisfies the
uniform bound |bw,β ′ | ! 1 in all parameters.

The proof is based on the decoupling inequality of Bourgain and Demeter [4] and
Taylor’s expansion. It is quite important that on the right-hand side we have BK 2

without any tails.

Remark 3.6 We would like to mention that it is crucial for bw,β ′ not to depend on the
location of BK 2 . This will allow us sum over all balls BK 2 ⊂ BR . If bw,β ′ were allowed
to depend on the location of BK 2 , the proof of Lemma 3.5 would be much simpler and
we would not need the requirement that R ≤ λ1−ϵ .

Proof of Lemma 3.5 Let us use x0 = (x0, t0) to denote the center of BK 2 . We will
approximate the phase function φλ on BK 2 . Write

φλ(x;ω)− φλ(x0;ω)+ ∇xφ
λ(x0;ω)x0 = ∇xφ

λ(x0;ω)x+ eλ
2,x0(x;ω). (3.25)

Here eλ
2,x0 is the second-order remainder term in Taylor’s expansion. To see what

estimates it satisfies, let us first collect some useful estimates for various derivatives.
First, from (3.10), we see that

∣∣∇xφ
λ(x;ω)

∣∣ ! λ

R
,
∣∣∂tφλ(x;ω)

∣∣ !
(

λ

R

)2

. (3.26)

By taking a further derivative in x, we obtain

∣∣∇2
xφ

λ(x;ω)
∣∣ ! 1

R
,
∣∣∂t tφλ(x;ω)

∣∣ ! λ2

R3 . (3.27)
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We see the second-order derivative in x is not bad, but that in t is always very bad when
R ≪ λ. In other words, we do not necessarily know that the “error” term eλ

2,x0(x;ω)
has amplitude smaller than one. One way of fixing this problem is to observe that

∣∣eλ
2,x0(x;ω)− eλ

2,x0(x; 0)
∣∣ ! K 4

λ
, (3.28)

which follows from

∣∣∇2
x,t∇ωφλ(x;ω)

∣∣ ! λ−1 (3.29)

and mean value theorems; the pointwise bound (3.29) follows from taking a further
derivative in x for the terms in (3.12), (3.13) and (3.14). For later use, we record more
estimates on higher-order derivatives of the phase function. Via the chain rule, we
obtain

|∇β
x ∇β ′

ω φλ(x;ω)| !β λ−|β|+1 (3.30)

for every multi-indices β and β ′ with |β|, |β ′| ≥ 1. In particular, these imply

|∇β
ωe

λ
2,x0(x;ω)| !β

K 4

λ
for every |β| ≥ 1. (3.31)

Let us write

∑

τ∈V
Hλgτ =

∑

τ

∫
e2π iφ

λ(x;ω)gτ (ω)dω

=
∑

τ

e2π ie
λ
2,x0

(x;0)
∫

e2π i∇xφ
λ(x0;ω)xe2π ie

λ
2,x0

(x;ω)−2π ieλ
2,x0

(x;0)

×
(
gτ (ω)e2π i(φ

λ(x0;ω)−∇xφ
λ(x0;ω)x0))dω. (3.32)

Denote

aλ
x0(x;ω) := e2π ie

λ
2,x0

(x;ω)−2π ieλ
2,x0

(x;0) (3.33)

and

gλ
τ,x0(ω) :=

(
gτ (ω)e2π i(φ

λ(x0;ω)−∇xφ
λ(x0;ω)x0)). (3.34)

We apply the Fourier expansion to aλ
x0(x;ω) and write it as

∑

β∈Nn−1
0

aλ
β,x0(x)e

2π iβ·ω; (3.35)
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the bound in (3.28) guarantees that such an expansion is meaningful. So far we have

∑

τ

Hλgτ =
∑

β∈Nn−1
0

∑

τ

e2π ie
λ
2,x0

(x;0)
∫

e2π i(∇xφ
λ(x0;ω))·xaλ

β,x0(x)g
λ
τ,x0(ω)e

2π iβ·ωdω.

(3.36)

By the triangle inequality,

∥∥∥∥
∑

τ

Hλgτ

∥∥∥∥
L p(BK2 )

≤
∑

β

∥∥∥∥
∑

τ

∫
e2π i(∇xφ

λ(x0;ω))·xaλ
β,x0 (x)g

λ
τ,x0 (ω)e

2π iβ·ωdω

∥∥∥∥
L p(BK2 )

!
∑

β

(1+ |β|)−10n
∥∥∥∥
∑

τ

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0 (ω)e

2π iβ·ωdω

∥∥∥∥
L p(BK2 )

,

(3.37)

where the decay in β follows from (3.30) and (3.31). Via a direct computation, we
obtain (∇xφ

λ(x0;ω)) · x equals

λ

t0

x0 − t0ω√
λ2 + |x0 − t0ω|2

· x − λ(λ2 + |x0|2 − t0(x0 · ω))
t20
√

λ2 + |x0 − t0ω|2
· t . (3.38)

Regarding the parametrized surface

(
λ

t0

x0 − t0ω√
λ2 + |x0 − t0ω|2

,−λ(λ2 + |x0|2 − t0(x0 · ω))
t20
√

λ2 + |x0 − t0ω|2

)

, (3.39)

we have that the Jacobian of the first (n − 1) components in ω is comparable to 1;
more precisely, without loss of generality, we may assume that the first component of
x0 − t0w is nonzero. Then the Jacobian matrix ∇ω∇xφ

λ(x0;ω), which are explicitly
calculated in (3.12) and (3.13), has eigenvalue −λ3(λ2 + |x0 − t0ω|2)−3/2 with the
eigenvector x0− t0w, and eigenvalue−λ(λ2+|x0− t0ω|2)−1/2 with the n−1 linearly
independent eigenvectors

(−(x0 − t0w)2, (x0 − t0w)1, 0, . . . , 0), . . . , (−(x0 − t0w)n, 0, . . . , 0, (x0 − t0w)1),

(3.40)

where (x0 − t0w)i is the i th component of the vector x0 − t0w. This can be verified
by a direct computation. Therefore, we obtain

∣∣ det∇ω∇xφ
λ(x0;ω)

∣∣ = λn+2(λ2 + |x0 − t0ω|2
)− n+2

2 ≃ 1. (3.41)

As a consequence, we obtain that the above parametrized surface is regular. Next, we
will show that it has non-vanishing Gaussian curvatures. Recall the computation of
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normal directions in Lemma 3.3. Via a direct computation, we see that the Gaussian
curvature at a fixed point ω0 is comparable to

det
(
∇2

ω⟨∇xφ
λ(x0;ω), (ω0, 1)⟩

)∣∣
ω=ω0

≃ 1. (3.42)

This, combined with the fact that

∇2
ω⟨∇xφ

λ(x0;ω), (ω0, 1)⟩
∣∣
x0=0;ω0=0 (3.43)

is the identity matrix and a simple continuity argument, further implies that the
parametrized surface in (3.39) is elliptic. This allows us to apply decoupling inequali-
ties for surfaces of non-vanishing Gaussian curvatures, due to Bourgain and Demeter
[4], and bound (3.37) by

∑

β

(1+ |β|)−10nK (m−1)( 12− 1
p )+ϵ

×
(∑

τ

∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)e

2π iβ·ωdω

∥∥∥∥
p

L p(wB
K2 )

) 1
p

, (3.44)

where wBK2 is given by

(
1+ K−2|x− x0|

)−N (ϵ)
, (3.45)

where N (ϵ) is a large constant depending on ϵ and its choice will become clear later.

Remark 3.7 We will need N (ϵ) → ∞ much faster than 1
ϵ as ϵ → 0. For instance,

taking N (ϵ) = ϵ−100 will be more than enough. This choice of weight will be used in
the following way: If |x − x0| ≥ K 2λϵ10 , then the weight function can be controlled
by λ−ϵ−90 , and therefore is negligible as RapDec(λ).

The weight functionwBK2 has tails that are not allowed in the study of the Bochner–
Riesz problem, and we need to get rid of it. For w ∈ Zn , let BK 2,w be the translation
of BK 2 by K 2w.

∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)e

2π iβ·ωdω

∥∥∥∥
L p(wB

K2 )

≤ RapDec(λ)∥g∥2 +
∑

w∈Zn

|w|≤ λϵ10

(1+ |w|)−N (ϵ)

×
∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)e

2π iβ·ωdω

∥∥∥∥
L p(BK2,w)

.

(3.46)
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As we have a constant coefficient operator in the last display, we can modulate the
function gλ

τ,x0 such that the ball BK 2,w is shifted back to BK 2 . Let us use ew,K (x0;ω)
to denote the modulation function. Therefore,

ew,K (x0;ω) = e2π i K
2(∇xφ

λ(x0;ω))·w, (3.47)

and we have the bound
∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)e

2π iβ·ωdω

∥∥∥∥
L p(wB

K2 )

≤ RapDec(λ)∥g∥2 +
∑

w∈Zn

|w|≤ λϵ10

(1+ |w|)−N (ϵ)

×
∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)ew,K (x0;ω)e2π iβ·ωdω

∥∥∥∥
L p(BK2 )

.

(3.48)

Unfortunately the modulation function in (3.47) depends on x0. Let us try to get rid
of this dependence via Taylor’s expansion; we learnt this idea from Beltran, Hickman
and Sogge [1]. First, let us write the L p norm on the right-hand side of (3.48) as

∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)bw,K (x0;ω)e2π iβ·ωdω

∥∥∥∥
L p(BK2 )

, (3.49)

with

bw,K (x0;ω) := e2π i K
2w·(∇xφ

λ(x0;ω)−∇xφ
λ(x0;0)). (3.50)

To get rid of the dependence of bw,K on x0, we carry out a Taylor expansion of it about
x1, an arbitrary point inside BR ; for convenience, we take x1 to be the center of BR .
Recall the bound in (3.30). As a consequence, we obtain that

∣∣∇β
x
[
K 2w · (∇xφ

λ(x;ω)−∇xφ
λ(x; 0))

]∣∣ ! K 2|w|λ−|β| for every β, (3.51)

which further implies that

∣∣∇β
x bw,K (x;ω)

∣∣ ! (K 2|w|)|β|λ−|β| for every |β| ≥ 1. (3.52)

This allows us to write

bw,K (x0;ω) =
∑

β ′
2−N |β ′|(K 2|w|)|β ′|λ−|β ′|bw,β ′(x1;ω)(x0 − x1)β

′ + RapDec(λ),

(3.53)
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where the dependence ofbw,β ′ on K has been compressed, and theseTaylor coefficients
satisfy the uniform bound |bw,β ′(x1;ω)| ! 1. We go back to (3.49) and bound it by

∑

β ′
2−N |β ′|(K 2λϵ10)|β

′|R|β ′|λ−|β
′|

×
∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0(ω)bw,β ′(x1;ω)e2π iβ·ωdω

∥∥∥∥
L p(BK2 )

. (3.54)

Recall the assumption on R that R ≤ λ1−ϵ . It can be used to control the constant
factors in the last display. So far we have controlled (3.46) by

RapDec(λ)∥g∥2 +
∑

β ′

∑

w
2−N |β ′|(1+ |w|)−N (ϵ)

×
∥∥∥
∫

e2π i(∇xφ
λ(x0;ω))·xgλ

τ,x0(ω)bw,β ′(x1;ω)e2π iβ·ωdω
∥∥∥
L p(BK2 )

. (3.55)

Now each term we have is of the form
∫

e2π i(∇xφ
λ(x0;ω))·xgλ

τ,x0(ω)bw,β ′(x1;ω)e2π iβ·ωdω

=
∫

e2π i(∇xφ
λ(x0;ω))·xgτ (ω)e2π i(φ

λ(x0;ω)−∇xφ
λ(x0;ω)x0)bw,β ′(x1;ω)e2π iβ·ωdω

=
∫

e2π iφ
λ(x;ω)−2π ieλ

2,x0
(x;ω)gτ (ω)bw,β ′(x1;ω)e2π iβ·ωdω.

(3.56)

We apply a Fourier expansion “back” (compared with the one in (3.33)–(3.35)) to get
rid of eλ

2,x0(x;ω) and obtain
∥∥∥∥

∫
e2π i(∇xφ

λ(x0;ω))·xgλ
τ,x0 (ω)bw,β ′ (x1;ω)e

2π iβ·ωdω

∥∥∥∥
L p(BK2 )

!
∑

β ′′∈Nn−1
0

(1+ |β ′′|)−10n
∥∥∥∥

∫
e2π iφ

λ(x;ω)gτ (ω)bw,β ′ (x1;ω)e2π i(β+β ′′)·ωdω

∥∥∥∥
L p(BK2 )

,

(3.57)

which, when substituted into (3.55) and (3.44), implies the desired decoupling inequal-
ity. ⊓⊔

Lemma 3.8 (Parabolic rescaling) Letw = (w1, . . . , wn−1) ∈ [0, 1]n−1 and K = KR.
Let τ = [w1, w1+ K−1]× · · ·× [wn−1, wn−1+ K−1] with τ ⊂ [0, 1]n−1. Under the
induction hypothesis, for every ball BR with 1 ≤ R ≤ λ1−ϵ satisfying

BR ⊂ [−λK ,R, λK ,R]×
[
R
Cn

,Cnλ

]
(3.58)
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we obtain

∥Hλgτ∥L p(BR) !ϵ,δ RϵRδ(K−1)(n−1)−
2n
p ∥gτ∥L p([0,1]n−1) (3.59)

for every δ > 0.

Proof of Lemma 3.8 We use a change of variables

η := −w + ω. (3.60)

Recall that our phase function is given by

φλ(x, t;ω) = λ

t

√
λ2 + |x − tω|2. (3.61)

Under the change of variables, it becomes

λ

t

√
λ2 + |x − t(η + w)|2 = λ

t

√
λ2 + |(x − tw)− tη|2. (3.62)

Next we apply the change of variables

x − tw 0→ x; t 0→ t . (3.63)

Under this change of variables, let us assume that BR becomes B̃R . Note that B̃R is a
parallelogram: The smallest rectangle that contains it is at most twice as large as BR .
Now our phase becomes

λ

t

√
λ2 + |x − tη|2, (3.64)

and therefore we need to bound

∥Hλgτ̃∥L p(B̃R)
with τ̃ =

[
0,

1
K

]n−1
. (3.65)

Next we apply a scaling argument and set η 0→ η
K . Our phase becomes

λ

t

√
λ2 +

∣∣∣x − t
η

K

∣∣∣
2
. (3.66)

In the end, we apply the change of variables x 0→ Kx; t 0→ K 2t . Then this becomes

λ

Kt

√( λ

K

)2
+ |x − tη|2. (3.67)
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It is important to keep track of the domain of evaluating the L p norm. Let us use D̃R
to denote the smallest rectangle that contains the image of B̃R after the above change
of variables. After some elementary computation, we see that

D̃R ⊂
[
−λK ,R

K
− CnR

K
,
λK ,R

K
+ CnR

K

]n−1
×
[

R
K 2

1
Cn

,
λ

K 2Cn

]
, (3.68)

and D̃R is of dimension

(
2
R
K

)
×
(
2
R
K

)
× · · ·×

(
2
R
K

)
× R

K 2 . (3.69)

Set λ′ = λ
K , R′ = R

K and R′′ = R
K 2 . What is important in (3.68) is that

λK ,R

K
+ CnR

K
≤ λ′K ,R′′ ≤ λ′R′′, (3.70)

which is exactly the reason of having a complicated expression ofλK ,R in our induction
hypothesis. As a consequence, we know that

D̃R ⊂ [−λ′K ,R′′ , λ
′
K ,R′′ ]×

[
R′′

Cn
, λ′Cn

]
. (3.71)

Remark 3.9 Here we make a remark on the choice of the t-interval [ R
Cn

,Cnλ] in (3.3)
from our induction hypothesis. In our current setup, it should not be replaced by
anything like [ R

Cn
,CnR] or [ R

Cn
,CnR1/(1−ϵ)]. For instance, if we replace it by the

latter, then the analog of (3.71), which is

D̃R ⊂ [−λ′K ,R′′ , λ
′
K ,R′′ ]×

[
R′′

Cn
, (R′′)

1
1−ϵ Cn

]
, (3.72)

does not hold, and therefore we can not apply the induction hypothesis. If one would
really like to use a time interval of the form [ R

Cn
,CnR1/(1−ϵ)] in the induction hypoth-

esis, which may bring some convenience like t is always essentially comparable to R,
then one can cut D̃R into smaller balls and then make use of the extra gain in K from
(3.73), which is not explored in the current setup.

From now on, we will try to bound ∥Hλ′ g̃∥L p(D̃R)
, where g̃ is now a function

supported on [0, 1]n−1. It remains to prove

∥Hλ′ g̃∥L p(D̃R)
!ϵ,δ

(
R′

K

)ϵ( R′

K

)δ

∥g̃∥p. (3.73)

Actually we will not need the gain in K , and only need to prove

∥Hλ′g∥L p(D̃R)
!ϵ,δ RϵRδ∥g∥p, (3.74)
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for every δ > 0 and every g.
Let us denote

DR′ ⊂ [−λ′K ,R′′ , λ
′
K ,R′′ ]×

[
R′′

Cn
, λ′Cn

]
(3.75)

a rectangular box of dimension

R′ × · · ·× R′ × R′′. (3.76)

We need to prove

∥Hλ′g∥L p(DR′ ) !ϵ,δ RϵRδ∥g∥p. (3.77)

To prove such a bound, we need the following discrete version of the operator Hλ′ .
This step is where we apply our induction hypothesis.

