" The Meerkat Vision: Language Support for Live,

Check for
Updates

Scalable, Reactive Web Apps

Joao Costa Seco

NOVA LINCS, NOVA School of Science and Technology

Caparica, Portugal
Joao.Seco@fct.unl.pt

Abstract

The reactive programming paradigm has become ubiquitous
for modern web and mobile app development. But despite
its many benefits, today reactive programming is limited to
data updates within the client, leaving to the programmer the
tedious and error-prone tasks of managing updates to code
and synchronizing data updates between reactive clients and
a server database. In this paper, we lay out the vision for
Meerkat, a tierless, reactive, and live programming language
designed to scale to the needs of modern applications. We
introduce the language through a chat application which
runs on our prototype implementation. We then describe
approaches for modularizing and scaling Meerkat programs,
customizing tradeoffs between properties such as consis-
tency and availability, supporting local-first software and
rich data models, and scaling live updates to full DevOps in
software organizations. The Meerkat research program will
enable a new era of developing apps that are more responsive,
reliable, and evolvable than ever before.

CCS Concepts: « Software and its engineering — Data
flow languages; Language types; Abstraction, modeling
and modularity; Software architectures.

Keywords: Meerkat, Reactive Programming, Live Software
Updates, Tierless Programming, Modularity, Scalability, Web,
Mobile

ACM Reference Format:

Joao Costa Seco and Jonathan Aldrich. 2024. The Meerkat Vision:
Language Support for Live, Scalable, Reactive Web Apps. In Pro-
ceedings of the 2024 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! *24), October 23-25, 2024, Pasadena, CA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3689492.3690048

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3690048

54

Jonathan Aldrich
Carnegie Mellon University
Pittsburgh, USA
jonathan.aldrich@cs.cmu.edu

1 Introduction

Since the earliest days of Graphical User Interface (GUI)
application development, developers have recognized the
need for a paradigm shift: rather than providing scripted
interaction paths in the style of command-line interfaces,
GUIs must be responsive to the user. This led to the devel-
opment of design patterns such as Subject-Observer and
Model-View-Controller that facilitate responsiveness. The
natural extension of this path is the reactive programming
paradigm [12], which specifies how a Ul is constructed from
persistent application state, and how the app responds to
user input by changing that state. When the state changes,
the system reacts by updating the UI accordingly. Impor-
tantly, this update is done automatically based on what state
changed and the user-specified declarative code for deriving
the interface from the state—freeing the user from managing
callbacks and state consistency as required in the patterns
mentioned earlier. Due to these benefits, reactive program-
ming is now the dominant industrial approach to developing
apps, with support from major industry frameworks.

Unfortunately the power of reactive programming is lim-
ited today because available linguistic support does not scale
to the distributed and fast-evolving nature of modern apps.
Industrial frameworks such as Angular, React, and Svelte
as well as languages like Elm provide a great programming
experience when coding up a local app, but real apps require
access to cloud data, which typically requires moving outside
the reactive paradigm. Industrial reactive database interfaces
such as R2DBC [14] exist but require giving up the elegant
linguistic support for reactivity provided by systems like Elm
and Angular. This lack of support for scale becomes espe-
cially painful as programs are evolved, because distributed
apps involve multiple interacting programs - clients, servers,
and databases — which must all be updated in synchrony
(including migration of live data) when the app is enhanced.
Modern app frameworks support just one of these genres in
isolation, creating massive DevOps challenges for program-
mers who must carefully plan and execute updates in an
unfriendly world that resists synchronized deployment (e.g.
via commercial mobile app stores).

In this paper, we lay out the vision for Meerkat, a system
we are building that provides linguistic support for seam-
less reactivity across a distributed system. We start with an
overview of the Meerkat architecture (Section 2), followed

https://orcid.org/0000-0002-2840-3966
https://orcid.org/0000-0003-0631-5591
https://doi.org/10.1145/3689492.3690048
https://doi.org/10.1145/3689492.3690048
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689492.3690048&domain=pdf&date_stamp=2024-10-17

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

”Replica
consistency

Code

updates m

Developer

Figure 1. Meerkat architecture vision

by a working example that illustrates our vision and high-
lights an initial implementation of the core ideas (Section 3).
Section 4 then lays out our goals and an approach to achieve
them: Meerkat builds reactive queries and updates into the
language, supporting standard linguistic abstractions while
also guaranteeing key safety properties such as termina-
tion and glitch freedom. Modular service definitions allow
partitioning the backend into reactive microservices, with
different distribution, consistency, and privacy policies for
different data stores. Live updates to the system provide con-
venience along with type safety and data consistency guar-
antees, with support for DevOps essentials like testing and
staged deployment. Finally, although Meerkat is designed to
provide a great programming experience across app, servetr,
and data development, engineering realities require a design
that supports interoperation with off the shelf software tech-
nologies, allowing legacy or specialty software components
to be incorporated when needed.

Section 5 describes prior work and the limitations that led
us to pursue the Meerkat vision. We conclude in Section 6.

2 Meerkat Architecture

Meerkat is a programming model for reactive client-server
and distributed applications where a set of resources are
made available through simple and reactive APIs implement-
ing user interfaces, data storage, and functionality, while
supporting the safe evolution of code and data. It thus pro-
vides an abstraction over a complete data-centric system and
its evolution process.

Figure 1 depicts our architectural vision for Meerkat. The
user interacts with a Meerkat program via their device, which
displays a user interface written in Meerkat using web tech-
nologies such as HTML and CSS. The Ul is generated based
on data provided by services, each of which includes internal
data storage (blue, purple, and orange boxes). Some services
may be local to the client, while others may be hosted in the
cloud, and others may be replicated both within the cloud
and on user devices. When the user performs an action in
the UI, the action is sent to the appropriate service, which
updates its internal data store according to the semantics of
the action (e.g. adding a row to a data table). The service then
sends data updates to all users whose Ul was based on the
modified data; thus the system ensures that users promptly
see updates provided by other users. Any replicated services

55

Joao Costa Seco and Jonathan Aldrich

Command
and
expression
interpreter

: Data and
(——>| code storage
H (mongodb)

API| + REPL

Web Client (Scalatra)

Figure 2. Meerkat current architecture

communicate with each other to maintain consistency ac-
cording to the developer’s desired semantics. Finally, the
developer of the Meerkat program can deploy updates to one
or more services and clients at any time; these updates are
automatically installed into the running system by Meerkat,
without ever taking the system down.

At a more concrete level, a Meerkat program consists of
a set of named variables holding data and named reactive
definitions that compute values based on other variables
and definitions. Meerkat data can consist of numbers, text,
collections, records, HTML values, and actions that represent
monad-like state transformations.

Actions can be executed in response to external events
from Ul elements or timers, or in respond to a top-level
REPL command issued by a Meerkat developer. Meerkat
thus defines a two-layer strongly typed language where the
top-level language can execute actions and has special com-
mands to create new definitions or update existing ones.
Such commands safely evolve the system by updating code
and date harmoniously. The bottom-level language is a reac-
tive language that updates the values of top-level definitions
whenever their (state) dependencies change.

The Meerkat vision builds on preliminary work, including
a proof of concept implementation [10]. This preliminary ref-
erence implementation hosts data and code on a centralized
application server that provides functionality and a reactive
web interface to the user (section 4.3 relaxes the assumption
of centralization). The server also provides a special API to
typecheck and execute the top-level commands that evolve
code and data while maintaining type consistency.

