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Abstract

In this manuscript, given a metric tensor on the probability simplex, we define differential
operators on the Wasserstein space of probability measures on a graph. This allows us to pro-
pose a notion of graph individual noise operator and investigate Hamilton—Jacobi equations
on this Wasserstein space. We prove comparison principles for viscosity solutions of such
Hamilton—Jacobi equations and show existence of viscosity solutions by Perron’s method.
We also discuss a model optimal control problem and show that the value function is the
unique viscosity solution of the associated Hamilton—Jacobi—Bellman equation.

Mathematics Subject Classification 35D40 - 35F21 - 35R15 - 49L.25 - 49Q20

1 Introduction

Partial differential equations (PDE) in infinite dimensional and abstract spaces have been
studied steadily over the last several decades. The main interest has always been in Hamilton—
Jacobi-Bellman (HJB) equations related to deterministic and stochastic optimal control
problems for control of PDE and stochastic PDE and other abstract differential equations.
Recently there has been a renewed interest in such equations in spaces of probability mea-
sures due to their connection to mean field control and mean field game problems. The theory
of first and second order PDE in Hilbert spaces has been developed the most. A complete
overview of various approaches, classical solutions, viscosity solutions, mild solutions, L2
solutions, solutions using backward stochastic differential equations methods can be found
in [43]. Results about classical solutions of linear second order PDE can be found in [39]
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and earlier results about mild solutions for first order PDE and solutions using convex reg-
ularization procedures can be found in [4]. Viscosity solutions in Hilbert spaces have been
originally introduced by Crandall and Lions [32-37]. We refer to [43] for the full account
of the theory and further references. Some aspects of the theory for first order equations can
also be found in [68].

The original interest in the PDE in spaces of probability measures came from partially
observed optimal control problems through the study of fully observable so called separated
problems where one controls a new measure valued state process (unnormalized conditional
density of the original state with respect to the observation process) which satisfies the so-
called Duncan—-Mortensen—Zakai equation. Early attempts to look at HIB equations in the
space of measures for such a problem was made in [60]. A Bellman equation in the space of
measures was also studied in [61]. A renewed interest in HIB equations in spaces of proba-
bility measures started with the development of the theory of mass transport and a calculus
in the Wasserstein space of probability measures and later the study of mean field control
and mean field game problems. The first definition of a viscosity solution using sub- and
super-differentials in the Wasserstein space appeared in [52] and later different notions of
viscosity solutions were introduced of equations in the space of probability measures and
more abstract metric spaces in various contexts. In particular a notion of the so-called L-
viscosity solution was introduced in [70] which “lifts” the equation from the Wasserstein
space to an Hilbert space of L? random variables and this approach was developed further
in [56] (see also [22, 23] for more on the lifting procedure). We refer the readers to [5, 8-13,
16-18, 20, 21, 29, 4042, 50, 51, 53, 54, 58, 62-64, 74, 79-81] for equations related to mean
field control and optimal control/variational problems in spaces of probability measures. In
particular convergence problems for particle approximations have been studied using PDE
methods in [18, 20, 21, 40, 41, 50, 58, 74]. Equations related to control problems with partial
observation were studied in [6] and equations related to differential games were investigated
in [30, 65]. HIB equations in the Wasserstein and metric spaces with formal Riemannian
structure as well as completely regular spaces, mostly related to control of gradient flows,
large deviations and fluid dynamics were studied by different techniques in [27, 28, 44—
48, 66, 67]. Various comparison theorems and uniqueness results for appropriately defined
viscosity solutions were proved in these papers. HIB equations in abstract metric spaces
were studied by various techniques in [1, 14, 15, 53, 55, 59, 71, 72, 77, 78]. Uniqueness
of appropriately defined viscosity solutions of first order HIB equations in the Wasserstein
space was proved in [5, 64]. Uniqueness of viscosity solutions of a second order Bellman
master equation in the Wasserstein space arising in stochastic optimal control problems for
McKean-Vlasov diffusion processes was established in [29]. In [9, 41] general comparison
results for viscosity solutions of second-order parabolic partial differential equations in the
Wasserstein space were proved. Other papers containing uniqueness results are [17], where a
uniqueness result for a notion of viscosity solution for a class of integro-differential Bellman
equations of a special type was shown, and [81], where well-posedness of viscosity solu-
tions of parabolic master equations, including HIB master equations associated with control
problems for McKean-Vlasov stochastic differential equations was established. There is also
vast literature on master equations of mean field games which are integro-differential PDE
in the space of probability measures. We do not discuss them here since they are not HIB
equations.

In this manuscript we investigate Hamilton—Jacobi equations on the Wasserstein space of
probability measures on graphs. Discrete optimal transport calculus, in the space of prob-
ability measures on graphs and gradient and Hamiltonian like flows on graphs, have been
studied in many papers; we refer for instance to [25, 38, 73, 75]. In particular, finite state
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mean field games have received significant attention in recent years. Master equation for
finite state mean field games with Wright-Fisher common noise have been studied in [7]
and [57] derived master equations from finite state Hamilton—Jacobi equation which appear
in potential games. However very little is known about Hamilton—Jacobi equations in such
spaces. The only results in this direction are in [24] about Hamilton—Jacobi equations on
complete graphs (every pair of distinct vertices is connected by a unique edge). Therefore,
the analysis in [24] does not involve a graph structure and the underlying probability measure
space is endowed with the flat Euclidean metric ¢,. Note that the ¢, differential structure
is not comparable to the differential structures considered in this manuscript. Indeed in our
set up, each point 1 € P(G) comes with a metric tensor g(x), which naturally leads us to
consider the Wasserstein space of probability measures on general connected graphs. Our
goal is to introduce a notion of viscosity solution and develop a well-posedness theory. Since
the set of probability measures on a graph with n vertices is identified with a simplex in
R”, one may be tempted to recast our work within the theory of viscosity solutions in finite
dimension on Riemannian manifolds with boundary (see Remark 4.4). We refer for instance
to [3] for the theory of viscosity solutions on Riemannian manifolds. The analogy we point
out in Remark 4.4 does not facilitate our work even if in our case the manifold (the simplex)
is flat. Indeed, we have to deal with Hamiltonians which vanish near the boundary of the
simplex since we are working on the Wasserstein space. This makes our study different from
the classical theory of viscosity solutions. Hence, we present everything from the beginning
and with details.

We focus on initial value problems for a class of Hamilton—Jacobi—Bellman equations
with a convex and somehow coercive Hamiltonian which degenerates close to the boundary,
which also involves a linear operator obtained by discretizing the so—called individual noise
operator in Mean Field Games (cf. e.g. [26]). Of course different types of equations can be
considered and we expect the theory to be developed in various directions. It is certainly also
interesting to study initial boundary value problems on open subsets of the set of probability
measures, however in this paper we only consider equations on the whole space. We prove
two comparison results, the main one for the initial value problem where the boundary is
irrelevant and a version of it for the initial boundary value problem. We also study the
optimal control problem associated with a model Hamilton—Jacobi—Bellman equation and
we prove that the value function is continuous on the whole space and it is the unique
viscosity solution of the HIB equation. For our model control problem, the value function,
and hence the unique viscosity solution of the HIB equation which is continuous up to the
boundary of the set of probability measures, is predetermined on the boundary and cannot
be prescribed there. Our viscosity solutions are only defined on the interior of the set of
probability measures and our comparison theorem does not need any information about the
behavior of viscosity sub/supersolutions on the boundary. However, it may be possible to
consider viscosity solutions to such problems on the whole space or treat them as constrained
viscosity solutions (solutions to state constraint problems). This is left for future research.
Finally, we also discuss the existence of viscosity solutions by Perron’s method. Even though
Perron’s method here is a rather straightforward adaptation of the classical Perron’s method,
we present full details for the sake of completeness.

Throughout this manuscript, we fix an undirected graph G = (V, E, w), where V =
{1, -, n}is the set of vertices and E C V2 is the set of edges. The weight v = (w;j) isan
by n symmetric matrix with nonnegative entries such that w;; > 0if (i, j) € E. Asin [49],
we assume for simplicity that the graph is connected, simple, with no self-loops or multiple
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edges. We denote by P(G) the probability simplex

n
Zpi = 1}~
i=1

We use a symmetric function g : [0, 1]2 — [0, 00), to induce an equivalence relation on
S"*" the set of n by n skew-symmetric matrices: if p € P(G), we say that v, v € S"*" are
p-equivalent if (v;; — V;;)gij(p) = 0 for all (i, j) € E. We denote the quotient space by
H,. Under appropriate conditions which will later be specified, g is used to define a metric
tensor on P(G) and endow H, with an inner product and a discrete norm as follows:

{p € [0, 17"

~ 1 ~ ~ nxn
(v, ), ::5 Z vijUij&ij(p) and |vll, :=+/(v,v),, Yv,7eS" (1.1

(i,))eE

Here the coefficient 1/2 accounts for the fact that whenever (i, j) € E then (j,i) € E.
If ¢ : V — R”, its graph gradient denoted V¢ is defined as

V¢ = Jwij (i —dj)i,j)eE-

The adjoint of Vg for the (-, -), inner product is —div,, : H, — R" given by

n n

divp(v) = (Z ,/a),",'v.,',-g,-j(p)> , Yve S§txn,
=1 i=1
We call div,, the divergence operator. In this manuscript, we impose that
! d
/ — T i (1.2)
0o V8, 1—r)

to ensure that the expression W, defined below in (2.7), is a metric on P(G) (cf. [73] and
[49)).