Lemma 3.10 [11, Lemma 11.8] LetD be a maximal (R′′)−1-separated discrete subset
of [0, 1]n−1. Then

∥∥∥
∑

ωθ∈D
eiφ

λ(·;ωθ )F(ωθ )
∥∥∥
L p(BR′′ )

!ϵ (R′′)ϵ(R′′)
n−1
p′ ∥F∥ℓp(D), (3.78)

for every F : D→ C and every ball BR′′ ⊂ DR′ of radius R′′.

Proof of Lemma 3.10 The proof relies an approximation argument via Taylor’s expan-
sion, and is essentially the same as that of [11, Lemma 11.8], see also [5, Sect. 5]. Let
x0 be the center of BR′′ . Let ψ : Rn−1 → R be a function supported on the ball of
radius 2 centered at the origin, satisfying 0 ≤ ψ ≤ 1 and ψ(ω) = 1 for every |ω| ≤ 1.
For each ωθ ∈ D, define ψθ (ω) := ψ(10R′′(ω − ωθ )). For every x ∈ BR′′ , the sum
on the left hand side of (3.78) is a constant multiple of

(R′′)n−1
∫

Rn−1
e2π iφ

λ(x;ω)e−2π iφ
λ(x0;ω)+2π iφλ(x0;ωθ )

×
[∑

ωθ∈D
e−2π i3

λ
θ (x;ω)F(ωθ )ψθ (ω)

]
dω,

(3.79)

where

3λ
θ (x;ω) := φλ(x;ω)− φλ(x;ωθ )− φλ(x0;ω)+ φλ(x0;ωθ ). (3.80)

By mean value theorems and the bound (3.30), we see that

|3λ
θ (x;ω)| ! |x− x0||ω − ωθ | ! 1, (3.81)
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whenever x ∈ BR′′ and ω is in the support of ψθ . Roughly speaking, this allows
us to treat e−2π i3

λ
θ (x;ω) as the constant function 1, which can be made rigorous via

Fourier expansion. To apply Fourier expansion in x, we need to examine higher-order
derivatives of the function. Similar to how we obtained (3.81), we obtain from (3.30)
and mean value theorems that

∣∣∇β
x 3λ

θ (x;ω)
∣∣ ! 1,

∣∣∇β
x e2π i3

λ
θ (x;ω)

∣∣ ! 1 (3.82)

for every multi-index β. As a consequence, we are able to bound (3.79) by

(R′′)n−1
∑

k∈Zn

(1+ |k|)−(n+1)|Hλ fk(x)|, (3.83)

where

fk(ω) :=
∑

ωθ∈D
F(ωθ )ck,θ (ω)ψθ (ω) (3.84)

with ck,θ satisfying the uniform bound ∥ck,θ∥∞ ≤ 1. We apply our induction hypoth-
esis to Hλ fk on the ball BR′′ ; in particular, (3.75) guarantees that our induction
hypothesis is applicable. This gives us the desired estimate. ⊓⊔

Let us begin the proof of (3.77). Out of certain technical reason of handling tails,
we introduce new notation. For given R, λ satisfying R ≤ λ1−ϵ , let aλ,R(x, t) be a
non-negative smooth bump function supported on [−2λR, 2λR] × [ R

2Cn
, 2Cnλ], and

equal to one on [−λR, λR]× [ R
Cn

,Cnλ]. Define

Hλ,Rg(x) := aλ,R(x, t)
∫

e2π iφ
λ(x;ω)g(ω)dω. (3.85)

This notation will only be used in this section. Note that for all the x that we care
about, that is, x ∈ [−λR, λR]× [ R

Cn
,Cnλ], it always holds that

Hλ,Rg(x) = Hλg(x). (3.86)

Let us return to the proof of (3.77). Cover [0, 1]n−1 by caps θ of side length (R′′)−1.
Decompose g as g =∑

θ gθ . Let ωθ be the center of θ . Define

Hλ′
θ g(x) := e−2π iφ

λ′ (x;ωθ )Hλ′g(x), (3.87)

and

Hλ′,R′′
θ g(x) := aλ′,R′′(x, t)e

−2π iφλ′ (x;ωθ )Hλ′g(x), (3.88)
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so that for every x ∈ BR′′ ⊂ DR′ , it holds that

Hλ′g(x) = Hλ′,R′′g(x) =
∑

θ

e2π iφ
λ′ (x;ωθ )Hλ′

θ gθ (x)

=
∑

θ

e2π iφ
λ′ (x;ωθ )Hλ′,R′′

θ gθ (x).
(3.89)

To proceed, we need the following lemma:

Lemma 3.11 For every δ > 0, the following statement holds. For every x, we have

Hλ′,R′′
θ gθ (x) = Hλ′,R′′

θ gθ ∗ η(R′′)1−δ (x)+ RapDec(λ′)∥g∥2, (3.90)

for some rapidly decreasing function η such that |η| admits a smooth, rapidly decreas-
ing majorant ζ : Rn → [0,∞) which is locally constant at scale 1.

The proof of this lemma is pretty standard, see for instance the bottom of [11, page
363] and Lemma 5.8 there.

Remark 3.12 The parameter δ > 0 will be picked to be extremely small, and much
smaller compared with ϵ. The use of the parameter δ and the scale (R′′)δ is the
reason for K to depend on R, which further explains the necessity of the polynomial
dependence of the implicit constant on K in Theorem 3.4.

One way we will be using the locally constant property of ζ is

ζ(R′′)1−δ (x) ! (R′′)δζ(R′′)1−δ (y) if |x− y| ! R′′. (3.91)

To control the L p norm of Hλ′g = Hλ′,R′′g on DR′ , we cover DR′ by finitely over-
lapping R′′-balls, and let BR′′ be some member of this cover. Let x0 denote the center
of BR′′ , then

|Hλ′,R′′g(x0 + z)| ! Rδ

∫

Rn

∣∣∣∣
∑

θ

e2π iφ
λ′ (x0+z;ωθ )Hλ′,R′′

θ gθ (y)
∣∣∣∣ζ(R′′)1−δ (x0 − y)dy,

(3.92)

for every z with |z| ≤ R′′. We follow the same lines of proof as in [11, page 364]. To
be more precise, we take the L p norm in z and see that ∥Hλ′g∥L p(BR′′ ) can be bounded
by

Rδ
∫

Rn

∥∥∥∥
∑

θ

e2π iφ
λ′ (x0+z;ωθ )Hλ′,R′′

θ gθ (y)
∥∥∥∥
L p({|z|≤R′′})

ζ(R′′)1−δ(x0−y)dy. (3.93)

For each fixed y, we apply Lemma 3.10 and see that the L p norm in the above display
can be bounded by

(R′′)ϵ(R′′)
n−1
p

(∑

θ

|Hλ′,R′′
θ gθ (y)|p

) 1
p

. (3.94)
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We then apply the locally constant property (3.91) again, sum over all balls BR′′ inside
DR′ and obtain

∥Hλ′g∥L p(DR′ ) !ϵ (R′′)ϵ+O(δ)(R′′)
n−1
p′ −

n
p

×
(∫

Rn

∑

θ

∥Hλ′,R′′gθ∥pL p(DR′−y)ζ(R′′)1−δ (y)dy
) 1

p

, (3.95)

where DR′ − y means a translation in y. It remains to prove that

(∫

Rn

∑

θ

∥Hλ′,R′′gθ∥pL p(DR′−y)ζ(R′′)1−δ (y)dy
) 1

p

! (R′′)−
n−1
p′ +

n
p ∥g∥p.

(3.96)

This is the step where it is convenient to have a cut-off function in space and time in
the definition of Hλ′,R′′ f . We will show that

∥Hλ′,R′′gθ∥L p(DR′−y) ! (R′′)−
n−1
p′ +

n
p ∥gθ∥p, (3.97)

which immediately implies (3.96). To prove this bound, we use interpolation at p = 2
and p =∞. At p = 2, we need the following lemma:

Lemma 3.13 For every 1 ≤ R ≤ λ, it holds that

∥Hλ,Rg(x, t)∥L2
x

! ∥g∥2, (3.98)

uniformly in t ∈ R.

Proof of Lemma 3.13 This estimate is well-known. As it is short, we still include it
here. By the main theorem in [18], which is proven via a T T ∗ argument and Schur’s
text, the desired estimate follows once we verify that

| det∇x∇ωφ(x, t;ω)| ≃ 1, (3.99)

uniformly in |t | ! 1, |x | ! 1. However this has been verified and used in (3.41). ⊓⊔

As a consequence of Lemma 3.13, we obtain

∥Hλ′,R′′gθ∥L2(DR′−y) ! R−(n−1)(
1
2− 1

p )+ 1
2 ∥gθ∥p. (3.100)

At p =∞, we have the trivial bound that

∥Hλ′,R′′gθ∥L∞(DR′−y) ≤ R
− n−1

p′ ∥gθ∥p. (3.101)

Interpolation implies the desired (3.97). This finishes the proof of Lemma 3.8. ⊓⊔
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4 Wave Packets and Their Essential Supports

The rest of the paper is devoted to the proof of Theorem 3.4, the broad norm estimate.
When we were handling the narrow part in the previous section, we used an inductive
argument, and in order to close induction we had to be very careful with the choice of
various amplitude functions ā1, ā2, and regions of taking integrations; we also had to
introduce Hλ,Rg(x) and distinguish it from Hλg(x) as it was very often inconvenient
to carry amplitude functions in our operator. From now on, these points are not as
crucial as before, andwewill alwaysworkwith Hλ,Rg(x), a function that is compactly
supported in [−4Cnλ, 4Cnλ]×[ R

2Cn
, 2Cnλ].Moreover, to simplify notation,we always

abbreviate Hλ,R to Hλ: The dependence on R will be emphasized through the region
we evaluate the L p norm of Hλ.

4.1 Wave Packet Decomposition

Let r ≥ 1 and take a collection5r of dyadic cubes of side length 9
11r

−1/2 covering the
ball Bn−1(0, 2). We take a smooth partition of unity (ψθ )θ∈5r with suppψθ ⊂ 11

10θ

for the ball Bn−1(0, 2) such that

∥∂α
wψθ∥L∞ !α r

|α|
2 (4.1)

for any α ∈ Nn−1
0 . We denote by ωθ the center of θ . Given a function g, we perform

a Fourier series decomposition to the function gψθ on the region 11
9 θ and obtain

g(w)ψθ (w) · 1 11
10 θ (ω) =

(
r1/2

2π

)n−1 ∑

v∈r1/2Zn−1
(gψθ )

∧(v)e2π iv·w1 11
10 θ (ω). (4.2)

Let ψ̃θ be a non-negative smooth cutoff function supported on 11
9 θ and equal to 1 on

11
10θ . We can therefore write

g(w)ψθ (w) · ψ̃θ (ω) =
(
r1/2

2π

)n−1 ∑

v∈r1/2Zn−1
(gψθ )

∧(v)e2π iv·wψ̃θ (ω). (4.3)

If we also define

gθ,v(w) :=
(
r1/2

2π

)n−1
(gψθ )

∧(v)e2π iv·ωψ̃θ (ω). (4.4)

then we have

g =
∑

(θ,v)∈5r×r1/2Zn−1
gθ,v. (4.5)
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This finishes our wave packet decomposition.
Let 1 ≤ r ≤ R. We fix a ball B(x0, r) of radius r satisfying

B(x0, r) ⊂ [−3Cnλ, 3Cnλ]n−1 ×
[
R
Cn

, λCn

]
. (4.6)

Let us fix a function f . We define a collection of tubes associated to the ball B(x0, r)
by

T[B(x0, r)] := {Tθ,v(x0) : (θ, v) ∈ 5r × r
1
2Zn−1}, (4.7)

where Tθ,v(x0) is some set that will be determined later. Given Tθ,v(x0) ∈ T[B(x0, r)],
we define a function

gTθ,v(x0)(ω) := e−2π iφ
λ(x0;ω)(g(·)e2π iφλ(x0; ·))θ,v(ω). (4.8)

Notice that

Hλg(x, t) =
∑

T∈T[B(x0,r)]
HλgT (x, t). (4.9)

In the rest of the section, we will define tubes T so that HλgT is essentially supported
on T .

Remark 4.1 It is worth mentioning the motivation and advantages of the notation gTθ,v .
In [14] and [11], the following notations are introduced:

x̃ = x− x0 and g̃(w) = g(w)e2π iφ
λ(x0;w). (4.10)

In these notations, we have

Hλg(x) = H̃λg̃(̃x), (4.11)

where

H̃λg̃(x̃) :=
∫

Rn−1
e2π iφ

λ(x̃+x0;ω)e−2π iφ
λ(x0;w)g̃(ω)dω. (4.12)

Themotivation of their notations is that the function H̃λg̃ is defined on the ball centered
at the origin so that we can apply the wave packet decomposition to the function g̃.
However, in our proof of Theorem3.4 (in particular, Sections 9 and 10), these notations
cause some confusion because the function g̃ depends on the point x0, but the notation
g̃ does not show this dependence.

To make things clear, what we have done above is to apply the wave packet decom-
position to g̃ and change back the variable x̃ to the original variable x (see (4.8) and
(4.9)). Note that our tube Tθ,v(x0) indicates the dependence on the point x0.
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Lemma 4.2 (L2-orthogonality) For any set T ⊂ T[B(x0, r)], it holds that
∥∥∥∥
∑

T∈T
gT

∥∥∥∥
2

2
!
∑

T∈T
∥gT ∥22 ! ∥g∥22. (4.13)

Moreover, if T is any collection of tubes with the same θ , then

∥∥∥∥
∑

T∈T
gT

∥∥∥∥
2

2
∼
∑

T∈T
∥gT ∥22. (4.14)

Lemma 4.2 follows immediately from Plancherel’s theorem, and the proof is omitted.

Remark 4.3 In the above lemma, without the extra assumption, (4.14) may not be
correct, due to the frequency overlapping.

The definition of Tθ,v(x0) relies on which of the following two cases we are in:

|v −∇ωφλ(x0;ωθ )| ≥
10Cnλ√

1+ (10Cn)2
or |v −∇ωφλ(x0;ωθ )| ≤

10Cnλ√
1+ (10Cn)2

.

(4.15)

In the former case, we define Tθ,v to be an empty set, and show that Hλ fT always
decays rapidly, that is, it is bounded by λ−N∥ f ∥2 pointwise. In the latter case, we
define Tθ,v to be as follows: Define a line lθ,v as

lθ,v :=
{

(x, t) : ωθ t − x = λ(∇ωφλ(x0;ωθ )− v)
√

λ2 − |∇ωφλ(x0;ωθ )− v|2

}

(4.16)

and a r1/2+δ tube Tθ,v as Tθ,v = Nr1/2+δ (lθ,v). Here 0 < δ ≪ ϵ is a small parameter
whose choice will become clear later, and Nr1/2+δ means the r1/2+δ-neighborhood.
Next, we show that the essential support of Hλ fT is T . The precise meaning of
essential supports will be made clear in the statements of the following two lemmas.

Lemma 4.4 If T = Tθ,v(x0) is such that the former case in (4.15) holds, then we have

∥HλgT ∥L∞(B(x0,r)) !N λ−N∥g∥2, (4.17)

for every N ∈ N, whenever B(x0, r) satisfies (4.6).

Proof of Lemma 4.4 For given x0, we denote gx0(ω) = g(ω)e2π iφ
λ(x0;ω). Recall the

definition of gT that

gT (ω) = e−2π iφ
λ(x0;ω)(gx0ψθ )

∧(v)
(
r1/2

2π

)n−1
e2π iv·ωψ̃θ (ω). (4.18)

123



S. Guo et al.

Let Hλ act on fT and we obtain

HλgT (x, t) =
(
r1/2

2π

)n−1
(gx0ψθ )

∧(v)aλ,R(x, t)
∫

e2π iφ
λ
x0
(x;ω)+2π iv·ω

ψ̃θ (ω)dω,

(4.19)

where

φλ
x0(x;ω) := φλ(x;ω)− φλ(x0;ω). (4.20)

We make the change of variable ω 0→ ω + ωθ and consider the oscillatory integral

∫
e2π i

(
φλ
x0
(x,t;ω+ωθ )+v·ω

)
ψ̃(r

1
2 ω)dω

= r−
n−1
2

∫
e2π i

(
φλ
x0
(x,t;r−1/2ω+ωθ )+r−1/2v·ω

)
ψ̃(ω)dω.

(4.21)

Denote ω′ := r−1/2ω. First of all, ∇ω of the phase function equals

r−
1
2
(
∇ωφλ

x0(x, t;ω′ + ωθ )+ v
)
. (4.22)

We write

(4.22) = r−
1
2
(
∇ωφλ

x0(x, t;ω′ + ωθ )− ∇ωφλ
x0(x, t;ωθ )

)

+ r−
1
2
(
∇ωφλ

x0(x, t;ωθ )+ v
)
.