Figure 2 depicts the three-tier architecture of the proto-
type implementation of Meerkat. This can be viewed as a
specialization of the architectural vision depicted in Figure 1;
it supports many clients but just one (unnamed) service
running on a single server machine. A document-based data-
base (mongodb) stores both code and data, and maintains a
persistent representation of the graph of dependencies be-
tween variables and definitions. The language interpreter
typechecks and interprets the actions and REPL commands,
then persists the changes in the database. It also propagates
the changes amongst the definitions using the dependency
graph and refreshes all subscribers to a given name.

The API+REPL component, which shares the middle tier
with the interpreter, exports named variables and definitions
as REST endpoints and associates GET and POST requests to

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

retrieve values and execute commands. The API+REPL com-
ponent also uses WebSockets to support the user interface
reactivity in the case of HTML-like values.

3 Meerkat by Example

To better illustrate the language and the system, we present a
simple example of a social network that starts with a simple
messaging system and evolves seamlessly to add images
to messages. Notice that the system is live (running) at all
stages of this example; there is no downtime needed to deploy
new functionality. Variables, definitions, and commands are
entered by the developer as well-typed blocks and integrated
into the system, changing its behavior appropriately. All of
the code in this section runs as-is in our implementation; the
code in Section 4 is speculative.

Meerkat Example — First Step. The top-level commands
in Meerkat are var, table, def, and do. Definitions (def) associate
a name to an expression that is reactively evaluated every
time one of the names referred in the expression changes
(cf. a spreadsheet cell). Stateful stores defined by definitions
(var and table) are mutable stores (single values or collections,
respectively) that assignments update. Imperative commands
(do) trigger assignments and other imperative operations.

The initial state of our example is a messaging system. Its
definition starts with a variable to hold a sequence counter
and three tables: users, contacts, and messages. The contacts table
stores the users of the system with whom one exchanges
messages, and the messages table stores the details of the
messages sent between users. The following code defines
the tables and some initial data:

var seq_counter = 0
table users {id:number, name:string , phone:string}
table contacts

{ id:number, owner:number, contact:number}

table messages

{ id:number, fro:number, to:number, text:string}

Once these commands are issued in the system, the corre-
sponding storage is created and is live (can be reached from
the API). Meerkat’s first-class values include action blocks,
which wrap delayed imperative constructs like assignments
and operations on tables (insert, update, delete). Actions group
a set of data updates, and the system executes them atomi-
cally and consistently. To allow state updates to depend on
reactive data without creating infinite updates, action execu-
tion is delayed until it is triggered through the REPL or by a
user interaction.

Next, to add new records to tables users and contacts we
define functions add_user and add_contact as follows:

56

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

Users Contacts
id | name | phone id | owner | contact
Alice | 123-4567 1 1 2
2 Bob 234-5678 2 1 3
3 | John | 345-6789 3 2 1
Messages

id | fro | to text

1 1 | 2 | "Hello, Bob!"

2 1 3 | "Hello, John!"

3 2 1 "Hi, Alice!"

4|13 |1 "Hi, Alice!"

Figure 3. State of the system after the initial setup

def add_user id name phone = action {
insert {id:id,name:name,phone:phone} into users}
def add_contact id owner contact = action {

insert {id:id,owner:owner,contact:contact} into

contacts}

The insert operation is an imperative operation that adds
a new row to the collection (table) specified. Meerkat’s proof
of concept does not enforce integrity constraints, as that is
not its primary focus, but we loosely use numbers as keys,
as in the relational model (section 4.6 discusses an exten-
sion to referential integrity). The system is reactive; thus,
any other program element using the values associated with
names that are modified in an action will be updated with
the new values computed by these actions. Any client can
call the add_contact function to obtain an action value and
execute it at the systems’ top-level using a special do opera-
tion through the REPL, and thus triggering an update to all
names connected to the names users and contacts.

do add_user 2 "Bob" "234-5678"
do add_user 3 "John" "345-6789"
do add_contact 1 1 2
do add_contact 2 1 3
do add _contact 3 2 1

Only Meerkat’s REPL or a user interface component can
trigger the do operation. Meerkat’s type system verifies that
circular dependencies between definitions always include an
action, whose execution will depend on an external stimulus.

We can similarly define a function send_message that sends
a message from one user to another by adding a record to
the messages table. Each message receives a new identifier by
means of the seq_counter variable that is incremented inside
the same action that inserts the message.

action {
seq_counter + 1,

def send_message fro to text =
seq_counter :=

insert { id: seq_counter,
fro: fro,
to: to,
text: text } into messages
}
Function send_message is triggered at the top-level by:
do send_message 1 2 "Hello, Bob!"
do send_message 1 3 "Hello, John!"
do send_message 2 1 "Hi, Alice!"
do send_message 3 1 "Hi, Alice!"

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

The resulting state is now populated with users, contacts, and
messages, as shown in Figure 3. We can continue to add new
tables and variables, but let’s consider adding new reactive
definitions that inspect the system’s state. For instance, the
following function retrieves the name of a user given an
identifier:

def user_name id =
match get u in users where u.id == id
with u::rest => u.name

| [r=-""
Notice above the syntax for queries on tables, inspired by SQL
queries, and the use of pattern matching on lists to inspect
the results, inspired by sum types in functional languages.
The following function retrieves all messages sent to or from
a given user.

def messages_with owner contact =
get m in messages
where m. fro contact and m.to == owner
or m.fro == owner and m.to == contact

To see the messages exchanged between Alice and Bob,
one can define a name to hold the result of the query and
then inspect it:

def messages_between_Alice_Bob = messages_with 1 2

If Alice sends a new message to Bob, the value of the name
messages_between_Alice_Bob is automatically updated. If a user
interface element refers to that name, the system propagates
the change to the client browser displaying that element,
and the user sees the updated information.

Meerkat also includes language constructs that mimic
HTML to define user interfaces. The following code defines
a simple page that lists the messages of a particular user
(owner) with one of its contacts (id).

def messages_with_page owner id =

<div >
<h3>(user_name owner)" and "(user_name id)</h3>

(map (m in (messages_with owner id))
 (user_name m.fro) ": " (m.text))

</div >

The actual UI element containing the list of messages be-
tween Alice and Bob, given by calling messages_with_page:

def msgs_Alice_Bob_page = messages_with_page 1 2

A browser accessing the URL associated with the name re-
ceives a reactive HTML page containing the corresponding
user interface.

The next step in the development of the system is to have
a page that lists all contacts with links to the messages ex-
changed with each of them. The following code defines the
page that lists the contacts of a user:

57

Joao Costa Seco and Jonathan Aldrich

Conversations of Alice Alice and Bob
* Bob « Alice: Hello, Bob!
* John * Bob: Hi, Alice!

o Alice: Are you ok?

Figure 4. User interfaces for Alice’s conversations.

def conversations_page id =
<div>
<h3> "Conversations of (user_name id) </h3>

(map (c in
(get ¢ in contacts where c.owner == id))

<a href=(linkto messages_with_page id

c.contact)>
(user_name (c.contact))

</|i >)

</div >

Assuming that the user Alice’s user id is 1, we can then define
a page that lists Alice’s contacts:

def conversations_of_Alice = conversations_page 1

Our implementation makes this page accessible at a specific

URL tied to the name conversations_of Alice . A URL of the form
http :// servername/app/acQEt/conversa’tions_of_AIice1

or, more generally, in the parametrized URL of the name

conversations_page, representing a function call, of the form
http :// servername/app/acQEt/conversations_page/1

The (simple) user interfaces produced by these expressions

are depicted in Figure 4.