We fix T > 0 and assume that we are given F, Uy € C(P(G)) and H € C(P(G) xS"*").
We denote by L(p, -) the Legendre transform of H(p, -) with respect to the inner product
(-, ) p. Setting

_ logs — logt
g(s, 1) = %g(s, 1),

for s # ¢ such that s, ¢ > 0, in this introduction, we will keep our focus on the cases where
g satisfies (2.5), or more generally when

g has a unique continuous extension to [0, 1]2. (1.3)
As a consequence of (1.3), as a function a-priori defined on a subset of (0, 1)",
o — div, (VG log ,0) has a unique continuous extension to [0, 1]". (1.4)

In light of (1.4), standard ODEs theory ensures that given v € LY, T;S"™"yand h > 0,
the system of equations

& + divg (5 Ty 10go> -0 (15)

has a distributional solution o : [0, T] — R”", of class wll

@ Springer



Well-posedness for Hamilton—Jacobi equations on the Wasserstein... Page50f41 160

When the range of o is contained in P(G), we call v a control for o on [0, T]. For
t € (0, T'] we consider

t
U, w = inf {L{o(ao) +/0 (z:(a, b)ds —]—'(a))ds . g = M}, (1.6)

where the infimum is performed over the set of (o, v) such that v is a control for o over [0, ¢].
Formally at least, we expect I/ to satisfy a Hamilton—Jacobi equation, after defining a suitable
notion of Wasserstein gradient operator on the set of functions on P(G). More precisely, we
expect that ¢/ would satisfy, in a sense which remains to be specified, the equation

U, 1)+ H(p, VWU, ) + F(1) = hlingld (1, 11). (1.7)
Here
Ainad (1, 1) 1= (div, (VW (0). log i) = =0, (Y U(w))
and we have set

Ou(p) = —(p. Vo logn),,.  ¥(p.p) € P(G) x ™"

We call Ajyq, the graph individual noise operator (see Subsection 3.4 for comments on how
Aing could be associated to stochastic processes which are time continuous Markov chains
on V). The assumption (1.3) ensures that O,, (p) satisfies (6.1), an essential condition in the
application of Perron’s method to obtain the existence of a solution to (1.7). Note that O, (p)
cannot be incorporated into the Hamiltonian since the modified Hamiltonian would fail to
satisfy (A-v) and so, the conditions imposed on H(u, p) and O, (p) are of different types.

In this manuscript, the existence of a solution to (1.7) will not rely on the control problem
(1.6), brought up here only to motivate the study of (1.7).

Observe that (1.7) is linear in 4/, when F = 0, H = 0 and g is given by Example 2.5,
whichmeans g(s, r) = 1. When i = 1, the solution in to (1.7) case is given by (see subsection
34)

U, ) = U (e 1),

where
wjj, if jeN(@);
Ajj =10, if j¢N@,j#i (1.8)
= Lken) @iks i =1

Here, N(i) :={j € V : w;; > 0}. Foreacht > 0, ¢4 is known to be a transition matrix and
A is a Q—matrix. Therefore, as we will explain in Subsection 3.4, there are Markov chains
associated to the paths (¢, u) — e’ 1.

The plan of paper is the following. In Sect.2 we present the definitions, notation and
the mathematical setup for the Wasserstein space of probability measures on a finite graph.
Section 3 collects preliminary material about calculus on the Wasserstein space on a graph
and in Definition 3.18, we introduce the so-called individual noise operator. In Sect.4 we
introduce the definition of viscosity solution and in Sect.5 we prove comparison results.
Existence of viscosity solutions by Perron’s method and some regularity results are presented
in Sect. 6. In Sect.7 we discuss a model optimal control problem and show that the value
function is the unique viscosity solution of the associated HJB equation.
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2 Definitions and Notation

We denote the set of skew—symmetric n x n matrices as S"*". Let G = (V, E, w) denote an
undirected graph of vertices V = {l, ..., n} and edges E, with a weighted metric ® = (w;;)
given by an n by n symmetric matrix with nonnegative entries w;; and such that w;; > 0 if
(i, j) € E. For simplicity, assume that the graph is connected and simple, with no self-loops
or multiple edges.
We set
Ay 1= Sup wi;l and C, := sup ,J/w;.
(i,j)eE @i,))eE
The range and kernel of the gradient operator. It is customary to identify a function

¢ : V — R with a vector ¢ = (¢;)7_, € R". We use the standard inner product and norm
on R":

(@, $):=) ¢idi and |pl =(¢.4), Vo,pcR"

i=1

We denote by R(V) the range of Vi (defined in the introduction) and by 1 € R” the vector
whose entries are all equal to 1. Since G is connected, the kernel of V is the one dimensional
space spanned by 1. The orthogonal complement in R” of the latter space is ker (V)™ the
setof i € R” such that )/, h; = 0.

G-Divergence of vector field. The divergence operator associates to any vector field m
on G a function on V defined by

Vo - (m) = divgm) == (Y @mji)f’_l.
JENG) .

Set of probability measures and its boundary. We identify P(G), the set of probability
measures on V, with the simplex

P(G) = {p = (o, cl0.11" | ip,- =1}.
i=1

We denote for 0 < ¢ < 1, P.(G) := P(G) N (g, 1) so that Py(G) is the interior of P(G).
The boundary of P(G) is P(G)\Po(G).

The set C! (p°, p!) of paths connecting probability measures. Given p°, p! € P(G)
and 0 < s < ¢, we denote by C! (02, p!) the set of pairs (o, m) such that

o€ H'(s,1;P(G)), me L*(s,1; S”™), (0(s), 0 (1)) = (p°, p")
and fori =1, ...,n,

o; + Z Jwijmji =0, inthe weak sense on (0, 7). 2.1)
JEN )
Throughout this manuscript g : [0, 00) X [0, 0c0) — [0, c0) satisfies the following assump-
tions:

(H-i) g is continuous on [0, co) X [0, 00) and is of class C* on (0, c0) x (0, 00);
(H-ii) g(r,s) = g(s,r) forany s, r € [0, 00);
(H-iii) min{r, s} < g(r, s) < max{r, s} for any r, s € [0, 00);
(H-iv) g(Ar, As) = Ag(r,s) forany X, s, r € [0, 00);
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(H-v) g is concave.
We set
gij(p) =g(pi,pj), YpeR", Vi jeV.

The Hilbert spaces H, and integration by parts. If p € P(G), we shall use the inner
product defined in (1.1). Similarly, if m, m € S**", we set

- 1 -
(m, ) := > mygi; and (lm| = /(m, m).
(i,j)eE
If ¢ € R" and v € S"*", we have the integration by parts formula

(V6. v)p = —(¢.div,(v)). (2.2)

Using the notation from [49], we denote by T,P(G) the closure of the range of Vg in H,.
We refer to T,P(G) as the tangent space to P(G). We denote by 7, the projection onto
T,P(G).

Using the fact that by (H-iii) g;; (0) < p; + p;, one shows that

Idivp()lle, < V2nCo [lvllp. andso, [[divo()le, < V21Co 0l (23)

Connected components. Let p € P(G). We say that i, j € V are g-connected if either
i = jori # jbutthere are iy, iy, ..., iy € V suchthati; =i, iy = j, (i;,ij4+1) € E for
l=1,....,k—1and

k
Hgi,,li, (p) > 0.
1=2

Example 2.1 Examples of g satisfying (H-1)-(H-v) and (1.2) include
r+s

gr,s) = T (2.4)
! Terlogss 1 778
g(r,s) = / ri=istde = 0, if r=0o0rs=0; (2.5)
0 r, if r=s,
and
0, if r=0o0rs=0;
glr,s) = lerl, otherwise. (2.6)

One can generate more examples by taking convex combinations of the g’s in (2.4)-(2.6).

The Monge-Kantorovich metric In P(G). For pO, ,o1 € P(G), we define the 2-Monge-
Kantorovich metric by
1
1 2
W, p') = ((inf){ / (0, v)odt | & +dive(®) =0, 5(0) = p°, o (1) = p1]>
o,V 0
2.7
Here the infimum is performed over the set of pairs (o, v) such that c € H L0, 1; P(G))

and v : [0, 1] — S"*" is measurable. Recall that if C, < 400, then WP, p!) < 400 for
any 00, p! € P(G) (see Proposition 3.7 [49]). There exists a minimizer (o, v) in (2.7) such
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that [[v]l, = W(p?, p!) almost everywhere on (0, 1). Using the continuity equation and the
second identity in (2.3), we conclude that

16O llee, < V20CW (", p"). 2.8)

This proves that the W °°-norm of o is bounded by a constant depending only onn, g, G, w.
Further assume that yp (po), yp (pl) > 0, where yp is the Poincaré function on G given in
[49]. By Remark 6.5 and Theorem 7.5 [49], we can find a Borel map ¢ = d)[po, pl] :
[0, 1] — R such that v = V¢ and

vij = V¢ 1is uniquely determined on {t € (0, 1) : g;;(o(¢)) > 0}. 2.9)

Under the stringent assumption that there exists ¢ > 0 such that po, ,o1 € P:(G), Theorem
7.3 [49] asserts that [|@]lyy1.1(9,1) is bounded by a constant which is independent of p° and
,o] , but depends on ¢. Thus,

%, p"H = d1p°, p'1(1) is continuous for the metric £; on P.(G) x Ps(G). (2.10)

Remark 2.2 We recall that the (P(G), W) topology is the same as the (P(G), £1) topology
(cf. [73]) and thus it is also the same as the £,—topology. Therefore, P(G) is a compact set
and the notion of a continuous function is the same for all these three topologies. In particular,
Po(G) is a dense subset of P(G) for the W-topology. Since P(G) is a compact set, it has a
finite diameter.