(4.23)

We first look at the second term. By the definition of φλ
x0 , it equals to

r−
1
2
(
∇ωφλ(x, t;ωθ )− ∇ωφλ(x0, t0;ωθ )+ v

)
. (4.24)

Recall we are in the case that

|∇ωφλ(x0, t0;ωθ )− v| ≥ 10Cnλ√
1+ (10Cn)2

. (4.25)

Moreover, recall that |t | ≤ 2Cnλ and |x | ≤ 4Cnλ, and therefore we obtain

|∇ωφλ(x, t;ωθ )| = λ

∣∣∣∣
tωθ − x

√
λ2 + |x − tωθ |2

∣∣∣∣ ≤
6Cnλ√

1+ (6Cn)2
. (4.26)

By the triangle inequality, we obtain that

(4.24) "
(

10Cnλ√
1+ (10Cn)2

− 6Cnλ√
1+ (6Cn)2

)

r−
1
2 " λ

r1/2
. (4.27)
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Let us continue to compute the first term in (4.23). First,

∇ωφλ
x0(x, t;ω) = λ

(
tω − x

√
λ2 + |x − tω|2

− t0ω − x0√
λ2 + |x0 − t0ω|2

)

. (4.28)

Therefore

∇ωφλ
x0(x, t;ω′ + ωθ )−∇ωφλ

x0(x, t;ωθ )

= λ

(
t(ω′ + ωθ )− x

√
λ2 + |x − t(ω′ + ωθ )|2

− t0(ω′ + ωθ )− x0√
λ2 + |x0 − t0(ω′ + ωθ )|2

)

− λ

(
tωθ − x

√
λ2 + |x − tωθ |2

− t0ωθ − x0√
λ2 + |x0 − t0ωθ |2

)

. (4.29)

We use the bound (3.30) and mean value theorems, and see that the above expression
can be bounded from above by r1/2, which, together with the leading coefficient r−1/2,
produces the bound 1 for the first term. Putting everything together, we see that

(4.23) " λ

r1/2
− 1 " λ

r1/2
. (4.30)

The desired rapid decay follows immediately from integration by parts. ⊓⊔
Lemma 4.5 For T = Tθ,v and (x, t) ∈ B(x0, r)\Tθ,v with B(x0, r) satisfying (4.6), it
holds that

|HλgT (x, t)| ≤
(
1+ r−

1
2 |∇ωφλ

x0(x, t;ωθ )+ v|
)−NRapDec(r)∥g∥2. (4.31)

Here φλ
x0 is defined as in (4.20).

This lemma describes the essential support of a wave packet, and it is the right-hand
side of (4.31) that motivates the definition of the core line in (4.16); see (4.36) below
that connects the expression of the core line in (4.16) with the right-hand side of (4.31).

Proof of Lemma 4.5 Note that each piece HλgT has the expression

HλgT (x, t) =
(
r1/2

2π

)n−1
(gx0ψθ )

∧(v)aλ,R(x, t)
∫

ei2π(φ
λ
x0
(x;ω)+v·ω)

ψ̃θ (ω)dω.

(4.32)

We will see that the proof is quite similar to that of Lemma 4.4. We make the change
of variable ω 0→ ω + ωθ and consider the oscillatory integral

∫
ei2π(φ

λ
x0
(x,t;ω+ωθ )+v·ω)

ψ̃(r
1
2 ω)dω

= r−
n−1
2

∫
ei2π(φ

λ
x0
(x,t;r−1/2ω+ωθ )+r−1/2v·ω)

ψ̃(ω)dω.

(4.33)
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Let us compute the derivative of the phase function. We write the derivative as in
(4.23). There are two terms there. The first term contributes 1, which has been shown
in (4.28) and (4.29). We therefore have

|(4.23)| " r−
1
2
∣∣∇ωφλ

x0(x, t;ωθ )+ v
∣∣− 1. (4.34)

This gives us the desired rapid decay in the complement of the set

Eθ,v =
{
(x, t) : |∇ωφλ

x0(x, t;ωθ )+ v| ! r
1+δ
2
}
. (4.35)

It remains to show Eθ,v ⊂ Tθ,v . We solve the equation ∇ωφλ
x0(x, t;ωθ ) + v = 0 for

the variables (x, t) to have

λ
(
tωθ − x

)
√

λ2 + |x − tωθ |2
= −v + λ(t0ωθ − x0)√

λ2 + |x0 − t0ωθ |2
= −v + ∇ωφλ(x0;ωθ ), (4.36)

which indeed is the straight line lθ,v . Moreover, we can solve (4.35) directly, and see
that it indeed lies inside our tube. Another way of seeing it is to notice that the Jacobian
of ∇ωφλ

x0(x, t;ωθ ) in x is comparable to 1, as has been verified in (3.41). ⊓⊔

4.2 L2 Properties forWave Packets

In this subsection, we prove two lemmas about L2 properties of wave packets. One
of these two lemmas, Lemma 4.6, will not be directly used in our proof; however we
would still like to include it here and show that wave packets in our setting have similar
properties to those in the Fourier restriction problem.

Lemma 4.6 Let B(x0, r) satisfy (4.6). Given a tube T1 = Tθ1,v1 ∈ T[B(x0, r)], all but
r O(δ) many tubes T2 = Tθ2,v2 ∈ T[B(x0, r)] satisfy

∫

|t−t0|≤r

∫
HλgT1(x, t)HλgT2(x, t)dxdt = RapDec(r)∥g∥22. (4.37)

Proof of Lemma 4.6 Note that each piece T λgT has the expression

HλgT (x, t) =
(
r1/2

2π

)n−1
(gx0ψθ )

∧(v)aλ,R(x, t)
∫

ei2π(φ
λ
x0
(x;ω)+v·ω)

ψ̃θ (ω)dω.

(4.38)

To estimate (4.37), it suffices to consider the oscillatory integral

∫

|t−t0|≤r

∫
e2π i(φ

λ
x0
(x,t;ω1)−φλ

x0
(x,t;ω2))aλ,R(x, t)dxdt, (4.39)
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with |ω1 − ωθ1 | ≤ r−1/2 and |ω2 − ωθ2 | ≤ r−1/2, and show that it decays rapidly. As
we will apply the argument of integration by parts in x , we do the change of variable
x 0→ λx and obtain

λn−1
∫

|t−t0|≤r

∫
e2π iλ(φ(x,t

′;ω1)−φ(x ′0,t
′
0;ω1)−φ(x,t ′;ω2)+φ(x ′0,t

′
0;ω2))aλ,R(λx, t)dxdt,

(4.40)

where we have also set t ′ := t
λ , x

′
0 := x0

λ and t ′0 := t0
λ .

Let us first assume that we are in the case |ω1 − ω2| ≥ r−1/2+δ . We compute the
partial derivative of the phase function in the x variable and obtain

λ

t ′
x − t ′ω1√

1+ |x − t ′ω1|2
− λ

t ′
x − t ′ω2√

1+ |x − t ′ω2|2
. (4.41)

Recall that the mixed Hessian of φ(x, t;ω) in x and ω is non-vanishing, that is,

| det∇ω∇xφ(x, t;ω)| ≃ 1, (4.42)

as has been verified in (3.41). This, combined with mean value theorems, implies that

|(4.41)| " λ|ω1 − ω2|. (4.43)

Now we can apply integration by parts and finish the proof of the case |ω1 − ω2| ≥
r−1/2+δ .

In the end, we consider the case |ω1 − ω2| ≤ r−1/2+δ and |v1 − v2| ≥ r1/2+δ .
However, this case follows immediately from the pointwise estimate in Lemma 4.5. ⊓⊔

5 ComparingWave Packets at Different Scales

In the previous section, we built up a wave packet decomposition for a function g on
the ball B(x0, r). Since our proof of Theorem 3.4 relies on the multiscale argument as
in [14] and [11], it is necessary to compare wave packets at two different scales. In this
section, we will prove lemmas in [11, Sect. 9] in our setting. It is worth mentioning
that in their paper, they consider more general operators. However, their lemmas are
valid only when the operators are of “reduced form”. Since we do not reduce our
operator to reduced form, we are unable to simply cite their lemmas. Instead, we
follow their arguments and prove the lemmas in our setting. We include the details for
the completeness of the paper.

Consider another ball B (̃x0, ρ) ⊂ B(x0, r) for some x̃0 = (̃x0, t̃0) ∈ Rn and
r1/2 < ρ < r . Since we are considering wave packets at different scales, it would
be convenient to introduce some notations to distinguish wave packets from different
scales. We will use the notation T̃[B (̃x0, ρ)] for the collection T[B (̃x0, ρ)] in (4.7).
We will denote the elements of T̃[B (̃x0, ρ)] by T̃θ̃ ,̃v . Here, the symbol∼ indicates that
the objects are generated at a smaller scale.

123



S. Guo et al.

We find it appropriate to introduce three more definitions here.

Definition 5.1 We say a function h is concentrated on wave packets from a tube set
Tα , if

h =
∑

T∈Tα

hT + RapDec(r)∥h∥2. (5.1)

Definition 5.2 For a ball B and W ⊂ T[B], we define

h|W :=
∑

T∈W
hT . (5.2)

Definition 5.3 Let (θ, v) ∈ 5r×r1/2Zn−1 and let (θ̃ , ṽ) ∈ 5ρ×ρ1/2Zn−1.We define
a collection of smaller tubes T̃θ̃ ,̃v that are “close to” the bigger tube Tθ,v as

T̃θ,v[B (̃x0, ρ)] :=
{
T̃θ̃ ,̃v ∈ T̃[B (̃x0, ρ)] : dist(θ, θ̃) ! ρ−

1
2 ,

|ṽ − (∇ωφλ
x0 (̃x0;ωθ )+ v)| ! r

1+δ
2
}
. (5.3)

We sometimes abbreviate the collection T̃θ,v[B (̃x0, ρ)] to T̃θ,v for simplicity.

Notice that we can write

ṽ − (∇ωφλ
x0 (̃x0;ωθ )+ v) =

(
∇ωφλ(̃x0;ωθ )+ ṽ

)
−
(
∇ωφλ(x0;ωθ )+ v

)
. (5.4)

Heuristically, on the ball B (̃x0, ρ), only those new wave packets concentrated in
T̃θ,v[B (̃x0, ρ)] would make significant contribution to our old wave packet gTθ,v .
This will be stated rigorously in the following lemma:

Lemma 5.4 Let Tθ,v ∈ T[B(x0, r)]. Then it holds that

gTθ,v = (gTθ,v )|T̃θ,v[B (̃x0,ρ)] + RapDec(r)∥g∥2. (5.5)

Proof By the definition of wave packets,

(gTθ,v(x0))T̃θ̃ ,ṽ (̃x0)
(ω)

= e−2π iφ
λ (̃x0;ω)(gTθ,v (·)e2π iφ

λ (̃x0; · ))
θ̃ ,ṽ

(ω)

= e−2π iφ
λ (̃x0;ω)(e2π i(φ

λ (̃x0; · )−φλ(x0; · ))(g(·)e2π iφλ(x0; · ))θ,v(·)
)
θ̃ ,ṽ

(ω).

(5.6)

Since a function gθ,v is supported near θ for every function g, by the above expression,
we see that

(gTθ,v(x0))T̃θ̃ ,ṽ (̃x0)
≡ 0 unless dist(θ, θ̃) ! ρ−

1
2 . (5.7)
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By renaming the function g(ω)e2π iφ
λ(x0,ω) by g(ω), it remains to show that

(
e2π iφ

λ
x0
(̃x0; · )gθ,v(·)

)
θ̃ ,ṽ

= RapDec(r)∥g∥2, (5.8)

whenever | − v + ṽ − ∇ωφλ
x0 (̃x0;ωθ )| " r (1+δ)/2. By the definition, it amounts to

proving

(
e2π iφ

λ
x0
(̃x0; · )gθ,v(·)ψθ̃ (·)

)∧
(ṽ) = RapDec(r)∥g∥2. (5.9)

The left-hand side can be written as

(
ψ̂θ̃ ∗

(
e2π iφ

λ
x0
(̃x0; · )gθ,v(·)

)∧)
(ṽ). (5.10)

Since the function ψ̂θ̃ is essentially supported in B(0, ρ1/2), it suffices to show that

(
e2π iφ

λ
x0
(̃x0; · )gθ,v(·)

)∧
(z)

=
(
1+ r−

1
2 |z − v − ∇ωφλ

x0 (̃x0;ωθ )|
)−(n+1)RapDec(r)∥g∥2

(5.11)

for every |z−v−∇ωφλ
x0 (̃x0;ωθ )| " r (1+δ)/2.We take a function ˜̃ψθ (ω) = ˜̃ψ(r1/2(ω−

ωθ )) for some compactly supported function ˜̃ψ so that this function is adapted to θ

but is equal to one on the support of ψ̃θ . Since gθ,v is supported on the support of ψ̃θ ,
the left hand side of (5.11) can be written as

(
e2π iφ

λ
x0
(̃x0; · )˜̃ψθ (·)gθ,v(·)

)∧
(z) =

(
e2π iφ

λ
x0
(̃x0; · )˜̃ψθ (·)

)∧ ∗ ĝθ,v(z). (5.12)

Since the function ĝθ,v is concentrated on B(v, r (1+δ)/2), by the above expression, the
claim (5.11) is reduced to

∫

Rn
e2π i(−z·ω+φλ

x0
(̃x0;ω))˜̃ψθ (ω) dω

=
(
1+ r−

1
2 |z − ∇ωφλ

x0 (̃x0;ωθ )|
)−(n+1)RapDec(r)

(5.13)

whenever |z − ∇ωφλ
x0 (̃x0;ωθ )| " r (1+δ)/2. We apply the change of variables: ω 0→

r−1/2ω + ωθ and the above integral becomes

r−
n−1
2 e−2π i z·ωθ

∫

Rn
e2π i(−r

−1/2z·ω+φλ
x0
(̃x0;ωθ+r−1/2ω))˜̃ψ(ω) dω. (5.14)

By the stationary phase method, the estimate (5.13) follows from

∣∣z −∇ωφλ
x0 (̃x0;ωθ + r−

1
2 ω)

∣∣ " r
1+δ
2 (5.15)
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for every |z−∇ωφλ
x0 (̃x0;ωθ )| " r (1+δ)/2. Using amean value theoremwith |x0−x̃0| !

r , this follows from

|∇2
ω∇xφ

λ(x, t;ω)| ! 1 (5.16)

for every |x | + |t | ! λ, which has been verified in (3.30). ⊓⊔
Lemma 5.5 Suppose that Tθ,v ∈ T[B(x0, r)]. If T̃θ̃ ,ṽ ∈ T̃θ,v[B (̃x0, ρ)], then it holds
that

HausDist(T̃θ̃ ,ṽ, Tθ,v ∩ B (̃x0, ρ)) ! r
1
2+δ (5.17)

and

>(G(wθ ),G(wθ̃ )) ! ρ−
1
2 . (5.18)

Proof The bound (5.18) is trivial, and we only need to prove (5.17). Let us assume
that neither T̃θ̃ ,ṽ nor Tθ,v ∩ B (̃x0, ρ) is empty. Let lθ,v and lθ̃ ,ṽ be the core lines of
Tθ,v and T̃θ̃ ,ṽ respectively. The two tubes involved in (5.17) have width ! r1/2+δ , and
therefore to prove (5.17), it suffices to consider the core lines of the tubes only. From
the definition of core lines (see also (4.36)), we can write lθ,v as

∇ωφλ(x, t;ωθ )−∇ωφλ(x0, t0;ωθ ) = −v; (5.19)

moreover, we can write the core line of lθ̃ ,ṽ as

∇ωφλ(x, t;ωθ̃ )− ∇ωφλ(̃x0, t̃0;ωθ̃ ) = −ṽ. (5.20)

Suppose that lθ,v passes through a point (x1, t̃0) and that lθ̃ ,ṽ passes through (x2, t̃0).
Note that the angle between lθ,v and lθ̃ ,ṽ is at most ρ−1/2 and that we are computing
a Hausdorff distance within a ball of radius ρ. To prove (5.17), it therefore suffices to
show that |x1 − x2| ! r1/2+δ , which, by (3.41), is the same as saying that

∣∣∇ωφλ(x1, t̃0;ωθ )− ∇ωφλ(x2, t̃0;ωθ )
∣∣ ! r

1
2+δ. (5.21)

We consider two cases ρ ≤ r1/2+δ and ρ ≥ r1/2+δ separately.
Assume we are in the former case. By the assumption that Tθ,v ∩ B (̃x0, ρ) is not

empty, we obtain |x1 − x̃0| ! r1/2+δ . Moreover, by (5.3), (5.4), (5.19), (5.20) and the
triangle inequality, we obtain that

∣∣∇ωφλ(x2, t̃0;ωθ̃ )−∇ωφλ(̃x0, t̃0;ωθ̃ )
∣∣

! r
1
2+δ +

∣∣∇ωφλ(x1, t̃0;ωθ )−∇ωφλ(̃x0, t̃0;ωθ )
∣∣.

(5.22)

This, together with (3.41) and the mean value theorem, implies that

|x2 − x̃0| ! r
1
2+δ, (5.23)
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which further leads to the desired bound for |x1 − x2|.
Assume we are in the latter case. The starting point of the proof of this is similar as

above. By the assumption that Tθ,v ∩ B (̃x0, ρ) is not empty, we obtain |x1− x̃0| ! ρ.
This, combined with (5.22), implies that |x2 − x̃0| ! ρ. Next, the proof starts to be
different.

∇ωφλ(x1, t̃0;ωθ )− ∇ωφλ(x2, t̃0;ωθ )

= ∇ωφλ(x1, t̃0;ωθ )− ∇ωφλ(x2, t̃0;ωθ̃ )

+ ∇ωφλ(x2, t̃0;ωθ̃ )−∇ωφλ(x2, t̃0;ωθ ).

(5.24)

By (5.19) and (5.20), the last expression can be written as

∇ωφλ(̃x0, t̃0;ωθ )− ∇ωφλ(̃x0, t̃0;ωθ̃ )+ ∇ωφλ(x2, t̃0;ωθ̃ )− ∇ωφλ(x2, t̃0;ωθ ).