Adding Messages. The system can be further developed
by adding new definitions or redefining the existing names
to include new features. For instance, the following code
redefines the name messages_with_page to include a form that
submits new messages:

def messages_with_page owner id =
<div >
<h3>
(user_name owner)
</h3>

(map (m in (messages_with owner id))
 (user_name m.fro) ": " (m.text)

<form>
<input id="entry"/>
<button doaction=(send_message owner id #entry)>
"Send"
</button >
</form>
</diV>

"

and (user_name id)

)

lacQEt is a session identifier corresponding to running instance of the
Meerkat program.

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

Alice and Bob Bob and Alice
e Alice: Hello, Bob!
« Bob: Hi, Alice!
o Alice: Are you ok?
* Bob: I'm Fine!

[send] |

 Alice: Hello, Bob!
« Bob: Hi, Alice!
o Alice: Are you ok?
¢ Bob: I'm Fine!

| send |

Figure 5. Ul for Alice and Bob with a form to send messages
and a new message.

Notice in the example above that the language allows
the developer to associate an action with a button, using
an attribute doaction and an action-typed expression. It is
also possible to use the values of input elements in Meerkat
expressions. This update in the REPL is immediately propa-
gated, changing the UI of all the active users (Alice and Bob)
without any explicit deployment action. The server state
remains unchanged. When Alice or Bob clicks the button to
send a message, the UI for the multiple users is reactively
updated as shown in Figure 5.

Messages with Images - Step 2. The safe evolution of
a running system is the core of Meerkat’s vision. Top-level
commands can add new definitions, as described above, or
redefine existing ones. As a trivial extension to our run-
ning example, we start by evolving the system to support
messages with images, adding a table to store them. The
following code extends the system with two new tables

table messages_with_images {
id:number,
fro:number,
to :number,
text:string ,
image:string
}

table images { id:string, url:string }

which allow the definition of a new function to insert images:
id url =

def insert_image action {

insert { id:id, url:url } into images
}
do insert_image "1°"
do insert_image "2" "/images/catl.jpg"
do insert_image "3" "/images/cat2.jpg"
do insert_image "4" "/images/dogl.jpg"
do insert_image "5" "/images/dog2.jpg"

We create the first record with an empty string, the default
value, to represent the absence of an image. To start using
messages with images, we need to redefine the send_message
function to include an empty image, and we don’t need to
change the user interface.
def send_message fro to text = action {
seq_counter := seq_counter + 1,
insert { id:seq_counter,
fro:fro, to:to,
text:text, image:"1"}
messages_with_images

}

into

58

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

In most situations, it is possible to evolve a system step by
step without breaking the system, i.e., without inconsistent
intermediate states. First, if no types are changed, the system
remains (type)consistent. Suppose types are changed, and
the replacement of a definition is at a root in a dependency
graph. In that case, it is possible without disturbing the sys-
tem because no other definition uses it. However, sometimes
breaking changes are inevitable, e.g., when changing the
types of names in mutually recursive definitions. In other
situations, the result may not be ideal. For example, when
send_message is updated as described above, new messages
will not be shown in the user interface because the Ul gets
information from the old messages table. To support mutual re-
cursion and to make updates seamless for users, it is possible
to group several commands in an atomic block. By doing so, all
commands are executed in isolation, the inconsistent states
happen but are not observed, and the system is consistent at
the end of the block.

atomic {
def insert_message id fro to text image =
action {
insert { id: id,
fro: fro, to: to,
text: text, image:image }

into messages_with_images

}

do map (m in messages)
(insert_message m.id m.fro m.to m.text "1")

def send_message fro to text =

def messages_with owner contact =
get m in messages_with_images
where m.fro == contact and m.to ==
m.fro == owner and m.to == contact

owner or

Notice that the do command iterates over all existing mes-
sages and produces an action for each one. It then iterates
over all actions and executes them. This copies all messages
from the previous table to the new one. By additionally defin-
ing the function that reads the messages and the function
that sends an image without a picture, we can ensure that
the system is always in a consistent state with respect to
both code and data.

Atomic updates are convenient for the programmer, but in
the presence of large datasets, they may result in noticeable
pauses as ordinary operations are halted to guarantee global
synchronization. For some applications, this is acceptable;
a lot of modern mobile and web apps do go down for short
maintenance breaks. For applications that must be continu-
ously available, though, this is a problem, one that we return
to in section 4.7.

Once the above is complete, we can equip the system to
send a message with an image by defining a new function,
assuming an image already exists in the images table.

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

def send_message_with_image fro to text image =
action {
seq_counter := seq_counter + 1,
insert { id:seq_counter,

fro:fro, to:to,
text:text, image:image }
messages_with_images }

into

Finally, to make the system compatible with older or un-
changed elements, we can redefine the name messages from a
table to a kind of a “view” over the new table that ignores
all the images in the messages.

map (m in messages_with_images)
fro:m.fro, to:m.to, text:m.text }

def messages =
{ id:m.id,
The only step that is still needed to upgrade the system is
to redefine the user interface. At this point, the Ul is the same,
but emits messages to the new table, with the default value
for the image field. First, we define a function that produces
the code to display the image and ignores the empty image.
Then, we update the page to receive an image URL and call
the appropriate function to display the image, as shown in
Figure 6.

def image_of image =

if image == "1" then else
(match get i in images where i.id == image
with i::rest => (<p></p>)

| 1]

def messages_with_page owner id =

=> ())

<div >
<h3>
(user_name owner) " and (user_name id)
</h3>

(map (m in (messages_with owner id))

(image_of m.image)

<p>(user_name m. fro) (m. text) </p>

</li =)

<form>
<div> "Text:" <input id="entry"/></div>
<div> "lmage:" <input id="image"/></div>

<button doaction=
(send_message_with_image owner id #entry
#image)>
"Send"
</button >
</form>
</div >
At this point, the interface supports both messages and
images. The system was evolved seamlessly from the original
version without ever being taken down or losing any data.
Notice that the current implementation is a proof of con-
cept of the system we envision. Currently, it supports some
convenient extensions like CSS and JavaScript code that can
be associated with the HTML values. More broadly, its de-
sign is compatible with the basic definitions written in other
mainstream (typed) languages. Ideally, Meerkat would work
as a component-based platform where components can be
reactively interlinked, provided they implement and propa-
gate the reactive behavior. One strong candidate for a base

59

Joao Costa Seco and Jonathan Aldrich

Alice and Bob
« Alice: Hello, Bob!
« Bob: Hi, Alice!
¢ Alice: Are you ok?

o Alice: Hello again

Bob: I'm more a dog person.

Text:
Image:

Send

Figure 6. New user interface for Alice’s conversation with
Bob with images.

language for components would be the Kotlin programming
language, which compiles to multiple contexts.

The prototype system supports reactive execution of pro-
grams and live updates, but it is not yet practical for building
applications at scale due to a number of limitations in the
language and system architecture. In particular, the choice
of hosting code and data in the same database is a simpli-
fication that allows us to focus on the core language and
system design. The problem of code and data migrations has
been studied for a long time and has a number of solutions.
The Meerkat vision is to provide a language that supports
the safe evolution of code and data in conjunction with ex-
isting technological solutions for code and data migration.
Our goal is to have high-level declarative construction oper-
ations that support seamless construction and evolution of
applications and are supported by efficient operations in un-
derlying systems or languages. In the following section, we
describe a vision that scales up reactive, live programming
in Meerkat and outline a research program for overcoming
the limitations of the current implementation.

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

4 Meerkat Vision

In this section, we describe Meerkat’s vision, building on
the design sketched above to support live programming at
enterprise scale.

