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Abstract. Physical experiments and numerical simulations have observed a remarkable
stabilizing phenomenon: a background magnetic field stabilizes and damps electrically
conducting fluids. This paper intends to establish this phenomenon as a mathematically
rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in
R3. The velocity equation in this system is the 3D Navier-Stokes equation with dissipa-
tion only in the x1-direction while the magnetic field obeys the induction equation with
magnetic diffusion in two horizontal directions. We establish that any perturbation near
the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting H3(R3).
In addition, explicit decay rates in H2(R3) are also obtained. When there is no presence
of the magnetic field, the 3D anisotropic Navier-Stokes equation is not well understood
and the small data global well-posedness in R3 remains an intriguing open problem. This
paper reveals the mechanism of how the magnetic field generates enhanced dissipation
and helps stabilize the fluid.

1. Introduction

This paper deals with the stability and large-time behavior problem on a system of 3D
anisotropic MHD equations near a background magnetic field. To shed some light on the
potential difficulties of this problem, we briefly review several facts on the behavior of
solutions to the Euler and the anisotropic Navier-Stokes equations.

It is well-known that solutions of the incompressible Euler equations∂tu + (u · ∇)u = −∇P,
∇ · u = 0

can grow rather rapidly in time. In fact, Kiselev and Sverak are able to construct a vorticity
solution of the 2D Euler equations in a disk whose gradient grows double exponentially
in time [54]. In the periodic setting, an example of Zlatos shows that the vorticity gradient
can grow at least exponentially [111]. Choi and Jeong obtain linear in time growth for the
vorticity gradient for certain smooth and compactly supported initial vorticity in R2 [22].
Classical solutions to the 3D Euler equations could develop finite-time singularities (
[20,38]). Many more results in this direction can be found in a review paper by Drivas and
Elgindi [35]. As a special consequence, perturbations governed by the Euler equations
near the trivial solution are generally not stable. How much dissipation does one really
need in order to achieve the stability? Adding the full Laplacian dissipation is certainly
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sufficient. As demonstrated by Schonbek and others (see, e.g., [75–77, 89]), solutions of
the Navier-Stokes equations∂tu + (u · ∇)u = −∇P + µ∆u,

∇ · u = 0

are asymptotically stable and decay in time with explicit decay rates. When the dissipation
is anisotropic and only in two directions, the Navier-Stokes equations become∂tu + (u · ∇)u = −∇P + µ∆hu,

∇ · u = 0.
(1.1)

where ∆h = ∂2
1 + ∂2

2 is the horizontal Laplacian. Due to its physical applications and
special mathematical properties, (1.1) has attracted considerable interests and an array of
beautiful small data global well-posedness results have been obtained (see, e.g., [18, 19,
50, 65, 69, 70, 104, 105]). New approaches have very recently been developed to tackle
the large-time behavior problem and explicit decay rates have been extracted for (1.1)
(see [52,97]). If we further reduce the dissipation to be in just one direction, the resulting
3D anisotropic Navier-Stokes equations∂tu + (u · ∇)u = −∇P + µ∂2

1u, x ∈ R3, t > 0,
∇ · u = 0

(1.2)

is not well-understood. In particular, the small data global well-posedness problem re-
mains open. In addition, very little is known on the stability properties and the large-time
behavior.

This paper focuses on the following system of the 3D MHD equations with anisotropic
dissipation 

∂tu + (u · ∇)u = −∇P + µ∂2
1u + (B · ∇)B, x ∈ R3, t > 0,

∂tB + (u · ∇)B = η∆hB + (B · ∇)u,

∇ · u = ∇ · B = 0

(1.3)

with the initial data
u(x, 0) = u0, B(x, 0) = B0.

Here u = (u1, u2, u3)⊤, B = (B1, B2, B3)⊤ and P represent the velocity field of the fluid, the
magnetic field and the scalar pressure, respectively. The constants µ > 0 and η > 0 are
the viscosity coefficient and the magnetic diffusivity. The MHD system (1.3) focused
here is relevant in the modeling of reconnecting plasmas (see, e.g., [23–25,72]). In fusion
plasmas there is extreme anisotropy due to the high temperature and large magnetic field
strength. This causes diffusive processes, heat diffusion and energy/momentum loss due
to viscous friction, to effectively be aligned with the magnetic field lines. This alignment
leads to different values for the respective diffusive coefficients in the magnetic field (see,
e.g., [31, 46, 66, 84]).
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The motivation for studying (1.3) comes from two distinct sources. The first is the sta-
bilizing phenomenon observed in physical experiments involving electrically conducting
fluids. The experiments exhibit a remarkable phenomenon: a background magnetic field
actually stabilizes and damps turbulent MHD fluids (see, e.g., [2–4, 26–28, 43, 44]). We
intend to establish this phenomenon as a mathematically rigorous fact on (1.3). The sec-
ond is to initiate new strategies and develop innovative tools for stability and large-time
behavior problems on anisotropic models.

We remark that anisotropic diffusion is a common physical phenomenon and describes
processes where the diffusion is directionally dependent. Anisotropic diffusive processes
occur in Darcy’s flow for porous media, large scale turbulence where turbulence scales
are anisotropic in size, and heat conduction and momentum dissipation in fusion plas-
mas. Many mathematically rigorous studies have been devoted to understanding such
anisotropic flows. For example, there is a very large literature on the primitive and the
Boussinesq equations with anisotropic dissipation. Various partial dissipation cases on the
primitive equations have been examined by Cao, Li and Titi (see, e.g., [11–13]). Their
main focus has been on the global existence and regularity problem. It may be interesting
to understand the stability of perturbations near physically relevant steady states such as
shear flows and hydrostatic balance.

To understand the stabilizing mechanism of a background magnetic field

u(0) ≡ 0, B(0) ≡ e2 := (0, 1, 0),

which is obviously a steady-state of (1.3), we study the dynamics of the perturbation (u, b)
with b = B − B(0). Clearly (u, b) satisfies the MHD equations

∂tu + (u · ∇)u = −∇P + µ∂2
1u + (b · ∇)b + ∂2b, x ∈ R3, t > 0,

∂tb + (u · ∇)b = η∆hb + (b · ∇)u + ∂2u,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.4)

Our main result asserts the global well-posedness and stability of (u, b), and provides
precise decay rates for various Sobolev norms of (u, b). The precise statement of these
results is presented in the following theorem. To simplify the notation, we use ∥ f ∥LrLqLp

for the norm
∥∥∥∥ ∥∥∥ ∥ f ∥Lp(R)

∥∥∥
Lq(R)

∥∥∥∥
Lr(R)

, and ∥ f ∥Lq
x3 Lp

x1 x2
for

∥∥∥ ∥ f ∥Lp
x1 x2 (R2)

∥∥∥
Lq

x3 (R)
.

Theorem 1.1. Assume (u0, b0) ∈ H3(R3) with ∇ · u0 = 0 and ∇ · b0 = 0 satisfies

(u0, b0), (∂3u0, ∂3b0), (∂2
3u0, ∂

2
3b0) ∈ L2

x3
L1

x1 x2
(R3).

Then there exists a sufficiently small constant δ > 0 such that, if

∥(u0, b0)∥H3(R3) + ∥(u0, b0)∥L2
x3 L1

x1 x2 (R3) + ∥(∂3u0, ∂3b0)∥L2
x3 L1

x1 x2 (R3)

+ ∥(∂2
3u0, ∂

2
3b0)∥L2

x3 L1
x1 x2 (R3) ≤ δ, (1.5)
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then (1.4) admits a unique global solution (u, b) ∈ C
(
[0,∞); H3(R3)

)
. In addition, (u, b)

is stable in the sense that, for an absolute constant C > 0,

∥(u, b)(t)∥2
H3(R3) +

∫ t

0

(
∥∂1u(τ)∥2

H3(R3) + ∥∂2u(τ)∥2
H2(R3) + ∥∇hb(τ)∥2

H3(R3)

)
dτ ≤ Cδ2

for any t > 0.
Furthermore, (u, b) obeys the following time decay estimates, for 0 < ε ≤ 1

36 ,

∥(u, b)∥L2(R3) ≤ C(1 + t)−
1
2 , ∥(∇hu,∇hb)∥L2(R3) ≤ C(1 + t)−1,

∥(∂3u, ∂3b)∥L2(R3) ≤ C(1 + t)−
1
2+ε, ∥(∂1∂ ju, ∂1∂ jb)∥L2(R3) ≤ C(1 + t)−

5
4+ε, j = 1, 2,

∥(∂1∂3u, ∂1∂3b)∥L2(R3) ≤ C(1 + t)−1+ε, ∥(∂2∂ ju, ∂2∂ jb)∥L2(R3) ≤ C(1 + t)−
2
3+ε, j = 2, 3,

∥(∂2
3u, ∂2

3b)∥L2(R3) ≤ C(1 + t)−
1
4 .

Theorem 1.1 rigorously confirms the smoothing and stabilizing effect of the magnetic
field on the electrically conducting fluids. Without the magnetic field, the fluid motion
is governed by the 3D anisotropic Navier-Stokes equation (1.2) alone and whether or
not the velocity is stable in Sobolev spaces remains an outstanding open problem. When
coupled with magnetic field, Theorem 1.1 ensures that any perturbation near a background
magnetic is stable and decays to zero at explicit rates as t → ∞.

We clarify the differences between Theorem 1.1 and some of the closely related re-
sults. Wu and Zhu [95] solved the stability problem for the MHD system with horizontal
dissipation ∆hu and vertical magnetic diffusion ∂2

3b. It appears that the situation consid-
ered here is more difficult. This is due to the handling of the velocity nonlinearity (u ·∇)u.
When the velocity dissipation is only in one direction, the triple-product term ((u·∇)u, u)H3

is much more difficult to control than any triple product terms generated for the MHD sys-
tem considered in [95]. In fact, this term is exactly the reason why the well-posedness
problem on the 3D anisotropic Navier-Stokes (1.2) is open. One main contribution of this
paper is the handling of the Navier-Stokes nonlinearity when the dissipation of the veloc-
ity is only in a single direction. The smoothing and stabilizing effect of the magnetic field
on the fluids, and the elaborate construction of time-weighted energy functional are the
key ingredients of this successful story. We remark that there is a very large mathematical
literature on the incompressible MHD equations. In particular, there have been substan-
tial recent developments on the well-posedness and stability problems, and significant
progress has been made (see, e.g., [1, 8–10, 14–16,21, 29, 33, 34, 36, 37, 40–42, 45, 47–49,
51, 53, 55, 56, 58–64, 71, 73, 74, 78–80, 86–88, 91–93, 96, 98–100, 102, 103, 106–108]).

We explain the proof of Theorem 1.1. Due to the lack of velocity dissipation in two
directions, we take the functional setting to be the Sobolev space H3 in order to guarantee
the uniqueness. The local existence follows from a standard procedure (see, e.g., [67]), so
we focus on the global a priori bounds of (u, b). This is accomplished via the bootstrap-
ping argument (see, e.g., [83]). A crucial step is to construct a suitable energy functional.
Naturally it should include the H3-norm together with the time integral pieces from the
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dissipative terms

E(1)
0 (t) = sup

0≤τ≤t
∥(u(τ), b(τ))∥2

H3 +

∫ t

0

(
∥∂1u(τ)∥2

H3 + ∥∇hb(τ)∥2
H3

)
dτ. (1.6)

However, due to the lack of velocity dissipation in two directions, the triple product gen-
erated by the nonlinearity, namely ((u · ∇)u, u)H3 can not be bounded in terms of E(1)

0 (t).
The most difficult piece is the following triple product∫

∂3
3(u · ∇u) · ∂3

3u dx.

Here we have used
∫

to denote the integral in x over R3. To distinguish the derivatives in
different directions, we further write it as∫

∂3
3(u · ∇u) · ∂3

3u dx

= 3
∫
∂3uh · ∇h∂

2
3u · ∂3

3u dx + 3
∫
∂2

3uh · ∇h∂3u · ∂3
3u dx +

∫
∂3

3uh · ∇hu · ∂3
3u dx

+ 3
∫
∂3u3 ∂

3
3u · ∂3

3u dx + 3
∫
∂2

3u3 ∂
2
3u · ∂3

3u dx +
∫
∂3

3u3 ∂3u · ∂3
3u dx. (1.7)

Clearly we need to seek enhanced dissipation in the x2 or the x3 direction to complement
the existing dissipation in the x1-direction. The background magnetic field is along the
x2 direction and it is in this direction that the extra regularization is generated. Mathe-
matically this is reflected in the wave structure. We explain this. To avoid unnecessary
complications, we look at the linearized system of (1.4), namely

∂tu = µ∂2
1u + ∂2b,

∂tb = η∆hb + ∂2u,
∇ · u = ∇ · b = 0.

(1.8)

By differentiating the first equation of (1.8) in t and making several substitutions, we
obtain

∂ttu = µ∂2
1∂tu + ∂2∂tb = µ∂2

1∂tu + ∂2(η∆hb + ∂2u)

= µ∂2
1∂tu + η∆h(∂tu − µ∂2

1u) + ∂2
2u

= (µ∂2
1 + η∆h)∂tu − µη∂2

1∆hu + ∂2
2u.

Similarly, we have for b

∂ttb = (µ∂2
1 + η∆h)∂tb − µη∂2

1∆hb + ∂2
2b.

Therefore, (1.8) is converted into the following system of wave equations
∂ttu − (µ∂2

1 + η∆h)∂tu + µη∂2
1∆hu − ∂2

2u = 0,
∂ttb − (µ∂2

1 + η∆h)∂tb + µη∂2
1∆hb − ∂2

2b = 0,
∇ · u = ∇ · b = 0.

(1.9)

(1.9) is a system of anisotropic and degenerate wave equations. In comparison with
(1.8), (1.9) exhibits much more smoothing and stabilizing properties. In particular, the
two terms ∂2

2u and ∂2
2b in (1.9), emerged from the interaction of the velocity and the
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magnetic field, generates the dissipation in the x2-direction. This confirms the stabilizing
effect of the background magnetic field. In fact, by energy estimates, we can show that,
any solution (u, b) of the wave equations (1.9) satisfies

1
2

d
dt

(
2∥∂tu∥2

L2 − 2(µ∂2
1u + η∆hu, ∂tu) + ∥µ∂2

1u + η∆hu∥2
L2 + µη∥∂1∇hu∥2

L2 + ∥∂2u∥2
L2

)
+ µ∥∂1∂tu∥2

L2 + η∥∇h∂tu∥2
L2 + µ

2η∥∂2
1∇hu∥2

L2 + µη
2∥∂1∇

2
hu∥2

L2

+ µ∥∂1∂2u∥2
L2 + η∥∇h∂2u∥2

L2 = 0. (1.10)

Clearly,

2∥∂tu∥2
L2 − 2(µ∂2

1u + η∆hu, ∂tu) + ∥µ∂2
1u + η∆hu∥2

L2 ≥
1
4

(∥∂tu∥2
L2 + ∥µ∂2

1u + η∆hu∥2
L2).

Integrating (1.10) in time yields an upper bound on various norms of u. The upper bound
for b is the same. These upper bounds reflect the smoothing and stabilizing effect of
the wave structure. In particular, we gain a regularization in the x2-direction. As we
shall see in the proof of Theorem 1.1, this regularization can be realized via a Lyapunov
functional with a mixed scalar product. However, as we can see from the simple energy
estimate above, the wave structure provides much more regularization. When we prove
the decay estimates of Theorem 1.1, we need to take full advantage of all these smoothing
properties. This is done through the integral representation in (5.5) and (5.6), which
involves typical kernels for wave equations.

We remark that the stabilizing phenomenon and the wave structure appear to be uni-
versal for perturbations near steady states of many fluids. In particular, the Boussinesq
system governing the perturbations near the hydrostatic equilibrium share many common
features with the MHD systems such as the anisotropy and the wave structure. The stabil-
ity problems on the Boussinesq systems near the hydrostatic equilibrium and/or the shear
flow have recently attracted considerable interests and important progress has been made
(see, e.g., [5–7, 17, 30, 32, 39, 57, 68, 81, 82, 86, 94, 101, 109, 110]). The Boussinesq wave
structure reveals the smoothing and stabilizing effect of the buoyancy on the fluids near
the hydrostatic equilibrium. The stabilizing effect in the Boussinesq systems is weaker
than the corresponding one for the MHD systems.

