N
Check for
Updates

MaxK-GNN: Extremely Fast GPU Kernel Design for
Accelerating Graph Neural Networks Training

Hongwu Pengl’*, Xi Xiel*, Kaustubh Shivdikar?, MD Amit Hasan!, Jiahui Zhao', Shaoyi Huang’,
Omer Khan', David Kaeli?, Caiwen Ding1
*These authors contributed equally.
University of Connecticut, USA. 2 Northeastern University, USA.

Uhongwu.peng, xi.xie, amit. hasan, jiahui.zhao, shaoyi huang, khan, caiwen.ding}@uconn.edu
2{shivdikark, d kaelil@northeastern.edu

Abstract

In the acceleration of deep neural network training, the
graphics processing unit (GPU) has become the mainstream
platform. GPUs face substantial challenges on Graph Neural
Networks (GNNs), such as workload imbalance and mem-
ory access irregularities, leading to underutilized hardware.
Existing solutions such as PyG, DGL with cuSPARSE, and
GNNAdvisor frameworks partially address these challenges.
However, the memory traffic involved with Sparse-Dense
Matrix Matrix Multiplication (SpMM) is still significant.

We argue that drastic performance improvements can
only be achieved by the vertical optimization of algorithm
and system innovations, rather than treating the speedup
optimization as an "after-thought" (i.e., (i) given a GNN algo-
rithm, designing an accelerator, or (ii) given hardware, mainly
optimizing the GNN algorithm). In this paper, we present
MaxK-GNN, an advanced high-performance GPU training
system integrating algorithm and system innovation. (i) We
introduce the MaxK nonlinearity and provide a theoretical
analysis of MaxK nonlinearity as a universal approximator,
and present the Compressed Balanced Sparse Row (CBSR)
format, designed to store the data and index of the feature
matrix after nonlinearity; (ii) We design a coalescing en-
hanced forward computation with row-wise product-based
Sparse Matrix-Matrix Multiplication (SpGEMM) Kernel us-
ing CBSR for input feature matrix fetching and strategic
placement of a sparse output accumulation buffer in shared
memorys; (iii) We develop an optimized backward computa-
tion with outer product-based and Sampled Sparse Matrix
Dense Matrix Multiplication (SSpMM) Kernel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS °24, April 27-May 1, 2024, La Jolla, CA, USA

© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640426

683

We conduct extensive evaluations of MaxK-GNN and re-
port the system training time. Experiments show that MaxK-
GNN system could approach the speedup limit according
to Amdahl’s law. We achieve comparable accuracy to SOTA
GNNs, but at a significantly increased speed: 3.22x/4.24%
speedup (vs. 5.52%/7.27X) on Reddit compared to DGL and
GNNAdvisor implementations. Our implementation can be
found on GitHub'.

CCS Concepts: « Computer systems organization — Ar-
chitectures; « Computing methodologies — Parallel com-
puting methodologies; Machine learning.

Keywords: Graph Neural Network, SpMM, SpGEMM, Sam-
pled Sparse Matrix Dense Matrix Multiplication (SSpMM),
MaxK Nonlinearity, parallel computing, GPUs

ACM Reference Format:

Hongwu Pengl’*, Xi Xiel**, Kaustubh Shivdikar?, MD Amit Hasan!,
Jiahui Zhao!, Shaoyi Huangl, Omer Khan!, David Kaeli%, Caiwen
Ding!. 2024. MaxK-GNN: Extremely Fast GPU Kernel Design for
Accelerating Graph Neural Networks Training. In 29th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS °24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620665.3640426

1 Introduction

Graph Convolutional Networks (GCNs), a specific type of
Graph Neural Networks (GNNs), have garnered significant
attention in recent years due to their unparalleled capabil-
ity to extract latent information from graph data [1-3]. The
field of GCNs manifests in a myriad of important practical
applications, including the prediction of cascading power-
grid failures [4], traffic forecasting [5], recommendation sys-
tems [6, 7], and drug discovery [8]. In the design and ac-
celeration of GNN training, GPU platforms have become
the prevalent choice. Conventional GCN acceleration pro-
cesses a graph feature matrix (X) by multiplying it with a
dense small weight matrix (W), followed by multiplying the
resultant output with a highly sparse irregular adjacency
matrix (A) via Sparse-Dense Matrix Matrix Multiplication

(SpMM) [9].

Lhttps://github.com/harveyp123/MaxK-GNN

https://doi.org/10.1145/3620665.3640426
https://doi.org/10.1145/3620665.3640426
https://github.com/harveyp123/MaxK-GNN
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640426&domain=pdf&date_stamp=2024-04-27

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

= SpMM: 3.267 s
= Linear 2: 71.9 ms = Others: 492.6 ms

A

Linear 1: 71.8 ms

Input

SAGEConv |/
SAGEConv |

/
/
/

SAGEConv \‘\\ Linear2
)
(a) GraphSAGE (b) SAGEConv (c) Time consumption
blocks block breakdown

Figure 1. GraphSAGE structure analysis: latency break-
down of full-batch GraphSAGE training on the ogbn-proteins
dataset over 30 epochs, with 256 hidden dimensions. GPU
platform: Nvidia A100.

Addressing the demands for high-performance and effi-
cient GNN systems has led to two primary research trends:
algorithmic optimization and hardware-level enhancement.
The former encapsulates methods such as graph reorder-
ing, e.g., GNNAdvisor [10], run-time community detection,
e.g., I-GCN [11], and graph partitioning, e.g., GCoD [12].
Conversely, hardware-level approaches focus on workload
balancing and efficient hardware mapping, with specific
work tackling workload imbalance stemming from irregular
input data with power-law distributed non-zero elements,
e.g., AWB-GCN [13], FlowGNN [14], MergePath-SpMM [15],
GROW [16], G-CoS [17], ENGN [18] [13-21].

Challenges. Despite the advancements, there are grant
challenges. Many existing accelerators, including AWB-GCN
[13] and GCoD [12], are FPGA based [11-13] or ASIC based
[22, 23] which are typically not open-sourced, and are user-
unfriendly. They require specialized hardware such as on-
chip distribution networks and comprehensive graph prepro-
cessing support to address the workload imbalance caused
by SpMM (referred to as "evil rows") [13]. In comparison, ex-
isting GPU systems provide open-sourced and user-friendly
implementations, however, they are still far from meeting
performance limits. Using the profiling results of full batch
GraphSAGE [3] training as an illustration, shown in Fig. 1.
The computation and memory demands associated with the
SpMM kernel are the major bottlenecks during the train-
ing process, contributing to over 83.6% of the total train-
ing time. More specifically, the GPU’s multi-level memory
hierarchy [24] and SpMM’s usage of memory-efficient for-
mats (e.g., compressed sparse row (CSR)) create difficulties in
shared memory buffering design and hinder the exploitation
of memory locality [25].

Research Gap. We summarize the root causes of the
above inefficiencies as: (i) Memory Traffic Challenges in GPU-
based Frameworks: Existing works adopt a row-wise multi-
plication approach which employs nonzero-grouping tech-
niques, e.g., GNNAdvisor [10], thereby transferring atomic
accumulation into shared memory which resides in a stream-
ing multiprocessor (SM). Although this approach mitigates
the cost of atomic accumulation in global memory;, it still

684

Peng and Xie, et al.

[L

: ¥ j Rt OE LR
legh latenc'y ~ Reduced SPMM comp. via MaxK
on SpMM! - Hardware accel.!
(a) GraphSAGE layer (b) GraphSAGE with MaxK nonlinearity

Figure 2. GraphSAGE layer example with (a) ReLU (b) MaxK
nonlinearity. SSpMM: sampled sparse matrix dense matrix
multiplication.

requires a substantial number of global memory transactions
to access the input feature matrix, resulting in total mem-
ory traffic scaling linearly with the hidden dimension and
number of nonzeros [26]. The linear scaling with original hid-
den dimension dimy,i4in and nnz exacerbates this problem.
MergePath [15] further resolves SpMM workload imbalance
issues using a binary search-based warp mapping, but is less
effective when the hidden dimension is large. (ii) Algorith-
mic Limitations and Resource Waste: Prevailing algorithmic
methods, such as graph partitioning [27] and graph sam-
pling [28], which are tailored to address large-scale graph
training challenges, frequently lead to a reduction in accu-
racy [27] and accrue overhead in communication [27] and
subgraph sampling, as well as redundant computing [28].
This architecture-oblivious workflow consistently results in
inefficient hardware utilization. These gaps underline the
pressing need for sustainable acceleration solutions.

Proposed Research. We argue that drastic performance
improvements can only be achieved by the vertical integra-
tion and optimization of algorithms and system innovations.
Our approach is substantially different. Rather than treating
the sustainability optimization as an "after-thought" (i.e., (i)
given a GNN algorithm, designing an accelerator, or (ii) given
a platform, primarily optimizing the GNN algorithm), we pro-
pose a set of GNN paradigms that work cooperatively at
both the algorithm and GPU system levels to deliver strong
performance scaling. Our target is a high accuracy, high
performance, and low latency GNN training system.

In this work, we introduce MaxK-GNN, an advanced GPU
training system integrating algorithm and system innova-
tions. Our design significantly outperforms the state-of-the-
art (SOTA) GPU-based GNN training solutions, including
GNNAdvisor [10] and DGL [9]. MaxK-GNN is strategically
constructed on the PyTorch framework [29] for its front-end,
and further extends the GPU’s computational capabilities by
customizing the MaxK nonlinearity to select the top-kth ele-
ment for each node embedding and implementing innovative

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

Sparse Matrix-Matrix Multiplication (SpGEMM) and Sam-
pled Sparse Matrix Dense Matrix Multiplication (SSpMM)
kernels using C++/CUDA.

The design of MaxK-GNN system is focused on three core
contributions, also illustrated in Fig. 2:

@® Node-Balanced Feature Dimension Reduction through
MaxK Nonlinearity: We introduce the MaxK nonlinearity, and
provide a theoretical analysis of MaxK nonlinearity as a uni-
versal approximator. We present the Compressed Balanced
Sparse Row (CBSR) format, designed to store the data and
index of the feature matrix after nonlinearity. This approach
not only facilitates memory coalescing, but also significantly
reduces traffic on the GPU platform. Experiments show that
we can reduce the effective feature map dimension from 256
to 16 with a minor accuracy drop.