4.1 Linguistic Support for Reactivity

A core principle of Meerkat, illustrated in the example above,
is that support for reactivity is linguistic. It is possible to pro-
vide reactive programming through library abstractions, for
example, as provided by React?. However, the core abstrac-
tion of reactive programming is reacting to changing data
and providing reactivity as a linguistic construct supports
that model transparently. This transparency supports clear,
declarative code that directly captures programmers’ intent.

The Meerkat vision differs from prior research on reac-
tive functional programming, as supported by Elm [9] and
Flapjax [20], in that our updates to data are imperative. The
enthusiastic adoption of industrial frameworks like React
and Angular suggests that a mutable data model is an ab-
straction that matches programmers’ mental models well.
Meerkat’s approach is closer to what is present in recent
versions of Redux Toolkit?, a state management framework
that changed from a purely functional style to a combination
of imperative and reactive programming constructs. While
abstractions such as event streams in Flapjax or messages in
Elm can function similarly, they create an impedance mis-
match with the way that programmers think about data,
and result in awkward boilerplate code. For example, the
Counter.elm example from Elm’s website* has button clicks
generate Increment and Decrement messages, which are then
passed to an update function along with the previous model
in order to compute the new model:

type alias Model = Int
initialModel Model
initialModel = 0

update : Msg -> Model -> Model

update msg model =
case msg of
Increment ->
model + 1

Decrement ->
model - 1
the code in the View part:

button [onClick Decrement] [text "-"]

While there are advantages to functional programming,
in our view the code obscures what is really going on: the
programmer’s mental model is of incrementing and decre-
menting a counter. Compare the equivalent code in Meerkat:

Zhttps://react.dev/
3https://redux-toolkit.js.org/
4https://elmprogramming.com/

60

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

var counter = 0

def increment =
def decrement =

action { counter :=
action { counter :=

counter + 1 }
counter - 1 }

the code in the View part:

<button doaction = (decrement) > "-" </button>

Furthermore, Meerkat aims to capture the server-side data
model, where imperative updates are standard. Our impera-
tive data model can express client and server data equally
well, while functional reactive programming requires pro-
grammers to mediate between the two with commands or
events that result in calls to functions with communication
as a side effect. For example, Elm’s tutorial on getting data
from a server via JavaScript does this with an update func-
tion that generates side-effecting commands along with a
new model:
update Msg -> Model -> (Model, Cmd Msg)

update msg model =
case msg of
SendDataToJS ->
(model, sendData "Hello JavaScript!")
ReceivedDataFrom)S data -> (data, Cmd.none)

Meerkat’s language layer abstracts data location and re-
quires none of this boilerplate—the same Meerkat counter
code given above works regardless of whether the counter
is on the same machine or a different server. The actual lo-
cation and availability can be guided by a different set of
requirements like data sharing, computational needs and
capabilities, data confidentiality, communication, etc. We do
adopt ideas from functional reactive programming to repre-
sent computation of output from changing data; it is clear
that, in this setting, functional programming is the most di-
rect abstraction and provides a clean, safe semantics for user
interface code.

Besides supporting a cleaner programming model with a
close correspondence to the mental models of programmers,
linguistic support for reactivity allows Meerkat to provide
programmers with guardrails to get their reactive programs
right. Our design uses def to represent reactive definitions,
distinguishing them from both data definitions (which use
var Or table) and imperative updates with action. Our type
system allows flexible composition, so that actions can use
reactive definitions to compute data definitions, and reactive
definitions can define deferred actions. However, reactive
definitions cannot trigger actions, avoiding self-triggering
loops. Furthermore, our type system ensures that reactive
definitions are not circular [10].

We believe the developer user experience (UX) of reactive
programming should provide all the powerful abstractions
provided by modern programming systems. Therefore, as
part of supporting linguistic reactivity, a priority for Meerkat
is to support rich, type-safe programming abstractions, in-
cluding higher-order functions in reactive definitions and
actions, rich data structures, and modular decomposition of
definitions, data structures, and actions. While higher-order

https://react.dev/
https://redux-toolkit.js.org/
https://elmprogramming.com/

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

functions are already supported in our prototype, the other
features pose interesting design and research challenges, as
discussed below.

Functional reactive programming is thriving in the context
of JavaScript and web programming. Therefore, we envision
a mechanism that allows JavaScript web components to be
integrated into Meerkat applications, with clear interfaces
that preserve the reactive semantics across client and server
borders and services. In the current prototype, it is possible
to add JavaScript code and CSS elements to applications, but
we envision an integration that for example allows program-
mers to seamlessly import TypeScript React components and
integrate them with a line or two of typechecked Meerkat
code. Supporting integration with TypeScript code will also
provide a way to support functionality that is not part of the
Meerkat execution model. For example, our model does not
support threads or timers that could be used to do things
like generate periodic events that update application state,
without the user taking any action. A component written in
TypeScript, or perhaps provided as a server-side plugin in a
language like Rust, could generate such events and trigger
Meerkat actions in the same way that a user-facing interface,
or the system’s REPL would.

4.2 Reactivity Across the Software Stack

A number of research languages and industrial frameworks
provide seamless reactivity on the client, but many real ap-
plications store data on servers or in the cloud. This typically
forces programmers to depart from the reactive paradigm to
explicitly request data and updates from the server, creating
an impedance mismatch that results in repetitive, boilerplate
code, which ends up being error-prone as well since pro-
grammers are tasked with the difficult problem of keeping
distributed data consistent between the client and server.
Industry and researchers have recognized this problem
and have begun to address the issue, but their solutions are
limited by not fully embracing reactivity via linguistic ab-
stractions. For example, the Meteor framework [24] connects
reactive front-end components (e.g., written in Angular or
React) to a MongoDB database, via reactive abstractions in
JavaScript. The Reactive Relational Database Connectivity
(R2DBC) [14] specification provides a reactive programming
API to relational databases, allowing developers to access
their data with reactive SQL queries. These projects offer
concrete benefits to developers by extending reactive pro-
gramming to server side programming, and demonstrate that
the industry is interested in reactive programming that spans
beyond the client. However, they still provide an impedance
mismatch for programmers who are using linguistic reactiv-
ity on the client. For example, a programmer using Angular’s
compiler support for reactive programming will find that
accessing Meteor data requires observables to mediate be-
tween data updates from Meteor and Angular’s natively

61

Joao Costa Seco and Jonathan Aldrich

reactive TypeScript fields. Here’s code from the Meteor/An-
gular tutorial that listens to MongoDB-compatible Collections
via Meteor and turns them into rxjs Observables that update
the UI whenever chats or their messages change:

import { MongoObservable } from 'meteor-rxjs '
Chats =
MongoObservable. Collection <Chat >('chats
const Messages =

new MongoObservable

.Collection <Message >('messages ') ;

const
new

)

// in the implementation of ChatsPage:
ngOnlnit () {
this.chats = Chats
find ({})

.mergeMap ((chats: Chat[]) =>
Observable.combineLatest (

.chats.map((chat: Chat) =>
Messages
.find ({chatld: chat._id})

.startWith(null)
.map(messages => {
if (messages)
chat.lastMessage =
return chat;

b

messages [0];

)

).zone () ;

}

It’s not necessary to understand the details of this code;
the point is that there are layers of abstraction required to
adapt from Meteor’s cross-platform reactive abstractions and
the ones that Angular uses, all of which creates boilerplate
for programmers to write. The mismatch is less pronounced
when using React, which has a more natural integration with
Meteor’s reactive abstractions using hooks [25]. However,
the code is still more complex than it would be in Meerkat,
where reactivity is built-in. Furthermore, React is already less
linguistic’ in its support for reactivity than either Angular
or Meerkat; state is represented with getter/setter pairs, for
example, rather than fields with assignment and update. For
systems using R2DBC, there are similar issues: it provides
reactive SQL queries, but they are written in SQL instead of
the reactive front-end language, so adaptation is necessary.