To include this regularizing property in the energy functional, we define

E(2)
0 (t) =

∫ t

0
∥∂2u(τ)∥2

H2dτ. (1.11)

We emphasize that the extra dissipative effect in the x2-direction is one-derivative lower
than what a standard dissipation term ∂2

2u provides. This is due to the fact that such
(partial) Laplace term is inside a wave-like equation (of second order in time). As a
consequence, this energy functional only allows the time integrability of ∥∂2u∥2

H2 , not
∥∂2u∥2

H3 . Combining E(1)
0 and E(2)

0 gives

E0(t) = E(1)
0 + E(2)

0

= sup
0≤τ≤t

∥(u(τ), b(τ))∥2
H3 +

∫ t

0

(
∥∂1u(τ)∥2

H3 + ∥∂2u(τ)∥2
H2 + ∥∇hb(τ)∥2

H3

)
dτ.
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However, there are still two terms in (1.7) (the third term and the fourth term) that can
not be bounded in terms of E0(t). After invoking the divergence-free condition ∂3u3 =

−∂1u1 − ∂2u2, these terms are reduced to the difficult term∫
|∂2u| |∂3

3u| |∂3
3u|dx. (1.12)

Due to the aforementioned weaker smoothing effect in the x2-direction, (1.12) can not
be bounded by E0(t). Extra maneuvers are necessary. Our idea is to include two extra
time-weighted energy functionals

E1(t) = sup
0≤τ≤t

(1 + τ)∥(∇hu(τ),∇hb(τ))∥2
H1

+

∫ t

0
(1 + τ)

(
∥∂1∇hu(τ)∥2

H1 + ∥∂2∇hu(τ)∥2
L2 + ∥∇2

hb(τ)∥2
H1

)
dτ,

E2(t) = sup
0≤τ≤t

(
(1 + τ)∥(u(τ), b(τ))∥2

L2 + (1 + τ)2∥(∇hu(τ),∇hb(τ))∥2
L2

+ (1 + τ)1−2ε∥(∂3u(τ), ∂3b(τ))∥2
L2

+

2∑
j=1

(1 + τ)
5
2−2ε∥(∂1∂ ju(τ), ∂1∂ jb(τ))∥2

L2

+

3∑
j=2

(1 + τ)
4
3−2ε∥(∂2∂ ju(τ), ∂2∂ jb(τ))∥2

L2

+ (1 + τ)2−2ε∥(∂1∂3u(τ), ∂1∂3b(τ))∥2
L2 + (1 + τ)

1
2 ∥(∂2

3u(τ), ∂2
3b(τ))∥2

L2 .
)
.

We shall show that the time-weighted terms involving the x2-derivatives in E1(t) and E2(t)
enables us to bound the term in (1.12) suitably and thus establish a closed energy inequal-
ity. The definition of E2(t) is certainly not simple. It takes into account of the precise time
decay rate of each norm involved in E2(t). We will resort to the integral representation of
(1.4) and spectral analysis to control the terms in E2(t). Having obtained the necessary
components of the energy functional, we sum them up to form our total energy functional

E(t) = E0(t) + E1(t) + E2(t).

Our main efforts are devoted to proving the following estimate

E(t) ≤ C1F(u0, b0) + C2

(
E

3
2 (t) + E2(t)

)
, (1.13)

where C1 and C2 are constants, and

F(u0, b0) = ∥(u0, b0)∥2
H3 + ∥(u0, b0)∥2

L2
x3 L1

x1 x2
+ ∥(∂3u0, ∂3b0)∥2

L2
x3 L1

x1 x2
+ ∥(∂2

3u0, ∂
2
3b0)∥2

L2
x3 L1

x1 x2
.

Verifying (1.13) is a very lengthy process. For the sake of clarity, we divide the whole
process into the proofs of the following inequalities

E0(t) ≤ CE(0) + CE
3
2 (t), (1.14)

E1(t) ≤ CE(0) + CE0(t) + CE
3
2 (t), (1.15)

E2(t) ≤ C
(
E

3
2 (t) + E2(t)

)
+ C

(
∥(u0, b0)∥2

H2 + ∥(u0, b0)∥2
L2

x3 L1
x1 x2
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+ ∥(∂3u0, ∂3b0)∥2
L2

x3 L1
x1 x2

+ ∥(∂2
3u0, ∂

2
3b0)∥2

L2
x3 L1

x1 x2

)
. (1.16)

To prove (1.14), we realize that E0(t) consists of two different types of terms E(1)
0 (t) and

E(2)
0 (t), as aforementioned in (1.6) and (1.11). The boundedness of E(2)

0 (t) relies on the
enhanced dissipation from the wave structure. Naturally the proof of (1.14) is further
split into two parts,

(∥u(t)∥2
H3 + ∥b(t)∥2

H3) + 2
∫ t

0

(
µ∥∂1u(τ)∥2

H3 + η∥∇hb(τ)∥2
H3

)
dτ ≤ CE(0) + CE

3
2 (t)

and

− (∂2u(t), b(t))H2 +
1
2

∫ t

0
∥∂2u(τ)∥2

H2 −

∫ t

0

(
∥∂2b(τ)∥2

H2 + (µ2 + η2)∥∆hb(τ)∥2
H2

)
dτ

≤ CE(0) + CE
3
2 (t).

The detailed estimates are provided in Section 3. To prove (1.15), we also need to divide
the terms in E1(t) into two parts,∫ t

0
(1 + τ)∥∂2∇hu(τ)∥2

L2 dτ

and the rest of the terms. The regularization from the wave structure in (1.9) is used to
gain the time integrability of the vertical derivative. More technical details are left in
Section 4.

The proof of (1.16) is extremely elaborate and relies on the precise decay rates of
the norms involved in E2(t). Direct energy estimates are not sufficient for this purpose.
Instead we solve the system of linear equations (1.8) and recast the nonlinear system (1.4)
into an integral form. This form relies on three kernel functions. They are degenerate and
anisotropic in the frequency space. We first perform a detailed spectral analysis in suitably
divided subdomains of the frequency space to obtain sharp and precise upper bounds for
the kernel functions. The terms in E2(t) are then estimated according to the orders and
directions of their derivatives. After a lengthy process, we finally obtain (1.16).

Once (1.13) is at our disposal, a direct application of the bootstrapping argument yields
the desired global bounds and Theorem 1.1 then follows.

The rest of this paper is divided into four sections. Section 2 applies the bootstrapping
argument to the a priori inequality (1.13) to establish Theorem 1.1. In addition, several
anisotropic inequalities for products and triple products are provided here as well. They
will be used in the subsequent sections. Section 3 details the proof of (1.14). Section 4
proves (1.15) while Section 5 is devoted to (1.16).

2. Proof of Theorem 1.1 and anisotropic Sobolev inequalities

This section serves two purposes. The first is to prove Theorem 1.1 by applying the
bootstrapping argument to the a priori inequality in (1.13). The second is to provide
anisotropic inequalities for several products and triple products, which will be used in the
proofs in subsequent sections.
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Proof of Theorem 1.1. The local (in time) well-posedness of (1.4) in H3 can be shown via
standard procedures (see, e.g., [67]). It suffices to establish the global bounds stated in
Theorem 1.1 in order to obtain the global existence. This is accomplished by applying
the bootstrapping argument to (1.13), namely

E(t) ≤ C1F(u0, b0) + C2

(
E

3
2 (t) + E2(t)

)
, (2.1)

where

F(u0, b0) = ∥(u0, b0)∥2
H3 + ∥(u0, b0)∥2

L2
x3 L1

x1 x2
+ ∥(∂3u0, ∂3b0)∥2

L2
x3 L1

x1 x2

+ ∥(∂2
3u0, ∂

2
3b0)∥2

L2
x3 L1

x1 x2
.

A useful description of the bootstrapping argument can be found in [83, p.21]. In order to
apply the bootstrapping argument, we make the ansatz that

E(t) ≤ M := min
{
1,

1
(4C2)2

}
. (2.2)

We then verify that E(t) actually admits a smaller bound,

E(t) ≤
M
2
.

Inserting (2.2) in (2.1) and recalling the initial assumption (1.5), we have

E(t) ≤ C1F(u0, b0) + C2

(
M

1
2 + M

)
E(t)

≤ C1δ
2 + 2C2M

1
2 E(t)

≤ C1δ
2 +

1
2

E(t),

or

E(t) ≤ 2C1δ
2.

If the initial data is sufficiently small, say

δ2 ≤
M

4C1
,

then we derive

E(t) ≤ 2C1δ
2 ≤

M
2
.

The bootstrapping argument then implies T = ∞ and asserts that for any time t > 0,

E(t) ≤ Cδ2,

which, in particular, implies the desired global bound on the solution (u, b). As a conse-
quence, we obtain the global existence of solutions. The uniqueness is obvious due to the
high regularity of the solution. The global bound on E2(t) yields the desired decay rates
stated in Theorem 1.1. This completes the proof of Theorem 1.1. □

In the second part of this section, we provide several anisotropic upper bounds for
products and triple products. The bounds stated in the following lemma are powerful
tools in controlling the nonlinearity in terms of the anisotropic dissipation.
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Lemma 2.1. For some constants C > 0, i, j, k = 1, 2, 3 and i , j , k, we have∫
| f gh| dx ≤ C∥ f ∥

1
2
L2(R3)∥∂1 f ∥

1
2
L2(R3)∥g∥

1
2
L2(R3)∥∂2g∥

1
2
L2(R3)∥h∥

1
2
L2(R3)∥∂3h∥

1
2
L2(R3), (2.3)∫

| f gh| dx ≤ C∥ f ∥
1
4
L2(R3)∥∂i f ∥

1
4
L2(R3)∥∂ j f ∥

1
4
L2(R3)∥∂i∂ j f ∥

1
4
L2(R3)

× ∥g∥
1
2
L2(R3)∥∂kg∥

1
2
L2(R3)∥h∥L2(R3), (2.4)

∥ f g∥L2(R3) ≤ C∥ f ∥
1
4
L2(R3)∥∂i f ∥

1
4
L2(R3)∥∂ j f ∥

1
4
L2(R3)∥∂i∂ j f ∥

1
4
L2(R3)∥g∥

1
2
L2(R3)∥∂kg∥

1
2
L2(R3), (2.5)

∥ f g∥L2
x3 L1

x1 x2
≤ C∥ f ∥

1
2
L2(R3)∥∂3 f ∥

1
2
L2(R3)∥g∥L2(R3). (2.6)

Proof. The first two estimates have been stated and proven in [95]. Here we give the proof
of (2.5) and (2.6). Without loss of generality, we assume i = 2, j = 3, k = 1 in (2.5). Now
we prove (2.5). By Hölder’s inequality, for l = 1, 2, 3, we have the simple fact

∥ f ∥L∞
xl (R) ≤

√
2∥ f ∥

1
2

L2
xl (R)

∥∂l f ∥
1
2

L2
xl (R)
. (2.7)

By (2.7),

∥ f g∥L2(R3) ≤
∥∥∥ ∥ f ∥L2

x1
∥g∥L∞

x1

∥∥∥
L2

x2 x3

≤ C
∥∥∥ ∥ f ∥L2

x1
∥g∥

1
2

L2
x1
∥∂1g∥

1
2

L2
x1

∥∥∥
L2

x2 x3

≤ C∥ f ∥L∞
x2 x3 L2

x1
∥g∥

1
2
L2(R3)∥∂1g∥

1
2
L2(R3).

By Minkowski’s inequality, (2.7) and Hölder’s inequality,

∥ f ∥L∞
x2 x3 L2

x1
≤

∥∥∥ ∥ f ∥L∞
x2

∥∥∥
L2

x1 L∞
x3
≤ C

∥∥∥ ∥ f ∥
1
2

L2
x2
∥∂2 f ∥

1
2

L2
x2

∥∥∥
L2

x1 L∞
x3

≤ C
∥∥∥∥ ∥∥∥ ∥ f ∥L∞

x3

∥∥∥ 1
2

L2
x2

∥∥∥ ∥∂2 f ∥L∞
x3

∥∥∥ 1
2

L2
x2

∥∥∥∥
L2

x1

≤ C
∥∥∥ ∥ f ∥L∞

x3

∥∥∥ 1
2

L2
x1 x2

∥∥∥ ∥∂2 f ∥L∞
x3

∥∥∥ 1
2

L2
x1 x2

≤ C∥ f ∥
1
4
L2(R3)∥∂3 f ∥

1
4
L2(R3)∥∂2 f ∥

1
4
L2(R3)∥∂2∂3 f ∥

1
4
L2(R3).

Therefore,

∥ f g∥L2(R3) ≤ C∥ f ∥
1
4
L2(R3)∥∂2 f ∥

1
4
L2(R3)∥∂3 f ∥

1
4
L2(R3)∥∂2∂3 f ∥

1
4
L2(R3)∥g∥

1
2
L2(R3)∥∂1g∥

1
2
L2(R3).

To prove (2.6), we apply Hölder’s inequality, Minkowski’s inequality and (2.7) to obtain

∥ f g∥L2
x3 L1

x1 x2
≤ C

∥∥∥∥∥ f ∥L2
x1 x2

∥g∥L2
x1 x2

∥∥∥∥
L2

x3

≤ C
∥∥∥∥ ∥ f ∥L∞

x3

∥∥∥∥
L2

x1 x2

∥g∥L2(R3)

≤ C∥ f ∥
1
2
L2(R3)∥∂3 f ∥

1
2
L2(R3)∥g∥L2(R3).

This completes the proof of Lemma 2.1. □
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3. Estimate for E0(t)

This section is devoted to proving the a priori estimate (1.14) for E0(t). More precisely,
we prove the following proposition. We exploit the extra smoothing reflected in the wave
structure (1.9) to make up for the lack of vertical dissipation in the velocity equation. The
idea is to consider a Lyapunov functional involving an inner product besides the standard
H3-norm.

Proposition 3.1. Let (u, b) be a solution of the system (1.4). Then, for some constant
C > 0, we have

E0(t) ≤ CE(0) + CE
3
2 (t). (3.1)

To prove (3.1), we work with the Lyapunov functional defined by

L(u, b)(t) = ∥(u(t), b(t))∥2
H3 + λ

(
∂2u(t), b(t)

)
H2 ,

where 0 < λ < 2 is a small parameter. Next we show the bound of L(u, b). We evaluate
the time evolution of each part in this Lyapunov functional. For the sake of clarity, we
divide this process into two lemmas. The first focuses on bounding ∥(u(t), b(t))∥2

H3 while
the second handles the inner product

(
∂2u(t), b(t)

)
H2 .

Lemma 3.2. Assume (u, b) is a solution to (1.4). Then we have

(∥u(t)∥2
H3 + ∥b(t)∥2

H3) + 2
∫ t

0

(
µ∥∂1u(τ)∥2

H3 + η∥∇hb(τ)∥2
H3

)
dτ ≤ CE(0) + CE

3
2 (t).

Proof of Lemma 3.2. First we take the L2-inner product of (1.4) with (u, b) to obtain
1
2

d
dt

(∥u(t)∥2
L2 + ∥b(t)∥2

L2) +
(
µ∥∂1u∥2

L2 + η∥∇hb∥2
L2

)
= 0. (3.2)

Due to the equivalence of the norm ∥(u(t), b(t))∥H3 with ∥(u(t), b(t))∥L2 + ∥(u(t), b(t))∥Ḣ3 ,
it suffices to bound ∥(u(t), b(t))∥Ḣ3 . Applying ∂3

i (i = 1, 2, 3) to the equations (1.4) and
taking the L2-inner product of the resulting equations with (∂3

i u, ∂3
i b), we have

1
2

3∑
i=1

d
dt

(
∥∂3

i u(t)∥2
L2 + ∥∂3

i b(t)∥2
L2

)
+

3∑
i=1

(
µ∥∂3

i ∂1u∥2
L2 + η∥∂

3
i ∇hb∥2

L2

)
= −

3∑
i=1

∫
∂3

i (u · ∇u) · ∂3
i u dx +

3∑
i=1

∫
∂3

i (b · ∇b) · ∂3
i u dx

−

3∑
i=1

∫
∂3

i (u · ∇b) · ∂3
i b dx +

3∑
i=1

∫
∂3

i (b · ∇u) · ∂3
i b dx

:= I1 + I2 + I3 + I4. (3.3)

By Leibniz formula, integration by parts and ∇ · u = 0, we have

I1 = −

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i u · ∇∂3−k
i u · ∂3

i u dx −
3∑

k=1

Ck
3

∫
∂k

3u · ∇∂3−k
3 u · ∂3

3u dx

:= I11 + I12,
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where Ck
3 is the standard binomial coefficient. By Hölder’s inequality and Sobolev’s in-

equality,

I11 = −

2∑
i=1

(
3
∫
∂iu · ∇∂2

i u · ∂3
i u dx + 3

∫
∂2

i u · ∇∂iu · ∂3
i u dx +

∫
∂3

i u · ∇u · ∂3
i u dx

)
≤ C(∥∇u∥L∞∥∇∇2

hu∥L2 + ∥∇2
hu∥L4∥∇h∇u∥L4)∥∇3

hu∥L2

≤ C(∥∇u∥H2∥∇∇2
hu∥L2 + ∥∇2

hu∥H1∥∇h∇u∥H1)∥∇3
hu∥L2

≤ C∥∇u∥H2∥∇2
hu∥2

H1 . (3.4)

Rewriting the terms I12 in components, we have

I12 ≤ 4
∫

|∂3u| |∂2
3∇hu| |∂3

3u| dx + 6
∫

|∇h∂3u| |∂2
3u| |∂3

3u| dx

− 3
∫
∂3u3 ∂

3
3u · ∂3

3u dx −
∫
∂3

3uh · ∇hu · ∂3
3u dx

≤ 4
∫

|∂3u| |∂2
3∇hu| |∂3

3u| dx + 6
∫

|∇h∂3u| |∂2
3u| |∂3

3u| dx

+ 8
∫

|u| |∂3
3u| |∂1∂

3
3u| dx + 4

∫
|∂2u| |∂3

3u|2 dx

:= I121 + I122 + I123 + I124,

where we have used the divergence-free condition, ∂3u3 = −∂1u1−∂2u2. By the anisotropic
inequalities (2.3) and (2.4),

I121 + I122 ≤ C∥∂3u∥
1
4
L2∥∂2∂3u∥

1
4
L2∥∂

2
3u∥

1
4
L2∥∂

2
3∂2u∥

1
4
L2∥∂

2
3∇hu∥L2∥∂3

3u∥
1
2
L2∥∂

3
3∂1u∥

1
2
L2

+ C∥∇h∂3u∥
1
2
L2∥∇h∂

2
3u∥

1
2
L2∥∂

2
3u∥

1
2
L2∥∂2∂

2
3u∥

1
2
L2∥∂

3
3u∥

1
2
L2∥∂1∂

3
3u∥

1
2
L2

≤ C∥∇u∥H2(∥∇h∇u∥2
H1 + ∥∂1∇

3u∥2
L2).