Throughout the paper, for any r > 0 and u € P(G), we denote the open ball with radius r
centered at win (P(G), ||-|l¢,) by B, (u). By Remark 2.2, B, (1) is also an open neighborhood
of win (P(G), W) andin (P(G), |- ll¢,). Similarly, forany ¢ € [0, T],r > 0, u € P(G), we
use B, (t, u) to denote the open ball with radius r centered at (¢, ) in [0, T]1x (P(G), || - ll¢,)-

3 Preliminaries

Throughout the section, we use the same notation as in Sect.2 and assume that (H-1)-(H-v)
and (1.2) hold. For p € P(G), we set

re(p) = su {ﬁ . »-(p>>0} 3.1
# (i,j)Ie)E V@i /i (p) 81 ' .

Note that A, (p) < oo if p has a g-connected component of cardinality greater than or equal
to 2.

Remark 3.1 Ife > Oand p € P(G)issuchthat p; > eforalli € V theni,(p) < V2hpe~n.

3.1 Further properties of tangent vectors and tangent spaces

For p € P(G) and v € T,P(G), denote by [v], the set of v € T,P(G) such that v and v are
p—equivalent.

Lemma3.2 Forany p € P(G) such that Ag(p) < oo, there exists P, : T,P(G) — R" such
that if € R" and we set y := P, ([VGqﬁ]p) then

(i) Vo and V¢ are p-equivalent and so, V(;qup = ||VG¢ ||p.
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(ii) il < Ag(p) HVquupfor alli € V.

Proof Let Ci(p),---,Cn(p) be all the g-connected components of p € P(G) and for
le{l,---,N},set
k; ;= min k.
keCi(p)

Given ¢ : V — R, we define

Vi =¢; — ¢y, YieCip).
Note thatif i, j € C;(p) then

Y, =0 and (Vg¥)ij = (Vgé)ij. (3.2)
This is enough to conclude that Vg and Vg ¢ are p-equivalent.
Ifi € C/(p)andi # k;, wecanfindly = k;, --- , I, = i suchthatgy,, - s Blyy—1lay; > 0.

The identity

Vi = Vi, + (Vo) Vm =2

Imln—1’
and ¥, = 0 implies that the sequence (1//1”1)31"= | is uniquely determined by Vg¢. This is
enough to conclude that the map P, is well-defined.

Let E; be the set of (i, j) in E such thati, j € C;(p). We use the first identity in (3.2) to
conclude that

2|veo| =i > (Vev); g o).

2
LSl ek

Ifi € Ci(p) and i # k;, using the above notation, we have

2 i 5
ZHVG¢Hp > Wy, ¢122 gniL(p) + E Oy ity (Wtooy = Vi)™ 8lri (0)-
m=3

One checks that

X 2 1
i< V2 Voo
m=2 kv a)lm—llm glmf][m (p)

We conclude that (ii) holds for i in the union of the sets C;(p) of a cardinality greater
than or equal to 2. It is obvious that (ii) continues to hold for i in the union of the sets
Ci(p) with cardinality 1. The proof of (iii) follows from the fact that ¥; = ¢; — ¢ and

o1 [¥il? g1i(p) < ”de’”i-

o

Corollary 3.3 By Lemma 3.2, if p € P(G) and Ag(p) < 00, then for any v € T, P(G) there
exists y € R" such that v = Vg and |;| < Ag(p)||vl, foralli e V.

3.2 The Wasserstein metric and the space of absolutely continuous paths on
(P@), W)

Lemma3.4 Forany p, p € P(G), we have ||p — plle, < 2+/nCox W(p, p).
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160  Page 10 of 41 W. Gangbo et al.

Proof Since there exists a W/ geodesic connecting p to p, (cf. Theorem 4.5-(i) in [49]), we
use (2.8) to conclude.

Lemma3.5 Ife > Oand p, p € P(G) are such that p;, p; > € foralli € V then
VEW(p, ) <y 2hun 15— plle,.-
Proof Setting
o)=0-tp+tp, Viel0,1],
we have 0;(t) > ¢ fori € V and r € [0, 1]. We then use Remark 3.1 to conclude that

Ag (0 (1))N/E < \/2Mpn. (3.3)

We define
11 _ n
E() = /0 (51V68120 — @. 5= p))dr. Vo L2O LR,

For ¢ € L%(0, 1; R"), using the operator Py ;) from Lemma 3.2 and setting ¥ (1) = ¢ (1) —
¢1(t), we have

Y e L0, R"), v =Py([Vep®)],). E@®) =EW).
By (3.3),

1 & 2 _
)= [ (G~ 1 15 = ol )

This proves that E is bounded from below and if (1) is a sequence in the range of P, such
that (E (1//k)) k decreases to the infimum of E over L2(0, 1; R") then (Y)k is bounded in

L*(0, 1; R™). Hence, (%) admits a point of accumulation v/« for the weak topology. Since
¢ — E(¢) is a quadratic and convex function, we conclude that

lim inf E(y) = E(Yoo)-
k——+00

We can assume without loss of generality that /oo = Py ([VG 1/;00]0). The Euler-Lagrange
equation satisfied by ¥/ is

1
/0 ((Vovoe Vo8), = (5= p.9))dt =0, Vo e L*O, 1iR").  (34)

This means that
6 4+ divy (Vg ¥eo) = 0. (3.5)

Using ¢ = Y« in (3.4), we obtain
1 1
/0 |Vowe |2dr = fo (B — p. Voo)dt

1 1
=llp=rle /o [Veolleodt < llp _:0”21/0 rg(@)IVe¥ellodt.

We first use (3.3) and then use Holder’s inequality to conclude that

1 1
L .
f Ve ool dt <115 — plley y/27e~1n ,/f Ve wsol2ds.
0 0
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We simplify the previous identity and use the fact that, by (3.5), Vg ¥/« is a velocity for o
to obtain

1 1
W(o (0), (1) 5/ IVevosllodt < f IVaval2d < 115 — plle, v/ 2we—1n.
0 0

This concludes the proof.

Remark 3.6 Let s > 0 and let p € P(G) be such that p; > ¢ foralli € V. Suppose f € R”
is such that ) '_, f; = 0. As done in Lemma 3.5, one can show that there exists ¢ € R”
such that

f4+div,(Ved) =0, V6ol < I flleyy/ 2hwe ™" n.
Remark 3.7 Suppose that o : [0, 1] — P(G) and v : [0, 1] — R" is a Borel map such that
0 + divy (v) = 0 inthe weak sense in (0, 1) and /(;l ||v(t)||(27(t)dt < +o00.
By definition of VW, we have that o is an absolutely continuous curve on (P(G), W) since
W(o (1), 0(s)) < /t W@ lomde, YO<s<t<l.
s

Hence, if we denote by |o’|yy the W metric derivative of o, then |o’|yy < ||v]s a.e. on
©, D).

We next show that v can be chosen in an optimal way.

Proposition 3.8 Suppose that o : [0, 1] — P(G) such that

N
Wi(o(t),o(s)) 5/ B(t)dt and B € L%(0, 1). (3.6)
t
Then there exists v : (0, 1) — S"*" Borel such that v(t) € T,)P(G) for almost every t,
6 + divy (v) = 0 in the weak sense in (0, 1) 3.7
and
Ivlle < lo'lw < B, 16] <~2nCylo’ly ae on [0,1]. (3.8)

Proof We skip the proof since it is similar to the proof of Theorem 8.3.1 of [2].

3.3 The Wasserstein gradient on P (G)

Definition 3.9 (Wasserstein gradient) Let F : P(G) — Rand p € P(G).

(i) We say that F is WW-differentiable at p if there exist v € T,’P(G) and C > 0 such that:
for every & > 0 there exists § > 0 such thatif p € P(G) and v € T, P(G) then

16 —=ple, <8 = |F(p) = F(p) = @,0),] <eWB, p) +C|p — p +div, )], -
(3.9)

(i) We write F € CY(Py(G), W) if F is W-differentiable everywhere on Py(G) and its
Wasserstein gradient Vyy F is continuous on Py(G).
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Remark 3.10 Let F and p be as in Definition 3.9.

(i) We will later show that when there exists v as in Definition 3.9, it is uniquely determined.
If this is the case, we use the notation v = Vyy F(p) and call v the Wasserstein gradient
of F at p. One similarly defines Wasserstein sub and super gradients.

(if) Observethatif p € Py(G)then ||-||, and |-||¢, are equivalent. Therefore in Definition 3.9,
there is no confusion about what it means that Vyy F is continuous on Py(G). However,
if p € 9P(G), we may have || p||, = 0 while we have | p|l¢, > 0.

Definition 3.11 (Fréchet derivative) Let F : P(G) — R and let p € P(G).

(i) We say that F has a Fréchet derivative at p if there exists p € R” such that

(p.p—p). Yo € P(G).

(3.10)
We will later show that there is at most one p € R” satisfying (3.10). When such p exists,
we write p = % (p) and call it the Fréchet derivative at p. Lemma 3.15 shows a relation

between % and VyyF. One similarly defines Fréchet sub and super differentials.

n 1— ~\
Z pi=0. and lim F((I=s)p+sp) —F(p) _
i=1

s—>0t K

(i) We write that F € C'(Py(G), £») if F has a continuous Fréchet derivative everywhere
on Py(G).

Remark 3.12 Note that the Fréchet derivative is independent of the graph structure, i.e. the
edges E of the graph. However, the Wasserstein gradient depends on E and the metric tensor

8.

Lemma 3.13 If ViyF(p) exists for some p € P(G), then it is uniquely determined as an
element of the quotient space T,P(G).