The lack of linguistic support — and particularly type-
checking - in existing full-stack reactive frameworks pre-
vents them from catching the kinds of errors that our type
system can identify. For example, if the observable code that
ties Angular to Meteor accidentally invokes a function that
updates the database, a nonterminating reactive loop may
result. It is also a barrier to providing programmers effective
support for the live evolution of reactive programming sys-
tems, since there is no system that can analyze and evolve
code on both the client and server.

By providing reactive linguistic abstractions that span ma-
chine boundaries, Meerkat is able to provide a convenient
and consistent programming interface for server data struc-
tures and client UI code alike. Furthermore, Meerkat’s type

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

system is able to detect static errors in both the construction
and the evolution of reactive applications.

4.3 Services: Scaling Up Reactive Data

A primary limitation of our current prototype is that all the
data is declared in a single module and hosted on one server.
This made implementation of a seamless reactive program-
ming language easier, but it limits scalability in multiple
dimensions: size of data, code complexity, request through-
put, and reliability. Meerkat will overcome these limitations
by introducing the idea of services.

A service encapsulates a set of data declarations and as-
sociated reactive definitions and actions that are managed
together. It is the reactive, linguistic analog of a microser-
vice [16]. Data inside a service is declared using the same
var and table declarations described earlier. These can be ex-
posed to clients, but more typically, a service hides them
and instead provides a high level service signature made up
of reactive definitions and actions. For example, a message
service might have the following signature:

service sig message_service {
type Message =
{id : number, fro : number, to : number, text : string}
action send_message(to:number, fro:number,
text:string)
def messages_with (owner:number,
Message list

contact :number)

These are of course just the same functions from our run-
ning example, now given explicit types and nested in a service
definition—and they can be defined exactly as before. The
messages_with definition is reactive: clients that use its def-
inition are notified whenever its value changes. We treat
send_message slightly differently: instead of a definition that
returns an action, we treat it as a parameterized action that
returns no result but may have a side effect on the service.
The reason is that the client will not invoke the message
service until it is ready to send a message—we do not want
to do a round trip to get the action and then another one to
invoke it. After an action modifies data within the service,
changes to reactive definitions will be propagated to clients
as appropriate.

From a software engineering point of view, a service acts
as a module or object: it has an abstract interface, permitting
its data representation to be changed without affecting client
code. Separate evolution of different parts of an application’s
service is a critical part of the motivation for microservices,
and will provide similar benefits for reactive programming.

Services can be composed, allowing one service’s defini-
tions and actions to be defined in terms of other services. This
echoes the composition of microservices in today’s cloud
computing systems. To enable static checking, the signature
of a service must capture the dependencies of a service’s
definitions. When a composed system is built, a check that

62

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

is global to the program but uses only signatures, not imple-
mentations, verifies that there are no dependency cycles in
reactive definitions.

4.4 Located Services and Thick Clients

Our service construct is motivated by microservices, and in
our design, services can be instantiated independently; each
service is the equivalent of a main program in C. Instantiating
a service also instantiates all the other services it depends on;
we propose an import construct to make dependencies explicit.
In the following code, instantiating the messages service also
creates an instance of the accounts service (code not shown).

service messages: message_service {
import accounts // messages depends on accounts

To allow services that interact to be instantiated separately,
services can take other services as parameters instead, much
like a functor [18]:

service messages(accounts: account_service):

message_service {

At deployment time, we envision that services will be
identified by URLs. Thus when instantiating the messages
service, we pass a URL for an account_service that is already
instantiated.

Local-First Software. An important application of ser-
vices is to support Local-First Software [15], a design philos-
ophy that emphasizes users’ choice in how their private data
is managed—in particular the ability to restrict that data to
their own devices. Meerkat’s design will support declaring
a service for each user that encapsulates their data, and is
stored on their devices. Since one application may have an
unbounded number of users, this requires a service to be
dynamically instantiated whenever a new user joins the sys-
tem. To this end, the client application can be represented as
a single service that includes data members as well as a user
interface and takes any external services it uses as parame-
ters. A local-first messages client might look something like
the following code:
service message_client(dir:directory_service) {

table my_messages { ... }

action send_message to text =

def sent_messages contact =

def recd_messages contact =
def $ = <div> </div >

Here, the user interface is represented as HTML, as de-
scribed above, using a distinguished name $ to represent the
application home page. The message_client can be deployed
as a standard native application (with web components un-
der the hood) or as a web application. In the latter case, the
server might look something like this:

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

service
import

message_server {
directory:directory_service

def $ =
}

message_client(directory)

Now if the user loads the root URL of the message server (/,
represented again as $), the code for the service, compiled as a
package of HTML and JavaScript, is downloaded to the client
browser and shown to the user. The table in the message_client
service is stored in local storage in the client-side browser.

Instead of being parameterized by services, local clients
could also connect and disconnect to them dynamically. A
language primitive for creating a reference to a service from
its URL would enable this functionality. Simply disconnect-
ing and reconnecting to services allows local-first software to
run in offline mode. A more sophisticated approach is to use
replicated services that use CRDTs to tolerate disconnected
operation, as described in the next subsection.

4.5 Customizable Semantics for Services

The abstraction of services also supports different tradeoffs
between consistency, reliability, scalability, and other quality
attributes. Some services, such as user account management
and authentication, must provide a high degree of consis-
tency but are not expected to deal with a high request rate.
Other services must be highly scalable and can sacrifice some
consistency to achieve that goal.

Plug-in Service Implementations. We propose to sup-
port this diversity of semantics by providing a plug-in exten-
sion mechanism for services. The plug-in interface allows
services to be implemented in multiple ways. One implemen-
tation of a data storage service might use a conventional data-
base, leveraging the R2DBC reactive database interface [14],
with the accompanying reliability and consistency properties.
This could be denoted within Meerkat as follows:

extern ("RDBC") service msg_database {
action send_message to text = "INSERT INTO
def sent_messages contact = "SELECT

The declaration above indicates that Meerkat should
search for and loads a service implementation named RDBC.
Instead of providing an implementation of the definitions
and actions in Meerkat, a string is provided that is interpreted
by the plugin. In the case of RDBC, definitions exported by
the service map to programmer-defined reactive queries over
the database, whereas actions might map to SQL INSERT
statements or to stored procedures. There are limitations
to this approach—namely the restriction to databases with
reactive query support and the restriction of service defini-
tions to operations the database can support—but it allows
developers to use off-the-shelf database technology if that
best meets their needs.

63

Joao Costa Seco and Jonathan Aldrich

Native Meerkat Service Implementations. Using plu-
gins to connect to conventional databases is valuable as
it allows developers to use existing commercial infrastruc-
ture. However, synchronizing code updates with an external
tool such as a database may be hard (though perhaps not
impossible—-it’s one direction we may investigate in future
work). We therefore plan to provide distributed reactive data-
base implementations with desirable semantics and scalabil-
ity properties for our setting. A first step in this direction
is Historiographer [13], a novel distributed reactive data-
base algorithm that provides causal consistency—a relatively
strong consistency model that nevertheless avoids the global
synchronization that is inherent to full serializability. In His-
toriographer, only the names used in a transaction are read-
or write-locked, allowing fully parallel queries and parallel
updates to orthogonal data. Deadlocks are handled with wait-
die deadlock avoidance. Historiographer keeps a history of
recent updates to each definition in order to provide causal
consistency and glitch freedom. Experiments validate what
one would expect: on microbenchmarks, Historiographer
scales better than state of the art algorithms that provide
serializability.