@ Coalescing Enhanced Forward Computation with Row-
wise Product-Based SpGEMM Kernel: This component encom-
passes: (i) the utilization of the CBSR format for right-hand
matrix fetching, leading to a notable memory traffic reduc-
tion. For example, Reddit dataset with the original hidden
dimension as 256 and MaxK k value as 16, can reduce the
global memory traffic by 90.6% compared to SpMM. (ii) the
strategic placement of a sparse output accumulation buffer
in shared memory, enabling coalesced global memory accu-
mulation on the output matrix, while maintaining the same
accumulation efficiency as a conventional SpMM design.

@® Optimized Backward Computation with Outer Product-
Based SSpMM Kernel Design: This segment focuses on the
acceleration of the computation pattern (sparse X dense =
sparse). Leveraging a dense row prefetching technique, we
effectively transfer irregular memory accesses from global
memory to shared memory. The subsequent irregular shared
memory fetching is facilitated using the CBSR index, fol-
lowed by atomic accumulation of the CBSR data in global
memory. The proposed SSpMM design ensures coalesced
memory transactions across all stages, substantially reduc-
ing global memory consumption by more than 90% (Reddit
dataset with original hidden dimension as 256 and k as 16).

We conduct extensive evaluations of MaxK-GNN system
within the context of a single-GPU, full-batch, GNN train-
ing workload. We report the system training time rather
than floating point operations per second (FLOPS) analysis.
Experiments show that our MaxK-GNN system could ap-
proach the speedup limit according to Amdahl’s law [30].
The performance gaps between our results and the limits,
e.g., 3.22X/4.24x compared to 5.52x/7.27x for Reddit dataset
using MaxK-GNN with GraphSAGE, is from the accumula-
tion stage of SpGEMM and dense row prefetching stage of
SSpMM, which empirically are difficult to further optimize.

The introduced MaxK non-linearity and kernel design
are not confined to the specific framework, but exhibit com-
patible with other SOTA GNN training systems, including
PyG [31] and DGL [9]. Furthermore, the adaptability of these

685

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

W | 1. Linear Transformation :
Graph structure |i Embedding Weight Feature
9"‘9 i X - 5
Embeddmg E'""'"Féé'tifr'é aggregation Ebedding |
) =55 |
Kb =

Figure 3. Computational workflow of a GCNConv layer.

novel constructs aligns with current methods employed in
graph partitioning [27, 32] and graph sampling [28, 33].

2 Background and Related work
2.1 Graph Convolution Network

Graph Convolutional Networks (GCNs) [2] are stacks of GC-
NConv layers. An example of a GCNConv layer is shown in
Fig. 3. We define a graph G = (V, &, A) which contains |V
nodes and |&| edges. The adjacency matrix A has the shape
of (|'V| x |V]), usually with high sparsity. Each non-zero
entry A(i, j) corresponds to an edge between i and j. Each
node is associated with an ¥ -dimensional feature embedding
vector, and X € RIVI*7 represents the feature embedding
matrix for all nodes. The forward propagation of the I-th GC-
NConv layer can be split into 2 stages: (1) linear transforma-
tion Y/ = X'W! and (2) feature aggregation X'*! = o(A’Y").
Where X! € RIVIX71 is the feature embedding matrix at the I-
th layer for all nodes, w! e RI1%%i ig the weight matrix for
linear transformation which will be learned during the GCN
training. The feature aggregation stage calculates the feature
embedding matrix for the next layer, where A’ € RIVIXIVI
is the normalized and regularized adjacency matrix, o is the
activation function, typically element-wise ReLU. Different
varients of GCNs, such as GraphSage [34] and Graph Iso-
morphism Network (GIN) [35], use similar structure and can
reuse the same forward propagation abstraction as GCNs.

2.2 GNN Acceleration

The PyTorch Geometric (PyG) software stack [31] and similar
proposals like HP-GNN [36], LL-GNN [37], and FlowGNN [14]
utilize message-passing primitives such as scatter and re-
duce for GNN training on GPUs and FPGA overlays. These
primitives incur substantial memory and storage overheads,
leading to inefficiency and poor memory bandwidth utiliza-
tion. None of these approaches effectively enhance workload
balance or address data locality issues within GNN training
and inference.

Several existing open-source GPU and FPGA acceleration
frameworks are aimed at enhancing GNNs. GNNAdvisor [10]
uses warp-level partitioning for distributed neighborhood
workload but may cause load imbalance and its kernel per-
formance, mainly improved by the Rabbit order [38], doesn’t
outperform cuSPARSE [39]. MergePath [15] addresses SpMM

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

workload imbalance with a binary search algorithm, but its
efficacy decreases with feature dimensions over 128, com-
mon in large graphs. Flow-GNN [14] accelerates GNNs on
FPGA platforms but fails to address workload imbalance or
provide scalability to larger core count.

Several methods have been developed to tackle large graph
problems, such as graph neighborhood and boundary sam-
pling. Betty [28] offers a novel sampler to alleviate memory
bottlenecks, and BNS-GCN [27] uses boundary sampling
for multi-GPU and multi-node systems; yet both fail to ad-
dress the SpMM bottleneck. Other research has utilized gen-
eralized SpMM for GNN inference acceleration, including
AWB-GCN [13], which dynamically balances workload, and
I-GCN [11], which enhances locality and reduces off-chip
memory access. However, the implementation requires spe-
cialized hardware and is not applicable to GPU system.

2.3 Introducing Sparsity in GNN Training

Dropout: As a well-known regularization to prevent over-
fitting, dropout introduces feature sparsity during training
by randomly setting a fraction of input units to 0 [40]. This
operation results in a form of sparsity that is highly irregular
and challenging to leverage in an system/hardware design.

Weight Sparsification: Two prevailing weight sparsifi-
cation approaches in GNN training are train-and-prune and
sparse training [41]. The former optimizes weight parameters
to improve inference speed, as exemplified by methods like
ADMM-based pruning [42] and LTH-based pruning [43]. The
overall training cost (including pretraining) is usually much
higher compared to the original model training. Conversely,
sparse training initiates with a sparsified weight matrix and
updates sparse weight locations at specific iterations. The
standard scheduler, drop and grow, includes techniques like
SET [44], RigL [45], and SNFS [46]. Such sparsification in
GNN workload, however, introduces irregular patterns that
inhibit efficient hardware deployment [47].

Nonlinearity for Sparsification: Nonlinear functions
such as ReLU [48] introduce sparsity into the graph training.
As detailed in FATReLU [49], adjusting the ReLU threshold
can induce greater feature sparsity. Similar to other sparsity
forms, this irregularity does not align with hardware charac-
teristics, yielding limited speedup on the training system.

3 MaxK-GNN Dataflow

We start with introducing MaxK nonlinearity, and how it
can benefit GNN training system in MaxK-GNN dataflow.

3.1 MaxK Nonlinearity as a Universal Approximator

Conventional ReLU operators, which are frequently utilized
in GNN architectures, result in an irregularly sparsified fea-
ture matrix, thereby hindering its usage for hardware accel-
eration. To address this challenge, we introduce the MaxK
nonlinearity.

686

Peng and Xie, et al.

Input: s O
Neurons: r

© O

(a) General MLP with MaxK/ReLU non-linearity

4 4
—_— y=)(2 —_— y= X2
hid=6 hid=6
24 —— hid=20 24 —— hid=20
04 \/ 04 \/
=2 0 2 =2 0 2
(b) MaxK MLP Approx. (c) ReLU MLP Approx.
example example

Figure 4. MLP with MaxK and ReLU non-linearity. y = x*
function approximation example with different number of
hidden units.

MaxK Nonlinearity Definition: (i) During the forward
propagation, MaxK nonlinearity is computed on node-wise
feature map to get the maximum k;j, element and set the rest
to 0. (ii) During the backward propagation, the feature gradient
uses same feature sparsity pattern as induced in forward.

h(X) = max—kje[lsr] (X- W+b)j (1)
where W, b, and X represent weights, biases, and inputs, rep-
resentatively. h(X) denotes intermediate feature, which is a
piece-wise linear (PWL) function of X. r is the hidden dimen-
sion/number of neurons. In addition, the MaxK nonlinear op-
erator is positioned before the SpMM operator, which serves
to diminish the computational and memory access overhead
associated with SpMM. This nonlinearity also exhibits gen-
eralization ability in both transductive and inductive graph
learning settings. It introduces a regularized sparsity pattern,
enabling a more efficient design for hardware acceleration.

MaxK, like ReLU, could be represented using a PWL func-
tion. We use Multilayer Perceptron (MLP) with MaxK nonlin-
earity to theoretically analyze the universal approximation
characteristics of MaxK nonlinearity. As demonstrated in
Eq. 1 and as illustrated in Fig. 4(a), MaxK is applied to the
feature map. X has a size s. W has dimensions [s, r]. MaxK
maintains the maximum k significant value out of r while
preserving the same shape. MaxK preserves the same input
and output dimensions and introduces a regularized spar-
sity pattern, thereby facilitating the design of the supporting
hardware. MaxK can approximate any continuous function
f(X) of X € R® with a sufficient number of hidden units r.

Proposition 3.1. Given any positive integers s (input dimen-
sion) and t (output dimension), two parameter groups W and

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

W’ are determined such that g(X) is expressed as a linear
combination of r convex PWL functions:

9(X) =h(X) - W'+ @

9(X) operates as the neural network approximator and denotes the
continuous PWL function with r locally affine regions on R®. Thus,
g9(X) (could be any continuous PWL function) can be represented as
a linear combination of h(X) (proof can be found in [50, 51]).

Theorem 3.2. MLP with MaxK Serves as a Universal Ap-
proximator. A MaxK network g(X) with r hidden units can
approximate any continuous function f(X) on a compact do-
main C C R® with an arbitrarily small approximation error €.
In particular, as e — 0, it follows that r — oo.