(5.25)

By the mean value theorem and the bound (3.30) with β = 1 and β ′ = 2, the absolute
value of the last display can be bounded by

|x2 − x̃0||ωθ̃ − ωθ | ! ρρ−
1
2 ! ρ

1
2 . (5.26)

Recall that ρ ≤ r . This finishes the proof of latter case, thus the proof of the whole
lemma. ⊓⊔

6 The Transverse Equidistribution Property

The proof of the transverse equidistribution estimate requires us to study wave packets
from different scales. To make ourselves clear, we sometimes use “large wave packet”
to mean the scale r wave packet, and use “small wave packet” to mean the scale ρ

one.
Recall the admissible parameters in (1.11). Let us introduce more notations for the

next several sections. The first notation is about the transverse complete intersection.
The second definition is about the tangency between tubes and a transverse complete
intersection. The third definition is about collections of tangent tubes at two different
scales.

Definition 6.1 Let P1, . . . , Pn−m : Rn → R be polynomials. We consider the com-
mon zero set

Z(P1, . . . , Pn−m) := {x ∈ Rn : P1(x) = · · · = Pn−m(x) = 0}. (6.1)

Suppose that for all z ∈ Z(P1, . . . , Pn−m), one has

n−m∧

j=1

∇Pj (z) ̸= 0. (6.2)
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Then a connected branch of this set, or a union of connected branches of this set, is
called an m-dimensional transverse complete intersection. Given a set Z of the form
(6.1), the degree of Z is defined by

min
(n−m∏

i=1

deg(Pi )
)
, (6.3)

where theminimumis takenover all possible representations of Z = Z(P1, . . . , Pn−m).

Definition 6.2 Let r ≥ 1 and Z be anm-dimensional transverse complete intersection.
A tube Tθ,v(x0) ∈ T[B(x0, r)] is said to be r−1/2+δm -tangent to Z in B(x0, r) if it
satisfies

• Tθ,v(x0) ⊂ Nr1/2+δm (Z) ∩ B(x0, r);
• For every z ∈ Z ∩ B(x0, r), if there is y ∈ Tθ,v(x0) with |z − y| ! r1/2+δm , then
one has

>(G(θ), Tz Z) ! r−
1
2+δm . (6.4)

Here, Tz Z is the tangent space of Z at z.

Definition 6.3 Let r ≥ ρ ≥ 1 and Z be an m-dimensional transverse complete inter-
section and let B(x̃0, ρ) ⊂ B(x0, r). Define a collection of bigger tangent tubes inside
a smaller ball as

TZ [B(x0, r)] := {T ∈ T[B(x0, r)] : T is r−1/2+δm -tangent to Z in B(x0, r)}.
(6.5)

Given an arbitrary translation b ∈ Rn , define

T̃b[B(x̃0, ρ)] :=
{
T̃ ∈ T̃[B(x̃0, ρ)] : T̃ is ρ−

1
2+δm -tangent to Z + b in B(x̃0, ρ)

}
.

(6.6)

For simplicity, we sometimes use the notation TZ and T̃b in short for TZ [B(x0, r)]
and T̃b[B(x̃0, ρ)], respectively.

Let 1 ≤ r1/2 ≤ ρ ≤ r and x̃0 = (̃x0, t̃0) ∈ Rn . For every pair (θ̃, w) ∈ 5ρ ×
r1/2Zn−1, we define a collection of bigger tubes

Tθ̃ ,w :=
{
Tθ,v ∈ T[B(x0, r)] : dist(θ, θ̃) ! ρ−

1
2

and |v + ∇ωφλ
x0 (̃x0;ωθ )− w| ! r

1
2
}
. (6.7)

Then for every T ∈ Tθ̃ ,w ∩ TZ , if T ∩ B (̃x0, 2ρ) ̸= ∅, the intersection of T and
the horizontal plane {t = t̃0} is contained in the ball B := Bn−1(wH ,Cr1/2+δ) ⊂
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Bn−1(̃x0, 3ρ), where the center wH is defined as

wH := t̃0ωθ̃ +
λ(∇ωφλ(̃x0;ωθ̃ )− w)

(
λ2 − |∇ωφλ(̃x0;ωθ̃ )− w|2

)1/2 . (6.8)

This is due to the coreline equation (4.16) for the tube T , and Lemma 5.5. We remark
that if we perturb t̃0 by an extremely small factor β, the intersection between T and
the horizontal plane {t = t̄0} with t̄0 = t̃0 + β is still contained in the ball B.

The main goal of this section is to prove the following lemma.

Lemma 6.4 Let |b| ! r1/2+δm and recall (5.2). Suppose that h is concentrated on
large wave packets from TZ ∩Tθ̃ ,w for some (θ̃ , w) ∈ 5ρ × r1/2Zn−1. Then for every
W̃ ⊂ T̃b,

∥∥h|W̃
∥∥2
2 ! r O(δm)

(
r
ρ

)− n−m
2

∥h∥22. (6.9)

As a consequence, for every function h concentrated on TZ ,

∥∥h|W̃
∥∥2
2 ! r O(δm)

(
r
ρ

)− n−m
2

∥h∥22. (6.10)

We first show that (6.10) follows from the local one (6.9). Decompose the function
h as

h =
∑

(θ̃ ,w)

h θ̃ ,w (6.11)

such that h θ̃ ,w is concentrated on wave packets fromTZ ∩Tθ̃ ,w. Since when |w−x | ≥
Cr1/2+δ , ĥ θ̃,w(x) = RapDec(r)∥h∥2, we have the almost L2 orthogonality

∥∥h|W̃
∥∥2
2 ! r O(δ)

∑

(θ̃ ,w)

∥∥h θ̃,w|W̃
∥∥2
2. (6.12)

Finally, we use the local estimate (6.9) and Lemma 4.2 to conclude the global estimate
(6.10).

To prove (6.9), note that T̃b only consists smaller tubes T̃ that T̃ ∩ B (̃x0, 3
2ρ) ̸= ∅.

By Lemma 4.5, Lemma 5.4 and Lemma 5.5, we can assume without loss of generality
that for every bigger tube T ∈ Tθ̃ ,w ∩ TZ , one has T ∩ B (̃x0, 2ρ) ̸= ∅.

We break the proof of the local transverse equidistribution estimate (6.9) into several
smaller lemmas. The first thing we would like to find out is the location of (h|W̃)∧.
Consider Z0, the intersection between of variety Z + b and the horizontal hyperplane
{(x, t) : t = t̄0}. By the transversality theorem (for example, Theorem 10.2), we
can choose t̄0 = t̃0 + β for an extremely small number β, so that Z0 is a transverse
complete intersection. Since the small perturbation β is harmless in our proof, to save
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us from abundant notations, let us assume t̄0 = t̃0. Hence Z0 = Z+b∩{t = t̃0} can be
considered as a transverse complete intersection inRn−1, and deg(Z0) = O(deg(Z)).

If Hλ was the Fourier extension operator, (h|W̃)∧ is just contained in a thin neigh-
borhood of Z0. While in our case, (h|W̃)∧ is roughly contained in a thin neighborhood
of 7(Z0), where 7 : Rn−1 → Rn−1 is a smooth map defined as

7(x) := −∇ωφλ(x, t̃0;ωθ̃ ) = −
λ
(
t̃0ωθ̃ − x

)

(
λ2 + |x − t̄0ωθ̃ |2

)1/2 . (6.13)

Before proving something about the support of (h|W̃)∧ rigorously, let us take a look
at the smooth function 7. The next lemma shows that 7 indeed looks like the identity
map of Rn−1.

Lemma 6.5 For any x ∈ Rn−1 and r ≥ ℓ > 0 that Bn−1(x, ℓ) ⊂ Bn−1(0, 3Cnλ), one
has

B
(

7(x),
ℓ

C

)
⊂ 7(B(x, ℓ)) ⊂ B(7(x),Cℓ). (6.14)

The constant C only depends on the choice of Cn in Theorem 3.4.

Proof By Taylor’s theorem, we have that for any y ∈ B(x, r),

7(y)−7(x) = (y − x)J7(x)+ O(λ−1|y − x |2). (6.15)

The Jacobian J7 is an (n − 1)× (n − 1) symmetric matrix A = (akl), with

akl :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ(̃tωθ̃ − x)k (̃tωθ̃ − x)l
(
λ2 + |x − t̃ωθ̃ |2

)3/2 when k ̸= l,

λ[λ2 +∑
j ̸=k (̃tωθ̃ − x)2j ]

(
λ2 + |x − t̃ωθ̃ |2

)3/2 when k = l.
(6.16)

Similar to the argument in (3.39), we can simplify A as

A = λ
(
λ2 + |x − t̃ωθ̃ |2

)1/2

(
λ2 In −

(̃tωθ̃ − x)T (̃tωθ̃ − x)

λ2 + |x − t̃ωθ̃ |2
)
. (6.17)

Inside the bracket, the first matrix has eigenvalues 1, while the second matrix has only
one eigenvalue |x − t̃ωθ̃ |2/(λ2 + |x − t̃ωθ̃ |2) ≤ 4Cn

1+4Cn
< 1 since x ∈ B(0, 3Cnλ)

and since t ≤ Cnλ. This proves that the eigenvalues of A are all positive and have
lower bound C−1 and upper bound C for an absolute constant that depends only on
Cn , uniformly in x . Thus,

|7(y)−7(x)| ∼ |y − x | + O(λ−1|y − x |2), (6.18)
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which yields 7(B(x, ℓ)) ⊂ B(7(x),Cℓ) since |y − x | ≤ r ≤ R ≤ λ1−ε as assumed
in (3.3). For the other side, by the implicit function theorem, we know that 7−1 is
well defined in the domain 7(Bn−1(0, 3Cnλ)) and J7−1(x) = (J7(x))−1. So the
eigenvalues of J7−1(x) have an upper bound C−1 and a lower bound C . Hence we
can prove B(7(x), ℓ

C ) ⊂ 7(B(x, ℓ)) similarly. ⊓⊔

A direct corollary of this lemma is the following:

Corollary 6.6 Let Z0 and B be as above. Then

Nρ1/2+δm /C (7(Z0)) ∩7

(( 1
C

)
B
)
⊂ 7(Nρ1/2+δm (Z0) ∩ B)

⊂ NCρ1/2+δm (7(Z0)) ∩7(CB). (6.19)

Now via Lemma 6.5 and Corollary 6.6, we can say something rigorously related to
the support of (h|W̃)∧. This is shown in the next lemma.

Lemma 6.7 Let h be concentrated on bigger wave packets from Tθ̃ ,w ∩ TZ . Recall
that Z0 was defined in above (6.13), and h|W̃ was introduced in Lemma 6.4. Then

∥∥(h|W̃)∧
∥∥
2 !

∥∥ĥ · 1{NCρ1/2+δm (7(Z0))∩7(CB)}
∥∥
2 + RapDec(ρ)∥h∥2. (6.20)

Proof By Lemma 4.2, one has

∥(h|W̃)∧∥22 !
∑

T̃∈W̃
∥hT̃ ∥22. (6.21)

The scale ρ wave packet ĥT̃ was defined in (4.18). We use its definition to have

∑

T̃∈W̃
∥ĥT̃ ∥22 = ρn−1 ∑

T̃∈W̃
|(hx̃0ψθ̃ )

∧(v)|2∥ψ̃θ̃∥22 = ρ
n−1
2
∑

T̃∈W̃
|(hx̃0ψθ̃ )

∧(v)|2.

(6.22)

Since we can write (hx̃0ψθ̃ )
∧(v) = ĥ ∗ (e−2π iφλ (̃x0; ·)ψ̃θ̃ (·))∧(v), and since the L1

norm of the second function (e−2π iφ
λ (̃x0; ·)ψ̃θ̃ (·))∧ is bounded above by O(1), one

can use Hölder’s inequality for |(hx̃0ψθ̃ )
∧(v)|2 and obtain

∑

T̃∈W̃
∥ĥT̃ ∥22 !

∫
|̂h(y)|2

( ∑

T̃θ̃ ,ṽ∈W̃
|ρ(n−1)/2(e−2π iφ

λ (̃x0; ·)ψ̃θ̃ (·))∧(y − ṽ)|
)
dy.

(6.23)

We claim that the sum inside the bracket is O(1), and it decays rapidly outside of the
set NCρ1/2+δm (7(Z0)) ∩7(CB). This proves the lemma.

To prove the O(1) upper bound, one just needs to notice that there are O(1) caps
θ̃ making contribution in W̃. It remains to prove the rapidly decaying property.
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To prove the rapidly decaying property, we first notice that hT̃θ̃ ,̃v
= RapDec(ρ)∥h∥2

unless T̃θ̃ ,̃v ∩ {t = t̃0} ⊂ N2ρ1/2+δm (Z0) ∩ 2B for every smaller tube T̃θ̃ ,̃v ∈ W̃.
This is because on one hand T̃θ̃ ,̃v ∩ {t = t̃0} ⊂ N2ρ1/2+δm (Z0) since T̃θ̃ ,̃v is tangent
to Z + b; on the other hand, since h is concentrated on Tθ̃ ,w, by Lemma 5.4 we
know that hT̃θ̃ ,̃v

= RapDec(ρ)∥h∥2 unless T̃θ̃ ,̃v ∈ T̃θ,v[B (̃x0, ρ)] for some (θ, v)

with Tθ,v ∈ Tθ̃ ,w. But for such Tθ,v , one has Tθ,v ∩ {t = t̃0} ⊂ B as shown in
above (6.8). Hence, by Lemma 5.5, we have that hT̃θ̃ ,̃v

= RapDec(ρ)∥h∥2 unless

T̃θ̃ ,̃v ∩ {t = t̃0} ⊂ 2B.
Now we only need to consider those smaller tubes T̃θ̃ ,̃v with T̃θ̃ ,̃v ∩ {t = t̃0} ⊂

N2ρ1/2+δm (Z0) ∩ 2B. Using this information, we would like to find out the location
of ṽ in the bracket of (6.23). Recall that the coreline of the smaller tube T̃θ̃ ,̃v satisfies
(4.16), which indeed is (4.36). On the hyperplane {t = t̃0}, we can rewrite (4.36) as
ṽ = −∇ωφλ(x, t̃;ωθ̃ )+ ∇ωφλ(̃x0;ωθ̃ ) =: 8(x). Hence, by Corollary 6.6, one has

ṽ ∈ 8
(
Tθ̃ ,̃v ∩ {t = t̃0}

)
⊂ 8

(
N2ρ1/2+δm (Z0) ∩ 2B

)
⊂ NCρ1/2+δm 8(Z0) ∩8(2B).

(6.24)

Finally, we know from Lemma 4.5 that the function (e−2π iφ
λ (̃x0; ·)ψ̃θ̃ (·))∧(y − ṽ)

in (6.23) decays rapidly unless |y − ṽ + ∇ωφλ(̃x0,ωθ̃ )| ! ρ1/2+δm , that is, y −
ṽ ∈ Bn−1(−∇ωφλ(̃x0,ωθ̃ ),Cρ1/2+δm ). Plugging this back into (6.24) and noticing

7+∇ωφλ(̃x0;ωθ̃ ) = 8, we therefore can conclude that (e−2π iφ
λ (̃x0; ·)ψ̃θ̃ (·))∧(y− ṽ)

decays rapidly unless

y ∈ NCρ1/2+δm 7(Z0) ∩7(CB), (6.25)

where 7 was defined in (6.13). This proves the claim and hence the lemma. ⊓⊔

To conclude (6.9), we need to prove the transverse equidistribution estimate stated
below:

Proposition 6.8 Recall Z0 = (Z+b)∩{t = t̃0} and B = Bn−1(w, r1/2+δm ). Suppose
that h is concentrated on scale r wave packets in Tθ̃ ,w ∩ TZ . Then

∫
|̂h|2 · 1{NCρ1/2+δm (7(Z0))∩7(CB)} ! r O(δm)

(
ρ

r

) n−m
2

∥h∥22. (6.26)

Note that the desired estimate (6.9) is a direct corollary of (6.20) and Proposition 6.8.
The proof of Proposition 6.8 relies on an auxiliary lemma. Let us introduce some

more definitions. First, define

TZ ,B,θ̃ :=
{
Tθ,v ∈ TZ : dist(θ, θ̃) ! ρ−

1
2 and Tθ,v ∩ {t = t̃0} ∩ B ̸= ∅

}
,

(6.27)
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so as proved in above (6.8), one hasTθ̃ ,w∩TZ ⊂ TZ ,B,θ̃ .Wewill prove Proposition 6.8
with Tθ̃ ,w ∩ TZ replaced by TZ ,B,θ̃ . Next, for every (linear) subspace V in Rn , we
define a collection of bigger wave packets TV ,B,θ̃ as

TV ,B,θ̃ :=
{
(θ, v) : Tθ,v ∩ B ̸= ∅, >(G(ωθ ), V ) ! r−

1
2+δm

and dist(θ, θ̃) ! ρ−
1
2
}
. (6.28)

Lemma 6.9 Suppose that V is a subspace of Rn. Let V0 := V ∩ {t = t̃0} and define
V ′ as V⊥0 in Rn−1. If g is concentrated on bigger wave packets from TV ,B,θ̃ , if
9 ⊂ {t = t̃0} is any affine subspace parallel to V ′ and if y1 ∈ 9 ∩7(CB), then

∫

9∩B(y1,ρ1/2+δm )
|̂g|2 ! r O(δm)

(
ρ1/2

r1/2

)dim(V ′) ∫

9
|̂g|2. (6.29)

Proof Since g is concentrated on large wave packets from TV ,B,θ̃ and since G(ω) is
linear (up to a scalar depending onω) as shown in (3.9), there is a shiftωV ∈ Bn−1(0, 1)
such that

{
ω : >(G(ω), V ) ! r−

1
2+δm

}
⊂
{
ω : dist(ω, V0 + ωV ) ! r−

1
2+δm

}
. (6.30)

It implies that g is supported in the r−1/2+δm neighborhood of V0+ωV inside the unit
ball Bn−1(0, 1). As a result, the Fourier transform of (ĝ|9)∨ is supported in an n−m
dimensional r−1/2+δm ball centered at projV ′(ωV ), which implies (see also Lemma
3.11)

|(ĝ|9)| ! |(ĝ|9)| ∗ ηr1/2−δm . (6.31)

Finally, we integrate |(ĝ|9)|2 inside the ball B(y, ρ1/2+δm ) and invoke Hölder’s
inequality to conclude (6.29). ⊓⊔

Proof of Proposition 6.8 We prove Proposition 6.8 via Lemma 6.9. Our proof is similar
to the proof of Lemma 6.2 in [14] and the proof of Lemma 8.4 in [11].