Applying (2.4) again, I123 can be bounded by

I123 ≤ C∥u∥
1
4
L2∥∂2u∥

1
4
L2∥∂3u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∂

3
3u∥

1
2
L2∥∂1∂

3
3u∥

3
2
L2

≤ C∥u∥H3(∥∂2u∥2
H1 + ∥∂1∇

3u∥2
L2).

Therefore,

I12 ≤ C∥u∥H3(∥∇hu∥2
H2 + ∥∂1∇

3u∥2
L2) + I124, (3.5)

where I124 will be estimated at the end of the proof. Consequently, (3.4), together with
(3.5), leads to

I1 ≤ C∥u∥H3(∥∇hu∥2
H2 + ∥∂1∇

3u∥2
L2) + I124. (3.6)

Since b has better dissipation than u, it is simpler to bound I2. By Leibniz’s formula,

I2 =

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i b · ∇∂3−k
i b · ∂3

i u dx +
3∑

k=1

Ck
3

∫
∂k

3b · ∇∂3−k
3 b · ∂3

3u dx

+

∫
b · ∇∂3

i b · ∂3
i u dx
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:= I21 + I22 +

∫
b · ∇∂3

i b · ∂3
i u dx.

As in I11, we first have

I21 ≤ C(∥∇b∥L∞∥∇∇2
hb∥L2 + ∥∇2

hb∥L4∥∇h∇b∥L4)∥∇3
hu∥L2

≤ C(∥∇b∥H2∥∇∇2
hb∥L2 + ∥∇2

hb∥H1∥∇h∇b∥H1)∥∇3
hu∥L2

≤ C∥∇b∥H2(∥∇2
hb∥2

H1 + ∥∇3
hu∥2

L2). (3.7)

For I22, we further split it into two parts and then apply (2.3) to get

I22 =

3∑
k=1

Ck
3

∫
∂k

3bh · ∇h∂
3−k
3 b · ∂3

3u dx +
3∑

k=1

Ck
3

∫
∂k

3b3 ∂
4−k
3 b · ∂3

3u dx

≤ C
3∑

k=1

∥∂k
3bh∥

1
2
L2∥∂2∂

k
3bh∥

1
2
L2∥∇h∂

3−k
3 b∥

1
2
L2∥∂3∇h∂

3−k
3 b∥

1
2
L2∥∂

3
3u∥

1
2
L2∥∂1∂

3
3u∥

1
2
L2

+ C
3∑

k=1

∥∂k
3b3∥

1
2
L2∥∂

k+1
3 b3∥

1
2
L2∥∂

4−k
3 b∥

1
2
L2∥∂2∂

4−k
3 b∥

1
2
L2∥∂

3
3u∥

1
2
L2∥∂1∂

3
3u∥

1
2
L2

≤ C(∥∇b∥H2 + ∥∇3u∥L2)(∥∇hb∥2
H3 + ∥∂1∂

3
3u∥2

L2). (3.8)

Therefore, (3.7) and (3.8) yield

I2 ≤ C(∥∇b∥H2 + ∥∇3u∥L2)(∥∇hb∥2
H3 + ∥∇3

hu∥2
L2 + ∥∂1∇

3u∥2
L2) +

∫
b · ∇∂3

i b · ∂3
i u dx. (3.9)

We proceed to deal with I3. I3 is firstly divided into three parts,

I3 = −

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i u · ∇∂3−k
i b · ∂3

i b dx −
3∑

k=1

Ck
3

∫
∂k

3uh · ∇h∂
3−k
3 b · ∂3

3b dx

−

3∑
k=1

Ck
3

∫
∂k

3u3 ∂
4−k
3 b · ∂3

3b dx

:= I31 + I32 + I33.

By (2.3),

I31 + I32 ≤ C
2∑

i=1

3∑
k=1

∥∂k
i u∥

1
2
L2∥∂1∂

k
i u∥

1
2
L2∥∇∂

3−k
i b∥

1
2
L2∥∂2∇∂

3−k
i b∥

1
2
L2∥∂

3
i b∥

1
2
L2∥∂3∂

3
i b∥

1
2
L2

+ C
3∑

k=1

∥∂k
3uh∥

1
2
L2∥∂1∂

k
3uh∥

1
2
L2∥∇h∂

3−k
3 b∥

1
2
L2∥∂3∇h∂

3−k
i b∥

1
2
L2∥∂

3
3b∥

1
2
L2∥∂2∂

3
3b∥

1
2
L2

≤ C(∥∇u∥H2 + ∥∇b∥H2)(∥∂1∇u∥2
H2 + ∥∇hb∥2

H3). (3.10)

For I33, we further decompose it, integrate by parts and use (2.4) to get

I33 = −

3∑
k=2

Ck
3

∫
∂k

3u3 ∂
4−k
3 b · ∂3

3b dx + 6
∫

uh · ∂
2
3∇hb · ∂3

3b dx
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≤ C
3∑

k=2

∥∂k
3u3∥L2∥∂4−k

3 b∥
1
4
L2∥∂1∂

4−k
3 b∥

1
4
L2∥∂3∂

4−k
3 b∥

1
4
L2∥∂1∂3∂

4−k
3 b∥

1
4
L2∥∂

3
3b∥

1
2
L2∥∂2∂

3
3b∥

1
2
L2

+ C∥u∥
1
4
L2∥∂1u∥

1
4
L2∥∂3u∥

1
4
L2∥∂1∂3u∥

1
4
L2∥∂

2
3∇hb∥L2∥∂3

3b∥
1
2
L2∥∂2∂

3
3b∥

1
2
L2

≤ C(∥u∥H1 + ∥∇b∥H2)(∥∂1u∥2
H1 + ∥∇∇hu∥2

H1 + ∥∇∇hb∥2
H2), (3.11)

where we have used ∇ · u = 0. Combining (3.10) and (3.11) yields

I3 ≤ C(∥u∥H3 + ∥∇b∥H2)(∥∇h∇u∥2
H1 + ∥∂1u∥2

H3 + ∥∇hb∥2
H3). (3.12)

We now bound I4. As in I2, we decompose I4 into three parts,

I4 =

2∑
i=1

3∑
k=1

Ck
3

∫
∂k

i b · ∇∂3−k
i u · ∂3

i b dx +
3∑

k=1

Ck
3

∫
∂k

3b · ∇∂3−k
3 u · ∂3

3b dx

+

∫
b · ∇∂3

i u · ∂3
i b dx

:= I41 + I42 +

∫
b · ∇∂3

i u · ∂3
i b dx.

By Hölder’s inequality and Sobolev’s inequality,

I41 ≤ C
3∑

k=1

∥∇k
hb∥L4∥∇∇3−k

h u∥L2∥∇3
hb∥L4 ≤ C∥∇u∥H2∥∇hb∥2

H3 .

The estimate for I42 is more subtle. We first further split it into three terms,

I42 = 3
∫
∂3bh · ∇h∂

2
3u · ∂3

3b dx +
3∑

k=2

Ck
3

∫
∂k

3bh · ∇h∂
3−k
3 u · ∂3

3b dx

+

3∑
k=1

Ck
3

∫
∂k

3b3 ∂
4−k
3 u · ∂3

3b dx

:= I421 + I422 + I423.

Applying (2.4) to I421, and (2.3) to I422 and I423, respectively, we obtain

I421 ≤ C∥∂3bh∥
1
4
L2∥∂2∂3bh∥

1
4
L2∥∂

2
3bh∥

1
4
L2∥∂2∂

2
3bh∥

1
4
L2∥∇h∂

2
3u∥L2∥∂3

3b∥
1
2
L2∥∂1∂

3
3b∥

1
2
L2

≤ C∥∇b∥H2(∥∇2∇hu∥2
L2 + ∥∇∇hb∥2

H2),

and

I422 + I423 ≤ C
3∑

k=2

∥∂k
3bh∥

1
2
L2∥∂1∂

k
3bh∥

1
2
L2∥∇h∂

3−k
3 u∥

1
2
L2∥∂3∇h∂

3−k
3 u∥

1
2
L2∥∂

3
3b∥

1
2
L2∥∂2∂

3
3b∥

1
2
L2

+ C
3∑

k=1

∥∂k
3b3∥

1
2
L2∥∂

k+1
3 b3∥

1
2
L2∥∂

4−k
3 u∥

1
2
L2∥∂1∂

4−k
3 u∥

1
2
L2∥∂

3
3b∥

1
2
L2∥∂2∂

3
3b∥

1
2
L2

≤ C(∥∇u∥H2 + ∥∇2b∥H1)(∥∂1∇u∥2
H2 + ∥∇hu∥2

H2 + ∥∇hb∥2
H3).

Thus,

I4 ≤ C(∥∇u∥H2 + ∥∇b∥H2)(∥∇hu∥2
H2 + ∥∂1∇u∥2

H2 + ∥∇hb∥2
H3). (3.13)
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Inserting (3.6), (3.9), (3.12) and (3.13) in (3.3) and combining with (3.2), we conclude

1
2

d
dt

[
∥(u(t), b(t))∥2

L2 +

3∑
i=1

∥(∂3
i u(t), ∂3

i b(t))∥2
L2

]
+

[
µ∥∂1u∥2

L2 + η∥∇hu∥2
L2

+

3∑
i=1

(µ∥∂3
i ∂1u∥2

L2 + η∥∂
3
i ∇hb∥2

L2)
]

≤ C(∥u∥H3 + ∥b∥H3)(∥∂2u∥2
H2 + ∥∂1u∥2

H3 + ∥∇hb∥2
H3) + I124. (3.14)

Integrating (3.14) over [0, t] yields

∥(u(t), b(t))∥2
H3 + 2

∫ t

0

(
µ∥∂1u(τ)∥2

H3 + η∥∇hb(τ)∥2
H3

)
dτ

≤ C
∫ t

0
(∥u(τ)∥H3 + ∥b(τ)∥H3)(∥∂2u(τ)∥2

H2 + ∥∂1u(τ)∥2
H3 + ∥∇hb(τ)∥2

H3)dτ

+ C(∥u0∥
2
H3 + ∥b0∥

2
H3) + C

∫ t

0
I124(τ) dτ

≤ CE
3
2
0 (t) + CE(0) + C

∫ t

0
I124(τ) dτ.

It remains to bound the integral of I124. By means of (2.4), we have

I124 ≤ C∥∂2u∥
1
4
L2∥∂

2
2u∥

1
4
L2∥∂3∂2u∥

1
4
L2∥∂

2
2∂3u∥

1
4
L2∥∂

3
3u∥

3
2
L2∥∂1∂

3
3u∥

1
2
L2 .

Then applying Hölder’s inequality leads to∫ t

0
I124(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
4 ∥∂2u(τ)∥

1
4
L2 (1 + τ)

1
4 ( 2

3−ε)∥∂2∂3u(τ)∥
1
4
L2∥∂

3
3u(τ)∥

3
2
L2

×

∫ t

0
(1 + τ)

1
8 ∥∂2

2u(τ)∥
1
4
L2 ∥∂

2
2∂3u(τ)∥

1
4
L2∥∂1∂

3
3u(τ)∥

1
2
L2 (1 + τ)−

13
24+

ε
4 dτ

≤ CE
1
4
2 (t)E

3
4
0 (t)

( ∫ t

0
(1 + τ)∥∂2

2u(τ)∥2
L2dτ

) 1
8
( ∫ t

0
∥∂2

2∂3u(τ)∥2
L2dτ

) 1
8

×
( ∫ t

0
∥∂1∂

3
3u(τ)∥2

L2dτ
) 1

4
( ∫ t

0
(1 + τ)−

13
12+

ε
2 dτ

) 1
2

≤ CE
1
4
2 (t)E

1
8
1 (t)E

9
8
0 (t) ≤ CE

3
2 (t).

Therefore,

∥(u(t), b(t))∥2
H3 + 2

∫ t

0
(µ∥∂1u(τ)∥2

H3 + η∥∇hb(τ)∥2
H3) dτ ≤ CE

3
2 (t) + CE(0).

This completes the proof of Lemma 3.2. □

Next we evaluate the inner product (∂2u(t), b(t))H2 and prove the following lemma.

Lemma 3.3. Assume (u, b) is a solution to (1.4). Then

− (∂2u(t), b(t))H2 +
1
2

∫ t

0
∥∂2u(τ)∥2

H2 −

∫ t

0

(
∥∂2b(τ)∥2

H2 + (µ2 + η2)∥∆hb(τ)∥2
H2

)
dτ
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≤ CE(0) + CE
3
2 (t). (3.15)

Proof of Lemma 3.3. Invoking the equations of u and b in (1.4), we have

−
d
dt

(∂2u(t), b(t))H2 + ∥∂2u∥2
H2 − ∥∂2b∥2

H2

= (∂2(u · ∇u), b)H2 − (∂2(b · ∇b), b)H2 + (∂2u, u · ∇b)H2 − (∂2u, b · ∇u)H2

− µ(∂2∂
2
1u, b)H2 − η(∂2u,∆hb)H2

:= I5 + · · · + I10. (3.16)

By integration by parts, I5 can be rewritten as

I5 = −

∫
u · ∇u · (∂2b − ∂2∆b) dx +

∫
∇(u · ∇u) · ∂2∇

3b dx

= −

∫
u · ∇u · (∂2b − ∂2∆b) dx +

∫
(∇u · ∇)u · ∂2∇

3b dx

+

∫
(u · ∇)∇u · ∂2∇

3b dx.

Applying (2.3) and (2.4) leads to

I5 ≤ C∥u∥
1
2
L2∥∂2u∥

1
2
L2∥∇u∥

1
2
L2∥∂1∇u∥

1
2
L2∥∂2b + ∂2∆b∥

1
2
L2∥∂3∂2b + ∂3∂2∆b∥

1
2
L2

+ C∥∇u∥
1
4
L2∥∂1∇u∥

1
4
L2∥∂3∇u∥

1
4
L2∥∂1∂3∇u∥

1
4
L2∥∇u∥

1
2
L2∥∂2∇u∥

1
2
L2∥∂2∇

3b∥L2

+ C∥u∥
1
4
L2∥∂1u∥

1
4
L2∥∂3u∥

1
4
L2∥∂1∂3u∥

1
4
L2∥∇

2u∥
1
2
L2∥∂2∇

2u∥
1
2
L2∥∂2∇

3b∥L2

≤ C∥u∥H2(∥∇hu∥2
H2 + ∥∇hb∥2

H3).

Similarly,

I6 ≤ C∥b∥H2∥∇hb∥2
H3 .

For I7, we split it into two parts

I7 =

∫
u · ∇b · (∂2u − ∂2∆u) dx +

∫
∆(u · ∇b) · ∂2∆u dx := I71 + I72.

By (2.4),

I71 ≤ C∥u∥
1
4
L2∥∂1u∥

1
4
L2∥∂3u∥

1
4
L2∥∂1∂3u∥

1
4
L2∥∇b∥

1
2
L2∥∂2∇b∥

1
2
L2∥∂2u + ∂2∆u∥L2

≤ C(∥u∥H1 + ∥∇b∥L2)(∥∇hu∥2
H2 + ∥∂2∇b∥2

L2).