We are currently extending Historiographer to support
code updates. Code updates are typechecked when they are
written to ensure that the overall system after updates is
well-formed. In our proposed approach, code updates com-
pete with other transactions, acquiring exclusive locks on
definitions that are updated and read locks on definitions
that an update depends on or that depends on it. As actions
can be triggered simultaneously with updates, there is a
race to acquire the appropriate locks. If an action loses that
race, it may no longer typecheck against the new definitions.
Therefore, actions track versions of definitions, which are
incremented on code updates. We check definition versions
to detect the possibility of incompatibility and re-typecheck.
Actions that still typecheck can be run; other actions are
canceled, with a notification to the user (an exception-like
mechanism to be designed).

Similar problems can happen when conflicting code up-
dates race, and can be solved in a similar way: if version
numbers show that relevant code has changed since a code
update was last typechecked, it must be typechecked again
before being applied. In many cases code updates require
more coordination than actions, meaning they will be more
expensive to apply. However, we assume they will also be
much rarer—-a popular commercial application might see
code updates once per day if it is developed in a highly agile
fashion, but its users will be performing millions or billions
of operations per day.

Weakening Consistency. Some applications do not re-
quire strong consistency and glitch freedom, or require it
for only parts of their applications. In this case, developers

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

may prefer eventual consistency if it provides better scala-
bility, and they may prefer updates to become immediately
visible despite the possibility of glitches to provide the user
with the most up-to-date information. We plan to provide
annotations that relax the consistency guarantees provided
by Historiographer, and modifications to the algorithm that
support this.

For example, consider a text editing application that pro-
vides spell-checking functionality from the server. In the
classic definition of glitch freedom, the results of inserting
a character would not be shown to the user until all reac-
tive code triggered of that insertion—including server-side
spell checking—is complete. Historiographer implements
glitch freedom by holding back partial updates from being
displayed until all updates from the same transaction are
available. Of course this is unacceptable in the document
editing setting, as users wish to see the effect of their edits im-
mediately, and spell checking can come later. Our approach
would annotate the definition of the displayed document
text as @Eager, meaning that reactive updates affecting this
definition are never held back by Historiographer. Users may
add a character to the document and see the document, then
learn shortly afterwards that as a result a word is mis-spelled.
This is technically a glitch, but it is acceptable in this context.
Our type system will verify that glitch-free definitions do not
rely on definitions or service implementations that cannot
provide those semantics.

If the text editor is to be collaborative, we may want
to implement it with conflict-free replicated datatypes
(CRDTs) [23] so that it is maximally responsive. A simple ex-
ample of a CRDT is an insert-only table. We plan to provide
an @InsertOnly annotation that restricts the program from
updating or deleting rows in the table, supports an eventual
consistency semantics for the table, and provides a corre-
sponding efficient run time implementation. Eventual con-
sistency supports (temporarily) offline applications well, an
important use case for local-first software.

In addition to the two annotations sketched above, we
plan to support a broader set of annotations that support
commonly desired consistency/performance tradeoffs in real
applications. This will require careful thinking (and consid-
eration of prior work [27]) to determine what semantics pro-
grammers can rely on in programs that have both causally-
consistent and eventually-consistent data structures.

Implementation Approach. Our current implementa-
tion of Historiographer is an interpreter, which sacrifices
some performance but not too much given that distributed
communication is the primary bottleneck. We plan to ex-
plore a compiler targeting Hydroflow [22] to gain improved
performance. It will be a just-in-time compiler in order to
support recompilation when code updates occur.

Building on prior work [2], Meerkat will provide a config-
uration language for services that links each service in the

64

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

program to the developer’s selected implementation. The
configuration will have an extensible section for each service
that allows additional provider-specific deployment infor-
mation to be specified; this might, for example, specify the
replication strategy in a future, replication-aware version of
Historiographer, or for an existing cloud database provider.
One strategy might be shard by messages.to, replicas 3, instruct-
ing the database to divide up (shard) the message data by the
to field so that it can be accessed in parallel, and replicate
each entry on 3 servers for reliability purposes. The configu-
ration language will also associate each service provider with
a well-known consistency semantics, so that compositions
can be checked. For example, a service provider that guaran-
tees causal consistency should not rely on a separate service
whose provider guarantees only eventual consistency, be-
cause then the first provider will not be able to honor its
own consistency guarantee.

4.6 Rich Data Models

While the current prototype of Meerkat does not provide
properties such as referential integrity, many applications
rely on this property, and we would like to make it an option
in our system. While conventional reactive databases can
provide this, we hope to provide a more scalable version
by starting with Historiographer [13], a recently-developed
distributed reactive update algorithm that provides causal
consistency and glitch freedom while avoiding any need for
global coordination. In our proposed approach, the developer
can specify whether referential integrity is important. If
integrity is not specified, then queries might fail to return
results if a key is missing.

If integrity is specified, however, users can annotate cer-
tain columns as primary keys (using @primary_key on the
field), and others as foreign keys referring to a primary key
in another table (e.g. @foreign_key(user_service . users.id)). We
will keep a count of foreign key uses of each primary key in
the system, and ensure the primary key cannot be removed
from the table unless the count is zero. The causally con-
sistent transaction update mechanism in Historiographer
will be used to ensure the count is consistent with the ac-
tual number of foreign key uses. If the user tries to do so
in an action, the action will fail. Our compiler will analyze
actions for the possibility of failure—i.e. whether the action
can remove or change a primary key—and require the user
to provide error-handling code in that case.

4.7 Distributed, Live Updates, and DevOps Support

By modeling an entire end-to-end system based on declara-
tively built reactive dataflows, Meerkat can isolate the key
axes on which flexible and incremental updates hinge. Our do
and atomic blocks support discrete transitions between con-
sistent states of the system in order to enable incremental
construction and evolution of a system. Here we benefit from

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

the well-known advantages of functional programming lan-
guages in our declarative definitions, while still supporting a
notion of mutable state that is core in data-centric systems.

A key challenge in scaling safe, live updates from single-
server systems to more arbitrary distributed architectures
is coordinating updates across the many servers that may
host individual services. Some of our diverse approaches
to data consistency support substantial independence be-
tween services. Likewise, we anticipate that many code and
data evolution steps, such as adding a new definition, cannot
break existing code and therefore can be applied one service
and one server at a time. Here, the structure of updates in
Meerkat provides an opportunity to cleanly intersperse the
regular execution of system operations with code and data
updates. Therefore, the log of all construction operations
uniquely defines the current state of evolution of the system.
In principle, it should be possible to propagate operations
and replay this log in different environments in the style of
operation-based CRDTs [23]. We envision this mechanism as
a foundation for language-based DevOps operations, safely
staging the different development environments (develop-
ment, quality assurance, and production).

We also recognize that atomic updates may be nonmono-
tonic, and these will require more global synchronization—at
least within a service, but in cases where the service’s inter-
face changes, perhaps beyond it as well.

Meerkat will include tools for analyzing updates to see
whether they can be deployed incrementally, as well as a
coordination layer that operates above the level of actions to
permit globally consistent, non-monotonic updates. In the
case of global updates, it is likely that users of a system may
see a brief pause or interruption as the update is deployed.
Our hope, however, is that the update automation provided
by Meerkat can reduce these pauses dramatically compared
to the way system updates operate today. Furthermore, the
typechecking of updates eliminates large classes of errors
that can occur during more manually-managed software
updates in the state of the practice today.

For applications that manage large datasets and must be
continuously available, programmers can mimic the strate-
gies that are currently used to update online applications:
creating new tables but continuing operations against the old
ones while data is being copied over. Once the data is present
in both old and new data structures, code can be switched
to use the new data structures with minimal pauses.