Since wave packets in TZ ,B,θ̃ are tangent to the variety Z inside the ball B, by the
angular condition (6.4), we have

>(G(θ), Tz Z) ! r−
1
2+δm (6.32)

for every z ∈ Z ∩ 2B and Tθ,v ∈ TZ ,B,θ̃ . One thus can find a subspace V ⊂ Rn of
minimal dimension and dim V ≤ dim Z such that for all θ making contribution in
TZ ,B,θ̃ ,

>(G(θ), V ) ! r−
1
2+δm . (6.33)

123



S. Guo et al.

It implies that the function h is indeed concentrated on wave packets from TV ,B,θ̃ . So
we can apply Lemma 6.9 to obtain a subspace V ′ that

∫

9∩B(y1,ρ1/2+δm )
|̂h|2 ! r O(δm)

(
ρ1/2

r1/2

)dim(V ′) ∫

9
|̂h|2 (6.34)

for any 9 ⊂ {t = t̃0} being parallel to V ′ and y1 ∈ 9 ∩7(CB). To finish the proof,
we need three additional claims.

Claim 1. The pushfoward 7(Z0) is quantitatively transverse to V ′ at every point
z ∈ 7(Z0) ∩7(B(0, 3Cnλ)).

Claim 2. 7−1(9) is an n − 1 − dim(V ′) dimensional transverse complete inter-
section in Rn−1.

Claim 3. 9 ∩ NCρ1/2+δm (7(Z0)) ∩ 7(CB) can be covered by r O(δm)(r1/2/
ρ1/2)dim Z0−dim V0 many balls in 9 of radius ρ1/2+δm .

Assume at first that the three claims were verified. We plug Claim 3 back to (6.34)
so that

∫

9
|̂h|2 · 1{NCρ1/2+δm (7(Z0))∩7(CB)} ! r O(δm)

(
ρ

r

) n−m
2
∫

9
|̂h|2. (6.35)

Integrate over all (generic) affine subspaces 9 that are parallel to V ′ to conclude the
proof of Proposition 6.8.

Proof of Claim 1.We follow essentially the proof strategy in [14]. Suppose that Claim
1 fails. It means that there is a point 7(z) ∈ 7(Z0) ∩ 7(B(0,Cλ)) and a subspace
W7 ⊂ T7(z)(7(Z0)) with dim Z0 − dimW7 + dim V ′ < n − 1, such that for any
non-zero vector w ∈ W7, there is a big constant C ′ only depending on the Cn in
Theorem 3.4 that

>(w, V ′) ≤ (C ′)−2. (6.36)

Let (7−1)∗z : T7(z)7(Z0) → Tz Z0 be the map between tangent spaces. Then
>(v, (7−1)∗z (v)) <

π
2 − (C ′)−1 for any v ∈ T7(z)7(Z0) because of the positivity of

J7−1 (see Lemma 6.5). Hence, if we define W as the pullback W := (7−1)∗z (W7) ⊂
Tz Z0, then >(w, V0) " 1 since V0 is perpendicular to V ′. As we will show below,
this indeed implies for arbitrary non-zero vector w ∈ W ,

>(w, V ) " 1. (6.37)

To prove (6.37), let w = w1 + w2 with w1 ⊥ V0 and w2 ∈ V0, so orthV (w) =
orthV (w1) (here we use orthV (w) := w − projV (w) in convention). Note that the
lower bound >(w, V0) " 1 gives |w1| " |w|. Now for any unit vector v ∈ V , we
write v = v1 + v2 where v1 ⊥ V0 and v2 ∈ V0, so |v1| ≤ 1 and >(v1,Rn−1) " 1
due to (6.33). Hence |w1 · v| = |w1 · v1| ≤ c|w1| for some absolute constant c < 1,
which implies |orthV (w)| = |orthV (w1)| ∼ |w1| " |w| and hence (6.37). Finally,
since dim(W ) = dim(W7), one has dim(Z0)− dim(W ) < dim(V ). Hence, the angle
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estimate (6.37) contradicts the minimality of dim(V ), which can be seen via repeating
the proof in [14, page 115]. This proves Claim 1.

Proof of Claim 2. Since 9 is an affine subspace, it is the intersection of κ := n −
1 − dim(V ′) mutually orthogonal hyperplanes L1, . . . , Lκ . Suppose that each L j is
parametrized as

L j : m j · x + l j = 0, (6.38)

where m j is the normal vector of L j and l j ∈ R. Then 7−1(L j ) is indeed a branch
of the quadratic variety

7−1(L j ) : |λm j · (̃t0ωθ̃ − x)|2 − (λ2 + |x − t̃0ωθ̃ |2)l j = 0. (6.39)

Similar to the proof of Lemma 6.5, we can show J7−1(x) is not degenerate for all
x ∈ Range(7). Hence,7−1(L1)∩· · ·∩7−1(Lκ) is a transverse complete intersection.

Proof of Claim 3. Similar to Claim 1, we know that 7−1(9)∩ Z0 is a transverse com-
plete intersection inside B(0,Cnλ) (in fact, by Lemma 10.3, the pullback 7−1(9)

is transverse to Z for generic affine spaces 9). Note that the dimension of the
variety 7−1(9) ∩ Z0 is dim Z0 − dim V0. By Wongkew’s theorem [32], the set
NCρ1/2+δm (7

−1(9) ∩ Z0) ∩ CB can be covered by

r O(δm)

(
r1/2

ρ1/2

)dim Z0−dim V0
(6.40)

many (n−1)-dimensional balls. Hence, via Lemma 6.5, we know that NCρ1/2+δm (9∩
7(Z0)) ∩7(CB) can be covered by the same amount of (n − 1)-dimensional balls,
up to a constant.

Since Tz7(Z0) is quantitatively transverse to9 at every point z ∈ 7(Z0)∩7(2CB)
by Claim 1, one can argue similarly as in [11, Lemma 8.13] to conclude

9 ∩ NCρ1/2+δm (7(Z0)) ∩7(CB) ⊂ Proj9[NCρ1/2+δm (9 ∩7(Z0)) ∩7(CB)].
(6.41)

Therefore, 9 ∩ NCρ1/2+δm (7(Z0)) ∩ 7(CB) can be covered by r O(δm)(r1/2/
ρ1/2)dim Z0−dim V0 many lower-dimensional balls in 9 of radius ρ1/2+δm . This proves
Claim 3. ⊓⊔

7 Multigrains and Functions Concentrated Near a Variety

In this section, following [15] and [17], we introduce some definitions and propositions
for later use in Sects. 8 and 9. In contrast to [17], the definitions and propositions are
stated in terms of the “dimension” of the transverse complete intersection instead of
the codimension so that the notations are consistent with those in the previous sections.
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7.1 Multigrain and Nested Structure

Here we introduce some definitions and lemmas about grains and multigrains, follow-
ing [17, Sect. 3].

Definition 7.1 A grain is defined to be a pair (S, Br ) where S ⊂ Rn is a transverse
complete intersection and Br ⊂ Rn is a ball of some radius r > 0. The dimension
of a grain (S, Br ) is the dimension of the transverse complete intersection S, and its
degree is the degree of S.

Definition 7.2 Let (S, B(x0, r)) be a grain of dimension m. A function f is said to
be tangent to (S, B(x0, r)) if it is concentrated on wave packets belonging to the
collection

{
Tθ,v(x0) ∈ T[B(x0, r)] : Tθ,v(x0) is r−

1
2+δm -tangent to S in B(x0, r)

}
.

(7.1)

Definition 7.3 A multigrain S⃗m is an (n − m + 1)-tuple of grains

S⃗m = (Gn, . . . ,Gm), Gi = (Si , Bri ) for m ≤ i ≤ n

satisfying

• dim(Si ) = i for m ≤ i ≤ n,
• Sn ⊃ Sn−1 ⊃ · · · ⊃ Sm ,
• Brn ⊃ Brn−1 ⊃ · · · ⊃ Brm .

The parameter n−m is referred to as the level of themultigrain S⃗m . The complexity of
the multigrain is defined to be the maximum of the degrees deg Si over allm ≤ i ≤ n.
Finally, the multiscale of S⃗m is the tuple r⃗ = (rn, rn−1, . . . , rm). For two multigrains
S⃗l and S⃗m with m ≤ l, we write

S⃗m ≼ S⃗l

if the first n − l + 1 components of S⃗m agree those of S⃗l .

Definition 7.4 Let S⃗m = (Gn, . . . ,Gm) be a multigrain and

Gi =
(
Si , B(xi , ri )

)
for m ≤ i ≤ n.

Define T[S⃗m] to be the set of scale R := rn tubes Tθn ,vn (xn) ∈ T[B(xn, rn)] satisfying
the following hypothesis:

Nested tube hypothesis. There exists Tθi ,vi (xi ) ∈ T[B(xi , ri )] for m ≤ i < n such
that

(1) dist(θi , θ j ) ! r−1/2j ,

(2) dist
(
Tθ j ,v j (x j ), Tθi ,vi (xi ) ∩ B(x j , r j )

)
! r (1+δ)/2

i ,
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(3) Tθ j ,v j (x j ) ⊂ N
r
1/2+δ j
j

S j

hold true for all i, j with m ≤ j ≤ i ≤ n.

The direction set of T[S⃗m] is defined by

5[S⃗m] :=
{
θ ∈ 5R : Tθ,v ∈ T[S⃗m] for some v ∈ R

1
2Zn−1}. (7.2)

A main ingredient of the proof of Theorem 3.4 is the following lemma.

Lemma 7.5 [17, Lemma 3.7] Let S⃗m be a level n − m multigrain with multiscale
r⃗m = (rn, . . . , rm) and complexity at most d. If R = rn and the constants in (1.11)
are chosen appropriately, then

#5[S⃗m] !ϵ◦,d

( n−1∏

i=m

r
− 1

2
i

)
R

n−1
2 +ϵ◦ . (7.3)

Since our tubes Tθ,v are straight, and the tubes Tθ,v corresponding to the same θ

indicate the same direction (see the definition of the tube Tθ,v (4.16)), the above lemma
can be proved using the nested polynomial Wolff axioms of Zahl [35] and Hickman,
Rogers and Zhang [16]; for instance, one can follow the proof of [17, Lemma 3.7].
We leave out the details.

7.2 Some Lemmas

There are more definitions and lemmas that we will need in Sects. 8 and 9. Let us state
them here, following [15, Sect. 8] and [17, Sect. 5]. In this subsection, we fix a scale
r ≥ 1 and a smaller scale r1/2 ≤ ρ ≤ r , and we consider balls

B (̃x0, ρ) ⊂ B(x0, r) ⊂ [−3Cnλ, 3Cnλ]n−1 ×
[
R
Cn

,CnR
]
. (7.4)

Recall some definitions in Sect. 6:

TZ [B(x0, r)] =
{
T ∈ T[B(x0, r)] : T is r−

1
2+δm -tangent to Z in B(x0, r)

}
,

T̃b[B (̃x0, ρ)] =
{
T̃ ∈ T̃[B (̃x0, ρ)] : T̃ is ρ−

1
2+δm -tangent to Z + b in B (̃x0, ρ)

}
.

(7.5)

For some technical issue and rigorousness, we introduce a “thickening” of an arbitrary
subset of T[B(x0, r)]: Given any W ⊂ T[B(x0, r)], we define

W∗ :=
{
Tθ,v ∈ T[B(x0, r)] : dist(θ, θ ′) ! r−

1
2

and |v − v′| ! r
1+δ
2 for some (θ ′, v′) ⊂W

}
. (7.6)

Note thatW∗ is a set slightly larger thanW. Intuitively, one can identifyW∗ withW.
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Definition 7.6 For W̃ ⊂ T̃[B (̃x0, ρ)], we define ↑W̃ to be a collection of all pairs
Tθ,v(x0) ∈ T[B(x0, r)] such that there exists a non-empty set T̃θ̃ ,ṽ (̃x0) ∈ W̃ satisfying

(1) dist(θ̃ , θ) ! ρ−1/2,
(2) dist(T̃θ̃,ṽ (̃x0), Tθ,v(x0) ∩ B (̃x0, ρ)) ! r1/2+δ .

This definition naturally appears when comparing wave packets at different scales
by the following property: For every W̃ ⊂ T̃[B (̃x0, ρ)] and g ∈ L1,

g|W̃ = (g|↑W̃)|W̃ + RapDec(r)∥g∥2. (7.7)

It can be thought of as a reverse version of Lemma 5.4. Since the proof is straightfor-
ward, we leave out the details.

Lemma 7.7 For every setW1,W2 ⊂ T[B(x0, r)] and function g, it holds that

∥(g|W1)|W2∥L2 ! ∥g|W1∩W∗
2
∥L2 + RapDec(r)∥g∥2. (7.8)

Proof We split our function into two parts:

(g|W1)|W2 = (g|W1∩W∗
2
)|W2 + (g|W1\W∗

2
)|W2 . (7.9)

We apply Lemma 4.2 to the function g|W1∩W∗
2
and obtain

∥(g|W1∩W∗
2
)|W2∥2 ! ∥g|W1∩W∗

2
∥2. (7.10)

On the other hand, by the proof of Lemma 5.4, we see that

∥(g|W1\W∗
2
)|W2∥2 = RapDec(r)∥g∥2. (7.11)

This completes the proof. ⊓⊔

Lemma 7.8 Let Z = Z(P1, . . . , Pn−m) be a transverse complete intersection, with
deg Pj ≤ d. Let b ∈ Rn with |b| ! r1/2+δm . Suppose that B (̃x0, ρ) ⊂ B(x0, r). If g
is concentrated on wave packets from TZ [B(x0, r)] and W̃ ⊂ T̃b[B (̃x0, ρ)], then

∥g|W̃∥22 !d r O(δm)

(
r
ρ

)− n−m
2

∥g|↑W̃∥22 + RapDec(r)∥g∥22. (7.12)

The above lemma is a corollary of Lemmas 6.4 and 7.7. The same lemma for the
Fourier extension operator for paraboloid is stated and proved in [17]. We refer to [17,
Lemma 5.4] for the details of the proof.
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Lemma 7.9 Let Z = Z(P1, . . . , Pn−m) be a transverse complete intersection, with
degPj ≤ d. Suppose that B (̃x0, ρ) ⊂ B(x0, r) and B (̃x0, ρ)∩ Nρ1/2+δm Z ̸= ∅. Let g
be concentrated on wave packets from TZ [B(x0, r)]. Then there are a set of translates
B ⊂ B(0, 2r1/2+δm ) and functions {gb}b∈B such that

∥Hλg∥p
BLp

k,A(B(x̃0,ρ))
!d (log r)2p

∑

b∈B
∥Hλgb∥pBLp

k,A(B(x̃0,ρ)∩Nρ1/2+δm (Z+b))

+RapDec(r)∥g∥p2 , (7.13)
∑

b∈B
∥gb∥22 !d ∥g∥22, (7.14)

#B !d

(
r
ρ

)n( 12+δm )

, (7.15)

and3

gb := g|T̃′b[B (̃x0,ρ)] for some set T̃′b[B (̃x0, ρ)] ⊂ T̃b. (7.16)

The proof of Lemma 7.9 requires the lemma below:

Lemma 7.10 Let ρ ≤ r
2 and Z ⊂ Rn be a transverse complete intersection. Let

Tθ,v ∈ TZ [B(x0, r)] and b ∈ B(0, 2r1/2+δm ). If T̃θ̃ ,ṽ (̃x0) ∈ T̃θ,v[B (̃x0, ρ)] satisfies

T̃θ̃ ,ṽ (̃x0) ∩ Nρ1/2+δm /2(Z + b) ̸= ∅, (7.17)

then T̃θ̃ ,ṽ ∈ T̃b[B (̃x0, ρ)].

The rigorous proof of Lemma 7.10 is quite technical, and we refer to the proof of
[11, Proposition 9.2] for the details. We do not reproduce the proof here.

Proof of Lemma 7.9 We first apply [11, Lemma 10.5].4 Then there exist a finite set
B ⊂ B(0, 2r1/2+δm ) with cardinality at most O(( rρ )

n(1/2+δm)) and a collection B′ of
finitely overlapping K 2-balls BK 2 intersecting B (̃x0, ρ) such that

3 We refer to (7.22) for the explicit definition of T̃′b[B (̃x0, ρ)].
4 We cannot directly apply the lemma because our operator is not of the normal form. However, one can
prove the lemma for our operator by following the same argument. We leave out the details here.
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∥Hλg∥p
BLp

k,A(B (̃x0,ρ))
! (log r)2p

∑

BK2∈B′
µHλg(BK 2), (7.18)

and for each BK 2 ∈ B′ the following holds: there exists some b ∈ B such that

BK 2 ⊂ Nρ1/2+δm /2(Z + b), (7.19)

and there exist at most O(1) vectors b ∈ B for which

BK 2 ∩ Nρ1/2+δm (Z + b) ̸= ∅. (7.20)

For every b ∈ B, we let B′b denote the collection of all the balls BK 2 satisfying (7.19).
By (7.18) and (7.19), we know that

∥Hλg∥p
BLp

k,A(B (̃x0,ρ))
! (log r)2p

∑

b∈B

∑

BK2∈B′b

µHλg(BK 2). (7.21)

We define

T̃′b[B (̃x0, ρ)] :=
{
T̃ ∈

⋃

Tθ,v∈TZ [B(x0,r)]
T̃θ,v[B (̃x0, ρ)] : T̃ ∩

⋃

BK2∈B′b

BK 2 ̸= ∅
}
.