Universal Approximator: Based on the Stone-Weierstrass
approximation theorem [51, 52], a PWL function g(X) can
approximate any continuous function f(X) with an error e:
|f(v) — g(v)| < €. The PWL function ¢g(X), as provided in
Proposition 3.1, is composed of r number of PWL functions
h(X). By configuring a sufficiently large number of hidden
units r and appropriate k values in the MaxK network g(X),
the desired approximation error € can be achieved. Conse-
quently, a MaxK network with r hidden units could provide
an arbitrarily close approximation to f(X) on the compact
domain C C R°.

Refer to Fig. 4(b) for an illustration of a single-layer MaxK-
based network employed for the approximation of the func-
tion y = x2. A standard backpropagation algorithm is used to
train the neural network until convergence, with the number
of hidden units varied to observe the approximation error.
For the MaxK nonlinearity, the top [hid/4] elements are se-
lected and the remainder set to 0. It can be readily observed
that as the number of hidden units increases, the approxima-
tion error of the MaxK-based neural network approximator
decreases. Fig. 4(c) shows the y = x* function approximation
using ReLU nonlinearity, results show that ReLU and MaxK
nonlinearity have a similar approximation performance.

Key takeaway: The MaxK-GNN system introduces the reg-
ularized sparsity of the embedding feature matrix, thereby
considerably speeding up GNN models’ SpMM operation. No-
tably, MaxK is a nonlinearity and does not compromise the
precision of the models significantly.

3.2 MaxK-GNN Training Dataflow

Traditional GNN layers adopt similar backward and forward
SpMM computation designs. However, our proposed MaxK-
GNN framework incorporates asymmetric forward and back-
ward paths, leveraging MaxK nonlinearity. MaxK nonlinear
operator is positioned before the SpMM operator, sparsify-
ing the forward computation path from SpMM to SpGEMM.
Similarly, MaxK nonlinearity also increases sparsity of the

687

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

backward computation path to SSpMM. Such a process signif-
icantly reduces the computational and memory overhead as-
sociated with matrix multiplications. To leverage this newly
introduced embedding sparsity, we present modified forward
and backward propagation dataflow and generate a refer-
ence kernel design tailored for MaxK-GNN. Fig. 5 illustrates
the dataflow of single-layer GCN training with the proposed
MaxK nonlinearity, for the sake of simplicity.

Given a GNN layer with single linear and aggregation
operations, the forward and backward processes of the ag-
gregation stage are expressed in Eq. 3, where A is the adjacent
list and h(X;_;) denotes the feature map post linear layer and
the MaxK nonlinearity. A could have different expressions
according to aggregator type. For instance, the SAGEConv
uses 1/d (d is the node degree) for the mean aggregator. The
backward process inherents the sparsity pattern as we only
compute the gradient of h(X;_;) non-zero elements.

a
oh(X;_1)

oL
X,

Xp=A-h(Xp-y), ! 3)
Forward Computation. For the forward computation,
we propose employing a Compressed Balanced Sparse Row
(CBSR) format to capitalize on the newly introduced spar-
sity of the feature output resulting from the MaxK layer.
The CBSR format allows for contiguous memory accesses
on sparsified feature matrix and improves the system mem-
ory bandwidth utilization while mitigating workload imbal-
ance. This format comprises two components: a data seg-
ment (sp_data) and an index segment (sp_index), which are
stored in two adjacent memory blocks in the main mem-
ory. The next step involves the execution of forward feature
aggregation, accomplished by multiplying the graph adja-
cency list by the sparsified feature matrix. This computation
utilizes a row-wise product-based Sp GEMM scheme [53],
whereby X;[i,:)] = £J_ Al j] - h(X;-1)[j.:]. Assuming a
dense output obviates the costly ESC overhead [54] usually
encountered with SpGEMM design. During the row-wise
product operation, each element from the left-hand row is
multiplied by its corresponding elements in the right-hand
row, with the result then accumulated to the output row. This
procedure enables the sparsified output accumulation to oc-
cur within the on-chip cache, offering significantly lower
latency compared to global memory-based accumulation.
Backward Computation. During the feature aggrega-
tion’s backward SSpMM process, the transposed adjacency
matrix, in a CSC format (equivalent to CSR employed in
forward), is multiplied with the feature output gradient to
yield the sparsified feature gradient. Compared with standard
SpGEMM computations, this backward SSpMM computation
exhibits a (sparse X dense = sparse) operation. Given that the
output sparsity pattern (sp_index) aligns with that of the for-
ward process, the backward SpGEMM only requires to com-
pute corresponding data (sp_data) located by (sp_index).

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Peng and Xie, et al.

'd Linear Layer)

Feature Matrix
0.2 0.3 04
0.6 0.8 0.9
—){|-0.4 0.7 0.9
Backward 0.6 0.7 1.0
I o003 09
-0.1 0.2 0.5
0.2 04 0.8
0.3 0.4
AL

Forward

=03

(MaxK nonlinearity)
11

CBSR format }

|"sp_data_ L~
02 03 04
0.6 08 0.9
-04 0.7 0.9
06 07 1.0
0.0 03 09
-0.1 0.2 0.5
02 04 08
03 03 04

Prior Layer

index 1|

SAGE edge weight: 1/d

I
GCN edge weight: 1/V(d;d))

GIN edge weight: 1 |

=Y 5 1= 1S 1) 1= 1 1N 0

P53 [S) [} [U%) BNy (3% [} [}

(V3 N 55 (7)) (W) ISy (o) (%)

N L

~N)

j. Matrix

CSR format) Sparsified feature

Feature output _

ackward: Outer Product Based SSpMM

Later layer

» Transposed Adj. Matrix

Sparsified feature
gradient

Feature output
gradient

(CSC format)

|

Figure 5. Training dataflow of single MaxK based GNN layer. In the backward computation, the transposed CSC format is

equal to original CSR format.

However, the row-wise product-based multiplication for
this computation could lead to substantial irregular global
memory access on ;_;51 (from Eq. 3), as elements must be
fetched according to the sparse index sp_index. To mitigate
this, we propose prefetching rows from ;_;51 to the on-chip
memory, enabling irregular access within the cache, thereby
avoiding uncoalesced global memory traffic.

Consequently, we adopt an outer product-based [53] SSpMM
method for the backward computation process, where

oL
oh(X;-1)

dL

J
[0 = > AT 5] =1).1] (4)
j=0

0X,

Each element of the left-hand column is multiplied by a
single row and accumulated to the respective output row.
This strategy ensures efficient utilization of memory and
alleviates the irregular memory access issue.

4 GPU System Support for MaxK-GNN
4.1 Forward SpGEMM GPU Kernel

Compared to conventional SpMM, our proposed CBSR for-
mat incorporates a sparsified input embedding matrix, with
the aim of reducing both computational and memory de-
mands. Sparse input matrices correlate to an increase in
irregular memory accesses to both the input matrices (adja-
cency matrix and embedding matrix) which could degrade
kernel computational, memory efficiency. To counteract the
lack of spatial locality in the CSR formatted adjacency list
and the CBSR formatted embedding matrix, we use a warp-
level partitioning scheme. Coupled with an on-chip buffering
mechanism, this approach can achieve warp-level balance
and coalesced global memory accesses, significantly improv-
ing computational efficiency.

. Graph structure Sparse embedding = sp_data + sp_index
Xs, |02 03 04 02 03 04 |0 2 3

Xs, 0.6 08 09 o6 08 09] |1 2 5

© Xs, |04 0.7 0.9 o4 0709 |0 3 4

Xs; 0.6 07 10| Joe 07 10f [2 4 5

- Xs, 00 03 09| Jooo3zo9[|1 3 5

Xss [01 02 05 iforo020s[o 2 3

- X5, 02 04 08 02 04 08| 112774

Xs; |03 03 04 o303 04| [0 3 5

(a) Graph input and row-wise SpGEMM example
Stage 1: Compute

...... ’ lation Warp : Case 1, dim; < 16 .
Target HBM | and accumul P ! st . .
ot g vl E g oy 1M Case 2, dim > 16 Barrier Stage 3 Wrie back
e, X 1[04 07 09)[0 3 4 1 —-$¢| Buf; I | X,
@ e, X1 0102 05l 0 2 3] -§ I ! I
|
03 03 04ll0 3 5 | 1
v o odlo 2 sl |7 D M
o 1
06 08 09[|1 2 s g § |
@ 06 07 10|l 2 4 5 1
oo osllo 2 s AT [P B i
02 04 08|21 2 afl” z 1
B —i1
06 08 09][1 2 s : _.$_| s, [P %]
@ 00 03 09[[1 3 5| 5 I 1 I
= Sparse accum. on 1 Accum. (atomic)
0204 08[|1 2 4 JiJ shared memory on global memory

(b) GPU kernel design & mapping for row-wise SpGEMM

Figure 6. Forward computation kernel with dim;;gin = 6
and dimy = 3. Xs;: ith row (node) of input embedding X,
represented in the CBSR format. X ;: ith row (node) of output
embedding X;.

Design Overview. Fig. 6(a) shows an illustration of the
row-wise SpGEMM computation with the CBSR format. The
computation of node 2’s output embedding is based on the
multiplication and accumulation of neighboring embeddings
(Xs2, Xs5, Xs7) and corresponding adjacency list edge val-
ues (ez2, €25, €27). The accumulation leverages the index
sp_index to map multiplication results to the appropriate
output positions, which consequently results in a sparse

688

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

Algorithm 1 Forward Computation Kernel Pseudocode

1: for all rows Aoy j in A do

2: for all warp partitions P,, in Ao+ ; do

3 Initialize Buf,, in shared memory;

4: Form m threads within a warp;

5 for each nonzero element e; j in P, do

6 for all thready. in warp (k € [1,m]) do

7 // Multiply and sparse accumulation to Buf,,,
mapped by sp_index
Bufw[sp_index[j,k]] += e;j x sp_datalj, k];

9: end for

o

10: end for

11: end for

12: Reorganize all threads by natural warps;

13: for all Buf,, in shared memory do

14: // Atomically accumulation with coalesced global
memory access

15: Xj; += Bufy;

16: end for

17: end for

memory access pattern. Therefore, we buffer the partial ac-
cumulation result in the on-chip shared memory to mitigate
uncoalesced global memory transactions.