Such a strategy is common practice in companies that
deal with large amounts of data, for example as documented
by Jacqueline Xu at Stripe [26]. The example presented in
section 3 is a simplified version of this strategy; the main
missing element is a dual write strategy that allows the old
database table to be used in parallel with the new one, and a
separate process to copy the data.

65

Joao Costa Seco and Jonathan Aldrich

Coding this up in Meerkat is more work for developers
than using atomic updates, but it is much easier than the sta-
tus quo, where developers do not benefit from the many
facilities provided by Meerkat: a tierless view of the system,
atomic updates that are still used for smaller steps, the guar-
antee that updates are well-typed, and the DevOps facilities
proposed above. In addition, we anticipate that many data-
centric update operations can be automated and synthesized
from declarative specifications based on prior research in
this area [1].

More broadly, a language-based model that supports live
updates can be used to design new DevOps strategies, for
instance, to automatically update versions in clients that are
temporarily off-line or to program a rollout strategy that
“pre-stages” new versions to selected sets of clients, using
mock versions of the core data elements.

5 Related Work

Meerkat’s core vision is to support live programming at scale
by abstracting the dataflow into a base structure that sup-
ports rigorous reasoning about type safety and non-recursive
definitions. Other works have approached parts of this prob-
lem from different angles.

We take inspiration from languages implementing tier-
less programming, like LINKS [7] and Ur/Web [5], which
provide code for three tiers based on a single code source.
Like Meerkat, Ur/Web also adheres to the functional reactive
paradigm. In Meerkat, the location of data and computation
is further abstracted than in these languages. Nevertheless,
Meerkat’s focus is to pave the ground for the safe evolution
of code and data, which is not supported by these languages.
The refactoring of code and its more dynamic handling at the
language level is critical in other languages like Unison [6],
which is a distributed, pure functional language. Unison fo-
cuses more on the distribution of code and data, ensuring that
all definitions use the correct version of a function through
a hashing method despite their names changing. Meerkat
takes a different approach and safeguards the redefinition
of code by analyzing the dependency graph and disallowing
illegal updates. All updates are still possible but must follow
a particular protocol.

Other languages and systems explicitly adopt the tier di-
vision between client and server, like Riffle [17], and define
synchronization transformations between the two. Meerkat’s
approach is to completely abstract the location of data and
computation, allowing the developer to focus on the appli-
cation’s logic. The compiler determines the location of data
and computation in an orthogonal process. We present a
generic definition of data services that can be configured
to capture more situations than the tier division. On the
pragmatic side, Riffle can be used directly with mainstream
reactive technologies.

The Meerkat Vision: Language Support for Live, Scalable, Reactive Web Apps

From a DevOps perspective, the work on the sound evolu-
tion and adaptation of microservices in the setting of low-
code platforms [8] shows that most modifications can be
captured and automatically adapted. The same happens in
Meerkat, where the type system controls which changes are
legal and which will break the system’s operation. The type
system helps identifying which elements can be changed
individually and which need to be grouped in a bundle, to
make each evolution step safe.

To support the existence of different versions of the same
functionality in Meerkat, we need to define transformations
between different representations. This structured approach
to the evolution of software is also present in works like
Carvalho and Costa Seco’s [4] and Campinhos et al. [3]. The
difference is that Meerkat’s transformations are always live
and are not inlined by the compilation process to attain a
single version of the system.

In a sense, Meerkat defines the high-level structure of
a cloud application. Language-based approaches to decen-
tralized computing have been presented, for instance, in
CPL [2], which provides a configuration language for cloud
computing, and in Margara and Salvaneschi [19], who focus
on a distributed reactive mechanism with glitch freedom
guarantees.

Reactive programming languages are at the base of sys-
tems like Meerkat. Languages like Elm [9] provide a reactive
programming model for the client side but do not extend it to
the server side. Flapjax [20] allows the creation of dynamic
connections to data that cross to the server. Meteor [24] is a
full-stack reactive framework that provides a reactive model
for the client and the server but does not provide a language
model. R2DBC [14] provides reactive programming APIs
to relational databases but does not provide a unified lan-
guage model across the client and server. Meerkat provides a
typesafe and unified reactive programming language model
across services and tier borders. A language model allows
for the creation of new abstractions, like the synchronized
update of code and data, a notion of consistency between
actions and persistent data schemas. However, Meerkat’s
primary goal in using a reactive model is to provide ground
for the safe evolution of code and data.

An alternative to providing built-in language support for
reactive programming is to build an embedded DSL in lan-
guages that provide rich type system and metaprogramming
facilities. The ReScala project embeds reactive constructs in
Scala as a library that approaches the developer UX of a reac-
tive programming language [21]. Notably ReScala supports
distributed reactive programming, including the develop-
ment of a novel distributed update algorithm [11] that was
the point of departure for Historiographer [13]. The ReScala
approach has the benefit of being easily adoptable as it lives
in the ecosystem of Scala, a language with many available
libraries and a knowledgable user community. However, be-
cause it does not build in reactive semantics, it lacks some of

66

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

the type checking benefits of Meerkat and does not support
type safe live updates.

6 Discussion and Conclusion

This paper presented the Meerkat vision: a language and
programming system for large-scale applications that lever-
ages reactive programming to provide a great programming
experience for people building and updating distributed ap-
plications. We illustrated Meerkat via an example of a web
application which can be seamlessly and safely evolved live
even after its initial construction and deployment.

Meerkat’s abstractions are possible due to the declarative
nature of the functional reactive style adopted. The language
model captures the data flows that characterize any data-
centric application from a bird’s eye perspective. Such a
model allows reasoning about the changes needed to evolve
a system.

The vision presented in this paper is to take the current
prototype to a level where the native linguistic support for
reactivity can be used to reason about live updates, DevOps,
data placement, and richer data management models. We
hope that when this vision is realized, Meerkat will be im-
mediately useful to distributed application developers, and
in addition that the research program described here will
lay the foundation for the next family of industrial reactive
programming languages as well as future academic research
in live programming and distributed and reactive systems.

Acknowledgments

This work is partially supported by EU Horizon Europe
under Grant, Agreement no. 101093006 (TaRDIS), NOVA
LINCS UIDB/04516/2020 (10.54499/UIDB/04516/2020) and
UIDP/04516/2020 (10.54499/UIDP/04516/2020) with support
of FCT.IP, the US National Science Foundation under grant
no. CCF1901033, and the US Department of Defense. We
thank Selva Samuel and the anonymous reviewers for feed-
back that substantially improved the paper.

References

[1] Sara Almeida. 2021. Type-Driven Synthesis Of Evolving Data Models.
Master’s thesis. NOVA School of Science and Technology. http://hdl.
handle.net/10362/135849

[2] Oliver Bracevac, Sebastian Erdweg, Guido Salvaneschi, and Mira
Mezini. 2016. CPL: a core language for cloud computing. In Pro-
ceedings of the 15th International Conference on Modularity (Malaga,
Spain) (MODULARITY 2016). Association for Computing Machinery,
New York, NY, USA, 94-105. https://doi.org/10.1145/2889443.2889452

[3] Jodao Campinhos, Jodo Costa Seco, and Jaicome Cunha. 2017. Type-

Safe Evolution of Web Services. In 2017 IEEE/ACM 2nd International

Workshop on Variability and Complexity in Software Design (VACE).