(7.22)

Since every element of T̃′b[B (̃x0, ρ)] intersects Nρ1/2+δm /2(Z + b), by Lemma 7.10,
we know that T̃′b[B (̃x0, ρ)] ⊂ T̃b[B (̃x0, ρ)]. Let us define gb := g|T̃′b[B (̃x0,ρ)]. By the
proof of Lemma 5.4, the construction of the collection T̃′b[B (̃x0, ρ)], and the triangle
inequality of the broad norm [11, Lemma 6.2]), we also know that

µHλg(BK 2) ! µHλgb (BK 2)+ RapDec(r)∥g∥p2 (7.23)

for every BK 2 ∈ B′b. Therefore, by combining the above inequality with (7.21) and
the cardinality condition on B, we obtain the first inequality (7.13).

Let us now show the second inequality (7.14). By Lemma 4.2 and (7.20), we obtain

∑

b∈B
∥gb∥22 =

∑

b∈B

∥∥∥∥
∑

T̃∈T̃′b[B (̃x0,ρ)]
gT̃

∥∥∥∥
2

2
!
∑

b∈B

∑

T̃∈T̃′b[B (̃x0,ρ)]
∥gT̃ ∥22

!
∑

T̃∈T̃[B (̃x0,ρ)]
∥gT̃ ∥22 ! ∥g∥22. (7.24)

This completes the proof. ⊓⊔
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8 Finding Polynomial Structures

In this and the next section, we build a big algorithm to break down the quantity
∥Hλg∥BLp

k,A(BR)
in our main estimate (3.20), and use it to prove our main result,

Theorem 3.4. The whole algorithm is involved, so we split it into two smaller ones.
This section is devoted to the first one, and we follow [17, Section 6.1]. See also [15,
Sect. 9].

Recall the following admissible parameters introduced in (1.11)

ϵC ≪ δ ≪ δn ≪ δn−1 ≪ · · ·≪ δ1 ≪ ϵ◦ ≪ ϵ. (8.1)

We define δ̃m−1 to be

(1− δ̃m−1)
(
1
2
+ δm−1

)
= 1

2
+ δm . (8.2)

Notice that δm−1
2 ≤ δ̃m−1 ≤ 2δm−1. This constant δ̃m−1 is introduced for some tech-

nical reasons and plays a minor role in the proof.

8.1 Polynomial Partitioning Lemma

For a polynomial P , we denote by cell(P) a collection of the connected components
of Rn \ Z(P). We state the polynomial partitioning lemma used in [14].

Lemma 8.1 ([14]) Let r ≫ 1 and d,m be positive integers. Let 0 < δm ≪ 1. Suppose
that Z = Z(P1, . . . , Pn−m) is an m-dimensional transverse complete intersection,
with degPj ≤ d. Suppose that F ∈ L1(Rn) is non-negative and supported on Br ∩
Nr1/2+δm Z. Then at least one of the following cases hold true:

(1) (Cellular case) There exists a polynomial P of degree at most O(d) with the
following properties:

(a) #cell(P) ∼ dm .
(b) For each O ′ ∈ cell(P), define the shrunken cells O := O ′ \ NR1/2+δm (Z(P)).

Then there exists a subcollection cell◦(P) of cell(P) such that for every O
generated by O ′ ∈ cell◦(P)

∫

O
F ∼ d−m

∫

Rn
F .

Moreover, the number of the shrunken cells O generated by cell◦(P) is com-
parable to dm, and the diameter of O is smaller than r

2 . We denote by O a
collection of the shrunken cells.
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(2) (Algebraic case) There exists (m−1)-dimensional transverse complete intersection
Y , defined using polynomials of degree at most O(d) such that

∫

Br∩Nr1/2+δm (Z)
F !

∫

Br∩Nr1/2+δm (Y )
F .

Suppose that a function g and a grain (Z , Br ) of dimension m are given. We will
apply the above lemma to the function

F(x) =
∑

BK2

µHλg(BK 2)
1

|BK 2 |1BK2∩Br∩Nr1/2+δm (Z)(x) (8.3)

with a number d. This number d will be much larger than the degrees of polynomial
defining Z . If the cellular case holds true, then

∥Hλg∥p
BLp

k,A(Br∩Nr1/2+δm (Z))
! dm∥Hλg∥p

BLp
k,A(O)

(8.4)

for all O ∈ O. Here, every O ∈ O has a diameter at most r
2 and #O ∼ dm for some

sufficiently large number d, which will be determined later. If the algebraic case holds
true, then

∥Hλg∥BLp
k,A(Br∩Nr1/2+δm (Z)) ! ∥Hλg∥BLp

k,A(Br∩Nr1/2+δm (Y )) (8.5)

for some (m−1)-dimensional transverse complete intersection Y , defined using poly-
nomials of degree at most d.

8.2 The First Algorithm

Let us illustrate the first algorithm. This algorithm is the counterpart of the first algo-
rithm in [17, Sect. 6.1]. Let 1 ≤ m ≤ n.

Input The algorithm [alg 1] takes as its input:

• A grain
(
Z , B(x0, r)

)
of dimension m with B(x0, r) ⊂ [−3Cnλ, 3Cnλ]n−1 ×

[ R
Cn

,Cnλ].
• A function g ∈ L1 which is tangent to the grain

(
Z , B(x0, r)

)
.

• An admissible large integer A ∈ N.

Output The j th stage of [alg 1] outputs:

• A choice of spatial scale ρ j ≥ 1.
• Certain integers #a( j), #c( j) ∈ N0 satisfying #a( j)+ #c( j) = j .5

5 The integers #a( j) and #c( j) indicate the number of occurrences of algebraic cases and cellular cases,
respectively.
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• A family of subsetsO j of Rn referred to as cells. Each cell Oj ∈ O j is contained
in some ρ j -ball BOj := B(xOj , ρ j ).

• A collection of functions {gO j }Oj∈O j . For each cell Oj there is a translate ZOj :=
Z + yOj

such that gO j is tangent to the grain (ZOj , BOj ).
• A large integer d ∈ Nwhich depends only on the admissible parameters and deg Z .

All the outputs will be constructed so that for some constants

C I
j,δ(d, r), C II

j,δ(d), C III
j,δ(d, r), C IV

j,δ(d, r) !d,δ r ϵ◦d#c( j)δ, (8.6)

which will be defined explicitly in (8.13), and A j = 2−#a( j)A the following properties
hold true:
Property I: For some fixed N ∈ N,

∥Hλg∥p
BLp

k,A(B(x0,r))
≤ C I

j,δ(d, r)
∑

Oj∈O j

∥HλgO j ∥pBLp
k,A j

(Oj )
+ jr−N∥g∥pL2(Bn−1).

(8.7)

Property II:

∑

Oj∈O j

∥gO j ∥22 ≤ C II
j,δ(d)d

#c( j)∥g∥22. (8.8)

Property III:

∥gO j ∥2L2(Bn−1) ≤ C III
j,δ(d, r)

(
r
ρ j

)− n−m
2

d−#c( j)(m−1)∥g∥2L2(Bn−1). (8.9)

To state the last property, we need to introduce some notations. For W̃ ⊆
T̃[B(xOj , ρ j )] let ↑ j W̃ denote the set of wave packets Tθ,v(x0) ∈ T[B(x0, r)] satis-
fying

dist(θ, θ̃ j ) ≤ c jρ
− 1

2
j and dist

(
T̃θ̃ j ,ṽ j

(xOj ), Tθ,v(x0) ∩ BOj

)
≤ c jr

1
2+δ

(8.10)

for some T̃θ̃ j ,ṽ j
(xOj ) ∈ W̃. Here {c j }∞j=0 is an increasing positive sequence that

each of which is bounded above by an absolute constant C◦. In fact, one can take
c j = C◦(1 − 2− j/2) for some big constant C◦. We introduce this sequence only for
the sake of rigorousness. Heuristically, one can take c j = 1.
Property IV: For any W̃ ⊆ T̃[B(xOj , ρ j )], each gO j satisfies

∥gO j |W̃∥22 ≤ C IV
j,δ(d, r)

(
r
ρ j

)− n−m
2

∥g|↑ jW̃∥22 + RapDec(r)∥g∥2L2 . (8.11)
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Stopping conditions
Suppose that we have the j th stage of [alg 1] outputs. We stop our algorithm if
one of [tiny] and [tang] holds true.

Stop:[tiny] The algorithm terminates if ρ j ≤ r δ̃m−1 .
Stop:[tang] Let Ctang and Calg be large, fixed dimensional constants and ρ̃ :=

ρ
1−δ̃m−1
j . The algorithm terminates if there exist

• S a collection of grains (S, Bρ̃) of dimension m − 1, scale ρ̃ and degree at most
Calgd;

• An assignment of a function g(S,Bρ̃ ) to each (S, Bρ̃) ∈ S which is tangent to
(S, Bρ̃)

such that the following four conditions hold:
Condition I:

∑

Oj∈O j

∥HλgO j ∥pBLp
k,A j

(Oj )
≤ Ctang

∑

(S,Bρ̃ )∈S
∥Hλg(S,Bρ̃)∥

p
BLp

k,A j /2
(Bρ̃ )

.

Condition II:
∑

(S,Bρ̃ )∈S
∥g(S,Bρ̃ )∥2L2(Bn−1) ≤ Ctangrnδ̃m

∑

Oj∈O j

∥gO j ∥2L2(Bn−1).

Condition III:

max
(S,Bρ̃ )∈S

∥g(S,Bρ̃ )∥22 ≤ Ctang max
Oj∈O j

∥gO j ∥22.

To state the last condition, we need to introduce some notations. Let us denote
by x̃ the center of Bρ̃ . Given W̃ ⊂ T̃[B(x̃, ρ̃)], we denote by ↑ W̃ the set of all
Tθ,v(xOj ) ∈ T[B(xOj , ρ j )] for which there exists some T̃θ̃ ,ṽ(x̃) ∈ W̃ satisfying

dist(θ̃ , θ) ! ρ̃−
1
2 , dist

(
T̃θ̃ ,ṽ(x̃), Tθ,v(xOj ) ∩ B(x̃, ρ̃)

)
! ρ

1
2+δ

j . (8.12)

Condition IV: Given (S, B(x̃, ρ̃)) ∈ S there exists some Oj ∈ O j such that

∥g(S,Bρ̃ )|W̃∥22 ≤ Ctang∥gO j |↑W̃∥22

holds for all W̃ ⊆ T̃[B(x̃, ρ̃)].

8.3 A Construction of Outputs in the First Algorithm

In this subsection, we construct outputs and show that they satisfy the desired prop-
erties. Let d be a sufficiently large number, which will be determined later. We first
define the constants

123



The Bochner–Riesz Problem

C I
j,δ(d, r) := d#c( j)δ(log r)2p#a( j)(1+δ),

C II
j,δ(d) := d#c( j)δ+n#a( j)(1+δ),

C III
j,δ(d, r) := d#c( j)δ+#a( j)δrC#a( j)δm ,

C IV
j,δ(d, r) := d jδrC#a( j)δm ,

(8.13)

and define the initial outputs

• ρ0 := r , #a(0) = #c(0) := 0,
• O0 := {Rn} and ZO0 = Z ,
• gRn := g.

Note that (8.6) holds true. Properties I, II, III, and IV are also vacuously true with the
initial outputs.

Let us now assume that we have the outputs of j th stage and the stopping conditions
fail. We need to construct the outputs of ( j + 1)th stage satisfying all the desired
properties. For each function gO j , by the tangency assumption and Property III of
gO j , we obtain

∥HλgO j ∥BLp
k,A j

(Oj )
= ∥HλgO j ∥BLp

k,A j
(Oj∩N

ρ
1/2+δm
j (Z+yO j

)
) + RapDec(r)∥g∥p2 .

(8.14)

Hence, we can apply the polynomial partitioning lemma to the first term on the right-
hand side as in the discussion of Sect. 8.1. Let us denote by O j,cell the subcollection
ofO j consisting of all the cells for which the cellular case holds. We defineO j,alg :=
O j\O j,cell. By Property I of the j th outputs, we have

∥Hλg∥p
BLp

k,A j
(B(x0,r))

≤ C I
j,δ(d, r)

( ∑

Oj∈O j,cell

∥HλgO j ∥pBLp
k,A j

(Oj )

+
∑

Oj∈O j,alg

∥HλgO j ∥pBLp
k,A j

(Oj )

)

+
(
jr−N + RapDec(r)

)
∥g∥p2 . (8.15)

There are two cases depending on which term dominates.

Cellular-Dominant Case

Consider the case that the first term on the right-hand side of (8.15) dominates the
second term. In this case, we have

∥Hλg∥p
BLp

k,A j
(B(x0,r))

≤ 2C I
j,δ(d, r)

∑

Oj∈O j,cell

∥HλgO j ∥pBLp
k,A j

(Oj )

+
(
jr−N + RapDec(r)

)
∥g∥p2 . (8.16)
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We take the outputs

ρ j+1 :=
ρ j

2
, #c( j + 1) = #c( j)+ 1, #a( j + 1) = #a( j). (8.17)

Let us now construct the collection of step j + 1 cellsO j+1 and {gO j+1}Oj+1∈O j+1

so that they satisfy the desired properties mentioned in the algorithm. Since we are in
the cellular case, for every Oj ∈ O j,cell, we have a polynomial P , depending on the
choice of Oj , of degree at most d and we have the following properties:

• The number of connected components of Rn \ Z(P) is comparable to dm .
• For each connected component O ′ of Rn \ Z(P), define the shrunken cell O =

O ′ \ NR1/2+δm (Z(P)). Then

∥HλgO j ∥pBLp
k,A j

(Oj )
! dm∥HλgO j ∥pBLp

k,A j
(O)

. (8.18)

• The number of the shrunken cells O is comparable to dm .
• The diameter of O is at most r

2 .

We denote by O(Oj ) the collection of the shrunken cells. As mentioned above, we
know that #O(Oj ) ∼ dm and each O ∈ O(Oj ) has diameter at most ρ j+1, and

∥HλgO j ∥pBLp
k,A j

(Oj )
! dm∥HλgO j ∥pBLp

k,A j
(O)

, (8.19)

and thus,

∥HλgO j ∥pBLp
k,A j

(Oj )
!
∑

O∈O
∥HλgO j ∥pBLp

k,A j
(O)

. (8.20)

Let us denote by B(xO , ρ j+1) the ball containing O . Define

TO := TO [B(xOj , ρ j )] := {T ∈ TZ+yO j
[B(xOj , ρ j )] : T ∩ O ̸= ∅}, (8.21)

T̃O := T̃O [B(xO , ρ j+1)] :=
⋃

Tθ,v∈TO

T̃θ,v[B(xO , ρ j+1)], (8.22)

where T̃θ,v[B(xO , ρ j+1)] was defined in (5.3). By Lemma 5.4, it holds that

∥HλgO j ∥BLp
k,A j

(O) ! ∥Hλ((gO j |TO )|T̃O
)∥BLp

k,A j
(O) + RapDec(r)∥g∥2. (8.23)

By Lemma 5.5 and a simple calculation, we know that

⋃

T̃∈T̃O

T̃ ⊂ N2ρ1/2+δm
j

(Z + yOj
)

⊂
⋃

b∈Zn :|b|!1

N
ρ
1/2+δm
j+1 /2

(
Z + yOj

+
(

ρ
1/2+δm
j+1

2

)
b
)
.

(8.24)
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Thus, every tube T̃ ∈ T̃O intersects N
ρ
1/2+δm
j+1 /2

(
Z + yOj

+ (ρ
1/2+δm
j+1 /2)b

)
for some b

depending on the choice of T̃ . We now write

T̃O =
⊔

b∈Zn :|b|!1

T̃O,b (8.25)

where T̃O,b is some sub-collection of T̃O satisfying6

T̃O,b ⊂
{
T̃ ∈ T̃O : T̃ ∩ N

ρ
1/2+δm
j+1 /2

(
Z + yOj

+
(

ρ
1/2+δm
j+1

2

)
b
)
̸= ∅

}
. (8.26)

Define

O j+1(Oj ) :=
{
O ∩ N

ρ
1/2+δm
j+1 /2

(
Z + yOj

+
(

ρ
1/2+δm
j+1

2

)
b
)
:

O ∈ O(Oj ), b ∈ Zn with |b| ! 1
}
, (8.27)

O j+1 :=
⋃

Oj∈O j,cell

O j+1(Oj ). (8.28)

For every Oj+1 ∈ O j+1, there exist corresponding Oj , b, and O . Define a translate
of the variety

ZOj+1 := Z + yOj+1
:= Z + yOj

+
(

ρ
1/2+δm
j+1

2

)
b (8.29)

and a function

gO j+1 :=
(
(gO j )|TO

)∣∣
T̃O,b

. (8.30)

Let us definexOj+1 := xO . ByLemma7.10,wehave T̃O,b ⊂ T̃ZO j+1
[B(xOj+1 , ρ j+1)].