Proof Assume v, v € T,P(G) are Wasserstein gradients of F at p. We are to show that if
(i, j) € Eand g;j(p) > Othenv;; = v;;. We assume without loss of generality that p; > p;.
Since by (H-iii) we have (p;, pj) # (0, 0), we conclude that p; > 0. For0 <a << 1, we
set vy, = 0 except that

vf‘j = —v;?i =— @a. (3.11)
8ij(p)
Note that div, (v*)r = 0 when k # i, j and
div,(v"); = wjja = —div,(v?);.
We set
o 8ij(p)

o(s)=p—sdivo(v?), p=o(l), v(s)=v Vs €[0,1].  (3.12)

gij(o(s))’
Since 0 < a << 1, the range of o is contained in P(G) and the range of g;; o o lies in
0, 00).

Lete > 0 and let § > 0 be such that (3.9) holds for v and v. Assuming 2w;;a < § we get
lo — plle; < 6. Since p — p + div,(v) = 0, we conclude that

|F (D) — F(p) — " v),], |[F(p) = F(p) — v, 0),| < eW(p. p)

)

and so,
[0, v = 0),| < 26W(p, p). (3.13)
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But,
|0, v = D), | = Jwijalvij — ¥ij| and div,(v?) = dive (1%). (3.14)

The first identity in (3.12) and the last identity in (3.14) yield 6 + div, (v¢) = 0. Thus,

1

1 1
wz(ﬁ,ms/ 15%(s) 12 ds=a2w~/ ds.
0 7@ Yo gloi — wijas, pj + wijas)

We conclude that for a sufficiently small, we have

2= 2 .
gij(p)

1
W2(p. p) < /0 159() 113 (5 ds = a*Cwij, (3.15)

This, together with (3.13) and the first identity in (3.14), implies
Joijalvi; — vij| <2, /ojjeaC.

Since & > 0 is arbitrary, we conclude that |v;; — v;;| = 0.

Lemma 3.14 If%(,o) exists for p € P(G), then it is uniquely determined.

Proof Suppose &, £ € R" are Fréchet derivatives of F at p. The second identity in (3.10)
implies that (E—&p—p) = 0forall p € P(G). This means that £ — & is parallel
tol := (1,---,1). The first identity in (3.10) implies that E—¢&is perpendicular to 1.
Consequently, £ — £ = 0.

Lemma3.15 Let F : P(G) — Rand p € P(G).

(i) If F has both the Fréchet derivative and the Wasserstein gradient at p then VyyF(p) =
VG (8F/8p)(p).

(ii) If F has the Fréchet derivative in an £1-neighborhood of p and if §F /8p is continuous
at p for the £1 metric, then F has the Wasserstein gradient at p and v := VyyF(p) =
VG (8F/8p)(p).

Proof (i) Suppose that F has both the Fréchet derivative and the Wasserstein gradient at p
and set v! = Ve (8F/ép)(p), v? = VwF(p). We are to show that whenever (i, j) € E
is such that g;; (p) > 0, we have vilj = vlzj We can assume without loss of generality that
pi = pj.For0 <a << 1,let v? be as in (3.11) and let 0% (s) € P(G) be as in (3.12). We
first use the fact that F has the Wasserstein gradient at p and then use that F has the Fréchet
derivative at p to obtain

F(o - F SF
(%), = fim T < (. aivp ) = (1),
This means
— f” vi2j=—a f” vilj, VO <a<<1
gij (p) gij (p)
and so, vl.l, = vl2

(i1) Assume that F has the Fréchet derivative in an £-neighborhood of p and §F/ép
is continuous at p for the £; metric. Thanks to Lemma 3.4, we may choose a constant
¢ =c(G,g)suchthat || - — - |lg;, < cWC(,-). Let §p > 0 be such that F has the Fréchet
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derivative in B, the closed ¢;-ball of radius §y and centered at p. Let ¢ > 0 and choose
8 € (0, o) such that

2¢ sup ” — @) - *(P) H
neB

Assume
p €P(G) and |[[p—plle <80, veT,P(G).

Setp; :==p+t(p—p). Ift € (0, 1) and |h| is small enough, since p;+y = p; + h(0 — pr),
t — F(p;) is differentiable on (0, 1) and its Fréchet derivative is (8]-" /6p(pr), p — p).
Since §F /ép is continuous at p, its absolute value is bounded by a constant M on B. Thus,
t — F(py) is Lipschitz and so,

8F L sF 8F
Flpr) — Flpo) = (g(m, pp)+ /0 (gm) — 5, - p)dr.

Thus,
SF S§F
F(p1) — F(po) =<ch(p), 5) + (*(p), p—p+ divp(ﬁ)>
Sp 0 Sp
LsF 8F
+/ <*(pz) ——(),p— p)dt-
0o \dp 3p
Hence,

7B - Fo) - (v.9),|

<50, P o v, @l + sup 15w -5, 15l

We bound the £1 norm by the WW-metric and use the condition on ¢ to conclude (ii).

Lemma3.16 Let T > Oand o € AC,((0,T); (P(G),W)) and let v be the velocity given
by Proposition 3.8. The proposition asserts that T, the set of ty € (0, T') such that the metric
derivative of o at ty exists, v(ty) € Ty ()P (G), o is differentiable at ty and

o (t0) + dive ) (v(t0)) = 0, (3.16)
is of full measure in (0, T). If F : P(G) — R has the Wasserstein gradient at o (ty) and
to € T then

45 = (VwF
GFew|_ = (WwFew).vw) .

If we further assume that % (o (ty)) exists, then

d _(5F :
GFew| = (E(U(to)),d(to))

Proof Let o € 7 and let C > 0 be such that for every & > 0 there exists § > 0 such that
if p = o(tg) and v € T5()P(G) then (3.9) holds. Let 0 : (—=1,1) — R be a function
continuous at 0 and such that 0(0) = 0 and

o(t) —o(ty) + (t — 19)dive ) (v(2)) = (t — to)o(t — to).
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For |lo(t) — o (tp)|le, << 1, we use (3.9) to infer

Flo®) — F(p)
t—1

W(o (1),
< em +Cllot —10)lle, -

— (VwF(p), v(fO))p |t — 10

Hence,

Flo) - F
limsup | =2 = FOD (g 70, v(ro))p‘ < elo’| (1),
t—1y r—1o

which proves the first statement of the lemma, as ¢ > 0 is arbitrary. In light of Lemma 3.15,
we now conclude that the second statement of the lemma holds.

Corollary 3.17 Assume that F : Po(G) — R has a local minimum at p € Py(G).

(i) If F € CY(Po(G), W) then Vi F(p) = 0.
(ii) If F € CY(Po(G), £2) then %(p) =0.

Proof (i) Assume that F € C! (PQ(G), W). Let (o, v*) be as in the proof of Lemma 3.13,
except that now, we can choose § > 0 such that o : [—§, 8] — Po(G). Recall the weighted
metric satisfies w;; > 0 for any (i, j) € E. By Lemma 3.16 and the minimality property of
F and p, the following proves (i):

o FOW) ~Fp) _
t

(VWF(P)),-jwij
gij(p)
(ii) Assume that F € Cl(’Po(G),Zz). For any f € R" such that > ¢, f; = 0,1 —

F(p +tf) achieves its minimum at # = 0 and so, its derivative at # = 0 is null, which means
f, %(,o)) = 0. We choose f = %(,0) to conclude that %(p) =0.

(VwF ), o (0>)p =a

Definition 3.18 If u : P(G) — R is differentiable at p € Py(G), the graph individual noise
operator Ajyq is defined by

Ainau(p) = (divp(ku(p)), log p). (3.17)

When (1.3) holds, we can extend the definition of Ajyqu(p) up to the boundary of P(G).
Integrating by parts (cf. (2.2)), we conclude that

Ainau(p) = = (Vwiu(p), Vg log p)p. (3.18)

Remark 3.19 In the continuum setting, the individual noise operator is known to be a second
order differential operator, obtained by differentiating Wasserstein derivatives with respect to
spatial derivatives. However, in the discrete setting, the individual noise operator is obtained
just as a special combination of first order Wasserstein derivatives. Here, the spatial graph
gradient exists for every function since there is no notion of smoothness with respect to the
graph gradient.

3.4 The individual noise operator A;,q

The goal this section is to comment on the relation between the individual noise operator
Aind and some continuous time discrete state Markov chains. For the sake of illustration,
we keep our focus on the case where g satisfies (2.5). Let A be the matrix given in (1.8). It
satisfies the following properties:
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(a) Ajj = 0forall (i, j) € V2 such thati # j;
(b) Aji = —Zj# A;jforalli e V,

which, according to standard terminology in probability theory, makes A a rate—matrix (or a
Q-matrix). Therefore (cf. e.g. [69]), there exists a probability space (€2, F, IP) such that for
any 4 € P(G),wecanfindaMarkovchain§ : [0, T]xQ — V suchthat]P’(S(O, )= i) = Wi
and

" Vt,h >0,

B(Sa+h)=i150,) =)= (),

forall i, j € V such that P(S(z, -) = j) # 0. Setting
oi() =P(St,-)=i), VieV,

it is apparent that
n n
Gt +h) =Y (") 050 = (14 Aih + o) )oi0) + Y (Ajih + o)) ;0.
j=1 J#i
Hence, if A is symmetric, using (b), we conclude that
n
oi(t + h}: —o0i (1) _ gAji (o'j(t) — U,'(l‘)) + #,

and so, if 7 is a point of differentiability for o then

Gi(1) =Y Aji(oj (1) — 0i(1)) (3.19)
J#
foralli € V. By (1.8), (3.19) is equivalent to
6 (1) = dive (1) (Vg (logo (1))). (3.20)

Thus, the unique solution to (3.19), or equivalently the unique solution to (3.20), is given by
o(t) = e .
Given a sufficiently smooth function 4 : P(G) — R, we define i/ : [0, 400) x P(G) — R
by
U, 1) == U (o (1)).