Similarly, making use of the inequality (2.4) again, we get

I72 =

∫
(∆u · ∇b + 2∇u · ∇2b + u · ∇∆b) · ∂2∆u dx

≤ C∥∆u∥
1
2
L2∥∂1∆u∥

1
2
L2∥∇b∥

1
4
L2∥∂2∇b∥

1
4
L2∥∂3∇b∥

1
4
L2∥∂2∂3∇b∥

1
4
L2∥∂2∆u∥L2

+ C∥∇u∥
1
4
L2∥∂2∇u∥

1
4
L2∥∂3∇u∥

1
4
L2∥∂2∂3∇u∥

1
4
L2∥∇

2b∥
1
2
L2∥∂1∇

2b∥
1
2
L2∥∂2∆u∥L2

+ C∥u∥
1
4
L2∥∂2u∥

1
4
L2∥∂3u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∇∆b∥

1
2
L2∥∂1∇∆b∥

1
2
L2∥∂2∆u∥L2

≤ C(∥u∥H2 + ∥∇b∥H2)(∥∇hu∥2
H2 + ∥∇h∇b∥2

H2),
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which, together with the estimate of I71, gives

I7 ≤ C(∥u∥H2 + ∥∇b∥H2)(∥∇hu∥2
H2 + ∥∇h∇b∥2

H2).

I8 can be estimated with the same process as I7. Firstly,

I8 = −

∫
b · ∇u · (∂2u − ∂2∆u)dx −

∫
∆(b · ∇u) · ∂2∆u dx = I81 + I82.

Then we can derive

I81 ≤ C(∥∇u∥L2 + ∥b∥H1)(∥∂2u∥2
H2 + ∥∂1b∥2

H1).

and

I82 = −

∫
(∆b · ∇u + 2∇b · ∇2u + b · ∇∆u) · ∂2∆u dx

≤ C∥∆b∥
1
2
L2∥∂1∆b∥

1
2
L2∥∇u∥

1
4
L2∥∂2∇u∥

1
4
L2∥∂3∇u∥

1
4
L2∥∂2∂3∇u∥

1
4
L2∥∂2∆u∥L2

+ C∥∇b∥
1
4
L2∥∂2∇b∥

1
4
L2∥∂3∇b∥

1
4
L2∥∂2∂3∇b∥

1
4
L2∥∇

2u∥
1
2
L2∥∂1∇

2u∥
1
2
L2∥∂2∆u∥L2

+ C∥b∥
1
4
L2∥∂2b∥

1
4
L2∥∂3b∥

1
4
L2∥∂2∂3b∥

1
4
L2∥∇∆u∥

1
2
L2∥∂1∇∆u∥

1
2
L2∥∂2∆u∥L2

≤ C(∥∇u∥H2 + ∥b∥H2)(∥∂2∇u∥2
H1 + ∥∂1∇

2u∥2
H1 + ∥∇hb∥2

H2).

Thus,

I8 ≤ C(∥∇u∥H2 + ∥b∥H2)(∥∂2u∥2
H2 + ∥∂1∇

2u∥2
H1 + ∥∇hb∥2

H2).

By Hölder’s inequality and Young’s inequality,

I9 + I10 = −µ(∂2u, ∂2
1b)H2 − η(∂2u,∆hb)H2 ≤

1
2
∥∂2u∥2

H2 + µ
2∥∂2

1b∥H2 + η2∥∆hb∥2
H2 .

In summary, we have obtained

−
d
dt

(∂2u(t), b(t))H2 +
1
2
∥∂2u∥2

H2 −
(
∥∂2b∥2

H2 + (µ2 + η2)∥∆hb∥2
H2

)
≤ C(∥u∥H3 + ∥b∥H3)(∥∂2u∥2

H2 + ∥∂1u∥2
H3 + ∥∇hb∥2

H3). (3.17)

Then integrating (3.17) leads to the desired estimate (3.15). This completes the proof of
Lemma 3.3. □

Now we ready to prove Proposition 3.1.

Proof of Proposition 3.1. According to Lemma 3.2 and 3.3, we have(
∥u(t)∥2

H3 + ∥b(t)∥2
H3 − λ(∂2u(t), b(t))H2

)
+

∫ t

0

[
2µ∥∂1u(τ)∥2

H3

+
(
2η − λ(1 + µ2 + η2)

)
∥∇hb(τ)∥2

H3 +
λ

2
∥∂2u(τ)∥2

H2

]
dτ

≤ CE(0) + CE
3
2 (t),

where λ is a parameter. Now we select λ to be sufficiently small to obtain

∥u(t)∥2
H3 + ∥b(t)∥2

H3 +

∫ t

0

(
∥∂1u(τ)∥2

H3 + ∥∂2u(τ)∥2
H2 + ∥∇hb(τ)∥2

H3

)
dτ
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≤ CE(0) + CE
3
2 (t).

This completes the proof of Proposition 3.1. □

4. Estimate for E1(t)

The section proves the a priori inequality (1.15) for E1(t). That is, we establish the fol-
lowing proposition. Since the velocity equation does not have the vertical dissipation, we
need to make use of the extra smoothing and stabilization revealed by the wave structure
in (1.9). Our idea is to use the inner product (1+ t)(∂2∇hu,∇hb) to decode this regularizing
property. As a consequence, we obtain the time integrability of (1 + t) ∥∂2∇hu∥2

L2 . More
details are given in Lemma 4.3 and its proof.

Proposition 4.1. For some constants C > 0, it holds

E1(t) ≤ CE(0) + CE0(t) + CE
3
2 (t). (4.1)

We shall divide the proof of (4.1) into two main parts. The first one bounds the time-
weighted energy (1 + t)∥(∇hu,∇hb)∥2

H1 while the second handles the inner product (1 +

t)(∂2∇hu,∇hb) to generate the time-weighted dissipation (1 + t) ∥∂2∇hu∥2
L2 .

Lemma 4.2. Assume (u, b) solves (1.4). Then we have

(1 + t)
(
∥∇hu(t)∥2

H1 + ∥∇hb(t)∥2
H1

)
+ 2

∫ t

0
(1 + τ)

(
µ∥∂1∇hu(τ)∥2

H1 + η∥∆hb(τ)∥2
H1

)
dτ

≤ E0(t) + E(0) + CE
3
2 (t). (4.2)

Proof of Lemma 4.2. Taking the H1-inner product of (1.4) with (∆hu,∆hb), and multiply-
ing by (1 + t), we obtain

1
2

d
dt

(1 + t)(∥∇hu(t)∥2
H1 + ∥∇hb(t)∥2

H1) + (1 + t)(µ∥∂1∇hu∥2
H1 + η∥∆hb∥2

H1)

=
1
2

(∥∇hu∥2
H1 + ∥∇hb∥2

H1) − (1 + t)
(
∇h(u · ∇u),∇hu

)
H1 + (1 + t)

(
∇h(b · ∇b),∇hu

)
H1

− (1 + t)
(
∇h(u · ∇b),∇hb

)
H1 + (1 + t)

(
∇h(b · ∇u),∇hb

)
H1

:=
1
2

(∥∇hu∥2
H1 + ∥∇hb∥2

H1) + J1 + J2 + J3 + J4. (4.3)

To bound J1, we split J1 into three parts

J1 = −(1 + t)
( ∫

∇h(u · ∇u) · ∇hu dx +
∫

∇2
h(u · ∇u) · ∇2

hu dx

+

∫
∇h∂3(u · ∇u) · ∇h∂3u dx

)
:= −(1 + t)(J11 + J12 + J13).

By the anisotropic inequality (2.3),

J11 =

∫
∇huh · ∇hu · ∇hu dx +

∫
∇hu3 ∂3u · ∇hu dx
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≤ C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∇hu∥

1
2
L2∥∂3∇hu∥

1
2
L2∥∇hu∥

1
2
L2∥∂1∇hu∥

1
2
L2

+ C∥∇hu3∥
1
2
L2∥∂3∇hu3∥

1
2
L2∥∂3u∥

1
2
L2∥∂2∂3u∥

1
2
L2∥∇hu∥

1
2
L2∥∂1∇hu∥

1
2
L2

≤ C∥∇hu∥L2∥∇2
hu∥L2∥∇hu∥H1 + C∥∇hu∥

1
2
L2∥∂3u∥

1
2
L2∥∇

2
hu∥L2∥∇hu∥H1 . (4.4)

Therefore,∫ t

0
(1 + τ)J11(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
2 ∥∇hu(τ)∥L2

∫ t

0
(1 + τ)

1
2 ∥∇2

hu(τ)∥L2∥∇hu(τ)∥H1dτ

+ C sup
0≤τ≤t

(1 + τ)
1
2 ∥∇hu(τ)∥

1
2
L2∥∂3u(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
2 ∥∇2

hu(τ)∥L2∥∇hu(τ)∥H1dτ

≤ CE
1
2
1 (t)E

1
2
1 (t)E

1
2
0 (t) + E

1
4
2 (t)E

1
4
0 (t)E

1
2
1 (t)E

1
2
0 (t)

≤ CE
3
2 (t). (4.5)

Applying (2.3) again and using Sobolev’s inequality, J12 can be bounded as

J12 =

∫
∇2

hu · ∇u · ∇2
hu dx + 2

∫
∇hu · ∇∇hu · ∇2

hu dx

≤ ∥∇u∥L∞∥∇2
hu∥2

L2 + C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∇∇hu∥

1
2
L2∥∂3∇∇hu∥

1
2
L2∥∇

2
hu∥

1
2
L2∥∂1∇

2
hu∥

1
2
L2

≤ C∥∇u∥H2∥∇2
hu∥2

L2 + C∥∇hu∥
1
2
L2∥∇

2
hu∥L2∥∇∇hu∥

1
2
L2∥∇h∇

2u∥L2 . (4.6)

Thus,∫ t

0
(1 + τ)J12(τ)dτ ≤ C sup

0≤τ≤t
∥∇u(τ)∥H2

∫ t

0
(1 + τ)∥∇2

hu(τ)∥2
L2dτ

+ C sup
0≤τ≤t

(1 + τ)
1
2 ∥∇hu(τ)∥

1
2
L2∥∇∇hu(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
2 ∥∇2

hu(τ)∥L2∥∇h∇
2u(τ)∥L2dτ

≤ CE
1
2
0 (t)E1(t) + CE

1
4
2 (t)E

1
4
0 (t)E

1
2
1 (t)E

1
2
0 (t)

≤ CE
3
2 (t). (4.7)

The bound for J13 is more complicated. We first decompose it as follows,

J13 =

∫
∇h∂3u · ∇u · ∇h∂3u dx +

∫
∇hu · ∇∂3u · ∇h∂3udx +

∫
∂3u · ∇∇hu · ∇h∂3u dx

≤ 3
∫

|∇hu| |∂3∇hu|2 dx + 2
∫

|∂3u| |∇2
hu| |∂3∇hu| dx +

∫
|∇hu3| |∂

2
3u| |∂3∇hu| dx

:= J131 + J132 + J133.

By means of (2.3) and (2.4),

J131 ≤ C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∂3∇hu∥

1
2
L2∥∂1∂3∇hu∥

1
2
L2∥∂3∇hu∥

1
2
L2∥∂

2
3∇hu∥

1
2
L2

≤ C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∂3∇hu∥

1
2
L2∥∂3∇hu∥

3
2
H1 , (4.8)

J132 ≤ C∥∂3u∥
1
4
L2∥∂2∂3u∥

1
4
L2∥∂

2
3u∥

1
4
L2∥∂2∂

2
3u∥

1
4
L2∥∇

2
hu∥L2∥∂3∇hu∥

1
2
L2∥∂1∂3∇hu∥

1
2
L2

≤ C∥∂3u∥
1
2
H1∥∂2∂3u∥

1
2
H1∥∇

2
hu∥L2∥∂3∇hu∥

1
2
L2∥∂1∂3∇hu∥

1
2
L2 , (4.9)
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and

J133 ≤ C∥∇hu3∥
1
2
L2∥∂3∇hu3∥

1
2
L2∥∂

2
3u∥

1
2
L2∥∂2∂

2
3u∥

1
2
L2∥∂3∇hu∥

1
2
L2∥∂1∂3∇hu∥

1
2
L2

≤ C∥∇hu∥
1
2
L2∥∇

2
hu∥

1
2
L2∥∂

2
3u∥

1
2
L2∥∂3∇hu∥H1∥∂1∂3∇hu∥

1
2
L2 . (4.10)

Thereby, applying Hölder’s inequality gives∫ t

0
(1 + τ)J131(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
2 ∥∇hu(τ)∥

1
2
L2(1 + τ)

1
4 ∥∂3∇hu(τ)∥

1
2
L2

×

∫ t

0
(1 + τ)

1
4 ∥∂2∇hu(τ)∥

1
2
L2∥∂3∇hu(τ)∥

3
2
H1 dτ

≤ CE
1
4
2 (t)E

1
2
1 (t)E

3
4
0 (t) ≤ CE

3
2 (t), (4.11)∫ t

0
(1 + τ)J132(τ)dτ ≤ C sup

0≤τ≤t
∥∂3u(τ)∥

1
2
H1(1 + τ)

1
4 ∥∂3∇hu(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
2 ∥∇2

hu(τ)∥L2

× (1 + τ)
1
4 ∥∂3∂1∇hu(τ)∥

1
2
L2∥∂2∂3u(τ)∥

1
2
H1 dτ (4.12)

≤ CE
1
4
0 (t)E1(t)E

1
4
0 (t) ≤ CE

3
2 (t),∫ t

0
(1 + τ)J133(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
2 ∥∇hu(τ)∥

1
2
L2∥∂

2
3u(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
4 ∥∇2

hu(τ)∥
1
2
L2

× (1 + τ)
1
4 ∥∂3∂1∇hu(τ)∥

1
2
L2∥∂3∇hu(τ)∥H1 dτ

≤ CE
1
4
2 (t)E

1
4
0 (t)E

1
2
1 (t)E

1
2
0 (t) ≤ CE

3
2 (t). (4.13)

Adding (4.11), (4.12) and (4.13) yields∫ t

0
(1 + τ)J13(τ)dτ ≤ CE

3
2 (t). (4.14)

Consequently, according to the estimates (4.5), (4.7) and (4.14), we derive∫ t

0
J1(τ)dτ ≤ CE

3
2 (t). (4.15)

In the following, we handle J3. The terms J2 and J4 will be estimated together later.
Firstly,

J3 = −(1 + t)
( ∫

∇h(u · ∇b) · ∇hb dx +
∫

∇2
h(u · ∇b) · ∇2

hb dx

+

∫
∇h∂3(u · ∇b) · ∇h∂3b dx

)
:= −(1 + t)(J31 + J32 + J33).

Invoking (4.4) and (4.6), we have

J31 =

∫
∇huh · ∇hb · ∇hb dx +

∫
∇hu3 ∂3b · ∇hb dx

≤ C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∇hb∥

1
2
L2∥∂3∇hb∥

1
2
L2∥∇hb∥

1
2
L2∥∂1∇hb∥

1
2
L2

+ C∥∇hu3∥
1
2
L2∥∂3∇hu3∥

1
2
L2∥∂3b∥

1
2
L2∥∂2∂3b∥

1
2
L2∥∇hb∥

1
2
L2∥∂1∇hb∥

1
2
L2 ,
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J32 =

∫
∇2

hu · ∇b · ∇2
hb dx + 2

∫
∇hu · ∇∇hb · ∇2

hb dx

≤ C∥∇b∥H2∥∇2
hu∥L2∥∇2

hb∥L2 + C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∇∇hb∥

1
2
L2∥∂3∇∇hb∥

1
2
L2∥∇

2
hb∥

1
2
L2∥∂1∇

2
hb∥

1
2
L2 .

Then a similar argument to (4.5) and (4.7) gives∫ t

0
(1 + τ)(J31 + J32)(τ)dτ ≤ CE

3
2 (t).

For J33, we still reformulate it into several integrals

J33 ≤ 2
∫

|∇hu| |∂3∇hb|2 dx +
∫

|∇hb| |∂3∇huh||∂3∇hb| dx

+

∫
|∂3b| |∇2

hu| |∂3∇hb| dx +
∫

|∂3u| |∇2
hb| |∂3∇hb| dx +

∫
|∇hu3| |∂

2
3b| |∂3∇hb| dx

:= 2J331 + · · · + J335.

Going through a similar process as in J13, we are able to establish the bound for J33.
Recalling (4.8), we have

J331 ≤ C∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∂3∇hb∥

1
2
L2∥∂1∂3∇hb∥

1
2
L2∥∂3∇hb∥

1
2
L2∥∂

2
3∇hb∥

1
2
L2 .

Then ∫ t

0
(1 + τ)J331(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
2 ∥∇hu(τ)∥

1
2
L2(1 + τ)

1
4 ∥∂3∇hb(τ)∥

1
2
L2

×

∫ t

0
(1 + τ)

1
4 ∥∂2∇hu(τ)∥

1
2
L2∥∂3∇hb(τ)∥

3
2
H1 dτ ≤ CE

3
2 (t).