Via Lemma 4.2 (the L2 orthogonality), one has

∑

Oj+1∈O j+1(Oj )

∥gO j+1∥22 !
∑

O∈O(Oj )

∑

b:|b|!1

∥(gO j |TO )|T̃O,b
∥22

!
∑

O∈O(Oj )

∥gO j |TO∥22

!
∑

O∈O(Oj )

∑

T∈TO

∥(gO j )T ∥22.

(8.31)

6 Possibly a tube T̃ intersects N
ρ
1/2+δm
j+1 /2

(
Z + yO j

+ (ρ
1/2+δm
j+1 /2)b

)
for many b. We simply choose one

out of them.
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By the fundamental theorem of algebra, we know that each tube Tθ,v ∈ T[B(xOj , ρ j )]
can intersect at most O(d) cells Oj+1 ∈ O j+1(Oj ). Therefore, we further have

∑

O∈O(Oj )

∑

T∈TO

∥(gO j )T ∥22 !
∑

O∈O(Oj )

∑

T∈T[B(xO j ,ρ j )]:T∩O ̸=∅
∥(gO j )T ∥22

!
∑

T∈T[B(xO j ,ρ j )]

∑

O∈O(Oj ):T∩O ̸=∅
∥(gO j )T ∥22

! d∥gO j ∥22.
(8.32)

The above two estimates lead to
∑

Oj+1∈O j+1(Oj )

∥gO j+1∥22 ! d∥gO j ∥22. (8.33)

Since we know that #O j+1(Oj ) ∼ dm , by pigeonholing argument, we can take a
subcollection ofO j+1(Oj ) such that the cardinality is similar toO j+1(Oj ) and every
element Oj+1 of the subcollection satisfies

∥gO j+1∥22 ! d−(m−1)∥gO j ∥22. (8.34)

By abusing the notation, we still call such subcollection O j+1(Oj ) and their union
O j+1. This completes the construction of our outputs.

It remains to show that our outputs satisfy the desired properties. The function gO j+1

is tangent to the grain (ZOj+1 , BOj+1) because of T̃O,b ⊂ T̃ZO j+1
[B(xOj+1 , ρ j+1)].

Properties I, II, and III follow from the arguments in [15, pages 254–256]. We follow
[17, pages 26–28] for Property IV. Our proofs are very similar to theirs, so we only
give a sketch of the proof.

Let us start with Property I. By (8.16), (8.20), (8.23), (8.25), and (8.30) with the
triangle and Hölder’s inequality, we obtain

∥Hλg∥p
BLp

k,A j
(B(x0,r))

≤ CC I
j,δ(d, r)

∑

Oj+1∈O j+1

∥HλgO j+1∥pBLp
k,A j+1

(Oj+1)

+( j + 1)r−N∥g∥p2 . (8.35)

Property I follows by taking d sufficiently large so that CC I
j,δ(d, r) ≤ C I

j+1,δ(d, r).
To prove Property II, we take the sum over Oj ∈ O j to the inequality (8.33) and
obtain

∑

Oj+1∈O j+1

∥gO j+1∥22 ! d
∑

Oj∈O j

∥gO j ∥22 ! C II
j,δ(d)d

1+#c( j)∥g∥22, (8.36)

where the second inequality follows from Property II of the j th outputs. Property
II follows by taking d sufficiently large so that CC II

j,δ(d) ≤ C II
j+1,δ(d). Similarly,
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Property III follows from the inequality (8.34) and Property II of the j th outputs. We
leave out the details.

Finally, let us prove Property IV. Recall that the notations ↑ j W̃ and ↑W̃ were
introduced in (8.10) and in (8.12). By an application of Lemma 7.7, (7.7), and Property
IV of the j th outputs, we obtain

∥gO j+1 |W̃∥22 ! ∥gO j |↑W̃∥22 + RapDec(r)∥g∥22

! C IV
j,δ(d, r)

(
r
ρ j

)− n−m
2

∥g|↑ j (↑W̃)∥22 + RapDec(r)∥g∥2L2 .

(8.37)

It is proved that ↑ j(↑W̃) ⊂↑ j+1W̃ in [17, page 28]. Therefore, by arguing similarly
as in the proof of Lemma 7.7, and by modifying the constant c j+1 appropriately and
taking d sufficiently large, we obtain Property IV. This finishes the discussion on the
cellular-dominant case.

Algebraic-Dominant Case

Consider the case that the second term on the right-hand side of (8.15) dominates the
first term. Recall (8.14):

∥HλgO j ∥BLp
k,A j

(Oj )
= ∥HλgO j ∥BLp

k,A j
(Oj∩N

ρ
1/2+δm
j (Z+yO j

)
) + RapDec(r)∥g∥p2 .

(8.38)

Since we are in the algebraic case, we have

∥Hλg∥p
BLp

k,A j
(Br )

≤ 2C I
j,δ(d, r)

∑

Oj∈O j,alg

∥HλgO j ∥pBLp
k,A j

(Oj∩Nρ1/2+δm (Y (Oj )))

+ ( jr−N + RapDec(r))∥g∥p2 (8.39)

for some (m− 1)-dimensional transverse complete intersection Y (Oj ) that is defined
using polynomials of degree at most d. Abbreviate Y (Oj ) to Y for simplicity. We take
the outputs

ρ j+1 := ρ
1−δ̃m−1
j , #c( j + 1) = #c( j), #a( j + 1) = #a( j)+ 1. (8.40)

It remains to define O j+1 and {gO j+1}Oj+1∈O j+1 , and prove the desired properties.
Given Oj ∈ O j,alg, we take a collection B(Oj ) of finitely overlapping balls of ρ j+1
covering Oj ∩ N

ρ
1/2+δm
j

Y . For every B ∈ B(Oj ), we record tubes intersecting B;

TB := {T ∈ TZO j
[B(xOj , ρ j )] : T ∩ B ̸= ∅}. (8.41)

Let us define tangent and transverse tubes.
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Definition 8.2 We denote by TB,tang the collection of all the tubes Tθ,v ∈ TB such
that

(1) Tθ,v ∩ 2B ⊂ N
2ρ

1/2+δm−1
j+1

(Y );

(2) For every x ∈ Tθ,v and y ∈ Y ∩ 2B satisfying |y − x | ! ρ
1/2+δm−1
j+1 , it holds that

>(Gλ(ωθ ), TyY ) ! ρ
− 1

2+δm−1
j+1 . (8.42)

We define a collection of transverse tubes by TB,trans := TB \ TB,tang, and define
functions

gB,tang := (gO j )|TB,tang, gB,trans := (gO j )|TB,trans . (8.43)

Since for any ball B ∈ B(Oj ) the wave packets not intersecting B are negligible, we
have

HλgO j (x) = HλgB,tang(x)+ HλgB,trans(x)+ RapDec(r)∥g∥2, x ∈ B.

(8.44)

By the finite sub-additivity of the broad norm (see [11, Lemma 6.1]), we obtain

∑

Oj∈O j,alg

∥HλgO j ∥pBLp
k,A j

(Oj∩Nρ1/2+δm (Y ))

∼
∑

Oj∈O j,alg

∑

B∈B(Oj )

∥HλgO j ∥pBLp
k,A j

(B)

!
∑

Oj∈O j,alg

∑

B∈B(Oj )

(
∥HλgB,tang∥pBLp

k,A j+1
(B)

+ ∥HλgB,trans∥pBLp
k,A j+1

(B)

)

+ RapDec(r)∥g∥p2 . (8.45)

Note that by the failure of the stopping condition of [tang], it holds that

∑

Oj

∑

B∈B(Oj )

∥HλgB,tang∥pBLp
k,A j+1

(B)
≤ C−1tang

∑

Oj∈O j

∥HλgO j ∥pBLp
k,A j

(Oj )
. (8.46)

Indeed, we take collections of grains S(Oj ) := {(Y (Oj ), B) : B ∈ B(Oj )} and
S :=⋃

Oj
S(Oj ), and take functions g(Y ,B) := gB,tang. By Lemma 5.5 and (8.43), the

function gB,tang is tangent to (Y (Oj ), B). Also, one may see that Conditions II, III,
and IV of the stopping condition are satisfied. By this and the failure of the stopping
condition, Condition I fails and it gives (8.46).

Since we are in the algebraic case and the constant Ctang is sufficiently large, the
contribution from the tangential wave packets can be absorbed into the left hand side
of (8.45) and we obtain
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∑

Oj∈O j,alg

∥HλgO j ∥pBLp
k,A j

(Oj∩Nρ1/2+δm (Y ))
!

∑

Oj∈O j,alg

∑

B∈B(Oj )

∥HλgB,trans∥pBLp
k,A j+1

(B)

+ RapDec(r)∥g∥p2 . (8.47)

We apply Lemma 7.9 to each gB,trans and obtain a collection B of points such that

∥HλgB,trans∥pBLp
k,A j+1

(B)
! (log r)2p

∑

b∈B
∥HλgB,trans,b∥pBLp

k,Ak+1
(B∩N

ρ
1/2+δm
j+1

(ZO j+b))

(8.48)

and

∑

b∈B
∥gB,trans,b∥22 ! ∥gB,trans∥22, (8.49)

where gB,trans,b := (gB,trans)b.
We define the collection of step j + 1 cells by

O j+1(Oj ) :=
{
B ∩ N

ρ
1/2+δm
j+1

(Z + yOj
+ b) : B ∈ B(Oj ) and b ∈ B

}
,

(8.50)

O j+1 :=
⋃

Oj∈O j,alg

O j+1(Oj ). (8.51)

For every Oj+1 ∈ O j+1, we define a function gO j+1 := gB,trans,b and a point yOj+1
:=

yOj
+ b.

It remains to show that all these outputs satisfy the desired properties. We will
follow arguments in [15, pages 259–261] for Properties I, II, and III, and [17, pages
26–28] for Property IV. These arguments are also similar to the counterpart of the
cellular-dominant case. Hence, we give only a sketch here. First, it is straightforward
to see that Property I follows from (8.39), (8.47) and (8.48) together with Property I of
the j th outputs. Before proving Property II, we recall that our tubes are straight. We
apply [14, Lemma 5.7] to the wave packets at scale ρ j+1, and by the L2-orthogonality,
we obtain

∑

Oj+1

∥gO j+1∥22 ! dn
∑

Oj

∥gO j ∥22. (8.52)

Property II now follows from the above inequality with Property II of the j th outputs.
To prove Property III, we apply Lemma 7.8 to the function gB,trans with W̃ = T̃′b in
defined (7.22) and by the L2-orthogonality, we obtain

∥gO j+1∥22 ! r O(δm)

(
ρ j

ρ j+1

)− n−m
2

∥gO j ∥22 + RapDec(r)∥g∥22. (8.53)
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It suffices to combine this inequality with Property III of the j th outputs. Property IV
also follows from an application of Lemma 7.8. We leave out the details.

9 A Proof of Theorem 3.4

In this section, we prove Theorem 3.4, that is, we prove

∥Hλg∥BLp
k,A(BR)

!ϵ Rϵ∥g∥
2
p

L2∥g∥
1− 2

p
L∞ (9.1)

for every 1 ≤ R ≤ λ and ball BR ⊂ [−3Cnλ, 3Cnλ]n−1 × [ R
Cn

,Cnλ]. We follow the
proofs in [17, Sects. 4, 6.3, and 6.4]. Note that (9.1) is obviously true unless g satisfies
the non-degenerate hypothesis:

∥Hλg∥BLp
k,A(BR)

" Rϵ∥g∥L2 . (9.2)

Hence, in this section,we always assume that g satisfies the non-degenerate hypothesis.
Consider a family of Lebesgue exponents pi for k ≤ i ≤ n satisfying

pk ≥ pk+1 ≥ · · · ≥ pn =: p ≥ 2

and define 0 ≤ αi ,βi ≤ 1 in terms of the pi by

αi :=
(
1
2
− 1

pi

)−1(1
2
− 1

pi+1

)
and βi :=

(
1
2
− 1

pi

)−1(1
2
− 1

pn

)

for k ≤ i ≤ n − 1 and αn :=: βn :=: βn+1 := 1. All the exponents pi will be
determined later.

9.1 The Second Algorithm

Let us explain the second algorithm [alg 2].

Input The algorithm takes as its input:

• A ball B(x0, R) ⊂ [−3Cnλ, 3Cnλ]n−1 × [ R
Cn

,Cnλ].
• An admissible large integer A ∈ N.
• A function g ∈ L1 satisfying the non-degenerate hypothesis (9.2).

Output The (n + 1− l)th step of the recursion will produce:

• An (n + 1− l)-tuple of:

– Scales r⃗l = (rn, . . . , rl) satisfying R = rn > rn−1 > · · · > rl ;
– Large and (in general) non-admissible parameters D⃗l = (Dn, . . . , Dl);
– Integers A⃗l = (An, . . . , Al) such that A = An > An−1 > · · · > Al .
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• For l ≤ l ′ ≤ n a family S⃗l ′ of level n − l ′ multigrains. Each S⃗l ′ ∈ S⃗l ′
has multiscale r⃗l ′ = (rn, . . . , rl ′) and complexity Oϵ(1). The families have
a nested structure in the sense that for each l ≤ l ′ < n and each S⃗l ′ ∈
S⃗l ′ , there exists some S⃗l ′+1 ∈ S⃗l ′+1 such that S⃗l ′ ≼ S⃗l ′+1.

• For l ≤ l ′ ≤ n an assignment of a function gS⃗l′ to each S⃗l ′ ∈ S⃗l ′ . Each gS⃗l′ is

tangent to (Sl ′ , Brl′ ), the final component of S⃗l ′ . Moreover, Sl ′ is of dimension l ′.

All these outputs will be chosen so that the following properties hold true.
Property I: The inequality holds true:

∥Hλg∥BLp
k,A(BR)

! M(r⃗l , D⃗l)RO(ϵ◦)∥g∥1−βl
L2(Bn−1)

(∑

S⃗l∈S⃗l

∥HλgS⃗l∥
pl
BL

pl
k,Al

(Brl )

) βl
pl
,

(9.3)

where the pair (Sl , Brl ) is the last component of the multigrain S⃗l and

M(r⃗l , D⃗l) :=
( n∏

i=l

Di

)(n−l)δ( n∏

i=l

r
1
2 (βi+1−βi )

i D
1
2 (βi+1−βl )

i

)
.

Property II:

∑

S⃗l∈S⃗l

∥gS⃗l∥
2
2 !

( n∏

i=l

D1+δ
i

)
RO(ϵ◦)∥g∥2L2(Bn−1). (9.4)

Property III: For l ′ with l + 1 ≤ l ′ ≤ n,

max
S⃗l∈S⃗l

∥gS⃗l∥
2
2 !

( l ′−1∏

i=l

(
ri+1

ri

)− n−i
2

D−i+δ
i

)
RO(ϵ◦) max

S⃗l′ ∈S⃗l′
∥gS⃗l′ ∥

2
2. (9.5)

To state the last property, we need to introduce some notations. Let us consider a
multigrain S⃗l = (Gn, . . . ,Gl) ∈ S⃗l and denote Gi = (Si , B(xn−i , ri )). Given W̃ ⊆
T̃[B(xn−l , rl)], let ↑↑lW̃ denote the set of wave packets Tθ,v ∈ T[B(xn−l−1, rl+1)]
for which there exists some T̃θ̃ ,ṽ ∈ W̃ satisfying

dist(θ̃ , θ) ≤ C◦r
− 1

2
l and dist

(
T̃θ̃ ,ṽ(xn−l), Tθ,v(xn−l−1) ∩ B(xn−l , rl)

)
≤ C◦r

1
2+δ

l+1 .

(9.6)

Here, the constant C◦ is the constant mentioned in the discussion below the inequality
(8.10).

123



S. Guo et al.

Property IV: Let l ≤ l ′ ≤ n − 1. For every S⃗l ′ ∈ S⃗l ′ , S⃗l ′+1 ∈ S⃗l ′+1 with S⃗l ′ ≼ S⃗l ′+1,
and W̃ ⊂ T̃[B(xn−l ′, rl ′)], it holds that

∥gS⃗l′ |W̃∥
2
L2(Bn−1) !

(
rl ′+1

rl ′

)− n−l′
2

(Dl ′)
δRO(ϵ◦)∥gS⃗l′+1

|(↑↑l′W̃)∗∥22
+ RapDec(R)∥g∥2L2 . (9.7)

Here, the notation ∗ was introduced in (7.6).

Stopping conditions
Suppose that we have the outputs of the (n+1−l)th stage of [alg 2]. We terminate
our algorithm if the following condition [tiny-dom] is satisfied.

Stop:[tiny-dom] The following inequality holds true:

∑

S⃗l∈S⃗l

∥HλgS⃗l∥
pl
BL

pl
k,Al

(Brl )
≤ 2

∑

S⃗l∈S⃗l,tiny

∥HλgS⃗l∥
pl
BL

pl
k,Al

(Brl )
, (9.8)

where the right-hand summation is restricted to those S⃗l ∈ S⃗l for which [alg 1]
terminates due to the stopping condition [tiny].

9.2 A Construction of Outputs of the Second Algorithm

In this subsection, we construct the outputs and show that they satisfy the desired
properties in the algorithm. We first define the initial outputs as follows:

• rn := R, Dn := 1, An := A.
• S⃗n := {S⃗n} and S⃗n := (Rn, B(x0, R)).
• gS⃗n := g.