In the introduction, we recalled that for each ¢ > 0, e’ is known to be a transition matrix.
One checks that there exists a continuous function ¢t — C; € (0, +00) such that if u; > ¢
foralli € V then (e~ u); > Cye for all i € V. Therefore, if o () € Py(G) then for h > 0
small enough, the path & — v(h) := e g (1) belongs to Po(G) and satisfies the identity

D(h) + divy,) (Vg (logv(h))) = 0.
Since U(t + h, v(h)) = Uy(o (1)), we use Lemma 3.16 to infer

d
0= %Z/I(I +h,v(h)) =0;Ut +h,v(h)) + (VWL{(t + h,v(h)), Vg log v(h))v(h).

Setting & = 0, we conclude that

0=0U(t,o(t)) — Aingad(t, o (1)).
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This links the laws of the Markov chains (S;);>0 to the PDE

U = Ajpald, on (0, +00) x P(G), U, ) =Up. (3.21)

4 Viscosity solutions on P(G)

In this section we introduce a notion of viscosity solution. We assume that (1.2) holds. We
fix T > 0 and assume that 7 € C(P(G)) and H € C(P(G) x S"™*™M).

Recall that we denote by C L(Py(G), £5) the set of real valued functions on Py(G) which
have a continuous Fréchet derivative and we denote by C!(Py(G), W) the set of real valued
functions on Py(G) which have a continuous Wasserstein gradient. By Lemma 3.15 (ii),

CY(Po(G), £2) € CH(Po(G), W).
Note that for v € P(G), the function
= T, v) = 1/2|lu — vl .1
is of class C1(Py(G), £5). Similarly, J (i, -) is of class C' (Po(G), £2) and we have
YwI (¢, v)(n) = Vg —v) and ViyJ(w, )(v) = V(v — p).

We also consider the function
n 1 n
o T() =y P D Ti(w), Ve PoG), (4.2)
i=1 " =1

which is of class C1(Py(G), £2).
For each v € P(G), we assume to be given a linear functional

Oy : 8" - R
such that u — O, (p) is continuous for all p € $"*".

Remark 4.1 Any H : P(G) x ™" — R, can be written as H (i, p) = H(u, p) + F(u),
where

H(p, p) == H(u, p) — H(p, 0),  F(u) == H(u,0).

In the sequel, we chose to adopt the notation H(u, p) + F(u) only to emphasize the fact that
we will impose assumptions on H(w, p) — H(u, 0). Therefore, H(i, p) + F(u) represents
a large class of Hamiltonians and is not limited to the class of the discrete analogue of the so-
called “separable Hamiltonians”. Observe that the separable Hamiltonians are widely used
in the mean field control and mean field game literature, see e.g. [19, 23, 51, 76]. In the
sequel, we adopt the notation H(u, p) + F (i) only to emphasize the fact that we are making
assumptions on H(u, p) — H(u, 0).

Given Uy : P(G) — R, we consider the Hamilton—Jacobi equation
Buu(t, 1) + H(p, Vowu(t, ) + F(u) = O (Vwwu(t, ), u(0,) =ty (43)

for a class of Hamiltonian functions H which will be specified later.
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Definition 4.2 (i) A function u € USC([0, T) x Py(G)) is a viscosity subsolution to (4.3)
if u(0,-) < Up and for every (7o, po) € (0,T) x Po(G) and every ¢ € Cl((O, T) x
Po(G), Zz) such that u — ¢ has a local maximum at (¢y, pg), we have

39 (10, po) + H(po, Viwe (1o, p0)) + F(po) < Oy (Ve (to, po)).-

(i1) A function u € LSC([0, T') x Po(G)) is a viscosity supersolution to (4.3) if u(0, -) > Uy
and for every (1o, po) € (0, T) x Po(G) and every ¢ € C'((0, T) x Po(G), £2) such
that u — ¢ has a local minimum at (#p, pg), we have

d@(to, po) + H(po, Vwe(to, po)) + F(po) = Opy (Ve (to, po)).

(iii) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 4.3 By Corollary 3.17, every ¢ € c! ((O, T) x Po(G), Kg) which achieves a local
maximum at (¢, n) € (0, T) x Po(G), satisfies d;¢(t, u) = 0 and Vyye(t, n) = 0. Hence,
every smooth function for which (4.3) holds pointwise on (0, T') x Py(G), is also a viscosity
solution. An analogous conclusion can be drawn for viscosity subsolutions and supersolu-
tions.

Remark 4.4 For any (i, j) € E suchthat 1 <i < j < n, we define ¢;; € R" to be such that
all its entries are null, except that the i-th entry is —1 and the jthentryis 1. Ifu : P(G) - R
and its Fréchet derivative exists at p € Pp(G), we can define the following limit when it
exists:

u(p +tejj) —u(p)

Véiu(p) = li
up) := fing t

When the Fréchet derivative of u exists in a neighborhood of p and is continuous at p, then
Vo) =V (24 (o)
wiulp) = Vg % P

and so, Mveifu(p) are the entries of Vyyu(p).

Thus, if we consider Py (G) to be a flat Riemannian manifold, Vyyu(p) only depends on
the derivatives of u in the directions that span the tangent space. Hence, we can conclude
that if u is a Wasserstein-viscosity solution to

du(t, p) +H(p, Vwult, p)) + F(p) = O (Vwu(t, p))
then at least formally, u is a viscosity solution to
duutt, p) + H(p, (JBTVUut, p))) + F(p) = O, (V@ VUult, p)))

which we can consider to be a PDE on a flat Riemannian manifold. Moreover, after a change
of coordinates, the equation can be transformed into an equation on (0, 7') x €2, where € is
an open subset of R" !,

5 Comparison principles

The goal of this section is to show a comparison principle for viscosity solutions to equation
(4.3) and its version for a boundary value problem.
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We now introduce the assumptions on H and O. We fix ¥ > 1 and assume that and there
exist positive constants ¢, > 1 and non-negative functions y, y, w, € C([0, 00)) such that
for any wu, v € Po(G), and p, g € S"*", the following hold:

(A-i) H e C(Po(G) X S"X”) and H(u, -) is convex.
(A-ii) lim;_1+y(t) =1, y(t) > 1 forany ¢ € (1, t,) and we have

ty(OH(u, p) < H(u, tp) < y (@) H(w, p), YVt > 0.

(A-iii) For every 0 < ¢ < 1 there exists 6; > 0 such that 0 ||p||ﬁ < H(u, p) for all
K € Pe(G).

(A-iv) We have H(u, 0) = 0 and there are moduli w, and constants C, for0 < & < 1 such
that

H(u, p) —H(v, p)
> —we(ln — Vllzz)llpllﬁ - Cs“|P||y. - ||P||u’(||P||ﬁ_l + ||P||',f_1)s Vi € Pe(G).
(A-v) If Zis asin (4.2) then
[H(w, p)I < ClpILZ0) ™, Y(u, p) € Po(G) x S,

(O) There exist a constant C > 0 and for every 0 < & < 1 a constant C, such that for
every by, by > 0 (if J is as in (4.1))

Ou(B1IWT (G0 + 2 VW T ) + Oy (b T T (1, Y ) + b2 VT ())

< Cebillp = vIIZ, + Chr(IVWIWZ(w) ™ HIVWIMILIW) ™), Y, v € Pe(G).
5.1

Example 5.1 Let a € C(P(G)) be non-negative such that aZ* is bounded from above and
for every ¢ > 0, there exists 6, > 0 such that a > 0, when u € P.(G). Setting H(u, p) :=
a(w)| plls,, we have

H(w, p) = H©, @) + (a(w) —a)IIplly, +am (Il — llqlly)-

We choose w, to be the modulus of continuity of ¢ and we use the fact that

PG = llgls| < «[Ipll. = llgly] (llpllﬁ_1 + IICIIIE_l),

to conclude that (A-i)-(A-v) hold.

Observe that the £,-Lipschitz constant of the function J :=7 ~!on Py(G) is less than or
equal to 1 and so, J admits a unique Lipschitz extension on P(G) which we continue to denote
by J. Since on Py(G), J () < u; forall i € V, one concludes that nJ < ZieV i = 1on
P(G), and J vanishes on the boundary of P(G). Therefore, (A-i)-(A-v) hold for

a(p) = CoJ*(w), 0, =Coe“n™", Cg:=«xCon~ .
Remark 5.2 Since Z~! is bounded from above by n, (A-v) implies that

[H(w, p)l < Cn~ |Iplly,, Y(u, p) € P(G) x S"". (5.2)

w
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Example 5.3 Assume that O,, is the graph individual noise operator so that
Ou(p) = —(p, Vg logp) -
We have

1
Ou(VWIW) ==3 Y (VWI(W)ysu(n) (Ve log w)y,

(k,)eE
1 n
== Z (ZVWIj(M))klgkl(M)(vG log it) ;-
(k,HeE j=1
One checks that
3Z; 1 /1 11 1 INT 8T
= (s ) VG(—’)(m
w win nn n n S
0 ifk,l#jork=1[=],
= —Jauu;® ifk=j,1# ], (5.3)

Vot itk # = j.

Hence,

1
OM<VWI(M)> = > wjgji(w)—5(logu; — log )
(j.DeE Hj

= Z wjlé’jl(l‘«)(%‘%)(IOgMj_long)
T

(j.DeE,j<I J l
M+ L
=— Z w;jigj1(W) 55— ) (log wj —log 1) (iej — ) <0,
(j.)€EE,j<I L]

54

where we have used the fact that (log st — log st) (1 j — i) > 0.
Note that

1
Ou(YwI )W) = =3 3 w1 (1 =) = (uy = v) (log s = log 1) g1 ()-
@, J)eE

We similarly compute O, (VW J(u, -)(v)) to conclude that

Ou(YWT () + Oy (I T (1, )

1
=—z Z wij (i —vi) — (nj — Vj))((IOgMi —log ij)gij(1) — (logv; — log Vj)gij(V))~
@i, /))eE
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We denote by E;; each one of the expressions in the above sum. Since

1
Ejj =— Ewij((ﬂi — i) — (nj —v))) ((log wi —logv;) + (logv; —log Mj))gi_/(ﬂ)

1
- Ewij((ui —vi) = (j —v))(logv; —logv;)(gij (1) — gij(v)),

we conclude that
2
Eij < Celln — v,

where
1y . 2€C
Ce :=2C,log (g) Lip(glie.1p2) + Tw
Hence,

Ou (YW T () + O (YWT (. )W) < Cellp = v,
This concludes the proof of (5.1).