The on-chip buffering considerations are encapsulated in
the kernel design pseudocode provided in Algorithm 1. The
overview workflow is divided into two stages: i) a compute
and accumulation stage, and ii) a write back stage. Suppose
the original dimensions of the right matrix X, are denoted as
dimoyigin and the MaxK value selected results in dimy, lead-
ing to a CBSR formatted matrix. This matrix has sp_data and
sp_index, each with a size of N X dimj.. Within the computa-
tion and accumulation kernel, the coalesced global memory
transactions fetch both sp_data and sp_index. The paral-
lel multiplication and sparsified accumulation within the
warp are conducted within Bu f,,, which locates in the shared
memory. Eventually, Buf,, is added into X in global memory
using coalesced accesses. This design strategy promotes an
efficient memory access pattern, optimizing computational
parallelism while conserving memory bandwidth.

Warp Level Partition. Illustrated in Algorithm 1, the
SpGEMM workload requires a workload-to-warp mapping
strategy. Herein, we delve into the warp-level workload parti-
tioning and allocation. We propose a light-weight warp-level
partition mapper that operates at O(n) complexity with n
being the number of nodes.

As shown in Fig. 6(b), each edge e; ; involved in the com-
putation constitutes a workload unit. Within such a unit, e; ;
undergoes a multiplication with the sparse row sp_data;,
followed by accumulation in the buffer Buf,,, indexed by
sp_index;. Subsequently, the workload of each adjacency
matrix row Ay, is segmented into Edge Groups (EGs). Each
EG reserves a chunk of shared of (dim,,i4in X 4) bytes to serve
as an intermediate buffer for sparse accumulation.

689

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Embedding Out sp_data

Transposed Adjacent matrix ~ Embedding input Embedding out sp_index

30 X, © 88 Fetched sparse dXsy
safea) | dX, 1.2 5 edge val. embedding dXs,

I O e P E;_?__j_“i g X [o3)oalos o dXs,

331 - % 0.5 0.0 -0.1 03 -02~6-H dXs;

» 0.6 02 0.5 0.1 -03-04] [1 3 5 | Fetching Aceum.| dXs,

e, e dx, s fo 2 3 i x |03 06 04|_,®, dXss
3,6464.6) dx, , 1.2_4 dXs,

e, dx, , fo 3 s X |o.3 04 0.z|_,®‘ dXs,

(a) Outer product based Sp)GEMM stage

Barrier Stage 2: Compute and accumulation

VITEBMTE Fechedspase Warp 77 Case I, hid_dim< 16
1 sp_index embedding config: : Case 2, hid_dim> 16
1o 3 4 03 04 -0.5| X (€2 Bimim: i Atomic Accum.
= g Emb. data in
Stage 0.1 0.6 04 -05 02 : 0 2 3 03 06 04| X [e25] [g My HBM
on-chi 00 -01-03-0201fp 0 3 5 o |03 04 02 X [e Al P\
buffer; -5 el Kl e
E -0.6 0.2 0.5 0.1 -03 -0.4| : 0 2 3 fj 05 0.1 03 = dXs,
i 1 2 5 |5l oo < 3| £
: 1 ¢ 0.0 -0.1 0.1 2 o
H 142 a4 s SE0-1 02 01
i : 0 2 3|i g [os-01-03 L E
Sourdd” T Shared memory 1| 75— |4 (2] [0 01 09 2 E
node: _Buffered embedding i | < S R
@ 03-010604-0502]i, 1 2 5 2l [02 05 -04] § L
@ 05 00 01-03-0201]11 1 3 5I[TE]o2 01 -04 2 E"
H H B
@ 0.6 02 0.5 0.1 -03 -0.4 : :l 12 4 |i L] |02 0503 L

(b) GPU kernel design & mapping for outer product based SpPGEMM

Figure 7. Backward computation kernel with dime,igin = 6
and dimy = 3. dXj;: ith row (node) of dense input embedding
dXj. dXs;: ith row (node) of output embedding dXs repre-
sented in the CBSR format. Transposed adjacent matrix AT
in the CSC format has same storage format as the original
adjacent matrix A in CSR format, thus no extra storage.

The workload of each adjacency matrix row Ao, is firstly
segmented into Edge Groups (EGs). To optimize EG execu-
tion within the computation and accumulation phase, we
integrate the hidden dimension into our warp mapping strat-
egy. In scenarios where dim; < 16 (as seen in Case 1 of
Fig.6(b)), each standard warp comprises L%J EG work-
loads, EG is limited to be within the same warp to circumvent
memory access conflicts that could occur if an EG straddles
multiple warps. In contrast, if dimy > 16 (Case 2 in Fig.6(b)),
an EG is processed by a single warp executed iteratively.
The execution of each EG is performed by the correspond-
ing warp, with the results aggregated at respective locations
in the shared memory buffer, following the indices from
sp_index.

In the next phase (stage 2 in Fig. 6), data from each shared
memory buffer Buf,, is atomically accumulated into its corre-
sponding X; output in global memory. Retaining the thread
organization of natural warps due to identical dimensions of
the shared memory buffers and output embeddings (dimorigin),
each warp cyclically processes a single row, ensuring an effi-
cient and coalesced computational structure.

4.2 Backward SSpMM GPU Kernel

In the backward computation, we execute a specialized SSpMM
operation involving AT x dX; to generate dXs, in CBSR for-
mat. Inheriting sp_index from Xs used in the forward com-
putation, the computation needs only sp_data of dXs, signi-
fying a (sparse X dense = sparse) operation with a known
output sparse pattern, thereby requiring only data locations

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

indexed by sp_index. A naive row-wise product-based ker-
nel could lead to significant uncoalesced global memory
transactions, thereby inhibiting data parallelism.

Design Overview. We propose utilizing an outer product-
based SSpMM process to enhance global memory coalescing
and computational parallelism. An illustrative dataflow is
presented in Fig. 7(a). Here, the third column of AT, denoted
by (e2.2, €25, €2.7), multiplies with the third input node embed-
ding, dX; ,,indexed by sp_index (represented as sp_index,ow 2,
sp_index,oy 5, and sp_index,o., 7). The resulting values are
subsequently accumulated into the corresponding output
embedding data sp_data (expressed as dXsz, dXss, dXs7).
The transposed adjacency matrix, AT is represented in CSC
format, mirroring the data structure of the original matrix
A in CSR format. Consequently, this approach requires no
additional memory for storing the backward gradient compu-
tation, thereby optimizing memory utilization. Considering
the irregular indexing produced by sp_index, buffering the
dense embedding row dX; in on-chip memory proves advan-
tageous, as it enhances bandwidth and reduces latency, due
to more regular memory access.

Algorithm 2 Backward Computation Kernel Pseudocode

1: for all rows dX 4, ; in dX; do
for all workload partitions P,, in AZol ; do
// Coalesced global memory read.
Load dXj y¢4 ; into Buf,, in shared memory;
Form m threads within a warp
for each nonzero element e; j in P, do
for all thready (k € [1,m]) in warp do
// Collect data from the buffer Buf,,
indexed by sp_index, and multiply it by
ejj. Subsequently, perform an automatic
accumulation to sp_data, ensuring coalesced
global memory access.
9: sp_datali, k] += e; j X Bufy[sp_index[i, k]]
10: end for
11: end for
12: end for
13: end for

Our proposed design for backward computation kernel,
presented in Algorithm 2, encompasses two primary stages.
The first stage involves loading the dense embedding dXj o1 ;
into the shared memory buffer Buf,, for each warp. It is cru-
cial to note that this stage facilitates coalesced and continu-
ous global memory transactions, optimizing memory access
patterns. The secondary stage amalgamates sparse fetch-
ing, computation, and atomic accumulation. Sparse fetching
encompasses two operations: a) fetching sp_index through
coalesced global memory transactions, and b) irregular in-
dexing within the shared memory buffer Buf,,. The fetched
vector subsequently undergoes multiplication with the cor-
responding edge values e; ;. Finally, the result is atomically
accumulated in the global memory embedding data section

690

Peng and Xie, et al.

sp_data, a coalesced memory transaction that ensures com-
putational efficiency.

Warp Level Partitioning. To enhance computational
efficiency and ensure warp-level workload balance, we ad-
vocate for an edge-centric grouping process, analogous to
the scheme used for the forward SpGEMM. IT is a light-
weight process that can be seamlessly applied during the
graph loading and preprocessing stage, preserving overall
resource efficiency.

During the dense embedding loading stage, each warp
fetches the corresponding row of the embedding matrix,
dX row i»into shared memory through coalesced global mem-
ory access. The required shared memory allocation per warp
for floating-point numbers is dimoigin X 4 bytes, mirroring
the allocation used in the forward workflow. To expedite
loading, we utilize a natural warp organization, with each
warp iteratively managing its corresponding row. Afterward,
all warps arrive at a synchronization barrier.

During the compute and accumulation stage, workload
units working with edges and the hidden dimension are
reconfigured into EGs, adopting the same partitioning proce-
dure used in the forward computational workflow. In cases
where dim; < 16 (refer to Case 1 in Fig. 7(b)), each con-
ventional warp manages L%ﬁlkj EGs, confining each EG to
a single warp to prevent shared memory access conflicts.
For dimy > 16 (Case 2 in Fig. 7(b)), each EG is handled by
a single warp using a loop function. Operations involving
sparse fetching, computation, and atomic accumulation are
performed within these warps, as outlined in Algorithm 2.
This stage exclusively involves coalesced memory read/write
operations, thus preserving the efficiency of global memory
transactions.

4.3 Memory System

In our design, the NVIDIA GPU’s shared memory is strategi-
cally utilized to mitigate uncoalesced memory accesses and
to ensure that all global memory accesses are coalesced. The
memory system is structured to store the CSR-formatted ad-
jacent matrix, the embedding matrix, and the CBSR-formatted
sparse embedding matrix in global memory (HBM), while
the intermediate shared memory serves as a buffer for partial
results and sparse fetching. In this section, we examine the
global memory transactions for both the forward Sp GEMM
and the backward SSpMM kernels.