As in (4.9) and (4.12), J333 can be bounded by∫ t

0
(1 + τ)J333(τ)dτ ≤ C sup

0≤τ≤t
∥∂3b(τ)∥

1
2
H1(1 + τ)

1
4 ∥∂3∇hb(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
2 ∥∇2

hu(τ)∥L2

× (1 + τ)
1
4 ∥∂3∂1∇hb(τ)∥

1
2
L2∥∂3∂2b(τ)∥

1
2
H1 dτ ≤ CE

3
2 (t).

Also, from (4.10) and (4.13), we get∫ t

0
(1 + τ)J335(τ)dτ ≤ C sup

0≤τ≤t
(1 + τ)

1
2 ∥∇hu(τ)∥

1
2
L2∥∂

2
3b(τ)∥

1
2
L2

∫ t

0
(1 + τ)

1
4 ∥∇h∂3u3(τ)∥

1
2
L2

× (1 + τ)
1
4 ∥∂3∂1∇hb(τ)∥

1
2
L2∥∂3∇hb(τ)∥H1 dτ ≤ CE

3
2 (t).

The rest terms J332 and J334 can be handled as J331 and J333, respectively. Thus, we have∫ t

0
(1 + τ)(J332(τ) + J334(τ)) dτ ≤ CE

3
2 (t).

Consequently, we derive ∫ t

0
(1 + τ)J33(τ)dτ ≤ CE

3
2 (t).

Combining all estimates above for J31 through J33, we conclude∫ t

0
J3(τ)dτ ≤ CE

3
2 (t). (4.16)
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Finally we bound J2 and J4. J2 and J4 can be estimated with a nearly same argument
as J1 and J3, respectively. We shall just sketch the proof. By integration by parts and the
divergence-free condition, we split J2 and J4 into three parts as follows.

J2 + J4 := (J21 + J22 + J23)(1 + t),

where

J21 =

∫
(∇hb · ∇b · ∇hu + ∇hb · ∇u · ∇hb) dx,

J22 =

∫ [
(∇∇hb · ∇)b · ∇∇hu + (∇b · ∇)∇hb · ∇∇hu + (∇hb · ∇)∇b · ∇∇hu

]
dx,

J23 =

∫ [
(∇∇hb · ∇)u · ∇∇hb + (∇b · ∇)∇hu · ∇∇hb + (∇hb · ∇)∇u · ∇∇hb

]
dx.

It is easy to verify that ∫ t

0
(J2(τ) + J4(τ))dτ ≤ CE

3
2 (t). (4.17)

According to (4.4) and (4.5), ∫ t

0
(1 + τ)J21(τ)dτ ≤ CE

3
2 (t).

For J22, we further divide it into two parts

J22 =

∫ (
∇2

hb · ∇b · ∇2
hu + 2∇hb · ∇∇hb · ∇2

hu
)

dx

+

∫ (
∇h∂3b · ∇b · ∇h∂3u + ∂3b · ∇∇hb · ∇h∂3u + ∇hb · ∇∂3b · ∇h∂3u

)
dx

:= J221 + J222.

As in (4.6) and (4.7) for J12, ∫ t

0
(1 + τ)J221(τ)dτ ≤ CE

3
2 (t).

For J222, we have

J222 ≤ 3
∫

|∇hb| |∂3∇hb| |∂3∇hu| dx + 2
∫

|∂3b| |∇2
hb| |∂3∇hu| dx

+

∫
|∇hb3| |∂

2
3b| |∂3∇hu| dx.

Using the similarities between J222 and J131, J132 and J133, we can easily find∫ t

0
(1 + τ)J222(τ)dτ ≤ CE

3
2 (t).

Therefore, ∫ t

0
(1 + τ)J22(τ)dτ ≤ CE

3
2 (t).
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To bound J23, we decompose it into

J23 ≤

∫
(∇2

hb · ∇u · ∇2
hb + 2∇hb · ∇∇hu · ∇2

hb) dx

+ J331 + 2J332 + J333 + J334 +

∫
|∇hb3| |∂

2
3u| |∂3∇hb| dx.

The first term and the last term are similar to J32 and J335, respectively. Thus,∫ t

0
(1 + τ)J23(τ)dτ ≤ CE

3
2 (t).

Integrating (4.3) over [0, t] and invoking (4.15), (4.16) and (4.17), we derive the desired
estimate (4.2). This competes the proof of Lemma 4.2. □

We now turn to the second lemma.

Lemma 4.3. Assume (u, b) is a solution to (1.4). Then we have

− (1 + t)(∂2∇hu(t),∇hb(t)) +
1
2

∫ t

0
(1 + τ)∥∂2∇hu(τ)∥2

L2dτ

−
1
2

∫ t

0
(1 + τ)

(
3∥∂2∇hb(τ)∥2

L2 + µ
2∥∇h∂

2
1u(τ)∥2

L2 + η
2∥∇h∆hb(τ)∥2

L2

)
dτ

≤ CE(0) +
1
2

E0(t) + CE
3
2 (t). (4.18)

Proof of Lemma 4.3. As in (3.16), we have

−
d
dt

(1 + t)(∂2∇hu,∇hb) + (1 + t)∥∂2∇hu∥2
L2 − (1 + t)∥∂2∇hb∥2

L2

= −(∂2∇hu,∇hb) + (1 + t)
(
∂2∇h(u · ∇u),∇hb

)
− (1 + t)

(
∂2∇h(b · ∇b

)
,∇hb)

+ (1 + t)
(
∂2∇hu,∇h(u · ∇b)

)
− (1 + t)

(
∂2∇hu,∇h(b · ∇u)

)
− µ(1 + t)(∂2∇h∂

2
1u,∇hb) − η(1 + t)(∂2∇hu,∇h∆hb)

:= J5 + · · · + J11,

where (F,G) denotes the L2-inner product of F and G. It is clear that∫ t

0
J5(τ)dτ ≤

1
2

∫ t

0
(∥∂2∇hu(τ)∥2

L2 + ∥∇hb(τ)∥2
L2)dτ ≤

1
2

E0(t),

J10 = µ(1 + t)(∇h∂
2
1u, ∂2∇hb) ≤

µ2

2
(1 + t)∥∂2

1∇hu∥2
L2 +

1
2

(1 + t)∥∂2∇hb∥2
L2 ,

J11 ≤
1
2

(1 + t)∥∂2∇hu∥2
L2 +
η2

2
(1 + t)∥∆h∇hb∥2

L2 .

Next we bound the nonlinear integral terms. We mainly focus on J6 and J8. The estimates
for J7 and J9 can be established similarly. By integration by parts and (2.3), we have

J6 = −(1 + t)
∫

∇hu · ∇u · ∂2∇hb dx − (1 + t)
∫

u · ∇∇hu · ∂2∇hb dx

≤ C(1 + t)∥∇hu∥
1
2
L2∥∂1∇hu∥

1
2
L2∥∇u∥

1
2
L2∥∂2∇u∥

1
2
L2∥∂2∇hb∥

1
2
L2∥∂3∂2∇hb∥

1
2
L2
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+ C(1 + t)∥u∥
1
2
L2∥∂2u∥

1
2
L2∥∇∇hu∥

1
2
L2∥∂1∇∇hu∥

1
2
L2∥∂2∇hb∥

1
2
L2∥∂3∂2∇hb∥

1
2
L2 .

Furthermore,∫ t

0
J6(τ)dτ ≤ C sup

0≤t≤τ
(1 + τ)

1
2 ∥∇hu(τ)∥

1
2
L2∥∇u(τ)∥

1
2
L2

∫ t

0
∥∇h∇u(τ)∥L2

× (1 + τ)
1
2 ∥∂2∇hb(τ)∥H1dτ

+ C sup
0≤t≤τ

(1 + τ)
1
2 ∥∂2u(τ)∥

1
2
L2∥u(τ)∥

1
2
L2

∫ t

0
∥∇h∇u(τ)∥H1

× (1 + τ)
1
2 ∥∂2∇hb(τ)∥H1dτ

≤ CE
1
4
2 (t)E

3
4
0 (t)E

1
2
1 (t) ≤ CE

3
2 (t).

Similarly, we can bound J7 as ∫ t

0
J7(τ)dτ ≤ CE

3
2 (t).

For J8, applying the anisotropic inequality (2.4) yields

J8 = (1 + t)
∫

∇hu · ∇b · ∂2∇hu dx + (1 + t)
∫

u · ∇∇hb · ∂2∇hu dx

≤ C(1 + t)∥∇hu∥
1
2
L2∥∂2∇hu∥

1
2
L2∥∇b∥

1
4
L2∥∂1∇b∥

1
4
L2∥∂3∇b∥

1
4
L2∥∂1∂3∇b∥

1
4
L2∥∂2∇hu∥L2

+ C(1 + t)∥u∥
1
4
L2∥∂2u∥

1
4
L2∥∂3u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∇∇hb∥

1
2
L2∥∂1∇∇hb∥

1
2
L2∥∂2∇hu∥L2 .

Thus,∫ t

0
J8(τ)dτ ≤ C sup

0≤t≤τ
(1 + τ)

1
4 ∥∇hu(τ)∥

1
2
L2∥∇b(τ)∥

1
2
H1

∫ t

0
(1 + τ)

3
4 ∥∂2∇hu(τ)∥

3
2
L2∥∂1∇b(τ)∥

1
2
H1dτ

+ C sup
0≤t≤τ

(1 + τ)
1
4 ∥∇∇hb(τ)∥

1
2
L2∥u(τ)∥

1
2
H1

∫ t

0
(1 + τ)

1
4 ∥∂1∇h∇b(τ)∥

1
2
L2

× (1 + τ)
1
2 ∥∂2∇hu(τ)∥L2∥∂2u(τ)∥

1
2
H1dτ

≤ CE1(t)E
1
2
0 (t) ≤ CE

3
2 (t).

Also, ∫ t

0
J9(τ)dτ ≤ CE

3
2 (t).

Collecting all the estimates for J5 through J11, and integrating over [0, t], we derive the
desired bound (4.18). This completes the proof of lemma 4.3. □

We now putting together the two lemmas above to obtain Proposition 4.1.

Proof of Proposition 4.1. According to Lemma 4.2 and 4.3, the combination (4.2)+λ1(4.18)
yields

(1 + t)
(
∥∇hu(t)∥2

H1 + ∥∇hb(t)∥2
H1 − λ1(∂2∇hu,∇hb)

)
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+

∫ t

0
(1 + τ)

[(
2µ −

µ2

2
λ1

)
∥∂1∇hu(τ)∥2

H1

+
λ1

2
(1 + τ)∥∂2∇hu(τ)∥2

L2 +
(
2η −

3
2
λ1 −

η2

2
λ1

)
∥∆hb(τ)∥2

H1

]
dτ

≤ CE(0) + CE0(t) + CE
3
2 (t),

where λ1 is a parameter. If λ1 is sufficiently small, then

(1 + t)
(
∥∇hu(t)∥2

H1 + ∥∇hb(t)∥2
H1

)
+

∫ t

0
(1 + τ)

(
∥∂1∇hu(τ)∥2

H1 + ∥∂2∇hu(τ)∥2
L2 + ∥∇2

hb(τ)∥2
H1

)
dτ

≤ CE(0) + CE0(t) + CE
3
2 (t).

This completes the proof of Proposition 4.1. □

5. Estimate for E2(t)

This section establishes the a priori inequality (1.16) for E2(t). That is, we prove the
following proposition.

Proposition 5.1. Let (u, b) be a solution to the system (1.4). Then it holds

E2(t) ≤ C
(
E

3
2 (t) + E2(t)

)
+ C

(
∥(u0, b0)∥2

H2 + ∥(u0, b0)∥2
L2

x3 L1
x1 x2

+ ∥(∂3u0, ∂3b0)∥2
L2

x3 L1
x1 x2

+ ∥(∂2
3u0, ∂

2
3b0)∥2

L2
x3 L1

x1 x2

)
. (5.1)

We remark that energy estimates are no longer sufficient for the proof of (5.1). We
resort to the integral representation of (1.4). To convert (1.4) into an integral represen-
tation, we take the Fourier transform of (1.4), solve the linearized system and represent
the nonlinear system into an integral form via Duhamel’s principle. The integral repre-
sentation involves three key kernel functions, which are degenerate and anisotropic. Due
to the anisotropic nature, we divide the frequency space into subdomains to obtain sharp
upper bounds on the kernel functions. This is done in Proposition 5.4. Once these bounds
are at our disposal, we then estimate the L2-norms of (u, b) and its derivatives via the
integral representation. For the sake of clarity, we divide the rest of this section into two
subsections.

5.1. Integral representation and bounds for the kernels. The subsection derives the
integral representation of (1.4) and establishes optimal upper bounds for the kernel func-
tions. First we recall two basic tools. The first one specifies the decay rate of a general
heat operator associated with a fractional Laplacian operator. Here the fractional Lapla-
cian operator can be defined through the Fourier transform

Λ̂α f (ξ) = |ξ|α f̂ (ξ).

The decay rate is stated in the following lemma, whose proof can be found in many
references (see, e.g., [90]).
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Lemma 5.2. Assume α ≥ 0 and β > 0 are real numbers. Let 1 ≤ p ≤ q ≤ ∞. Then there
exists a constant C > 0 such that, for any t > 0,

∥Λαe−Λ
βt f ∥Lq(Rd) ≤ C t−

α
β−

d
β ( 1

p−
1
q )
∥ f ∥Lp(Rd).

The second tool is an elementary inequality providing upper bounds for a convolution
type integral. Its proof is straightforward.

Lemma 5.3. Assume 0 < s1 ≤ s2. Then, for some constant C > 0,

∫ t

0
(1 + t − τ)−s1(1 + τ)−s2 dτ ≤



C(1 + t)−s1 , if s2 > 1,

C(1 + t)−s1 ln(1 + t), if s2 = 1,

C(1 + t)1−s1−s2 , if s2 < 1.

(5.2)

Now we derive an integral representation of (1.4). Applying the Leray-Hopf projection
operator P = I −∇∆−1∇· to the velocity equation in (1.4) and taking the Fourier transform
of the resulting equations, we have

∂t

(
û
b̂

)
= A

(
û
b̂

)
+

(
N̂1

N̂2

)
, (5.3)

where

A =

(
−µξ2

1 iξ2
iξ2 −η|ξh|

2

)
, N1 = P(b · ∇b − u · ∇u), N2 = b · ∇u − u · ∇b

with |ξh|
2 = ξ2

1 + ξ
2
2. To diagonalize A, we compute the eigenvalues of A,

λ1 =
−(µξ2

1 + η|ξh|
2) −

√
Γ

2
, λ2 =

−(µξ2
1 + η|ξh|

2) +
√
Γ

2
,

where
Γ = (µξ2

1 + η|ξh|
2)2 − 4(µηξ2

1 |ξh|
2 + ξ2

2).

The corresponding eigenvectors are

ρ1 =

(
λ1 + η|ξh|

2

iξ2

)
, ρ2 =

(
λ2 + η|ξh|

2

iξ2

)
.

Therefore, the matrix A can be diagonalized as

A = (ρ1, ρ2)

 λ1 0
0 λ2

 (ρ1, ρ2)−1. (5.4)
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We can now represent (5.3) as

(
û
b̂

)
= eAt

(
û0

b̂0

)
+

∫ t

0
eA(t−τ)

(
N̂1(τ)
N̂2(τ)

)
dτ.

By making eAt more explicit via (5.4), we obtain the integral representation

û(ξ, t) = Q̂1(t)̂u0 + Q̂2(t)̂b0 +

∫ t

0

(
Q̂1(t − τ)N̂1(τ) + Q̂2(t − τ)N̂2(τ)

)
dτ, (5.5)

b̂(ξ, t) = Q̂2(t)̂u0 + Q̂3(t)̂b0 +

∫ t

0

(
Q̂2(t − τ)N̂1(τ) + Q̂3(t − τ)N̂2(τ)

)
dτ, (5.6)

where

Q̂1(t) = η|ξh|2G1(t) + G2(t), Q̂2(t) = iξ2 G1(t), Q̂3(t) = −η|ξh|
2G1(t) + G3(t), (5.7)

with

G1(t) =
eλ2t − eλ1t

λ2 − λ1
, G2(t) =

λ2eλ2t − λ1eλ1t

λ2 − λ1
= eλ2t + λ1G1(t),

G3(t) =
λ2eλ1t − λ1eλ2t

λ2 − λ1
= eλ1t − λ1G1(t).

We remark that when λ1 = λ2, the representation in (5.5) and (5.6) remains valid if we
replace G1 by its limiting form

G1(t) = lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= t eλ1t.

Next we investigate the behaviors of the kernels Q̂i(ξ, t) (i = 1, 2, 3), which play a
crucial role in the estimate of E2(t). There kernels are anisotropic and degenerate. To
obtain precise and sharp upper bounds, we divide the frequency space into subdomains
and classify the behavior of the kernel functions in each subdomain.