Remark 5.4 The conclusion (5.4) in Example 5.3 continues to hold if instead of Z(u) =
iy 1/umi, we take Z(u) = Y ;¢ £(pi) for any positive function £ € C*°(0, +00) such
that £ < 0.

Let u be a viscosity subsolution and v be a viscosity supersolution to (4.3) such that # and
—v are bounded above. For any a, 8,¢,6 € (0, 1], A € (%, 1], we define

B B

T—-—t T-—s

Wo(t, s, 1, v) = Au(t, u) —v(s, v) —

and

n

e =vIF, @ —s)? 11
GG
2¢e 28 X i 1%

Wyes(t,s, u,v) = Wo(t,s, u,v) —

We set

M = sup Wol(t, t, i, 1),
[0,T)xPy(G)

n
1
M, := sup (‘Po(t,t,u,u)—%Z),

[0,T)xPo(G) M

n

e = vIIZ 11
Mll,é“ = sup ("I"O(t,t,ﬂ,ﬂ)_zgez—az( - +7> )

[0.7)xPo(G)? i M
Mges = sup Waes-
[0,T)2xPy(G)?
Since for every B, a, ¢,6 € (0, 1] and % <X =<1, M,es < M, for some constant My, it is
easy to see (see e.g. [31], Proposition 3.7 for such argument) that

lim My o5 = Mgy e, (5.5)
§—0

lim M, . = My, 5.6
BE)% ae a (5.6)
lim M, = M. 5.7
sp e (5.7
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Theorem 5.5 (Comparison Principle) Assume that H satisfies (A-i)-(A-v) and F € C(P(G)).
Assume further that O is as above and satisfies (O). If u is a viscosity subsolution to (4.3),
v is a viscosity supersolution to (4.3), u, —v are bounded above and u(0,-) < v(0, -) on
Po(G), thenu <vin[0,T) x Po(G).

Proof Suppose on the contrary thatu < vin[0, T) x Py (G) fails. Let (, 1) € (0, T) x Po(G)
be such that 3e := u(f, i) — v(7, it) > O.

Step 1. Properties of maximizer of ¥, ¢ 5. We will use the notation W in place of W, . s
and to alleviate the notation, we simply denote a maximizer of ¥, . s by (7, 3, i, V), without
displaying the dependence in 3, a, ¢, 8. Itis clear that there exist0 < 19 < 1, Bo > 0,a0 > 0
such thatif A,y < A < 1,0 < B < Bpand 0 < a < ag, then W(7,5, 1, V) > 2e and
Au(0, 1) — v(0, 1) < e. Moreover, we always have

fi, i >cla, VieV (5.8)

for some independent constant c;.
We start by observing that

(i —3)? - (i—3)?
Mges + T V(t,s, i, v) + TR My ¢ 25 (5.9
and 5 _ 5
le — vl (r—5)
Mges + . + 15 < Mgy e 25. (5.10)
Thus, (5.9), together with (5.5), implies that
)
z —
im C 0 va eso0. (5.11)
5—0 1)
Now (5.5), (5.6) and (5.10) give us
2 — BII
lim lim sup — 2 = 0. (5.12)
=0 5.0 3

Similarly, since

I — )? N (f—5)?

a _ _
Mges+ E(I(M) +ZIW)+ " 3 < Mg 26.25, (5.13)
(5.5), (5.6) and (5.7) yield
lim limsuplimsupa(Z(ix) +Z(v)) = 0. (5.14)

a=0 o0 5—0

Since W is upper semicontinuous, in particular it follows from (5.8), (5.11) and (5.12) (even
though the full conclusions of (5.8), (5.11), (5.12) are not necessary) that for Ag < A <
1,0 < B < Bo,0 < a < agp and for sufficiently small ¢, §, we must have 7, 5 > 0.

Step 2. Control on gradients of C'functions which touch ufrom above or touch vfrom
below.

Observe that,

- =2 n

B J(M,V)+(t 5) L@ 1

MT —1) re 218 A~

@, pn —
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belongs to C'((0, T) x Po(G), £2) and is such that u — ¢ achieves its maximum at (7, i2) in
0, T) x Po(G). Since u is a Viscosity subsolution, we infer

B
47 /\H(, ) ¥a <w(),
(T—t)2+ s + 1% + AF ()
where we have set

_ YwJIC )@ 1) =: b1+ p
p::wwvwz(m::pwm.

Let 75 € R be such that | F| < F. We have

Boi- _
et +kH(u,A)+f(u) 0n(p) < (I = 1) Fo. (5.15)

By (5.3), we can find a constant C independent of x such that

n
_ 1
IVwWI(llg <C E ?' (5.16)
i=1 i

Since H(, -) is a convex function and 1 := (1 4 A)/2 is between 0 and 1, we have

(5 )= o) -2 P ),

Using (5.16) and (A-v), we obtain for a constant C > C independent of a, &, § such that

AH(ﬂ’ g) H( 111 _é‘a —nn)x‘ (“K; IZK) I(/IL)K

By (5.14), we can find w(a, €, §) such that lim,_,¢ lim sup,_, o lim sup;_,yw(a, &,8) = 0
and

_p A (- D1
kH(u, X) > ;H(u, 717> —w(a,z¢,9).
Now (A-ii) and (5.15) imply

B r—3
T2+ 1)

Similarly,

+ 7 (3) MG )+ F@D) = Oa(p) = (1 = WF +0(@.e.8).  (517)

B J (i, V) (t— S)2
- Zv—

0 (s,v) >
¢G5 T —s e

i=1 "

belongs to C!((0, T) x Py(G), £2) and is such that v + @ achieves its minimum at (3, v) in
(0, T) x Po(G). Using the fact that v is a viscosity supersolution, we infer

—%—SS;Z—FH(G,Q)—F}"(\?)—OE(@)ZO~ (5.18)

Here, we have set
1 . ; i — g
q:=—_VwI (L, ) () —aVwl®) = —q1 — 2.

We notice that —q; = p;.
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Since n > A, in light of (A-ii), for T < 1 sufficiently close to 1 we have

o) rr(2) o

ri=y (A 4% - > 0.
Similarly as before, we use the convexity of H(v, -), (A-ii) and (A-v), to obtain
P

H(a,q) < rH(\_), 7) +(- r)H(f), -

éz) < r?(%)H(D, ,31) twla, s, ),

1—1

where w is as before. This, together with (5.18) implies that

s—1 /1 o _ _
I (DM, )+ FO) - 0@ + 0@, 9) 2 0
We combine this with (5.17) to conclude that

y (D), po) - o7 ()M, b+ F o) — F)

< (1 =NFo = 28T+ Op(p) — 05(q) + 0(a, &, ).
By (5.1), (5.12), (5.14) and (5.16),

n - 1 - - _ - _2
y(X)Hw, P — ry(;)H(v, P+ F() — F@) < (1 — ) Fao — 28T 2 + w(a, . 6)

(for a different w (a, ¢, §) satisfying the same properties) and hence, using (A-iii),
1 _o o _ _
o7 (<) (i 1) = (5. 51)) + F ) = FO)
Frac, 15115 < (1= D) Foo — 28T % + w(a, &, 5).

Thanks to (A-iv), we conclude that if w is the £,-modulus of continuity of F then

_/1 o _ _ _ _ e
— 77(=) (@ac (U = D051 1 + Cacr |51 = 1Al ] (15105
FUAE)) + racy 1511
< (1= MFoo = 2T 2+ wr(lit —llg,) + wla, &, ). (5.19)

Step 3. Relative smallness of ’ Ipillz — llp1 ||1-,|. Using the fact that p;, v; > ac; for all
i =1, ..., n, we easily have

1
A1z = 1511s| < 1113 = 151132

1
2
1

3 (ﬁl)%j(gi,m)—g,-j(a))‘ < Kallprllallla = o117,

(i, J))€E

1
2

and

P11y = Kallpilla

for some constant K.
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Putting it all together in (5.19) we obtain that for some constant K,

l _ —_
- Ka(waq(uﬂ —Dlle,) + It — Du;z)up] I + rOac, 1 1 1I%
< (1 =NFx = 28T > +or(lit — le,) + w(a, &),

We now take A so that (1 — A)Feo < ,BT_2 and then take lim,_, ¢ lim sup,_, ; lim sups_, o of
both sides of the above and use (5.12) to obtain a contradiction.

We next show that a comparison principle still holds even if we weaken the assumptions
on H and O, provided we have additional information about how u and v behave on
[0, T) x aP(G).

Theorem 5.6 (Comparison Principle, Boundary Condition) Let the assumptions of Theorem
5.5 be satisfied except that we now only require 'H to satisfy (A-i)-(A-iv) and O, to satisfy (O)
withby = 0.Ifu € USC([0, T)xP(G)) is aviscosity subsolution to (4.3),v € LSC([0, T') x
P(G)) is a viscosity supersolution to (4.3), u, —v are bounded above, u(0, -) < v(0,-) on
P(G)andu <von[0,T) x 0P(G), thenu <vin[0,T) x P(G).