Forward SpGEMM. During the forward SpGEMM com-
putation, the bulk of the computation and sparse fetching is
focused on the accumulation process within the shared mem-
ory. By implementing a row-wise product-based SpGEMM
kernel design, the CBSR-formatted X5 rows are read nnz
times, leading to a total global memory traffic of (4 X 2 X
dimy X nnz) bytes for floating-point data and integer index.
With smaller dimoygin, utilizing uint8 for sp_index allows

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Graph datasets number of nodes and number of edges information.

Graph Name #Nodes | #Edges | Graph Name | # Nodes | #Edges | Graph Name | # Nodes | # Edges Graph Name | # Nodes # Edges
am 881,680 5,668,682 | amazon0505 410,236 | 4,878,874 | amazon0601 | 403,394 5,478,357 artist 50,515 1,638,396
citation 2,927,963 | 30,387,995 collab 235,868 | 2,358,104 | com-amazon | 334,863 1,851,744 DD 334,925 1,686,092
ddi 4,267 2,135,822 Flickr 89,250 989,006 ogbn-arxiv | 169,343 1,166,243 ogbn-products | 2,449,029 | 123,718,280
ogbn-proteins 132,534 | 79,122,504 | OVCAR-8H | 1,889,542 | 3,946,402 ppa 576,289 | 42,463,862 | PROTEINS_full 43,466 162,088
pubmed 19,717 99,203 ppi 56,944 818,716 Reddit 232,965 | 114,615,891 SW-620H 1,888,584 3,944,206
TWITTER-Partial | 580,768 1,435,116 Yeast 1,710,902 | 3,636,546 Yelp 716,847 | 13,954,819 youtube 1,138,499 | 5,980,886

a reduction in total traffic to (5 X dimy X nnz) bytes. Com-
pared to a row-wise SpMM kernel design, the total global
memory traffic reduction is calculated as [(4 X dimoyigin —
5 X dimy) X nnz] bytes, indicating that lower values of dim
yield greater reductions.

Additionally, the output atomic accumulation in our pro-
posed Sp GEMM kernel aligns with the original row-wise
SpMM Kkernel, where the number of global memory atomic
accumulations is given by (NXdimeriginX avg‘jeg), and avgdeg
is derived as “G* with w representing the hyperparameter
for the maximum workload units assigned to an EG.

Backward SSpMM. The backward SSpMM begins with
an on-chip buffering stage, allowing the buffered feature
gradient row dX; to be read only once per SSpMM compu-
tation, equivalent to (N X dimq;igin) memory transactions.
Subsequent stages require reading the corresponding rows
from sp_index for sparse fetching, and during the compute
and accumulation stages, each workload unit performs sin-
gle read and write operations for its corresponding row in
sp_data. Consequently, the total read and write transactions
to global memory are approximately (4 X N X dimyigin +
5 X dimy X nnz) and (4 X dim X nnz) bytes respectively,
when considering uint8 sp_index. Compared to a naive outer
product-based SpMM, the global memory traffic reduc-
tion is [(4 X dimyrigin — 5 X dimy) X nnz] for reads and
[(4 X dimoyigin — 4 X dimy) X nnz] for write transactions,
reaffirming that a lower dimy leads to higher reductions.

4.4 Kernel Profiling

To demonstrate the effectiveness of the proposed design, We
provide profiling of Sp)GEMM and SSpMM kernels, while the
experiment setup is outlined in Sec. 5. For similicity, we use
Reddit graph as an example and provide the memory system
profiling result shown in Table 2. We evaluate the compute
kernels by employing the Nsight Compute profiler to gen-
erate performance metrics for cuSPARSE SpMM, SpGEMM,
and SSpMM kernels when executed on the Reddit graph.
Table 2 reports data on the traffic between the L2 cache and
global memory, as well as the hit rates for the L1/L2 caches.

The reported memory traffic reduction of the proposed
SpGEMM and SSpMM kernel aligns with the theoretical
analysis given in Section 4.3. The proposed MaxK nonlinear-
ity and corresponding kernel support reduces total global
memory traffic by close to 90.5% / 89.8%, when reducing
original hidden dimension from 256 to k as 32. While the

691

Table 2. MaxK-GNN memory system profiling

dim_org = 256
dim k= 32 SpMM | SpGEMM | SSpMM
Total Traffic (GB) 138.05 13.13 14.02
L1 cache hit rate (%) | 1.53 22.16 28.27
L2 cache hit rate (%) | 51.75 75.44 89.43
Memory bandwidth
utilization (%) 60.90 33.60 48.08

tratfic is reduced significantly, the bandwidth utilization is
not reduced significantly, as such we are able to achieve
2.9%/2.98x speedup over cuSPARSE SpMM.

It is worth mentioning that the L1/L2 cache hit rates of
cuSPARSE SpMM kernel, our forward SpGEMM kernel, and
our backward SSpMM kernel are 1.53%/51.75%, 22.16%/75.44%,
and 28.27%/89.43%, respectively. The L1 cache hit rate of our
kernels is significantly higher than that of cuSPARSE SpMM
kernel, which is due to our rational use of the multi-level
memory hierarchy of the GPU.

5 Evaluation

We offer a comprehensive assessment of MaxK-GNN, high-
lighting its performance advantages and applicability in the
broader context of graph-based learning and computation.
Our evaluation strategy begins with an in-depth analysis
of both the forward SpGEMM and the backward SSpMM
kernels. We carefully assess these components under a range
of K values, comparing the performance with existing imple-
mentations such as SpMM, as found in GNNAdvisor [10] and
cuSPARSE v12.0 [39]. Following this detailed kernel-level
examination, we present our system training time evaluation.
This encapsulates both the accuracy and speedup metrics
to showecase the efficacy of the MaxK-GNN framework in
addressing general graph learning problems.

5.1 Experimental Setup

Datasets. For S)GEMM & SSpMM kernel benchmark, we se-
lect popular benchmark datasets that have been extensively
employed in previous studies [10, 31, 34, 56-59]. See Table 1.
For MaxK-GNN system evaluation, we benchmark five
datasets that range from small to medium-scale graphs. Specif-
ically, the selected datasets are Flickr [60], for the catego-
rization of image types based on descriptors and shared

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Reddit

Peng and Xie, et al.

ogbn-products

Speedup

w

16 32
protein

dim_k 64

96 128 192 2 4 8 16 32

youtube

8 16 32 64 96 128 192

Yelp2

64

peedup

v 2,54

16 32 64

amazon0505 Flickr

F

16 32 64 2
com-amazon

16 32

artist

64 128 192

16 32 64

collab TWITTER-Partial

i
F

192 2 16 32

SW-620H

16 32 64 128 64 128 192

16 32 64
OVCAR-8H

16 32 64
ogbn-arxiv

3
?

192 2 16 32

pubmed

16 32 64 64 128 192

amazon0601

128

Speedup
[N

dim_|

16 32
citation

64 16 32 64

PROTEINS._full

Speedup
IS

~

dim,

mmm MaxK-GNN forward SpGEMM to cuSPARSE

mmm MaxK-GNN backward SSpMM to cuSPARSE

mmm MaxK-GNN forward SpGEMM to GNNA

mmm MaxK-GNN backward SSpMM to GNNA

Figure 8. Forward SpGEMM and backward SSpMM speedup over SPMM kernel from cuSPARSE [39] and GNNAdvisor [10].
Original hidden dimension size is 256, we vary dimy (k value of MaxK) to evaluate kernel speedup.

attributes; Yelp [61], for the classification of user-generated
reviews pertaining to businesses and services; Reddit [62],
for community prediction using posts’ content and users’
comments; ogbn-products [1], for Amazon product classifi-
cation via customer reviews; and ogbn-proteins [1], for the
prediction of protein function presence. This suite of datasets
not only covers a broad spectrum of applications but also
facilitates the understanding of how MaxK-GNN performs
under various scenarios.

Models. For SpGEMM & SSpMM kernel benchmarks, we
employ an original hidden dimension of 256. This evaluation
involves an assessment of the MaxK sparsified feature matrix

across a set of k values, including [2, 4, 8, 16, 32, 64, 96, 128, 192].

The selected parameters ensure a comprehensive examina-
tion of the impact of various sparsity levels on the system’s
performance.

For the system training time evaluation of MaxK-GNN,
we integrate MaxK nonlinearity with three graph models:
GraphSAGE [34], GCN [2], and GIN [55]. The GIN model [55]
is noteworthy for its unique aggregation function, serving
as a reference for advanced GNNs such as Graph Atten-
tion Networks (GAT) [63]. To ensure fairness, all models are
trained in full batch graph learning mode with the MEAN

69

N

Table 3. MaxK-GNN training setup

Dataset Flickr Yelp Reddit oGB -
products | proteins
Layers 3 4 4 3 3
Hid. dim. 256 384 256 256 256
Epochs 400 3000 3000 500 1000
LR/Drop | 0.001/0.2 | 0.001/0.1 | 0.01/0.5 | 0.003/0.5 | 0.01/0.5

aggregator for GraphSAGE. The detailed parameter settings
of MaxK-GNN are given in Table 3. Our evaluation spans
k =[2,4,8,16,32,64,96,128,192] to find the best trade-off
between model accuracy and system speedup, highlighting
the versatility of our approach.

Environment Setup. We construct the MaxK-GNN by
implementing the SpGEMM & SSpMM kernels using C++
and CUDA C. Our principal evaluation platform consists
of a high-performance server equipped with 32-core AMD
EPYC 7513 CPU and NVIDIA A100 80GB GPU [64]. This
computing environment is utilized for both kernel-level and
system-level evaluations.