Proposition 5.4. The domain R3 is split into two subdomains, R3 = A1 ∪ A2 with

A1 :=
{
ξ ∈ R3 :

√
Γ ≤
µξ2

1 + η|ξh|
2

2
or 3(µξ2

1 + η|ξh|
2)2 ≤ 16(µηξ2

1 |ξh|
2 + ξ2

2)
}
,

A2 :=
{
ξ ∈ R3 :

√
Γ >
µξ2

1 + η|ξh|
2

2
or 3(µξ2

1 + η|ξh|
2)2 > 16(µηξ2

1 |ξh|
2 + ξ2

2)
}
.

Then we have
(1) There exist two constants C > 0 and c0 > 0 such that, for any ξ ∈ A1,

Reλ1 ≤ −
µξ2

1 + η|ξh|
2

2
, Reλ2 ≤ −

µξ2
1 + η|ξh|

2

4
,

|G1(t)| ≤ te−
µξ21+η|ξh |

2

4 t, |Q̂i(ξ, t)| ≤ Ce−c0 |ξh |
2t, i = 1, 2, 3.

(2) There is a constant C > 0 such that, for any ξ ∈ A2,

λ1 < −
3(µξ2

1 + η|ξh|
2)

4
, λ2 ≤ −

µηξ2
1 |ξh|

2 + ξ2
2

µξ2
1 + η|ξh|

2
,



28 LIN, WU, ZHU

|G1(t)| <
2

µξ2
1 + η|ξh|

2

e− 3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t
 ,

|Q̂i(t)| < C(e−
3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t
), i = 1, 2, 3.

If we further divide A2 into three subdomains A21, A22, A23,

A21 = {ξ ∈ A2, |ξ1| ∼ |ξ2|},

A22 = {ξ ∈ A2, |ξ1| >> |ξ2|},

A23 = {ξ ∈ A2, |ξ1| << |ξ2|},

then, for some constants C > 0, c1 > 0, c2 > 0, c3 > 0 and i = 1, 2, 3,

|Q̂i(t)| ≤ C e−c1 |ξh |
2t, if ξ ∈ A21,

|Q̂i(t)| ≤ C e−c1 |ξh |
2t, if ξ ∈ A22,

|Q̂i(t)| ≤ C (e−c1 |ξh |
2t + e−c2ξ

2
1 t−c3t), if ξ ∈ A23.

Proof of Proposition 5.4. (1) For ξ ∈ A1,
√
Γ ≤

µξ21+η|ξh |
2

2 . Through the direct estimates
and the mean-value theorem, we have

−
3(µξ2

1 + η|ξh|
2)

4
≤ Reλ1 ≤ −

µξ2
1 + η|ξh|

2

2
,

Reλ2 ≤ −
µξ2

1 + η|ξh|
2

4
, |G1(t)| ≤ te−

µξ21+η|ξh |
2

4 t. (5.8)

To bound the kernel functions Q̂1(t) and Q̂3(t), we consider two cases: λ1 is a real number
and λ1 is an imaginary number. If λ1 is a real number, for some pure constant c0 dependent
of µ and η, we have

|Q̂1(t)| =
∣∣∣∣η|ξh|2G1(t) + λ1G1(t) + eλ2t

∣∣∣∣
≤ C(µξ2

1 + η|ξh|
2)te−

µξ21+η|ξh |
2

4 t + e−
µξ21+η|ξh |

2

4 t

≤ Ce−c0 |ξh |
2t,

where we have used the simple fact that x e−x ≤ C for x ≥ 0. If λ1 is an imaginary number,
namely Γ < 0, then

|λ1|
2 = µηξ2

1 |ξh|
2 + ξ2

2, Γ = 4|λ1|
2 − (µξ2

1 + η|ξh|
2)2.

Clearly, (5.8) implies ∣∣∣∣η|ξh|2G1(t) + eλ2t
∣∣∣∣ ≤ Ce−c0 |ξh |

2t.

Now we bound |λ1G1(t)|. we further divide the consideration into two subcases: |λ1| ≤

|
√
Γ | and |λ1| ≥ |

√
Γ | . In the case when |λ1| ≤ |

√
Γ|, by the definition of G1, we obtain

|λ1G1(t)| =
|λ1|

|
√
Γ|

|eλ1t − eλ2t| ≤ Ce−
µξ21+η|ξh |

2

4 t.

In the case when |λ1| ≥ |
√
Γ |, we have

|λ1|
2 ≥ 4|λ1|

2 − (µξ2
1 + η|ξh|

2)2,
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or
√

3|λ1| ≤ µξ
2
1 + η|ξh|

2.

Thus,

|λ1G1(t)| ≤
1
√

3
(µξ2

1 + η|ξh|
2)|G1| ≤ C(µξ2

1 + η|ξh|
2)te−

(µξ21+η|ξh |
2)

4 t ≤ Ce−c0 |ξh |
2t.

Consequently, if λ1 is an imaginary number, we derive

|Q̂1(t)| ≤ Ce−c0 |ξh |
2t.

In summary, for ξ ∈ A1,

|Q̂1(t)| ≤ Ce−c0 |ξh |
2t.

Similarly, we have

|Q̂3(t)| =
∣∣∣∣ − η|ξh|2G1(t) − λ1G1(t) + eλ1t

∣∣∣∣ ≤ Ce−c0 |ξh |
2t.

Now we bound Q̂2(t). As in the estimate of Q̂1(t), we consider the following two cases:
|ξ2| ≤ |

√
Γ| and |ξ2| ≥ |

√
Γ|. In the first case |ξ2| ≤ |

√
Γ |, by the definition of Q̂2(t) in (5.7),

|Q̂2(t)| =
∣∣∣∣ ξ2√

Γ

∣∣∣∣ |eλ1t − eλ2t| ≤ C e−c0 |ξh |
2t.

In the second case, |ξ2| ≥ |
√
Γ |,∣∣∣(µξ2
1 + η|ξh|

2)2 − 4(µηξ2
1 |ξh|

2 + ξ2
2)
∣∣∣ ≤ ξ2

2,

or
−ξ2

2 ≤ (µξ2
1 + η|ξh|

2)2 − 4(µηξ2
1 |ξh|

2 + ξ2
2) ≤ ξ2

2,

which implies
3ξ2

2 + 4µηξ2
1 |ξh|

2 ≤ (µξ2
1 + η|ξh|

2)2.

In particular,
√

3|ξ2| ≤ µξ2
1 + η|ξh|

2.

Therefore,

|Q̂2(t)| ≤
1
√

3
(µξ2

1 + η|ξh|
2) |G1(t)| ≤ C e−c0 |ξh |

2t.

(2) For ξ ∈ A2, we have µξ
2
1+η|ξh |

2

2 <
√
Γ ≤ µξ2

1 + η|ξh|
2. It then follows that

− (µξ2
1 + η|ξh|

2) ≤ λ1 < −
3
4

(µξ2
1 + η|ξh|

2),

λ2 =
Γ − (µξ2

1 + η|ξh|
2)2

2(µξ2
1 + η|ξh|

2 +
√
Γ)

≤ −
µηξ2

1 |ξh|
2 + ξ2

2

µξ2
1 + η|ξh|

2
.

Therefore,

|G1(t)| ≤
1

λ2 − λ1
(eλ1t + eλ2t) <

2
µξ2

1 + η|ξh|
2

(
e−

3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t)
.
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As a consequence,

|Q̂1(t)| =
∣∣∣∣η|ξh|2G1(t) + λ1G1(t) + eλ2t

∣∣∣∣
≤ 2(µξ2

1 + η|ξh|
2)|G1(t)| + eλ2t

< C
(
e−

3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t)
.

Similarly,

|Q̂3(t)| =
∣∣∣∣ − η|ξh|2G1(t) − λ1G1(t) + eλ1t

∣∣∣∣ < C
(
e−

3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t)
.

Due to
√
Γ >

µξ21+η|ξh |
2

2 , we find

3
4

(µξ2
1 + η|ξh|

2)2 > 4(µηξ2
1 |ξh|

2 + ξ2
2) ≥ ξ2

2.

Therefore,

|Q̂2(t)| < C(µξ2
1 + η|ξh|

2) |G1(t)| < C(e−
3
4 (µξ21+η|ξh |

2)t + e
−
µηξ21 |ξh |

2+ξ22
µξ21+η|ξh |

2 t)
.

Finally, according to the upper bound for |Q̂i(t)| (i = 1, 2, 3), by further division of A2

into A21, A22 and A23, we can establish more definite upper bound. For ξ ∈ A21, ξ2
1 ∼ ξ2

2 ,
we have

µηξ2
1 |ξh|

2 + ξ2
2

µξ2
1 + η|ξh|

2
∼ |ξh|

2 + 1.

For ξ ∈ A22, ξ2
1 >> ξ

2
2, there exists a c1 > 0 small sufficiently such that

µηξ2
1 |ξh|

2 + ξ2
2

µξ2
1 + η|ξh|

2
≥ c1|ξh|

2.

The behavior ξ ∈ A23 can be similarly identified. This completes the proof of Proposition
5.4. □

5.2. Proof of Proposition 5.1. With these preparations at our disposal, we are now ready
to prove Proposition 5.1. Since the process is complicated and long, the proof is divided
into three lemmas. To do so, we make the following decomposition for E2(t),

E2(t) = E21(t) + E22(t) + E23(t),

where

E21(t) = sup
0≤τ≤t

(1 + τ)∥(u(τ), b(τ))∥2
L2 ,

E22(t) = sup
0≤τ≤t

(1 + τ)2∥(∇hu(τ),∇hb(τ))∥2
L2 + sup

0≤τ≤t
(1 + τ)1−2ε∥(∂3u(τ), ∂3b(τ))∥2

L2 ,

E23(t) = sup
0≤τ≤t

2∑
k=1

(1 + τ)
5
2−2ε∥(∂1∂ku(τ), ∂1∂kb(τ))∥2

L2

+ sup
0≤τ≤t

(1 + τ)2−2ε∥(∂1∂3u(τ), ∂1∂3b(τ))∥2
L2
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+ sup
0≤τ≤t

3∑
k=2

(1 + τ)
4
3−2ε∥(∂2∂ku(τ), ∂2∂kb(τ))∥2

L2

+ sup
0≤τ≤t

(1 + τ)
1
2 ∥(∂2

3u(τ), ∂2
3b(τ))∥2

L2 .

Without loss of generality, we assume t > 1. In fact, if 0 ≤ t ≤ 1, Proposition 3.1
implies

E2(t) ≤ C sup
0≤τ≤t

∥(u(τ), b(τ))∥2
H2 ≤ CE0(t) ≤ CE(0) + CE

3
2 (t). (5.9)

Next we present the estimates for E21(t), E22(t) and E23(t), which will be shown in three
lemmas. Proposition 5.1 then follows as an immediate consequence.

Lemma 5.5. Assume that (u, b) is a solution to (1.4). Then we have

E21(t) ≤ CE2(t) + C(∥(u0, b0)∥2
L2

x3 L1
x1 x2

+ ∥(u0, b0)∥2
L2). (5.10)

Proof of Lemma 5.5. Recalling (5.5) and (5.6), and applying Plancherel’ theorem, we
have

∥u(t)∥L2(R3) = ∥̂u(t)∥L2(R3) ≤ ∥Q̂1(t)̂u0∥L2(R3) + ∥Q̂2(t)̂b0∥L2(R3)

+

∫ t

0
∥Q̂1(t − τ)N̂1(τ)∥L2(R3) dτ +

∫ t

0
∥Q̂2(t − τ)N̂2(τ)∥L2(R3) dτ., (5.11)

∥b(t)∥L2(R3) = ∥̂b(t)∥L2(R3) ≤ ∥Q̂2(t)̂u0∥L2(R3) + ∥Q̂3(t)̂b0∥L2(R3)

+

∫ t

0
∥Q̂2(t − τ)N̂1(τ)∥L2(R3) dτ +

∫ t

0
∥Q̂3(t − τ)N̂2(τ)∥L2(R3) dτ. (5.12)

We shall only provide the estimates for ∥u∥L2(R3). ∥b∥L2(R3) can be estimated in a similar
way and admits the same bound as u due to the similarity of (5.12) with (5.11) . We focus
on the first term and the third term on the right side in (5.11). The estimates for the rest
can be established similarly. By Proposition 5.4 and Lemma 5.2,

∥Q̂1(t)̂u0∥L2(R3) ≤ C∥e−c̃0 |ξh |
2t û0 ∥L2(R3) + C∥e−c3t û0∥L2(R3)

= C
∥∥∥ ∥e−c̃0(Λ2

1+Λ
2
2) t u0∥L2

x1 x2

∥∥∥
L2

x3
+ C∥e−c3t û0∥L2

≤ C(1 + t)−
1
2 (∥u0∥L2

x3 L1
x1 x2

+ ∥u0∥L2), (5.13)

where we have used the fact e−c3t(1 + t)m ≤ C(c3,m) for any m ≥ 0. For the third term,
according to the upper bound for Q̂1(t),∫ t

0
∥Q̂1(t − τ)N̂1(τ)∥L2(R3) dτ ≤

∫ t

0
∥Q̂1(t − τ)M̂1(τ)∥L2(R3) dτ

≤ C
∫ t

0
∥e−c̃0 |ξh |

2(t−τ)M̂1(τ)∥L2(R3) dτ + C
∫ t

0
e−c3(t−τ)∥M̂1(τ)∥L2(R3) dτ

= C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)M̂1(τ)∥L2(R3) dτ + C
∫ t

t−1
∥e−c̃0 |ξh |

2(t−τ)M̂1(τ)∥L2(R3) dτ

+ C
∫ t

0
e−c3(t−τ)∥M1(τ)∥L2(R3) dτ, (5.14)
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where M1 = b · ∇b − u · ∇u and we have used the fact that the projection operator P is
bounded in L2. Observing the simple facts, for any positive number m,

(1 + t − τ)−m ≥ 2−m for τ ∈ [t − 1, t] and e−c3t(1 + t)m ≤ C(c3,m) for t > 0,

we have ∫ t

t−1
∥e−c̃0 |ξh |

2(t−τ)M̂1(τ)∥L2(R3) dτ ≤ 2m
∫ t

t−1
(1 + t − τ)−m∥M̂1(τ)∥L2(R3) dτ.

Then (5.14) can be further bounded as∫ t

0
∥Q̂1(t − τ)N̂1(τ)∥L2(R3) dτ

≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)M̂1(τ)∥L2(R3) dτ + C
∫ t

0
(1 + t − τ)−m∥M̂1(τ)∥L2(R3) dτ. (5.15)

Next we bound the terms on the right side in (5.15). It suffices to estimate the integral
involving u · ∇u. The integral of b · ∇b admits the same bound. As in (5.13), we have∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)û · ∇u(τ)∥L2(R3) dτ ≤ C
∫ t

0
(1 + t − τ)−

1
2 ∥u · ∇u(τ)∥L2

x3 L1
x1 x2

dτ.

By (2.6),

∥u · ∇u∥L2
x3 L1

x1 x2
≤ C∥uh∥

1
2
L2∥∂3uh∥

1
2
L2∥∇hu∥L2 + C∥u3∥

1
2
L2∥∂3u3∥

1
2
L2∥∂3u∥L2 . (5.16)

By Lemma 5.3,∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)û · ∇u(τ)∥L2(R3) dτ

≤ C sup
0≤τ≤t

(1 + τ)
1
4 ∥uh(τ)∥

1
2
L2(1 + τ)

1
4−

1
2 ε∥∂3uh(τ)∥

1
2
L2(1 + τ)∥∇hu(τ)∥L2

×

∫ t

0
(1 + t − τ)−

1
2 (1 + τ)−

3
2+

1
2 ε dτ

+ C sup
0≤τ≤t

(1 + τ)
1
4 ∥u3(τ)∥

1
2
L2(1 + τ)

1
2 ∥∂3u3(τ)∥

1
2
L2(1 + τ)

1
2−ε∥∂3u(τ)∥L2

×

∫ t

0
(1 + t − τ)−

1
2 (1 + τ)−

5
4+ε dτ

≤ CE2(t)(1 + t)−
1
2 . (5.17)

Applying Hölder’s inequality and Sobolev’s inequality, the second integral involving u·∇u
in (5.15) can be bounded as∫ t

0
(1 + t − τ)−m∥u · ∇u(τ)∥L2(R3) dτ ≤ C

∫ t

0
(1 + t − τ)−m∥u(τ)∥L4∥∇u(τ)∥L4 dτ

≤ C
∫ t

0
(1 + t − τ)−m∥u(τ)∥

1
4
L2∥∇u(τ)∥L2∥∇2u(τ)∥

3
4
L2 dτ

≤ CE2(t)
∫ t

0
(1 + t − τ)−m(1 + τ)−

13
16+ε dτ ≤ CE2(t)(1 + t)−

1
2 ,
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where m > 1. As a consequence, we have∫ t

0
∥Q̂1(t − τ)û · ∇u(τ)∥L2(R3) dτ ≤ C(1 + t)−

1
2 E2(t).