Proof Since the arguments here are similar to those of the proof of Theorem 5.5, we just sketch
the necessary adjustments. Suppose that u ﬁ von[0, T)xP(G).ForO <A <1,8,6,8 >0
we consider the function

lw=vlf, «-5* B B
2¢e 26 T —t T —s

Wes(t,s, 1, v) = Au(t, u) —v(s,v) —

and we denote its maximizer by (7, 3, &, v). It is easy to see that there exist0 < A9 < 1, Bo >
0 such that for every Ag < A < 1,0 < 8 < By there is > 0 (depending only on A, ) such
that for sufficiently small ¢,8 > O, wehave n < £,5 < T —n, 1,V € Py. The proof now
repeats the lines of the proof of Theorem 5.5 and is easier since we do not need to deal with
terms coming from the functions Z(x) and Z(v). We have in place of (5.15)

B -5 1 _ o _ -

3+ 5 Y CH(R ) + F@) = 0p(p) = (1 = ) F,
where

L VwI 03
pi= -

The part from (5.15) to (5.17) is skipped and we have in place of (5.18)
B 51

T2 8

+H®, p) + F@®) — Os(p) = 0.
We set r = y(%) — 1 > 0 and we obtain instead of (5.19),

— g1t = D151 = Collprlla — 15ls]| (1510 + 1AL IS™") + rég i

D)
I - 12,

< (1= ) Fo = 28T + w7 (12 = Plles) + C (5.20)

This allows us to conclude as in Step 3 of the proof of Theorem 5.5 by taking
lim,_, ¢ lim sup;_,, of both sides of the above.
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6 Perron’s method

The goal of this section is to use Perron’s method to show the existence of a viscosity
solution to (4.3). Throughout the section, we assume that 7 € C(P(G)), H is continuous on
Po(G) x " and O, : S"™*" — Ris linear, © — O, (p) is continuous for all p € §"*"
and there exists a constant C such that

10u(P)] = Collplle,s  Y(m, p) € Po(G) x 8. (6.1)

For example when (1.3) holds, the individual noise operator satisfies (6.1).

When S is a topological space, for a function f defined on a subset of Q C S, we will write
/™ to denote its upper semicontinuous envelope and f; to denote its lower semicontinuous
envelope, i.e.

f*(y) =limsup f(z) and fu(y) = liminf £(2).
z—y

InLemma 6.1 we do not consider the initial condition to be part of the definition of viscosity
subsolution and we consider viscosity subsolutions to be functions on (0, 7) x Py(G).

Lemma 6.1 Let S be a family of viscosity subsolutions to (4.3). Let v := sup{w; w € S} and
assume that v* < 400 on (0, T) x Po(G). Then v* is a viscosity subsolution to (4.3).

Proof Suppose that ¢ € C! ((0, T) x Po(G), Zz) and there exists » > 0 and (t°, u0) €
(0, T) x Po(G) such that v* — @ achieves its maximum on B, (t°, 1°) at (:°, 1°). We may
assume without loss of generality that B, 9, 1% c (0, T) x Py(G). By the definition of
v*, there exists (1", u*) and w,, € S such that

", 1w — @, 1% and w,@, u" - 0¥, 1’ as n— +oo. (6.2)
Set
es(t. 1) = o(t, ) + 8|t — )P + 8l — p°lI, on (0, T) x Po(G).
Note that ¢; is of class C! ((O, T) x Po(G), Zz). Furthermore, (:°, ,uo) is a strict maximizer
for v*_(t, Ww) —@s(t, u)on B, (1°, uo). Foranyn € N, let (@, i) be a maximizer of w, — @s
over B, (1%, 1°). Observe that
w (1", 1) — @5 (1", ") < wa (", 1) — s (0", @) < 0F ", 1) — s (07, 1),
Thus, if (#°°, w™) is a point of accumulation for ((f”, ;l”))n then by (6.2), we have
v (e%, %) — s (t°, 1)
= lim sup(w, (", u") — @s (", u™)) < lim sup(v* (", ") — @s (", 4™)).

n—-400 n—4o00
We use the fact that v* is upper semicontinuous to conclude that
v, 1) — @5 (1, 1) < 0F (%, 1) — s (1%, ™).
Since (°, 1) is the unique maximizer of v* —g; over B, (¢, u°), we conclude that (¢°, 10) =
(1>, w™) and so, (1, u°) is the unique point of accumulation of ((7", /")), . Thus, the whole
sequence (i, ")), converges to (1%, u%) and so, for n large enough, (7", i") belongs to
B, (t°, u9). Note that

ds(t, 1) = dp(t, p) +28(t —1%) and Vies(t, 1) = Vwe(t, 1) + 28Vg (n — u°).
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Since w,, € S and (7", ") maximizes w, — @5 over B, (1", uo), we obtain that
g, ) + 28" = 1%) + H(A", Ve (", 1) + 28V6 (" — 1)) + F (™)
< Opn (Ve (, i) + 280 (Vi Ve (" — 10)).

Observe that since u® € Po(G), || - || an and || - [l¢, are equivalent.
Letting n — 400 and using the continuity of 7, H, O, and (6.1), we obtain

o, 10 + H(, Viwe %, 1) + F(u°) < 0, (Yo, 10)).

This concludes the proof of the lemma.

Lemma 6.2 Suppose that u is a viscosity subsolution to (4.3) such that u is not a viscosity
supersolution to (4.3). Then, there exist @0, 1 € (0,T) x Py(G), 8,r > 0O, such that
By (1%, 19 c (0, T) x Py(G) and a viscosity subsolution v to (4.3) such that the following
hold.

(i) v=>uon[0,T) x Po(G) and v =u on ([0, T) x Po(G)\B,(1°, u0).
(ii) There exists a sequence ((t”, ,LL”))n C (0, T) x Po(G) such that

@ 1" — @O u0), w1 = u@ w0, v ) —u@, 1"y - 8 as n— +oo.

Proof Since u, is not a supersolution to (4.3), there exists ¢ € Cl((O, T) x Po(G), Zz),
r > 0and (1% u% € (0, T) x Py(G) such that u, — ¢ attains the minimum value 0 at
(1%, 1% € (0, T) x Po(G) on By, (1, u®) € (0, T) x Poy(G) and

dp %, 1) + H®, Ve, 1)) + F(u®) < 0, (Ve 1%).

By a continuity argument, if §, y > 0 are sufficiently small, reducing the value of r if
necessary, we obtain that

(t, ) = @5y () =t ) + 8 — yllw— pll7, — it — 1°

is a classical subsolution to (4.3) on B, (t°, u%) c (0, T) x Py(G). Thus, by Remark 4.3,
@5,y 1s a viscosity subsolution to (4.3) on B; #°, ,uo). Observe that

u(t, x) > uy(t, x) > o(t,x) on B,(1° u°).
2
If we choose § = -, then

w(t, ) > @51, ) on Br(1°, %)\ By (1, 0.

Setting

| max{u(r, w), @s,, (. W}, on B, (9, 19,
v(t, ) = {u(t, W, otherwise, ©

we conclude that v = u on the open set
Q:=(0,T) x Po(G) \ B; (1, ).

Thus, v is a viscosity subsolution to (4.3) on 2. Since, by Lemma 6.1, v = max{u, @5, }
is a viscosity subsolution to (4.3) on B, (%, 1%) and since the union of the open sets 2
and B, (1%, 1% is (0, T) x Py(G), we conclude that v is a viscosity subsolution to (4.3) on
[0, T) x Po(G).
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Let {(#", u")}nen C (0, T) x Po(G) be such that

lim (", 1) = (% u® and  lim u(", 1" = u. (%, 10).
n—-+00o n——4o0o

We have

lim (", ") = u(@", 1) = @5, (10 1) = ua(@®, 1) = un(l%, 1) + 8 — (10, 1% =6,
n—+00
which completes the proof of (ii).

Theorem 6.3 (Perron’s Method) Let the assumptions of Theorem 5.5 be satisfied, let (6.1)
hold and let Uy € C(Po(G)). Suppose that u is a bounded viscosity subsolution to (4.3), u
is a bounded viscosity supersolution to (4.3) and in addition u, (0, n) = u*(0, u) = Uo (1)
forall u € Po(G). Then, setting

S = {w tu<w<=<uon [0,T)x Py(G)and w is a viscosity subsolution to (4.3)},
the function u 1= sup,,cg W is a viscosity solution to (4.3).

Proof By Lemma 6.1, u™* is a viscosity subsolution to (4.3). Since u < u < i, we have
u < u* < i and Up(n) = u, (0, 1) < us(0, ) < u*(0, ) < ™0, n) =: Up(p) and
s0, ux(0, ) = u™(0, u) = Up(n) for u € Py(G). By the maximality property of u, this
implies that = u* and so, u is a viscosity subsolution to (4.3). If u, fails to be a viscosity
supersolution to (4.3), let v be the viscosity subsolution to (4.3) provided by Lemma 6.2.
Observe that v(0, -) = Up(-). By the comparison principle, v < i on [0, T) x Po(G). Also
u < u < v by the construction of v. Hence v € S and so, by the maximality property of u, we
have v < u, which contradicts (ii) of Lemma 6.2. Thus, u, is also a viscosity supersolution
to (4.3) and then comparison yields u* < u,. Therefore u = u* = u, is a viscosity solution
to (4.3).

In light of Theorems 5.5 and 6.3, to show that (4.3) has a unique viscosity solution, it
suffices to construct a viscosity subsolution u and a viscosity supersolution u to (4.3). We
show how this can be done in the rest of this section.

Proposition 6.4 Let the assumptions of Theorem 5.5 be satisfied (recall that we assume (6.1)
in this section). Suppose that Uy : Po(G) — R is a function such that one of the following
two conditions holds:

(i) Up is €r-Lipschitz;
(ii) O = 0 and Uy is VW-Lipschitz.