For the performance measurement of the SpGEMM &
SSpMM kernels, we conduct a rigorous analysis by calculat-
ing the average latency across 1000 runs. This ensures that

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

GIN - Reddit GCN
.............................. ré
o L/ — g
e 43
2 o
8 BETTTTT= N %
< g N
R N L5
\\
SN
22 54 26 52 24 26 22 24 26
k value of MaxK k value of MaxK k value of MaxK
SAGE GIN - ogbn-products GCN
10T e
.. 25
20990 1Sms~o_ 15 2.0
c | T==I. . | T==I-. | T==Z
E ceeeeee i Naespd X 1.6 =S =S
g ace T0.30% F RN X L5
<081 spd 153 \\ \\
AR 3 R S)
X, A} X,
Al A\ A}
0.7 2.2 214 2.ﬁ 2.2 2.4 2.6 2.2 2.4 216
k value of MaxK k value of MaxK k value of MaxK
SAGE GIN - Flickr GCN
0-543cc +0.04% o
o) “Spd x1.15
© 0524 7 N
2 =Slpd'x1.08
9] N
<
0.50 1
0.48

22 26
k value of MaxK

2 2+ 20
k value of MaxK

22 g+ 20
k value of MaxK

Speedup

Speedup

ROC-AUC

F1 score

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

0.9
r8
0.8
6 o
=]
0.7 g
-4 g_
wv
------- spd X243 SRS
0.6 N S s 3 2
~<qpdx1.81 S=Ig RN
0.5 T T T T T T T T T
22 2% 2% 22 2+ 2° 22 24 2¢
k value of MaxK k value of MaxK k value of MaxK
GIN - Yelp GCN
0.7
1.6
0.6
14 o
______________ >
05 g
1.2 o
(%]
0.4 1
1.0
0.3

22 2I‘1 26
k value of MaxK

2I2 2“' 2I6
k value of MaxK

2I2 2l4 2'6
k value of MaxK

—— Val Accuracy/ F1 score
Test Accuracy/ F1 score
—== Speedup to cuSPARSE
Speedup to GNNAdvisor
Amdahl's law speedup limit to cuSPARSE
Amdabhl's law speedup limit to GNNAdvisor

Figure 9. MaxK-GNN system evaluation for GraphSAGE [34], GCN [2], and GIN [55] models and Reddit, ogbn-proteins,
ogbn-produces, Yelp, and Flickr datasets. MaxK nonlinearity setting: k = [2,4, 8, 16,32, 64, 96,128, 192]. We compare the
MaxK-GNN training speedup over DGL with cuSPARSE [9] framework and GNNAdvisor [10]. spd: speedup.

the observed performance metrics are consistent and repre-
sentative. In the context of the comprehensive evaluation of
the MaxK-GNN system, our approach is further extended.
We measure the latency of the training phase with epochs
given in Table 3, including both forward and backward prop-
agation, 50 times, and obtain the average runtime.

5.2 MaxK-GNN Kernel Evaluation

We presente forward Sp GEMM and backward SSpMM kernel
evaluation in Fig. 8. Both SpGEMM and SSpMM kernels
exhibit a significant speedup compared to the SpMM kernels
from cuSPARSE [39] and GNNAdvisor [10]. Note that the
original hidden dimension is 256 and we vary k values for
the benchmark. Overall, the result shows that as k decreases,
the speedup increases.

For the SpGEMM kernel, when k is decreased to a certain
extent, such as 8, the output accumulation stage becomes
the performance bottleneck, hence a further decrease in k
leads to a speedup saturation. Nevertheless, our SpGEMM
kernel exhibits impressive acceleration performance, espe-
cially on graphs with larger average degrees. For graphs with
an average degree greater than 50, such as ogbn-proteins,
ddi, Reddit, ppa, and ogbn-products, the average speedup of
the SpGEMM kernel at k = 8, 16, 32, 64 is 4.63X%, 4.15X%, 2.54X,

693

1.46%, respectively, as compared to the cuSPARSE [39], and
6.39%, 5.71X, 3.50%, 2.02X%, respectively, as compared to the
GNNAdvisor [10], demonstrating its high acceleration effi-
ciency. When k < 128, the SpGEMM kernel can effectively
bring speedup to 92.2% of all test cases compared to cuS-
PARSE [39], and 100% of all test cases compared to GNNAd-
visor [10]. The result demonstrates its high generalization.
The backward SSpMM kernel fully exploits the global
memory access coalescing and traffic reduction by combining
the outer product-based approach with dense row prefetch-
ing. The SSpMM kernel achieves better speedup performance
than the forward SpGEMM kernel. For graphs with average
degrees greater than 50, the average speedup of the SSpMM
kernel at k = 8, 16,32, 64 is 6.93%, 5.39X%, 2.55X%, 1.46X respec-
tively, as compared to the cuSPARSE [39] and 9.57X, 7.46X,
3.55%, 2.04X, respectively, as compared to the GNNAdvi-
sor [10]. Given that a MaxK-GNN layer training pipeline
requires computing both forward SpGEMM and the back-
ward SSpMM, the SSpMM kernel speedup can also benefit
the training speedup. When k < 128, the SSpMM kernel can
effectively bring speedup to 87.5% of all test cases compared
to cuSPARSE [39], and 98.4% of all test cases compared to
GNNAdvisor [10]. It also exhibits significant versatility.

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

5.3 MaxK-GNN System Training Time Evaluation

MaxK Nonlinearity Kernel. For MaxK nonlinearity kernel
implementation, we customize a high-performance pivot-
based k;, value selection kernel. The kernel buffers each
node’s embedding in shared memory and finds the min
and max values Then the kernel selects a pivot equal to
(min + max) /2 and counts the number of elements that are
greater than the pivot. The algorithm iterates based on the
pivot value until the number of elements (that are greater
than the pivot) is equal to k. The feature map distribution
is not fully randomized, and follows a normal distribution.
With 256 original hidden dimensions, we observe that the
pivot based algorithm usually converges when running fea-
ture map MaxK selection in less than 10 iterations. Given
that the comparison operations and pivot selection are con-
ducted in shared memory, the total global memory traffic
would be similar to element-wise operations such as ReLU.
The overall MaxK nonlinearity kernel has an average cost
of less than 2% of the SpGEMM kernel run time. We provide
an example of kernel run-time on the Reddit within Table 4.

Table 4. MaxK nonlinearity kernel profiling

dim_org = 256
dim k=32 | SPMM | SPGEMM | SSpMM | MaxK
Latency (ms) | 44.98 | 1549 1507 | 0.261

Morever, the MaxK nonlinearity kernel is applied during
forward path, and the sparse matrix index can be shared with
backward propagation process. We need to “recompress” fea-
ture into CBSR format for each GNN layer during the forward
path. However, the MaxK nonlinearity kernel has little over-
head compared to SpMM and SpGEMM/SSpMM, and it will
not become the critical path during the training pipeline.

Accuracy and Speedup. To comprehensively evaluate
the MaxK-GNN framework, we conduct experiments using
three representative GNN models: GraphSAGE[34], GCN[2],
and GIN[55]. We use five diverse datasets to benchmark per-
formance. The ReLU-based baseline model’s setting and
accuracy utilized in our evaluation section is aligned with
the SOTA full-batch training accuracy. Specifically, our base-
line performance matches the results presented in Table 3 of
reference [65] and the GraphSAGE row in Table 4 of refer-
ence [27]. We test MaxK-GNN system with k = [2, 4, 8, 16, 32,
64, 96, 128, 192], as shown in Figure 9. In the figure, we pro-
vide speedup limit lines calculated using Amdahl!’s law [30]:
S = 1/(1 — p_SpMM), where S is the speedup limit and
p_SpMM represents the percentage of execution time taken
by the SpMM operator within the full GNN training pipeline.
This allows us to contextualize the empirical speedups achieved
by MaxK-GNN.

Reddit and ogbn-proteins allow greater speedup due to
their characteristics. Using a lower k value with these datasets
leads to a slight accuracy decline but permits substantial

694

Peng and Xie, et al.

system speedup exceeding 3x with a suitable k value se-
lection. The ogbn-produces, Yelp, and Flickr datasets have
relatively lower speedup limits. For these datasets, MaxK-
GNN achieves 1.1-2x speedup without significant accuracy
loss. Lowering k values trades off some accuracy for larger
speedups on datasets with higher speedup limits like Reddit
and ogbn-proteins. However, even on datasets with lower
speedup limits, MaxK-GNN provides 1.1-2X speedups with
minimal accuracy impact.

We select the best performing k values from MaxK-GNN
framework, aiming to further investigate the relationship
between accuracy and system speedup. We compare the
results against a ReLU-based baseline GNN model, which
has been implemented in the DGL framework [9]. The results
are encapsulated in Table 5.

GraphSAGE (SAGE) on Reddit has a speedup limit of
5.52%/7.27x compared to cuSP./GNNA. respectively, follow-
ing Amdah!’s law [30]. We utilize MaxK-GNN with k = 32
and attain speedup factors of 2.16x/2.84X, resulting in en-
hanced accuracy for the GraphSAGE model. In cases where
MaxK-GNN is implemented with k = 16, speedup factors of
3.48x/4.58x are achieved with the GCN model setting, while
simultaneously elevating the accuracy by 0.44%. GraphSAGE
(SAGE) on Yelp possesses a lower Amdahl’s law speedup
limit, 1.46X%/1.59%, compared to cuSP./GNNA. respectively.
The dataset requires a relatively higher k value to uphold ac-
curacy performance. With the original hidden dimension of
the Yelp dataset being 384, MaxK-GNN with GraphSAGE &
k = 96 achieves 1.07x/1.19x speedup relative to cuSP./GNNA.
baselines, while maintaining comparable accuracy. The Flickr
dataset also manifests a lower Amdahl’s law speedup limit,
which is 1.16Xx/1.24X compared to cuSP./GNNA. respectively.
However, MaxK-GNN with GraphSAGE & k = 8 acquires a
1.08%/1.15% speedup, accompanied by greater accuracy.

The results collectively show that our MaxK-GNN ap-
proaches the speedup limit. The performance gaps between
our results and Amdahl’s law theoretical limits, i.e., 3.22X/4.24X
compared to 5.52%/7.27x for Reddit dataset using Graph-
SAGE, is from the essential accumulation stage of Sp GEMM
and dense row prefetching stage of SSpMM, which empiri-
cally are difficult to further optimize.