Thereby, we infer ∫ t

0
∥Q̂1(t − τ)N̂1(τ)∥L2(R3) dτ ≤ C(1 + t)−

1
2 E2(t). (5.18)

The second term and the fourth term admit the similar bound as (5.13) and (5.18), respec-
tively. Therefore, we can conclude

(1 + t)
1
2 ∥u(t)∥L2 ≤ C

(
E(t) + ∥(u0, b0)∥L2

x3 L1
x1 x2

+ ∥(u0, b0)∥L2

)
,

which means

(1 + t)∥u(t)∥2
L2 ≤ C

(
E2(t) + ∥(u0, b0)∥2

L2
x3 L1

x1 x2
+ ∥(u0, b0)∥2

L2

)
.

Also, ∥b∥L2 obeys the same bound. This complete the proof of Lemma 5.5. □

Lemma 5.6. Let (u, b) be a solution to (1.4). Then we have

E22(t) ≤ CE2(t) + C
(
∥(u0, b0)∥2

L2
x3 L1

x1 x2
+ ∥(∂3u0, ∂3b0)∥2

L2
x3 L1

x1 x2
+ ∥(∇u0,∇b0)∥2

L2

)
. (5.19)

Proof of Lemma 5.6. By differentiating (5.5) and (5.6), we have, for i = 1, 2, 3,

∂̂iu(ξ, t) = Q̂1(t)∂̂iu0 + Q̂2(t)∂̂ib0

+

∫ t

0

(
Q̂1(t − τ)∂̂iN1(τ) + Q̂2(t − τ)∂̂iN2(τ)

)
dτ,

∂̂ib(ξ, t) = Q̂2(t)∂̂iu0 + Q̂3(t)∂̂ib0

+

∫ t

0

(
Q̂2(t − τ)∂̂iN1(τ) + Q̂3(t − τ)∂̂iN2(τ)

)
dτ.

As in the proof of Lemma 5.5, we focus on the ∥∂iu(t)∥L2 . Clearly,

∥∂iu(t)∥L2(R3) = ∥∂̂iu(t)∥L2(R3) ≤ ∥Q̂1(t)∂̂iu0∥L2(R3) + ∥Q̂2(t)∂̂ib0∥L2(R3)

+

∫ t

0
∥Q̂1(t − τ)∂̂iN1(τ)∥L2(R3) dτ +

∫ t

0
∥Q̂2(t − τ)∂̂iN2(τ)∥L2(R3) dτ

:= Hi1 + Hi2 + Hi3 + Hi4. (5.20)

It suffices to bound Hi1 and Hi3 in (5.20). Hi2 and Hi4 share similar estimates as Hi1 and
Hi3, respectively.

(1) i = 1 or i = 2 .

We focus on the case i = 2. The case i = 1 is similar. By Proposition 5.4, Lemma 5.2
and Minkowski’s inequality,

H21 ≤ C∥e−c̃0 |ξh |
2t ∂̂2u0 ∥L2(R3) + C∥e−c3t ∂̂2u0∥L2(R3)

= C
∥∥∥∥ ∥e−c̃0Λ

2
2t e−c̃0Λ

2
1t∂2u0∥L2

x2

∥∥∥∥
L2

x1 x3

+ Ce−c3t∥ ∂2u0∥L2
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≤ C(1 + t)−
3
4

∥∥∥∥ ∥e−c̃0Λ
2
1tu0∥L1

x2

∥∥∥∥
L2

x1 x3

+ C(1 + t)−1∥∂2u0∥L2

≤ C(1 + t)−
3
4
∥∥∥ ∥e−c̃0Λ

2
1tu0∥L2

x1

∥∥∥
L2

x3 L1
x2
+ C(1 + t)−1∥∂2u0∥L2

≤ C(1 + t)−1(∥u0∥L2
x3 L1

x1 x2
+ ∥∂2u0∥L2). (5.21)

Similarly,

H22 ≤ C(1 + t)−1(∥b0∥L2
x3 L1

x1 x2
+ ∥∂2b0∥L2). (5.22)

For H23, similarly to (5.15), we first bound it by

H23 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)∂̂2M1(τ)∥L2(R3) dτ

+ C
∫ t

0
(1 + t − τ)−m∥∂2M1(τ)∥L2(R3) dτ, (5.23)

where M1 = b · ∇b − u · ∇u. We consider the first term involving u · ∇u in (5.23). Firstly,
from the estimates (5.16) and (5.17), we obtain∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂2(u · ∇u)(τ)∥L2(R3) dτ ≤
∫ t

0
(1 + t − τ)−1∥u · ∇u(τ)∥L2

x3 L1
x1 x2

dτ

≤ CE2(t)
∫ t

0
(1 + t − τ)−1

[
(1 + τ)−

3
2+

1
2 ε + (1 + τ)−

5
4+ε

]
dτ

≤ CE2(t)(1 + t)−1.

For the second term in (5.23), it follows from Hölder’s inequality and Sobolev’s inequality
that

∥∂2(u · ∇u)∥L2 ≤ ∥∂2u∥L2∥∇u∥L∞ + ∥uh∥L∞∥∂2∇hu∥L2 + ∥u3∥L4∥∂2∂3u∥L4

≤ C(∥∂2u∥L2∥∇2u∥
1
2
L2∥∇

3u∥
1
2
L2 + ∥∇uh∥

1
2
L2∥∇

2uh∥
1
2
L2∥∂2∇hu∥L2

+ ∥u3∥
1
4
L2∥∇u3∥

3
4
L2∥∂2∂3u∥

1
4
L2∥∇∂2∂3u∥

3
4
L2). (5.24)

Therefore, for m > 2, we derive∫ t

0
(1 + t − τ)−m∥∂2(u · ∇u)(τ)∥L2(R3) dτ

≤ C sup
0≤t≤τ

(1 + τ)∥∂2u(τ)∥L2(1 + τ)
1
8 ∥∇2u(τ)∥

1
2
L2∥∇

3u(τ)∥
1
2
L2

∫ t

0
(1 + t − τ)−m(1 + τ)−

9
8 dτ

+ C sup
0≤t≤τ

(1 + τ)
1
2 ( 1

2−ε)∥∇uh∥
1
2
L2(1 + τ)

1
8 ∥∇2uh∥

1
2
L2(1 + τ)

2
3−ε∥∂2∇hu(τ)∥L2

×

∫ t

0
(1 + t − τ)−m(1 + τ)−

25
24+

3
2 ε dτ

+ C sup
0≤t≤τ

(1 + τ)
1
8 ∥u3(τ)∥

1
4
L2(1 + τ)

3
4 ∥∇u3(τ)∥

3
4
L2(1 + τ)

1
4 ( 2

3−ε)∥∂2∂3u(τ)∥
1
4
L2∥∇

3u(τ)∥
3
4
L2

×

∫ t

0
(1 + t − τ)−m(1 + τ)−

25
24+

1
4 ε dτ
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≤ CE
3
4
2 (t)E

1
4
0 (t)(1 + t)−

9
8 + CE2(t)(1 + t)−

25
24+

3
2 ε + CE

5
8
2 (t)E

3
8
0 (t)(1 + t)−

25
24+

1
4 ε

≤ CE(t)(1 + t)−1. (5.25)

Consequently, ∫ t

0
∥Q̂1(t − τ) ̂∂2(u · ∇u)(τ)∥L2(R3) dτ ≤ CE(t)(1 + t)−1.

Similarly, ∫ t

0
∥Q̂1(t − τ) ̂∂2(b · ∇b)(τ)∥L2(R3) dτ ≤ CE(t)(1 + t)−1.

Hence,

H23 ≤ CE(t)(1 + t)−1, (5.26)

Similarly,

H24 ≤ CE(t)(1 + t)−1. (5.27)

(5.21), (5.22), (5.26) and (5.27) yield

(1 + t)∥∂2u(t)∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2
x3 L1

x1 x2
+ ∥(∂2u0, ∂2b0)∥L2).

Similarly,

(1 + t)∥∂2b(t)∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2
x3 L1

x1 x2
+ ∥(∂2u0, ∂2b0)∥L2).

For i = 1, ∥(∂1u, ∂1b)∥L2 obeys a similar bound to ∥(∂2u, ∂2b)∥L2 with only a minor modi-
fication of (5.24) and (5.25),

(1 + t)∥(∂1u(t), ∂1b(t))∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2
x3 L1

x1 x2
+ ∥(∂1u0, ∂1b0)∥L2).

(2) i = 3

Invoking the estimate (5.13), we have

H31 ≤ C∥e−c̃0 |ξh |
2t∂̂3u0 ∥L2(R3) + C∥e−c3t ∂̂3u0∥L2(R3)

≤ C(1 + t)−
1
2 (∥∂3u0∥L2

x3 L1
x1 x2

+ ∥∂3u0∥L2). (5.28)

H33 can be similarly estimated as H23,

H33 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)∂̂3M1(τ)∥L2(R3) dτ

+ C
∫ t

0
(1 + t − τ)−m∥∂3M1(τ)∥L2(R3) dτ. (5.29)

Firstly, we have∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂3(u · ∇u)(τ)∥L2(R3) dτ ≤ C
∫ t−1

0
(1 + t − τ)−

1
2 ∥∂3(u · ∇u)(τ)∥L2

x3 L1
x1 x2

dτ

Applying the estimate (2.6) yields

∥∂3(u · ∇u)∥L2
x3 L1

x1 x2
≤ C(∥∂3uh∥

1
2
L2∥∂

2
3uh∥

1
2
L2∥∇hu∥L2 + ∥∂3u∥

1
2
L2∥∂

2
3u∥

1
2
L2∥∂3u3∥L2
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+ ∥uh∥
1
2
L2∥∂3uh∥

1
2
L2∥∂3∇hu∥L2 + ∥u3∥

1
2
L2∥∂3u3∥

1
2
L2∥∂

2
3u∥L2). (5.30)

As a consequence, we arrive at∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂3(u · ∇u)(τ)∥L2(R3) dτ

≤ CE2(t)
∫ t

0
(1 + t − τ)−

1
2
[
(1 + τ)−

11
8 + 1

2 ε + (1 + τ)−
7
6+

3
2 ε + (1 + τ)−1] dτ

≤ CE(t)(1 + t)−
1
2+ε. (5.31)

To bound the second term in (5.29), we apply Hölder’s and Sobolev’s inequalities to
obtain ∫ t

0
(1 + t − τ)−m∥∂3(u · ∇u)(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−m(∥∂3u(τ)∥L2∥∇u(τ)∥L∞ + ∥u(τ)∥L∞∥∇∂3u(τ)∥L2) dτ

≤ C
∫ t

0
(1 + t − τ)−m(∥∂3u(τ)∥L2∥∇2u(τ)∥

1
2
L2∥∇

3u(τ)∥
1
2
L2

+ ∥∇u(τ)∥
1
2
L2∥∇

2u(τ)∥
1
2
L2∥∇∂3u(τ)∥L2) dτ

≤ C
(
E

3
4
2 (t)E

1
4
0 (t) + E2(t)

) ∫ t

0
(1 + t − τ)−m(1 + τ)−

5
8+ε dτ

≤ CE(t)(1 + t)−
1
2 . (5.32)

The estimates (5.31) and (5.32) then lead to∫ t

0
∥Q1(t − τ) ̂∂3(u · ∇u)(τ)∥L2(R3) dτ ≤ CE(t)(1 + t)−

1
2+ε.

Therefore,

H33 ≤ CE(t)(1 + t)−
1
2+ε. (5.33)

Similarly,

H32 + H34 ≤ C
(
∥∂3b0∥L2

x3 L1
x1 x2

+ ∥∂3b0∥L2 + E(t)
)
(1 + t)−

1
2+ε. (5.34)

Finally, by the estimates (5.28), (5.33) and (5.34), we conclude

(1 + t)
1
2−ε∥∂3u(t)∥L2 ≤ CE(t) + C(∥(∂3u0, ∂3b0)∥L2

x3 L1
x1 x2

+ ∥(∂3u0, ∂3b0)∥L2).

This completes the proof of Lemma 5.6. □

Next we bound E23(t), which involves the second-order derivatives of (u, b).

Lemma 5.7. Let (u, b) be a solution to (1.4). Then it holds

E23(t) ≤ CE2(t) + C
(
∥(u0, b0)∥2

L2
x3 L1

x1 x2
+ (∥(∂3u0, ∂3b0)∥2

L2
x3 L1

x1 x2

+ ∥(∂2
3u0, ∂

2
3b0)∥2

L2
x3 L1

x1 x2
+ ∥(∆u0,∆b0)∥2

L2). (5.35)
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Proof of Theorem 5.7. First of all, we have, for i, j = 1, 2, 3,

∂̂i∂ ju(ξ, t) = Q̂1(t)∂̂i∂ ju0 + Q̂2(t)∂̂i∂ jb0

+

∫ t

0

(
Q̂1(t − τ)∂̂i∂ jN1(τ) + Q̂2(t − τ)∂̂i∂ jN2(τ)

)
dτ, (5.36)

∂̂i∂ jb(ξ, t) = Q̂2(t)∂̂i∂ ju0 + Q̂3(t)∂̂i∂ jb0

+

∫ t

0

(
Q̂2(t − τ)∂̂i∂ jN1(τ) + Q̂3(t − τ)∂̂i∂ jN2(τ)

)
dτ.

Throughout the proof, we only show the bound of ∥∂i∂ ju(t)∥L2 . The estimates for ∥∂i∂ jb(t)∥L2

can be obtained similarly. Taking the L2 norm on both side of (5.36), we have

∥∂i∂ ju(t)∥L2(R3) = ∥∂̂i∂ ju(t)∥L2(R3) ≤ ∥Q̂1(t)∂̂i∂ ju0∥L2(R3) + ∥Q̂2(t)∂̂i∂ jb0∥L2(R3)

+

∫ t

0
∥Q̂1(t − τ)∂̂i∂ jN1(τ)∥L2(R3) dτ +

∫ t

0
∥Q̂2(t − τ)∂̂i∂ jN2(τ)∥L2(R3) dτ.

= Ki j1 + Ki j2 + Ki j3 + Ki j4.

We focus on Ki j1 and Ki j3. The bound for the other terms can be established in a similar
way. The proof will be split into four cases: i = 1, j = 1, 2; i = 1, j = 3; i = 2, j = 2, 3;
i = j = 3.

(1) i = 1, j = 1, 2.

It suffices to investigate the case i = 1, j = 2. The case i = 1, j = 1 can be dealt with
similarly. By Lemma 5.2,

K121 ≤ C∥e−c̃0 |ξh |
2t|ξh|

2û0∥L2(R3) + C∥e−c3t ∂̂1∂2u0∥L2(R3)

≤ C(1 + t)−
3
2 (∥u0∥L2

x3 L1
x1 x2

+ ∥∂1∂2u0∥L2). (5.37)

Similarly,

K122 ≤ C(1 + t)−
3
2 (∥b0∥L2

x3 L1
x1 x2

+ ∥∂1∂2b0∥L2). (5.38)

For K123, we first give a different bound from the ones in Lemma 5.5 and Lemma 5.6.

K123 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ + C
∫ t

t−1
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ

+ C
∫ t

0
e−c3(t−τ)∥e−c2ξ

2
1(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ.

For τ ∈ [t − 1, t], we have e−c3(t−τ) ≥ e−c3 and thus∫ t

t−1
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ ≤ ec3

∫ t

t−1
e−c3(t−τ)∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ.

As a consequence, for a constant c4 > 0,

K123 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ

+ C
∫ t

0
e−c3(t−τ)∥e−c4ξ

2
1(t−τ) ̂∂1∂2M1(τ)∥L2(R3) dτ
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:= K1231 + K1232.

Invoking (5.37), (5.16) and (5.17), we have∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂2(u · ∇u)(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−

3
2 ∥u · ∇u(τ)∥L2

x3 L1
x1 x2

dτ

≤ CE2(t)
∫ t

0
(1 + t − τ)−

3
2
(
(1 + τ)−

3
2+

1
2 ε + (1 + τ)−

5
4+ε

)
dτ

≤ CE(t)(1 + t)−
5
4+ε.

Hence,

K1231 ≤ CE(t)(1 + t)−
5
4+ε. (5.39)

For K1232, according to Lemma 5.2, we have

K1232 ≤ C
∫ t

0
e−c3(t−τ)(t − τ)−

1
2 ∥∂2(u · ∇u − b · ∇b)(τ)∥L2(R3) dτ.