20-26. https://doi.org/10.1109/VACE.2017.6

Luis Carvalho and Jodo Costa Seco. 2021. Deep Semantic Versioning for

Evolution and Variability. In Proceedings of the 23rd International Sym-

posium on Principles and Practice of Declarative Programming (Tallinn,

Estonia) (PPDP ’21). Association for Computing Machinery, New York,

NY, USA, Article 21, 13 pages. https://doi.org/10.1145/3479394.3479416

[4

=

http://hdl.handle.net/10362/135849
http://hdl.handle.net/10362/135849
https://doi.org/10.1145/2889443.2889452
https://doi.org/10.1109/VACE.2017.6
https://doi.org/10.1145/3479394.3479416

Onward! ’24, October 23-25, 2024, Pasadena, CA, USA

[5] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming

[10

[11

[12

[13

[14

[15

— =

=

—

]

]

—

[t

=

=

the Web. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Mumbai, India)
(POPL ’15). Association for Computing Machinery, New York, NY, USA,
153-165. https://doi.org/10.1145/2676726.2677004

Unison Computing. 2024. Unison.
Online, accessed on 2024-07-18.
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.
Links: Web Programming Without Tiers. In Formal Methods for Com-
ponents and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 266-296.

Jodo Costa Seco, Paulo Ferreira, Hugo Lourenco, Carla Ferreira, and
Lucio Ferrao. 2020. Robust Contract Evolution in a TypeSafe Mi-
croServices Architecture. The Art, Science, and Engineering of Pro-
gramming 4, 3 (Feb. 2020). https://doi.org/10.22152/programming-
journal.org/2020/4/10

Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (Seattle, Washington, USA) (PLDI ’13). Association for Computing
Machinery, New York, NY, USA, 411-422. https://doi.org/10.1145/
2491956.2462161

Miguel Domingues and Jodo Costa Seco. 2015. Type safe evolution of
live systems. In Workshop on Reactive and Event-based Languages &
Systems (REBLS’15). http://ctp.di.fct.unl.pt/~jcs

Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini.
2014. Distributed REScala: an update algorithm for distributed reactive
programming. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications
(Portland, Oregon, USA) (OOPSLA °14). Association for Computing
Machinery, New York, NY, USA, 361-376. https://doi.org/10.1145/
2660193.2660240

Conal Elliott and Paul Hudak. 1997. Functional reactive animation.
In Proceedings of the Second ACM SIGPLAN International Conference
on Functional Programming (Amsterdam, The Netherlands) (ICEP *97).
Association for Computing Machinery, New York, NY, USA, 263-273.
https://doi.org/10.1145/258948.258973

Julia Freeman and Timothy Zhou. 2023. Historiographer: Strongly-
Consistent Distributed Reactive Programming with Minimal Locking.
In Companion Proceedings of the 2023 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Cascais, Portugal) (SPLASH 2023). Association
for Computing Machinery, New York, NY, USA, 31-33. https://doi.
org/10.1145/3618305.3623597

Ben Hale, Mark Paluch, Greg Turnquist, Jay Bryant, and Elena Felder.
2022. R2DBC - Reactive Relational Database Connectivity. https:
//r2dbc.io/spec/1.0.0.RELEASE/spec/html/ Online, accessed on 2024-
04-21.

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-first software: you own your data, in
spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections

https://www.unison-lang.org/

67

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

Joao Costa Seco and Jonathan Aldrich

on Programming and Software (Athens, Greece) (Onward! 2019). As-
sociation for Computing Machinery, New York, NY, USA, 154-178.
https://doi.org/10.1145/3359591.3359737

James Lewis and Martin Fowler. 2017. Microservices: a definition
of this new architectural term. https://martinfowler.com/articles/
microservices.html Online, accessed on 2024-04-25.

Geoflrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jack-
son. 2023. Riffle: Reactive Relational State for Local-First Applications.
In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (San Francisco, CA, USA) (UIST °23). Asso-

ciation for Computing Machinery, New York, NY, USA, Article 76,
16 pages. https://doi.org/10.1145/3586183.3606801

David MacQueen. 1984. Modules for standard ML. In Proceedings of
the 1984 ACM Symposium on LISP and Functional Programming (Austin,
Texas, USA) (LFP ’84). Association for Computing Machinery, New
York, NY, USA, 198-207. https://doi.org/10.1145/800055.802036
Alessandro Margara and Guido Salvaneschi. 2014. We have a DREAM:
distributed reactive programming with consistency guarantees. In
Proceedings of the 8th ACM International Conference on Distributed
Event-Based Systems (Mumbai, India) (DEBS ’14). Association for Com-
puting Machinery, New York, NY, USA, 142-153. https://doi.org/10.
1145/2611286.2611290

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009.
Flapjax: a programming language for Ajax applications. In Proceedings
of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA
’09). Association for Computing Machinery, New York, NY, USA, 1-20.
https://doi.org/10.1145/1640089.1640091

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
bridging between object-oriented and functional style in reactive ap-
plications. In Proceedings of the 13th International Conference on Mod-
ularity (Lugano, Switzerland) (MODULARITY ’14). Association for
Computing Machinery, New York, NY, USA, 25-36. https://doi.org/
10.1145/2577080.2577083

Mingwei Samuel. 2021. Hydroflow: A Model and Runtime for Distributed
Systems Programming. Master’s thesis. EECS Department, University
of California, Berkeley.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free replicated data types. In Proceedings of the 13th
International Conference on Stabilization, Safety, and Security of Dis-
tributed Systems (Grenoble, France) (5S5°11). Springer-Verlag, Berlin,
Heidelberg, 386-400.

Meteor Software. 2024. Meteor Framework. https://www.meteor.com/
Online, accessed on 2024-04-21.

Meteor Software. 2024. Meteor React Tutorial. https://react-tutorial.
meteor.com/ Online, accessed on 2024-07-18.

Jacqueline Xu. 2017. Online migrations at scale. Stripe. https://stripe.
com/blog/online-migrations Online, accessed on 2024-07-18.
Zhiyuan Zhan, M. Ahamad, and M. Raynal. 2005. Mixed Consis-
tency Model: Meeting Data Sharing Needs of Heterogeneous Users. In
25th IEEE International Conference on Distributed Computing Systems
(ICDCS’05). 209-218. https://doi.org/10.1109/ICDCS.2005.49

Received 2024-04-25; accepted 2024-08-08

https://doi.org/10.1145/2676726.2677004
https://www.unison-lang.org/
https://doi.org/10.22152/programming-journal.org/2020/4/10
https://doi.org/10.22152/programming-journal.org/2020/4/10
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
http://ctp.di.fct.unl.pt/~jcs
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/2660193.2660240
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/3618305.3623597
https://doi.org/10.1145/3618305.3623597
https://r2dbc.io/spec/1.0.0.RELEASE/spec/html/
https://r2dbc.io/spec/1.0.0.RELEASE/spec/html/
https://doi.org/10.1145/3359591.3359737
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3586183.3606801
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/2611286.2611290
https://doi.org/10.1145/2611286.2611290
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://www.meteor.com/
https://react-tutorial.meteor.com/
https://react-tutorial.meteor.com/
https://stripe.com/blog/online-migrations
https://stripe.com/blog/online-migrations
https://doi.org/10.1109/ICDCS.2005.49

	Abstract
	1 Introduction
	2 Meerkat Architecture
	3 Meerkat by Example
	4 Meerkat Vision
	4.1 Linguistic Support for Reactivity
	4.2 Reactivity Across the Software Stack
	4.3 Services: Scaling Up Reactive Data
	4.4 Located Services and Thick Clients
	4.5 Customizable Semantics for Services
	4.6 Rich Data Models
	4.7 Distributed, Live Updates, and DevOps Support

	5 Related Work
	6 Discussion and Conclusion
	Acknowledgments
	References