Further Discussion on Accuracy. In Table 5 and Fig-
ure 9, we follow the standard train/val/test split setting and
obtain average accuracy over five random seeds for graph
training. While most models and datasets demonstrate stable
behavior, exceptions occur, notably with the ogbn-proteins
dataset when using GCN/GIN models. Upon detailed exami-
nation, we attribute the inconsistent behavior observed in
the ogbn-proteins dataset to inherent characteristics of the
dataset itself. Specifically, within a certain range of the con-
vergence region for the ogbn-proteins dataset, we observe
high variance in test accuracy, which in turn leads to unstable
ROC-AUC performance. Importantly, this observation is not

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

Table 5. MaxK-GNN training accuracy & speedup evaluation and comparison with ReLU based baseline model implemented

in DGL [9]
dataset Reddit ogbn-proteins ogbn-products Yelp Flickr
Latency Latency Latency Latency Latency
Acc (ms/epoch) (ms/epoch) Acc (ms/epoch) (ms/epoch) Acc (ms/epoch)
model method k (%) Speedup k| auc Speedup k (%) Speedup k| Fl score Speedup k (%) Speedup
(cuSP./GNNA.) (cuSP./GNNA.) (cuSP./GNNA.) (cuSP./GNNA.) (cuSP./GNNA.)
. 54.9 23.4 133.6 36.5 3.52
baseline | - | 96511101 5o 07976 1 wszy | 718037 (axs1.05%) 06376 1 (1%/1.11x) 33311 (151.06x)
SAGE 25.5 18.6 87.1 34.2 3.35
MaxK-GNN | 32 | 96.65 (216x/2.84x) | 04| 07928 (1.25%/1.71x) 521 8059 | (1 s3x/161x) | 20| 0% | (Lomxiiaoxy | 32| 33| (osx/ri2x)
17 12.9 77.9 29.6 3.26
MaxI-GNN | 16 | 9637 | (3 possazax) | 22 | 07812 | (1s13/247%) | 10 30 | (rasisox) | 32| 061 a23x/137%) | | B3| 10sx/1.15%)
. 54.5 23.2 129.6 34.3 3.42
baseline | - 19502 | 0y 5o 0646 1 (ynazxy | 17O (axs1.05x) 04718 | (1x/1.12%) T8 (1/1.06x)
GCN 16.7 8.43 83.2 32.0 3.17
MaxK-GNN | 16 | 9542 | 4 5714 30%) | 10 06230 | o 75x377%) | 32 | 7034 | (1sexsmeax) | 20| %1% | momizox) | & | P3| (rosx/1.15%)
15.7 7.94 71.6 27.5 3.16
MaxK-GNN | 8 | 9546 | g 4o /asgxy | 2 | 0008 | oaxsaoox) | & | 7021 | (aixionx) | 22| %4928 | (asasiaoxy | 4 | 3% | (1osx/1.15%)
. 54.6 23.3 130.7 34.9 3.35
o baseline | - 19507 | 0y 5o 0383 1 uinarg | T 1T (axinosx) 04578 | (1x/1.12%) S078 1 (15/1.07x)
16.7 7.81 72.7 32.7 3.10
MaxK-GNN | 16 | 9511 | g o7 a0y | 4 | 09277 | aosxsaorx) | & | 7797 | (rgoxsisox) | 20| O40% | omizox) | & | 2311 | (rosx/115%)
15.8 7.97 69.8 28.1 3.09
MaxK-GNN | 8 | 9505 | g 47 aszy | 2| 00812 | oanszo0x) | 4 | 7798 | (razwiorx) | 22| %422 | (aaisox) | 4 | %% | (1osx/1.15%)

exclusive to the MaxK-GNN model; we have also identified
similar instability in the baseline models without MaxK.

K Value Selection. Empirically, we could select k = 32 for
256 original hidden dimension to align similar accuracy with
ReLU baseline model and obtain significant kernel speedup.
Such K selection corresponds to 87.5% feature sparsity.

5. 0.75
@
3 0.50 —— RelU baselmfa
® MaxK-GNN with k = 64
$0.25 —— MaxK-GNN with k = 32
F | —— MaxK-GNN with k = 8

I

0 100 200 300 400 500

Epochs

Figure 10. Convergence curves of full-batch training on
ogbn-product dataset for (i) ReLU baseline model (ii) MaxK-
GNN with k = 64 (iii) MaxK-GNN with k = 32 (iv) MaxK-
GNN with k = 8

Convergence Analysis of MaxK-GNN. To examine the
convergence performance of the MaxK-GNN training, we
show a case study on the ogbn-products dataset with a full
batch setting. The results in Fig. 10 show that the MaxK-
GNN training, specifically at k = 64, k = 32 and k = 8§,
demonstrates convergence behavior similar or even better
than the baseline model employing ReLU nonlinearity. With
a lower k value, the convergence speed is slightly faster.

6 Conclusion and Future Work

In this paper, we present MaxK-GNN, a high-performance
GPU training system integrating algorithm and system inno-
vation. (i) We introduce the MaxK nonlinearity and provide
a theoretical analysis of MaxK nonlinearity as a universal
approximator, and present the Compressed Balanced Sparse

Row (CBSR) format, designed to store the data and index
of the feature matrix after nonlinearity; (ii) We design a
coalescing enhanced forward computation with row-wise
product-based SpGEMM Kernel using CBSR for input feature
matrix fetching and strategic placement of a sparse output
accumulation buffer in shared memorys; (iii) We develop an
optimized backward computation with outer product-based
and SSpMM Kernel. Experiments show that our MaxK-GNN
system could approach the limit according to Amdahl’s law.
We achieve comparable accuracy to existing GNNs, but at a
significantly increased speed: 3.22x/4.24X speedup (vs. theo-
retical limits, 5.52%/7.27X) on Reddit.

The proposed MaxK nonlinearity could be potentially ex-
panded to more DNN architectures such as CNNs and Trans-
formers, to provide regularly sparsified feature map for ac-
celeration.

7 Acknowledgments

This research was supported in part by the Northeastern
University Institute for Experiential Al the NSF IUCRC Cen-
ter for Hardware and Embedded Systems Security and Trust
(CHEST), NSF SHF-2340273, the Semiconductor Research
Corporation (SRC) Artificial Intelligence Hardware program,
and Advanced Micro Devices (AMD).

695

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix
A.1 Abstract

MaxK-GNN has three main kernel design: The first part is
the forward SpGEMM kernel design. The SpGEMM kernel
reduces memory traffic via sparse on-chip accumulation thus
lead to significant speedup. The second part is the backward
SSpMM kernel design. We built outer-product based SSpMM
kernel and use explicit dense row prefetching to reduce the
overall memory traffic. The third part is the MaxK nonlinear-
ity kernel design. We use pivot-based k;j seeking algorithm
in shared memory to build the kernel, and we iterate the
algorithm for up to 10 iterations to find the k;j, split point.

A.2 Artifact check-list (meta-information)

e Algorithm: MaxK nonlinearity design. Graph neural net-
work (GNN) training.

e Program: MaxK-GNN for acceleration GNN training with

MaxK nonlinearity.

Model: GraphSage, GCN, GIN.

Data set: Refer to Table 1.

Run-time environment: Ubuntu 20.04+

Compilation: GCC 9.4+, CMAKE 3.5+, CUDA 12.1+

Hardware:

— CPU with x86_64 architecture, host memory >= 256GB.
Tested on 32-core AMD EPYC 7543 Processor (2-socket,
total 64-core 128-thread) CPU with 2TB host memory.

— NVIDIA GPU (arch>=sm_80) with devcie memory >=
48GB. Tested on NVIDIA A100 (sm_80).

Execution: Bash scripts

Metrics: Accuracy vs. latency under different MaxK k value.

Experiments: Fig. 8 and Fig. 9 in experiment section.

How much disk space required (approximately)?: 128

GB

e How much time is needed to prepare workflow (ap-
proximately)?: 2 hours

e How much time is needed to complete experiments
(approximately)?: 4 days

e Publicly available?: Yes

e Code licenses (if publicly available)?: MIT License

e Archived (DOI): 10.5281/zenodo.10690770

A3

A.3.1 How to access. The artifact is available in https:
//github.com/harveyp123/MaxK-GNN and https://zenodo.
org/doi/10.5281/zenodo.10690770

Description

A.3.2 Hardware dependencies.

o CPU with x86_64 architecture, host memory >= 256GB.
Tested on 32-core AMD EPYC 7543 Processor (2-socket,
total 64-core 128-thread) CPU with 2TB host memory.

e NVIDIA GPU (arch>=sm_80) with devcie memory >=
48GB. Tested on NVIDIA A100 (sm_80).

A.3.3 Software dependencies. GCC 9.4+, CMAKE 3.5+,
CUDA 12.1+, instruction to build conda environment can be

found in github.

696

Peng and Xie, et al.

A.4 Installation

Download the source code: "git clone https://github.com/
harveyp123/MaxK-GNN". Install environment according to
README . md file.

A.5 Experiment workflow

For the SpGEMM, SSpMM and Maxk kernels benchmarking:

(1) Go to ./kernels directory and download the graph
datasets.

(2) Generate the meta-data for the SpGEMM and SSpMM
kernels by executing generate_meta.py .

(3) Do the Compilation, then run the executable to bench-
mark the SpGEMM and SSpMM kernels.

(4) Change the executable build configuration in CMake-
Lists.txt and re-do the compilation, then run the executable
to benchmark the Maxk kernel.

The benchmarking results are outputted in console and
can be logged to files using |tee command. For more details,
see README . md file.

Run training for MaxK-GNN starting from https://github.
com/harveyp123/MaxK-GNN?tab=readme-ov-file#run-the-
relu-baseline-training. The experiment result will be logged
in . /experiment directory. For more details, see README . md
file.

A.6 Evaluation and expected results

The code (https://github.com/harveyp123/MaxK-GNN) and
instructions (README . md) can be used to reproduce Section 5
results for Fig. 8 and Fig. 9.

References

[1] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

[2] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[3] Jielun Liu, Ghim Ping Ong, and Xiqun Chen. Graphsage-based traf-
fic speed forecasting for segment network with sparse data. IEEE
Transactions on Intelligent Transportation Systems, 2020.

[4] Yuxiao Liu, Ning Zhang, Dan Wu, Audun Botterud, Rui Yao, and
Chongqing Kang. Guiding cascading failure search with interpretable
graph convolutional network. Computing Research Repository (CoRR)
in arXiv, abs/2001.11553, 2020.