By the anisotropic inequality (2.5),

∥∂2(u · ∇u)∥L2(R3) ≤ C∥∂2u∥
1
4
L2∥∂

2
2u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∂

2
2∂3u∥

1
4
L2∥∇u∥

1
2
L2∥∂1∇u∥

1
2
L2

+ C∥u∥
1
4
L2∥∂1u∥

1
4
L2∥∂2u∥

1
4
L2∥∂1∂2u∥

1
4
L2∥∇∂2u∥

1
2
L2∥∂2∂3∇u∥

1
2
L2 .

Hence, ∫ t

0
e−c3(t−τ)(t − τ)−

1
2 ∥∂2(u · ∇u)(τ)∥L2(R3) dτ

≤ CE
7
8
2 (t)E

1
8
0 (t)

∫ t

0
e−c3(t−τ)(t − τ)−

1
2 (1 + τ)−

4
3+

3
2 ε dτ

+ CE
3
4
2 (t)E

1
4
0 (t)

∫ t

0
e−c3(t−τ)(t − τ)−

1
2 (1 + τ)−

61
48+

3
4 ε dτ

≤ CE(t)
∫ t

0
e−

c3
2 (t−τ)(t − τ)−

1
2 (1 + t − τ)−m(1 + τ)−

5
4+ε dτ,

where we have used the simple fact: e−ct(1+t)m ≤ C(m) for any t ≥ 0,m ≥ 0. Furthermore,
selecting m > 2, and then applying Hölder inequality with 1 < p < 2 and 1

p + 1
q = 1, we

infer ∫ t

0
e−c3(t−τ)(t − τ)−

1
2 ∥∂2(u · ∇u)(τ)∥L2(R3) dτ

≤ CE(t)
( ∫ t

0
e−

c3 p
2 (t−τ)(t − τ)−

p
2 dτ

) 1
p
( ∫ t

0
(1 + t − τ)−mq(1 + τ)(− 5

4+ε)qdτ
) 1

q

≤ CE(t)(1 + t)−
5
4+ε. (5.40)
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where we have used fact that the integration
∫ ∞

0
xs−1e−xdx (s > 0) converges to Γ(s).

Consequently,

K1232 ≤ CE(t)(1 + t)−
5
4+ε. (5.41)

(5.39) and (5.41) lead to

K123 ≤ CE(t)(1 + t)−
5
4+ε. (5.42)

With a similar argument, we obtain

K124 ≤ CE(t)(1 + t)−
5
4+ε. (5.43)

Combining the estimates (5.37), (5.38), (5.43) and (5.42), we derive

(1 + t)
5
4−ε∥∂1∂2u(t)∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2

x3 L1
x1 x2

+ ∥(∂1∂2u0, ∂1∂2b0)∥L2).

Similarly, we can also obtain

(1 + t)
5
4−ε∥∂2

1u(t)∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2
x3 L1

x1 x2
+ ∥(∂2

1u0, ∂
2
1b0)∥L2).

(2) i = 1, j = 3.

Firstly, from (5.21), we have

K131 ≤ C(1 + t)−1(∥∂3u0∥L2
x3 L1

x1 x2
+ ∥∂1∂3u0∥L2). (5.44)

For K133, similarly to K123, we first bound it as

K133 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂1∂3M1(τ)∥L2(R3) dτ

+ C
∫ t

0
e−c3(t−τ)∥e−c4ξ

2
1(t−τ) ̂∂1∂3M1(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−1∥∂3M1(τ)∥L2

x3 L1
x1 x2

dτ

+ C
∫ t

0
e−c3(t−τ)(t − τ)−

1
2 ∥∂3M1(τ)∥L2(R3) dτ

:= K1331 + K1332.

Invoking (5.30) and (5.31), we get

K1331 ≤ CE2(t)
∫ t

0
(1 + t − τ)−1

[
(1 + τ)−

11
8 + 1

2 ε + (1 + τ)−
7
6+

3
2 ε + (1 + τ)−1

]
dτ

≤ CE(t)(1 + t)−1+ε. (5.45)

For K1332, by Hölder’s inequality and Sobolev’s inequality, we first have

∥∂3(u · ∇u)∥L2 ≤ ∥∂3u j∥L4∥∂ ju∥L4 + ∥u j∥L∞∥∂ j∂3u∥L2

≤ C∥∂3uh∥
1
4
L2∥∂3∇uh∥

3
4
L2∥∇hu∥

1
4
L2∥∇∇hu∥

3
4
L2

+ C∥∂3u3∥
1
4
L2∥∂3∇u3∥

3
4
L2∥∂3u∥

1
4
L2∥∇∂3u∥

3
4
L2

+ C∥∇uh∥
1
2
L2∥∇

2uh∥
1
2
L2∥∇h∂3u∥L2 + C∥∇u3∥

1
2
L2∥∇

2u3∥
1
2
L2∥∂

2
3u∥L2 .
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Then, for m > 1,∫ t

0
e−c3(t−τ)(t − τ)−

1
2 ∥∂3(u · ∇u)(τ)∥L2 dτ

≤ CE2(t)
∫ t

0
e−c3(t−τ)(t − τ)−

1
2
[
(1 + τ)−

17
16+ε + (1 + τ)−

25
24+

3
2 ε + (1 + τ)−

13
12+

1
2 ε
]
dτ

≤ CE(t)
∫ t

0
e−c3(t−τ)(t − τ)−

1
2 (1 + τ)−1+εdτ

≤ CE(t)
∫ t

0
e−

c3
2 (t−τ)(t − τ)−

1
2 (1 + t − τ)−m(1 + τ)−1+εdτ

≤ CE(t)(1 + t)−1+ε,

where we have used a similar derivation with (5.40) for the last inequality. Thus, we get

K1332 ≤ CE(t)(1 + t)−1+ε.

which, together with (5.45), gives

K133 ≤ CE(t)(1 + t)−1+ε. (5.46)

Therefore, by (5.44) and (5.46), we conclude

(1 + t)1−ε∥∂1∂3u(t)∥L2 ≤ CE(t) + C(∥(∂3u0, ∂3b0)∥L2
x3 L1

x1 x2
+ ∥(∂1∂3u0, ∂1∂3b0)∥L2).

(3) i = 2, j = 2, 3.

It suffices to bound ∥∂2∂3u∥L2 . Firstly, a similar argument with (5.21) yields

K231 ≤ C∥e−c̃0 |ξh |
2t∂̂2∂3u0 ∥L2(R3) + C∥e−c3t ∂̂2∂3u0∥L2(R3)

≤ C(1 + t)−1(∥∂3u0∥L2
x3 L1

x1 x2
+ C∥∂2∂3u0∥L2). (5.47)

As in H23, K233 is firstly bounded by

K233 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ) ̂∂2∂3M1(τ)∥L2(R3) dτ

+ C
∫ t

0
(1 + t − τ)−m∥∂2∂3M1(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−1∥∂3M1(τ)∥L2

x3 L1
x1 x2

dτ

+ C
∫ t

0
(1 + t − τ)−m∥∂2∂3M1(τ)∥L2(R3) dτ

:= K2331 + K2332.

Now we estimate K2331. Recalling the bound (5.45) gives

K2331 ≤ CE2(t)(1 + t)−1+ε. (5.48)

By Hölder’s inequality and Sobolev’s inequality,

∥∂2∂3(u · ∇u)∥L2 ≤ ∥∂2∂3u · ∇u∥L2 + ∥∂2u · ∇∂3u∥L2 + ∥∂3u · ∇∂2u∥L2 + ∥u · ∇∂2∂3u∥L2

≤ ∥∇u∥∞∥∇∂2u∥L2 + ∥∂2u∥L4∥∇∂3u∥L4 + ∥u · ∇∂2∂3u∥L2
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≤ C∥∇2u∥
1
2
L2∥∇

3u∥
1
2
L2∥∇∂2u∥L2 + ∥∂2u∥

1
4
L2∥∂2∇u∥

3
4
L2∥∇∂3u∥

1
4
L2∥∇

2∂3u∥
3
4
L2

+ ∥u∥
1
4
L2∥∂2u∥

1
4
L2∥∂3u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∇∂2∂3u∥

1
2
L2∥∇∂1∂2∂3u∥

1
2
L2 ,

where we have used the anisotropic inequality (2.5) for ∥u · ∇∂2∂3u∥L2 . Thus,∫ t

0
(1 + t − τ)−m∥∂2∂3(u · ∇u)(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−m

(
∥∇2u∥

1
2
L2∥∇

3u∥
1
2
L2∥∇∂2u∥L2 + ∥∂2u∥

1
4
L2∥∂2∇u∥

3
4
L2∥∇∂3u∥

1
4
L2∥∇

2∂3u∥
3
4
L2

)
dτ

+ C
∫ t

0
(1 + t − τ)−m∥u∥

1
4
L2∥∂2u∥

1
4
L2∥∂3u∥

1
4
L2∥∂2∂3u∥

1
4
L2∥∇∂2∂3u∥

1
2
L2∥∇∂1∂2∂3u∥

1
2
L2 dτ

:= L1 + L2.

By means of (5.2), for m > 1, we infer

L1 ≤ C sup
0≤τ≤t

(1 + τ)
2
3−ε∥∇∂2u(τ)∥L2∥∇2u(τ)∥H1

∫ t

0
(1 + t − τ)−m(1 + τ)−

2
3+εdτ

+ sup
0≤τ≤t

(1 + τ)
1
4 ∥∂2u(τ)∥

1
4
L2(1 + τ)

3
4 ( 2

3−ε)∥∂2∇u(τ)∥
3
4
L2∥∇

2u(τ)∥H1

×

∫ t

0
(1 + t − τ)−m(1 + τ)−

3
4+

3
4 εdτ

≤ E
1
2
2 (t)E

1
2
0 (t)(1 + t)−

2
3+ε ≤ CE(t)(1 + t)−

2
3+ε.

For L2, applying Hölder’s inequality yields, for m > 1,

L2 ≤ C sup
0≤τ≤t

(1 + τ)
1
8 ∥u(τ)∥

1
4
L2(1 + τ)

1
4 ∥∂2u(τ)∥

1
4
L2(1 + τ)

1
8−

1
4 ε∥∂3u(τ)∥

1
4
L2

× (1 + τ)
1
6−

1
4 ε∥∂2∂3u(τ)∥

1
4
L2

× ∥∇∂2∂3u(τ)∥
1
2
L2

∫ t

0
(1 + t − τ)−m(1 + τ)−

2
3+

1
2 ε∥∇∂1∂2∂3u(τ)∥

1
2
L2dτ

≤ CE
1
2
2 (t)E

1
4
0 (t)

( ∫ t

0
(1 + t − τ)−

4
3 m(1 + τ)−

8
9+

2
3 εdτ

) 3
4
( ∫ t

0
∥∇∂1∂2∂3u(τ)∥2

L2dτ
) 1

4

≤ CE
1
2
2 (t)E

1
2
0 (t)(1 + t)−

2
3+

1
2 ε ≤ CE(t)(1 + t)−

2
3+ε.

Therefore, ∫ t

0
(1 + t − τ)−m∥∂2∂3(u · ∇u)(τ)∥L2(R3) dτ ≤ CE(t)(1 + t)−

2
3+ε.

Thus,

K2332 ≤ CE(t)(1 + t)−
2
3+ε,

which, together with (5.48), gives

K233 ≤ CE(t)(1 + t)−
2
3+ε. (5.49)
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K232 and K234 can be bounded with similar arguments as those for K231 and K233, respec-
tively. Therefore, by (5.47) and (5.49), we conclude

(1 + t)
2
3−ε∥∂2∂3u(t)∥L2 ≤ CE(t) + C(∥(∂3u0, ∂3b0)∥L2

x3 L1
x1 x2

+ ∥(∂2∂3u0, ∂2∂3b0)∥L2).

Similarly,

(1 + t)
2
3−ε∥∂2

2u(t)∥L2 ≤ CE(t) + C(∥(u0, b0)∥L2
x3 L1

x1 x2
+ ∥(∂2

2u0, ∂
2
2b0)∥L2).

(4) i = j = 3.

Firstly, we have

K331 ≤ C∥e−c̃0 |ξh |
2t∂̂2

3u0 ∥L2(R3) + C∥e−c3t ∂̂2
3u0∥L2(R3)

≤ C(1 + t)−
1
2 (∥∂2

3u0∥L2
x3 L1

x1 x2
+ ∥∂2

3u0∥L2). (5.50)

K233 can be bounded as

K333 ≤ C
∫ t−1

0
∥e−c̃0 |ξh |

2(t−τ)∂̂2
3M1(τ)∥L2(R3) dτ + C

∫ t

0
(1 + t − τ)−m∥∂2

3M1(τ)∥L2(R3) dτ

≤ C
∫ t

0
(1 + t − τ)−

1
2 ∥∂2

3M1(τ)∥L2
x3 L1

x1 x2
dτ + C

∫ t

0
(1 + t − τ)−m∥∂2

3M1(τ)∥L2(R3) dτ

:= K3331 + K3332.

We consider the integral∫ t

0
(1 + t − τ)−

1
2 ∥∂2

3(u · ∇u)(τ)∥L2
x3 L1

x1 x2
dτ. (5.51)

It follows from (2.6) that

∥∂2
3(u · ∇u)∥L2

x3 L1
x1 x2

= ∥∂2
3u j ∂ ju + 2∂3u j ∂ j∂3u + u j ∂ j∂
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≤ C(∥∂3u∥
1
2
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2
3u∥

1
2
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2
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2
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2
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2
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2
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2
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2
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2
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2
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1
2
L2∥∂3∇hu∥L2
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1
2
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1
2
L2∥∂

3
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1
2
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2
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2
3∇hu∥L2)

≤ C(∥∇hu∥
1
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L2∥∂3∇hu∥

1
2
L2∥∂

2
3u∥L2 + ∥∂3u∥

1
2
L2∥∂

2
3u∥

1
2
L2∥∂3∇hu∥L2
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1
2
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1
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3
3u∥L2 + ∥uh∥

1
2
L2∥∂3uh∥

1
2
L2∥∂

2
3∇hu∥L2). (5.52)

Inserting (5.52) in (5.51), and using Lemma 5.3, the first three terms can be bounded by∫ t

0
(1 + t − τ)−

1
2
(
∥∇hu(τ)∥

1
2
L2∥∂3∇hu(τ)∥

1
2
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2
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2
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2
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1
2
L2∥∂3∇hu(τ)∥L2
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L2∥∂3u3(τ)∥
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2
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3
3u(τ)∥L2

)
dτ

≤ CE2(t)
∫ t

0
(1 + t − τ)−

1
2
(
(1 + τ)−

13
12+

ε
2 dτ + (1 + τ)−

25
24+

3ε
2
)
dτ
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+ CE
1
2
2 (t)E

1
2
0 (t)

∫ t

0
(1 + t − τ)−

1
2 (1 + τ)−

3
4 dτ

≤ CE(t)
(
(1 + t)−

1
2 + (1 + t)−

1
4
)
.

The last term needs more subtle estimates. We resort to Hölder’s inequality and the inte-
grability of ∥∂2

3∇hu∥L2 .∫ t

0
(1 + t − τ)−

1
2 ∥uh(τ)∥

1
2
L2∥∂3uh(τ)∥
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3∇hu(τ)∥L2dτ

≤ CE
1
2
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1
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1
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≤ CE
1
2
2 (t)

( ∫ t

0
(1 + t − τ)−1(1 + τ)−1+εdτ

) 1
2
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0
∥∂2

3∇hu(τ)∥2
L2dτ

) 1
2

≤ CE
1
2
2 (t)E

1
2
0 (t)(1 + t)−

1
4 .

Combining all the estimates above, we get∫ t

0
(1 + t − τ)−

1
2 ∥∂2

3(u · ∇u)(τ)∥L2
x3 L1

x1 x2
dτ ≤ CE(t)(1 + t)−

1
4 .

Thus,

K3331 ≤ CE(t)(1 + t)−
1
4 . (5.53)

Finally, applying Hölder’s inequality and Sobolev’s inequality, for m > 1, we infer∫ t

0
(1 + t − τ)−m∥∂2

3(u · ∇u)(τ)∥L2(R3) dτ

≤ C
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1
4
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≤ CE
1
2
2 (t)E

1
2
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0
(1 + t − τ)−m(1 + τ)−

1
4 dτ +

∫ t

0
(1 + t − τ)−m(1 + τ)−

3
8+
ε
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)
≤ CE(t)(1 + t)−

1
4 .

Thus,

K3332 ≤ CE(t)(1 + t)−
1
4 .

which, together with (5.53), yields

K333 ≤ CE(t)(1 + t)−
1
4 . (5.54)

As a consequence of (5.50) and (5.54),

(1 + t)
1
4 ∥∂2

3u(t)∥L2 ≤ CE(t) + C(∥(∂2
3u0, ∂

2
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x3 L1
x1 x2
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2
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Combining all the estimates for the four cases above, we derive the desired estimate
(5.35). This completes the proof of Lemma 5.7. □

Proposition 5.1 then follows from the estimates (5.9), (5.10), (5.19) and (5.35). This
completes the proof of Proposition 5.1.
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