These outputs vacuously satisfy the desired properties.
Let us now assume that we have the outputs of the (n + 1 − l)th step for some

1 ≤ l ≤ n and the stopping condition [tiny-dom] fails. We need to construct the
outputs of the (n + 2 − l)th step so that they satisfy the desired properties. By the
failure of the stopping condition [tiny-dom], we know that [alg 1] stops due
to [tang]. Hence,

∑

S⃗l∈S⃗l

∥HλgS⃗l∥
pl
BL

pl
k,Al

(Brl )
≤ 2

∑

S⃗l∈S⃗l,tang

∥HλgS⃗l∥
pl
BL

pl
k,Al

(Brl )
, (9.9)

where the right-hand summation is restricted to those S⃗l ∈ S⃗l for which [alg 1]
stops due to [tang]. By the definition of [tang] and the first three properties of
[alg 1], for each multigrain S⃗l ∈ S⃗l,tang, there exist

• a collection Sl−1[S⃗l ] of grains of dimension l − 1, some scale rl−1 and degree
O(1),
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• an assignment of a function g(S,Brl−1 ) to each (S, Brl−1) ∈ Sl−1[S⃗l ] tangent to the
grain (S, Brl−1),

• some parameter Dl−1 := d#c( j0) where [alg 1] terminates at the j0th stage,
• some parameter Al−1 = Al/2#a( j0),

such that

∥HλgS⃗l∥
p
BLp

k,Al
(Brl )

! RO(ϵ◦)
∑

(S,Brl−1 )∈Sl−1[S⃗l ]
∥Hλ

(
(gS⃗l )(S,Brl−1 )

)
∥p
BLp

k,Al−1 (Brl−1 )

+RapDec(R)∥gS⃗l∥
p
2 , (9.10)

∑

(S,Brl−1 )∈Sl−1[S⃗l ]
∥(gS⃗l )(S,Brl−1 )∥

2
2 ! D1+δ

l−1 R
O(ϵ◦)∥gS⃗l∥

2
2, (9.11)

max
(S,Brl−1 )∈Sl−1[S⃗l ]

∥(gS⃗l )(S,Brl−1 )∥
2
2 !

(
rl
rl−1

)− n−l
2

D−(l−1)+δ
l−1 RO(ϵ◦)∥gS⃗l∥

2
2, (9.12)

∥(gS⃗l )(S,Brl−1 )|W̃∥
2
2 !

(
rl
rl−1

)− n−l
2

Dδ
l−1R

O(ϵ◦)∥gS⃗l |↑l (↑W̃)∥22 + RapDec(R)∥gS⃗l∥
2
2

(9.13)

for every sub-collection W̃ of the wave packets at scale rl−1. Here, we recall that the
notations ↑l and ↑ are defined in (8.10) and (8.12), respectively.

Note that the parameters rl−1, Dl−1, and Al−1 may depend on the choice of the
multigrain S⃗l . To take uniform parameters independent of the choice, we apply a
pigeonholing argument by losing some (log R)C . By taking a sub-collection of S⃗l,tang
and abusing the notation, we may say that for every S⃗l ∈ S⃗l,tang the collection Sl−1[S⃗l ]
has the uniform parameters rl−1, Dl−1 and Al−1.

We define a family of multigrains by

S⃗l−1 :=
{
S⃗l−1 := (S⃗l , (S, Brl−1)) : (S, Brl−1) ∈ Sl−1[S⃗l ]

}
(9.14)

and the function gS⃗l−1 := (gS⃗l )(S,Brl−1 ). It is elementary to see that Property II follows
from (9.11) and Property III follows from (9.12). Also, using Hölder’s inequality
(see [15, pages 266–267]), Property I follows from (9.11). We leave out the details.
It remains to show Property IV. Since our outputs at the (n + 1 − l)th step satisfy
Property IV, it suffices to prove for the case that l ′ = l − 1. By (9.13) and Property
III, it suffices to prove that

∥gS⃗l |↑l (↑W̃)∥2L2 ! ∥gS⃗l |(↑↑l−1W̃)∗∥2L2 + RapDec(R)∥g∥2L2 , (9.15)

where the notation ↑↑lW̃ was introduced in (9.6) and W∗ was defined in (7.6). If we
can show ↑l(↑W̃) ⊂↑↑l−1W̃, then the estimate above follows from Lemmas 4.2 and
7.7. In fact, in [17, page 28], it is proved that ↑l (↑W̃) ⊂↑l−1 W̃. By the definition
of ↑↑l−1W̃, we also know that ↑l−1 W̃ ⊂↑↑l−1W̃, hence, ↑l(↑W̃) ⊂↑↑l−1W̃. This
gives Property IV and finishes the proof.

123



S. Guo et al.

9.3 A Proof of Theorem 3.4

Let us prove the broad norm estimate (9.1). We first state the vanishing property of
the broad norm.

Lemma 9.1 Let 1 < r ≤ R, and let 1 ≤ m < k ≤ n, and let Z be an m-dimensional
transverse complete intersection. Suppose that g is concentrated on wave packets
from TZ [B (̃x0, r)]. Then for every ball B (̃x0, r) ⊂ [−3Cnλ, 3Cnλ]n−1 × [ R

Cn
,Cnλ],

it holds that

∥Hλg∥BLp
k,A(B (̃x0,r))

= RapDec(r)∥g∥2. (9.16)

The proof is straightforward and we leave out the details here. The interested reader
should consult the proof of the analogous result in [11, page 339].

As a consequence of [alg 2] and Lemma 9.1, we will obtain the following
multiscale grains decomposition, which is the counterpart of that in [17, Sect. 4.1].

Input The algorithm takes as its input:

• A ball B(x0, R) ⊂ [−3Cnλ, 3Cnλ]n−1 × [ R
Cn

,Cnλ].
• An admissible large integer A ∈ N.
• A function g ∈ L1 satisfying the non-degenerate hypothesis (9.2).

Output The algorithm produces:

• O a finite collection of open subsets of Rn of diameter at most Rϵ◦ .
• A dimension m with k ≤ m ≤ n and an integer parameter 1 ≤ Am−1 ≤ A.
• Scales r⃗m = (rn, . . . , rm) satisfying R = rn > rn−1 > · · · > rm .
• Large non-admissible parameters D⃗m−1 = (Dn, . . . , Dm−1).
• Form ≤ l ≤ n a family S⃗m of level n− l multigrains. Each S⃗l ∈ S⃗l has multiscale
r⃗l = (rn, . . . , rl) and complexity Oϵ(1). The families have a nested structure in
the sense that for eachm ≤ l ≤ n and each S⃗l ∈ S⃗l , there exists some S⃗l+1 ∈ S⃗l+1
such that S⃗l ≼ S⃗l+1.

• Form ≤ l ≤ n an assignment of a function gS⃗l to each S⃗l ∈ S⃗l . Each gS⃗l is tangent
to (Sl , Brl ), the final component of S⃗l . Moreover, Sl is of dimension l.

All these outputs will be chosen so that the following properties hold true.

Property I: The inequality holds true:

∥Hλg∥BLp
k,A(BR)

! M(r⃗m, D⃗m)RO(ϵ◦)∥g∥1−βm
L2(Bn−1)

(∑

O∈O
∥HλgO∥pmBLpm

k,Am
(O)

) βm
pm
,

(9.17)

where

M(r⃗m, D⃗m) :=
( n∏

i=m

Di

)(n−m)δ( n∏

i=m

r
1
2 (βi+1−βi )

i D
1
2 (βi+1−βm )

i

)
.
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Property II:

∑

O∈O
∥gO∥22 !

( n∏

i=m−1
D1+δ
i

)
RO(ϵ◦)∥g∥2L2(Bn−1). (9.18)

Property III: For m ≤ l ≤ n,

max
O∈O

∥gO∥22 ! r
− n−l

2
l

( l−1∏

i=m−1
r
− 1

2
i D−i+δ

i

)
RO(ϵ◦) max

S⃗l∈S⃗l
∥gS⃗l∥

2
2. (9.19)

Property IV: For m ≤ l ≤ n − 1,

∥gS⃗l∥
2
L2(Bn−1) ! r

n−l
2

l

( n−1∏

i=l

r
− 1

2
i Dδ

i

)
RO(ϵ◦)∥g#

S⃗l
∥22, (9.20)

where

g#
S⃗l
:= g|T[S⃗l ]. (9.21)

Here, T[S⃗l ] is defined in Definition 7.4.
Let us explain howwe obtain themultiscale grains decomposition.We first note that

[alg 2] terminates at (n + 1− m)th step with m ≥ k. Otherwise, [alg 2] does
not terminate at (n+1−k)th step, and as an application of Lemma 9.1, we obtain that
∥Hλg∥BLp

k,A(BR)
= RapDec(R)∥g∥2. However, since we are assuming that g satisfies

the non-degenerate hypothesis (9.2), this does not take place.
By the stopping condition of [alg 2], we know that [alg 1] terminates due

to [tiny]. Let us denote byO a final collection of cells and define Am−1 and Dm−1
as in [15, pages 267–268]. Then it is straightforward to see that Properties I, II, and
III follow from those of [alg 2]. Let us explain how Property IV can be deduced
from that of [alg 2]. Let us fix an n − l level multigrain S⃗l . Since S⃗l has a nested
structure, we can take n − i level multigrains S⃗i such that

S⃗l ≼ S⃗l+1 ≼ · · · ≼ S⃗n . (9.22)

For l ≤ i ≤ n, if (Si , B(xn−i , ri )) denotes the (n − i + 1)th component of S⃗l , then
let Ttang[Si ] denote the set of all wave packets of scale ri tangent to Si in B(xn−i , ri ).
We construct sets Wi ⊂ Ttang[Si ] for l ≤ i ≤ n as follows: We first set

Wl := Ttang[Sl ], (9.23)

and define recursively

Wi+1 := Ttang[Sl ] ∩ (↑↑iWi )
∗. (9.24)

123



S. Guo et al.

By Property IV of [alg 2], we know that

∥gS⃗i |Wi ∥2L2(Bn−1) !
(
ri+1

ri

)− n−i
2

Dδ
i R

O(ϵ◦)∥gS⃗i+1
|(↑↑iWi )∗∥22 + RapDec(R)∥g∥2L2

(9.25)

for l ≤ i ≤ n. Recall that gS⃗i+1
is concentrated on wave packets belonging to

Ttang[Si+1], and thus, we know that

gS⃗i+1
= gS⃗i+1

|Ttang[Si+1] + RapDec(R)∥gS⃗i+1
∥2. (9.26)

By (9.24), (9.25), (9.26), Lemma 7.7, and Property III, we obtain that

∥gS⃗i |Wi ∥2L2(Bn−1) !
(
ri+1

ri

)− n−i
2

Dδ
i R

O(ϵ◦)∥gS⃗i+1
|Wi+1∥22 + RapDec(R)∥g∥2L2 .

(9.27)

We iterate this inequality, and it suffices to set the function g#
S⃗l

:= g|W0 and notice
that this function satisfies the nested tube hypothesis in Definition 7.4. We refer to [17,
page 31] for more details. This completes the proof of Property IV.

Let us now see how the multiscale grains decomposition can be applied to prove
Theorem 3.4. Recall that (9.1) is vacuously true unless g satisfies the non-degenerate
hypothesis (9.2).Hence,wemay assume that g satisfies the non-degenerate hypothesis.
We now apply the above multiscale grains decomposition and obtain

∥Hλg∥BLp
k,A(BR)

! M(r⃗m, D⃗m)RO(ϵ◦)∥g∥1−βm
L2(Bn−1)

(∑

O∈O
∥HλgO∥pmBLpm

k,Am
(O)

) βm
pm
.

(9.28)

Since each element of O has a diameter at most Rϵ◦ , we obtain

∥HλgO∥BLpm
k,Am

(O) ! RCϵ◦∥gO∥2. (9.29)

By combining these two inequalities, we obtain

∥Hλg∥BLp
k,A(BR)

! RCϵ◦M(r⃗m, D⃗m)∥g∥1−βm
L2(Bn−1)

( ∑

O∈O
∥gO∥pmL2

) βm
pm

! RCϵ◦M(r⃗m, D⃗m)∥g∥1−βm
L2(Bn−1) (9.30)

×
( ∑

O∈O
∥gO∥2L2

︸ ︷︷ ︸
Part I

) βm
pm (

sup
O∈O

∥gO∥22
︸ ︷︷ ︸

Part II

)( 12− 1
pm

)βm
.
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We apply (9.18) to Part I. Then by the definition of βm , the right-hand side is bounded
by

∥Hλg∥BLp
k,A(BR)

!
( n∏

i=m−1
r

1
2 (βi+1−βi )

i D
βi+1
2 −( 12− 1

pn
)+Cδ

i

)
RCϵ◦∥g∥

2
pn
2

×
(
sup
O∈O

∥gO∥22
︸ ︷︷ ︸

Part II

) 1
2− 1

pn (9.31)

where rm−1 := 1. This inequality is the counterpart of the last inequality of
[17, Sect. 4.1].

To deal with Part II, we need the following lemma, which is the counterpart of [17,
Lemma 4.3]. This lemma is a corollary of the nested polynomial Wolff axioms.

Lemma 9.2 (cf. [17, Lemma 4.3]) For m ≤ l ≤ n, and the functions g#
S⃗l
defined in

(9.21), it holds that

max
S⃗l∈S⃗l

∥g#
S⃗l
∥2L2 !

( n−1∏

i=l

r
− 1

2
i

)
Rϵ◦∥g∥2L∞ . (9.32)

Proof By the L2-orthogonality, we know that

∥g#
S⃗l
∥22 !

∑

θ∈5[S⃗l ]

∑

v:Tθ,v∈T[S⃗l ]
∥gTθ,v∥22. (9.33)

Since gTθ,v is supported on θ , by taking the maximum over θ , this is bounded by

#5[S⃗l ] max
θ∈5R

( ∑

v∈R1/2Zn−1
∥gTθ,v∥2L2(θ)

)
. (9.34)

By the L2-orthogonality and replacing the L2-norm by the L∞-norm, it is further
bounded by

#5[S⃗l ]R−
n−1
2 ∥g∥2∞. (9.35)

It suffices now to apply Lemma 7.5 and bound #5[S⃗l ]. ⊓⊔

After applying (9.19), (9.20), and this lemma to Part II, we obtain

max
O∈O

∥gO∥2L2 !ϵ

( n−1∏

i=m−1
r
− 1

2
i Dδ

i

)( n−1∏

i=l

r
− 1

2
i

)( l−1∏

i=m−1
D−ii

)
RCϵ◦∥g∥2L∞

(9.36)

123



S. Guo et al.

for every m ≤ l ≤ n. This inequality is the counterpart of the inequality (4.2) of [17].
We now combine (9.31) and (9.36) as in [17, Sect. 4.3] and obtain the desired estimate
(9.1). Since the proof is identical to theirs, we leave out the details.

10 Appendix: A Transversality Lemma

The appendix is devoted to a transversality lemma. First, let us introduce one more
definition.

Definition 10.1 LetM, N be smoothmanifolds. Assume that f : M → N and A ⊂ N
a submanifold. Then f is said to be transverse to A, which is denoted by f # A, if
for any x ∈ M with f (x) = y ∈ A, the tangent space TyN is spanned by Ty A and the
image Dfx (TxM).

Now recall the follow version of the transversality theorem.

Theorem 10.2 ([12, page 68]) Let X , S, Y be smooth manifolds without boundary
and A ⊂ N a smooth submanifold. Let F : V → C∞(M, N ) satisfy the following
condition:

(1) the evaluation map Fev : X × S → Y , (x, s) 0→ Fs(x) is C∞.
(2) Fev is transverse to A.

Then the complement of the set

# (F; A) := {s ∈ S : Fs # A} (10.1)

in V has measure zero.

Let 7 : Rn → Rn be a smooth map and let Z ⊂ Rn be a smooth submanifold. Fix
k vectorsm1, . . . ,mk ∈ Rn , 1 ≤ k ≤ n. Consider a family of parallel affine subspaces
{9c}c∈Rk in Rn formed by (m1, . . . ,mk):

9c :

⎧
⎪⎪⎨

⎪⎪⎩

m1 · x − c1 = 0,
...

mk · x − ck = 0.

(10.2)

We show that 7−1(9c) is transverse to Z for generic 9c.

Lemma 10.3 The complement of the

C7 := {c ∈ Rk : 7−1(9c) is transverse to Z} (10.3)

in Rk has measure zero.
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Proof We first take X = Z , S = Rk , Y = Rk , A = 0, and Fev = (m1 · 7(z) −
v1, . . . ,mk ·7(z)−vk) be the evaluation map in Theorem 10.2. Then the complement
of the set

CF := {c ∈ Rk : Fc # A} (10.4)

in Rk has measure zero. Then we take X = Rn , S = Rk , Y = Rk , A = 0, and
Gev = (m1 · 7(z)− v1, . . . ,mk · 7(z)− vk). One can argue similarly to get that the
complement of

CG := {c ∈ Rk : Gc # A} (10.5)

in Rk has measure zero. Take C = CF ∩ CG . We claim that C ⊂ C7, which proves the
lemma.

To prove our claim above, first note that 7−1(9c) ⊂ Rn is a smooth embedding of
dimension n − k when c ∈ C, since Gc # A. Take any z ∈ Z ∩7−1(9c). We need to
show Tz Z + Tz7−1(9c) = Rn . Notice that

(1) G|Z = F , so DzG|Tz Z = DzF .
(2) DzF is surjective since Fc # A.
(3) G(7−1(9c)) = 0, which implies DzG|Tz7−1(9c)

= 0.

Thus, we have

(1) DzG is surjective on Tz Z .
(2) ker(DzG) = Tz7−1(9c), since both 7−1(9c) and ker(DzG) have dimension

n − k.

Hence Tz Z and ker(DzG) = Tz7−1(9c) span the whole space Rn as desired. ⊓⊔
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