[5] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic fore-
casting: A survey. Expert Systems with Applications, page 117921, 2022.

[6] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph
neural networks in recommender systems: a survey. ACM Computing
Surveys (CSUR), 2020.

[7] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining,
pages 974-983, 2018.

[8] Pietro Bongini et al. Molecular generative graph neural networks for
drug discovery. Neurocomputing, 450:242-252, 2021.

[9] Amazon AWS. Deep Graph Library (DGL). Retrived from https:
//www.dgl.ai/. Accessed: 2019, May 1.

https://github.com/harveyp123/MaxK-GNN
https://github.com/harveyp123/MaxK-GNN
https://zenodo.org/doi/10.5281/zenodo.10690770
https://zenodo.org/doi/10.5281/zenodo.10690770
https://github.com/harveyp123/MaxK-GNN
https://github.com/harveyp123/MaxK-GNN
https://github.com/harveyp123/MaxK-GNN?tab=readme-ov-file#run-the-relu-baseline-training
https://github.com/harveyp123/MaxK-GNN?tab=readme-ov-file#run-the-relu-baseline-training
https://github.com/harveyp123/MaxK-GNN?tab=readme-ov-file#run-the-relu-baseline-training
https://github.com/harveyp123/MaxK-GNN
https://www.dgl.ai/
https://www.dgl.ai/

—

flan

—

—

—

—

—

—_ =

=

—

[10] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan

Xie, and Yufei Ding. Gnnadvisor: An efficient runtime system for gnn
acceleration on gpus. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI’21), 2021.

Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-gcn: A graph
convolutional network accelerator with runtime locality enhancement
through islandization. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 1051-1063, 2021.
Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin.
Gcod: Graph convolutional network acceleration via dedicated algo-
rithm and accelerator co-design. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 460-474.
IEEE, 2022.

Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tiangi Wang, Yanfei
Li, Pouya Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, et al.
Awb-gen: A graph convolutional network accelerator with runtime
workload rebalancing. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 922-936. IEEE, 2020.
Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and
Cong Hao. Flowgnn: A dataflow architecture for universal graph
neural network inference via multi-queue streaming. arXiv preprint

MaxK-GNN: Extremely Fast GPU Kernel Design for Accelerating Graph Neural Networks Training ~ ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[26] Trinayan Baruah, Kaustubh Shivdikar, Shi Dong, Yifan Sun, Saiful A

Mojumder, Kihoon Jung, José L Abellan, Yash Ukidave, Ajay Joshi, John
Kim, et al. Gnnmark: A benchmark suite to characterize graph neural
network training on gpus. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 13-23.
IEEE, 2021.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-
gen: Efficient full-graph training of graph convolutional networks with
partition-parallelism and random boundary node sampling. Proceed-
ings of Machine Learning and Systems, 4:673-693, 2022.

Shuangyan Yang, Minjia Zhang, Wengian Dong, and Dong Li. Betty:
Enabling large-scale gnn training with batch-level graph partitioning.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
pages 103-117, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An Im-
perative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems, pages 8026—8037, 2019.

arXiv:2204.13103, 2022. [30] John L Gustafson. Reevaluating amdahl’s law. Communications of the
[15] Mohsin Shan, Deniz Gurevin, Jared Nye, Caiwen Ding, and Omer Khan. ACM, 31(5):532-533, 1988.

Mergepath-spmm: Parallel sparse matrix-matrix algorithm for graph [31] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning

neural network acceleration. In 2023 IEEE International Symposium on with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

Performance Analysis of Systems and Software (ISPASS), pages 145-156. [32] Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio, and Cho-

IEEE, 2023. Jui Hsieh. Cluster-gen: An efficient algorithm for training deep and

Ranggi Hwang, Minhoo Kang, Jiwon Lee, Dongyun Kam, Youngjoo
Lee, and Minsoo Rhu. Grow: A row-stationary sparse-dense gemm
accelerator for memory-efficient graph convolutional neural networks.
In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 42-55. IEEE, 2023.

Yongan Zhang, Haoran You, Yonggan Fu, Tong Geng, Ang Li, and
Yingyan Lin. G-cos: Gnn-accelerator co-search towards both better
accuracy and efficiency. In 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1-9. IEEE, 2021.
Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen
Xu, and Xiaowei Li. Engn: A high-throughput and energy-efficient
accelerator for large graph neural networks. IEEE Transactions on
Computers, 70(9):1511-1525, 2020.

Sergi Abadal, Akshay Jain, Robert Guirado, Jorge Lopez-Alonso, and
Eduard Alarcén. Computing graph neural networks: A survey from
algorithms to accelerators. ACM Computing Surveys (CSUR), 54(9):1-38,
2021.

Shengwen Liang, Cheng Liu, Ying Wang, Huawei Li, and Xiaowei Li.
Deepburning-gl: an automated framework for generating graph neural
network accelerators. In 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), pages 1-9. IEEE, 2020.

Adam Auten, Matthew Tomei, and Rakesh Kumar. Hardware accel-
eration of graph neural networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1-6. IEEE, 2020.

Mingyu Yan et al. Hygen: A gen accelerator with hybrid architecture.
In HPCA, 2020.

Ilkwon Byun, Dongmoon Min, Gyu-hyeon Lee, Seongmin Na, and
Jangwoo Kim. Cryocore: A fast and dense processor architecture for
cryogenic computing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 335-348. IEEE,
2020.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza.
Dissecting the nvidia volta gpu architecture via microbenchmarking.
arXiv preprint arXiv:1804.06826, 2018.

Kaustubh Shivdikar. SMASH: Sparse matrix atomic scratchpad hashing.
PhD thesis, Northeastern University, 2021.

large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining,
pages 257-266, 2019.

Hangqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. Advances in neural information process-
ing systems, 30, 2017.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi
Chen, and Ming-Chang Yang. Measuring and improving the use of
graph information in graph neural networks. In International Confer-
ence on Learning Representations, 2019.

Yi-Chien Lin, Bingyi Zhang, and Viktor Prasanna. Hp-gnn: Generating
high throughput gnn training implementation on cpu-fpga heteroge-
neous platform. In Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 123-133, 2022.
Bingyi Zhang, Hanging Zeng, and Viktor Prasanna. Low-latency
mini-batch gnn inference on cpu-fpga heterogeneous platform. arXiv
preprint arXiv:2206.08536, 2022.

Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka,
and Sotetsu Iwamura. Rabbit order: Just-in-time parallel reordering for
fast graph analysis. In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 22-31. IEEE, 2016.

Nvidia. Cuda sparse matrix library (cusparse). developer.nvidia.com/
cusparse.

Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances
in neural information processing systems, 26, 2013.

Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen
Jiang, Orner Khan, and Caiwen Ding. Towards sparsification of graph
neural networks. In 2022 IEEE 40th International Conference on Com-
puter Design (ICCD), pages 272-279. IEEE, 2022.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen,
Makan Fardad, and Yanzhi Wang. A systematic dnn weight prun-
ing framework using alternating direction method of multipliers. In
Proceedings of the European Conference on Computer Vision (ECCV),

developer.nvidia.com/cusparse
developer.nvidia.com/cusparse

ASPLOS 24, April 27-May 1, 2024, La Jolla, CA, USA

[43]

(4]

(45]

[46]

(47

—

(48]

(49]

(50]

[51

—

(52]

(53]

(54]

(55]

[56]

(57]

(58]
[59]
(60]

(61]

(62]

(63]

pages 184-199, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable training of
artificial neural networks with adaptive sparse connectivity inspired
by network science. Nature communications, 9(1):1-12, 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich
Elsen. Rigging the lottery: Making all tickets winners. In ICML, pages
2943-2952. PMLR, 2020.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv preprint
arXiv:1907.04840, 2019.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang
Wang. A unified lottery ticket hypothesis for graph neural networks.
In International Conference on Machine Learning, pages 1695-1706.
PMLR, 2021.

Abien Fred Agarap. Deep learning using rectified linear units (relu).
arXiv preprint arXiv:1803.08375, 2018.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John
Carr, Michael Goin, William Leiserson, Sage Moore, Nir Shavit, and
Dan Alistarh. Inducing and exploiting activation sparsity for fast
inference on deep neural networks. In International Conference on
Machine Learning, pages 5533-5543. PMLR, 2020.

Shuning Wang. General constructive representations for continuous
piecewise-linear functions. IEEE Transactions on Circuits and Systems
I: Regular Papers, 51(9):1889-1896, 2004.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. Maxout networks. In International conference on
machine learning, pages 1319-1327. PMLR, 2013.

Louis De Branges. The stone-weierstrass theorem. Proceedings of the
American Mathematical Society, 10(5):822-824, 1959.

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru
Zhang. Matraptor: A sparse-sparse matrix multiplication accelerator
based on row-wise product. In 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 766—780. IEEE,
2020.

Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse ma-
trix—matrix multiplication for the gpu. ACM Transactions on Mathe-
matical Software (TOMS), 41(4):1-20, 2015.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In International Conference on
Learning Representations, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations (ICLR), 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In International Conference on
Learning Representations (ICLR), 2019.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel,
and Marion Neumann. Benchmark data sets for graph kernels. 2016.
Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, 2014.

Julian McAuley and Jure Leskovec. Image labeling on a network: Using
social-network metadata for image classification. 07 2012.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. GraphSAINT: Graph sampling based inductive
learning method. In International Conference on Learning Representa-
tions, 2020.

Jure Leskovec William L. Hamilton, Rex Ying. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.
Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. In

698

Peng and Xie, et al.

International Conference on Learning Representations (ICLR), 2018.

[64] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and

Ronny Krashinsky. Nvidia a100 tensor core gpu: Performance and
innovation. IEEE Micro, 41(2):29-35, 2021.

[65] ZiruiLiu, Chen Shengyuan, Kaixiong Zhou, Daochen Zha, Xiao Huang,

and Xia Hu. Rsc: accelerate graph neural networks training via ran-
domized sparse computations. In International Conference on Machine
Learning, pages 21951-21968. PMLR, 2023.

http://snap.stanford.edu/data