Then there exists a constant Co > 0 which depends only on Uy, H, F such that the functions
u(t, p) = —Cot +Up(w), u(t, u) = Cot + Uo(1)

are respectively a viscosity subsolution and a viscosity supersolution to (4.3). Moreover, if
u is a bounded viscosity solution to (4.3) then u(-, ) is Co-Lipschitz on [0, T) for every
€ Po(G) and for every e > O there is a constant K, such that

lu(t, ) —u(t,v)| < Kellw —vlle, forallt €[0,T], u,v € Pe(G). (6.4)
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Proof In the case (i), we assume [ is the £,—Lipschitz constant of Uy. We fix Co > C > 0
whose value will be specified later and set u(¢, u) = —Cot + Up(1). Let ¢ € c! ((0, T) x
Po(G), £2) be such that there are r > 0 and (¢°, p°) such that B, (%, p%) € (0, T) x Py(G)
ar}sd u — ¢ achieves its maximum on B, (t°, p°) at (%, p). Note that 8,¢(t°, p°) = —Cy and
|5 @, 1], < lo andso,

Ve ®, 1)l 0 < 20%10Co.
Set

C = Coly + sup {IH(M, p)+Fu)|:uePo(G),peS”", IIply < 2nzlon}.
(1, p)

We have
e, p°) + H(po, Ve (°, p)) + F(p®) — 00 (Viyu(®, %)) < —Co + C.

This proves that u is a viscosity subsolution to (4.3) such that u(0, -) = Up. In a similar
manner, we construct a viscosity supersolution # to (4.3), which is such that u(0, -) = Up.
We apply Theorems 5.5 and 6.3 to conclude the proof in case (i).

In the case (ii), one shows that if u — ¢ achieves a local maximum at (19, p% € (0, T) x
Po(G), then || Ve, 10| w0 =< nlpC. We follow the same lines of arguments to conclude
the proof in the case (ii) when Co = 0.

To show Lipschitz continuity in ¢, we notice that comparison principle gives us

— Cot +Uo(n) = u(t, ) = Cot +Uo () = Cot +Up() (6.5)

forany ¢t € [0, T) and i € Pp(G). Let s > 0 and define v(t, u) = u(t + s, n). Since H is
time independent, v is a viscosity solution to (4.3) such that v(0, -) = u(s, -). We have

v(0, ) — [[v(0, ) —u(0, )lloo < u(0,-) <v(0,-) + [[v(0, ) — u(0, )lco-
By the comparison principle,
v(t, ) — [[v(0, ) — u(0, )loo
<u(t,) v, )+ [v0,) —u@©, e on (0,7 —s) x Po(G).
Thanks to (6.5), we conclude that
—Cos < —llu(s, ) —u(0, )lloo
<ut+s,) —u(t, ) < lluts, ) —u0, oo < Cos on (0, T —s) x Po(G).

Thus, u(-, u) is Co-Lipschitz on [0, T) for u € Po(G).
To prove (6.4), for every § > 0 we define the sup-convolution of u in the p variable by

e = pli
u‘g(t,u): sup u(t,,o)—ie2 .
PEPY(G) 2
Let p be a maximizing point. It is easy to see that we must have
i = lles < 2¢/Tullood =: Cs.

Letnow 0 <t < T, u € Pcy(G). Then p € Py(G). Suppose u® — ¢ has a maximum at
(t, ). Then

I — 512,
26

2
v — oI,

5 — (s, v) (6.6)

u(t, p) — —o(t, pn) > u(s, p) —
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for all s, v, p. If we set v = p + (u — p) we thus have

u(t, p) — o, u) > u(s, p) —e(s, p+ (L —p))

sou — @(-, -+ (u — p)) has a maximum at (¢, p). Thus, using the definition of viscosity
subsolution,

dp(t, ) +H(P, Vwe(t, W) + F(p) < O5(Vwe(t, ) < CollVwe(t, ille,-  (6.7)

Assume in the sequel that © € P.(G) and ¢ is sufficiently small so that Cs < % Since

u(-, ) is Co-Lipschitz, [0,¢(t, n)| < Co. We use in (6.7), (A-iii) and the fact that by (H-iii)
Il - 15> +€ll - lle, on Pe(G), to deduce that
9;8% Ve, thlly, < CollVwe(t, Wlle, + Co + Feo,

where |F| < Fx. Thus, some constant K, independent of § we have

Ve, iWlle, < Ke. (6.8)

Setting s = t, p = p in (6.6) we also see that the function

v = AlIZ,
——= — p(t,
v— 5 @, v)
has a maximum at p so
d¢ p— 1
t) = 6.9
5 (t, 1) 5 (6.9

Since G is connected Vgp = 0 if and only if p; = p; = 0 for all i, j and thus,
on the set of null average p, [|Vgplle, and | pll¢, are two equivalent norms. Hence, since

Viwo(t, n) = VG(g—ﬁ)(t, W), there is a constant C such that

3¢
”?“’“)H < ColVwolt, Wlles.
0 &)

Thus, (6.8) and (6.9) imply

12 ; P le, < Ke (6.10)

for some constant K.

The set of points (¢, ) such that u® — ¢ has a maximum at (¢, ) for a smooth function
@ is dense in (0, T') x Py(G) (where in Py(G) we take the || - ||, norm). This can be seen
by considering for every (fo, ;o) € (0, T) x Po(G), n =1, 2, ..., the functions

W (t, 1) — n((t — 10)* + |l — pollz,)

which, for large n, will have maxima close to (7o, (to). We thus conclude from (6.10) that for
every (t, u) € (0, T) x P:(G) there is a sequence (f;,, i) such that if p, is the maximizing
point for u (1, ), then

< K;.

H Pn — Mn
153

3
Thus, by passing to a subsequence, we obtain that for every (¢, u) € (0, T) x P.(G), there
exists a maximizing point p for u®(¢, ) such that (6.10) holds.
Letnow t € (0,T), t, v € P:(G). We define the function

Ys(s) = (t, u+s( —p), Vs el0,1].
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The function ¥s is Lipschitz and hence differentiable a.e. Let 0 < § < 1 be a point of
differentiability of 5 and let &~ € C'(R) be a function such that 15 — & has a maximum at
5. Let p be a maximizing point for W, w+s(v—p)) satisfying (6.10). Then the function

I+ s =) =5l

s = u(t, p) — %5

— h(s)

has a maximum at 5. Therefore

W) = <)5—(M+S(V—M))7U_M)

]

and thus |2'(5)| < K¢|lv — i]l¢,- We now conclude that

(1, v) — ud(t, )| = [Ys(1) = Ys(0)| < Kellv — plle,.
It remains to send § — 0.
If Uy € C(P(G)) (and hence Uy is uniformly continuous), let u‘g for0 < § < 1 be the
sup-convolution of Uy defined as in the proof of Proposition 6.4. Then ug is £>-Lipschitz and

Uy < ug < Up + as, where as — 0 as § — 0. Therefore for every 0 < § < 1 there is a
constant Cg > 0 such that

ws(t, ) == Cst 4 ud(w)
is a viscosity supersolution to (4.3). Then the function

u:= inf us
0<é<l1
is a bounded continuous viscosity supersolution to (4.3) such that (0, u) = Up(w) for all
1 € Po(G). We can construct a bounded continuous viscosity subsolution u in the same way
by approximating U by its inf-convolutions.

7 Optimal control problem

In this section we apply our results to a model optimal control problem and show that the
value function is a unique viscosity solution of the associated Hamilton—Jacobi equation. The
Hamiltonian for our model problem is of the type from Example 5.1 and O, = 0. Throughout
this section we assume that

Uy, F e C(P(G)),

and ¢ > 0 is such that [Lol, |F] < c.
We define the function £ : P(G) x S"*" — [0, +00] by

0, if wedP(G), m=0;
. m) = +00, . if wedP(G), m#0; 1)
%@ ek gt i 1 E PG,
where
) 1
= T
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It is easy to see that if u € Py(G) then

sup {(p.m) — Eum)| = SaGolpl} = Fw, p), Vp e,

meSnxn

Moreover, if © € aP(G)

{ 0, if p=0;

sup {(p,m)—ﬁ_(ll,m)}: sup (p,m) = +oo, if p #£0.

mes<n mesxn
Recall that, given 00, p! € P(G), we denote by C(’)(,oo, pl) the set of pairs (o, m) such that
o e H'(0,1; P(G)), m € L*(0,1;8"), (a(0),0(1)) = (0°, p")
and
6 +divg(m) =0, in the weak sense on (0, t).

Given p € P(G), we define C})(-, p) to be the union of all Cj(0°, p) such that p° € P(G),
and similarly we define C1(-, p) for 0 < s < t.

Lemn_!a 7.0 Let p € P(G) and fixi € {1, --- ,n}. Suppose that (o, m) € COT(~, p) is such
that L(o, m) € L' (0, T). Then there exists a positive constant C independent of o such that
the following hold.

(i) We have ”m”L2(0 Ty = <2n? ||[,((r m)||L1(0 T) and ||U||1_2(0 T = \F”m”ﬂ(o T)-
(ii) If there exist ty, 11 € [0, T such that ty < t1 and o;([fy, 11]) C (0, +00) then

no_ 2
20(1 —zo)/ L(o, m)ds > (1og (01(11)) — log (ai(to))) .
0]

(iii) Either 0;,([0, T1) C (0, +00) or ([0, T]) = {0}.

Proof 1. We use the fact that @ < n? and gij < 1 to obtain

1
L(o,m) > IImII (7.2)
Furthermore, the identity
Git+ Y. Joimij =0, (7.3)
JENG)

implies that for some positive constant C independent of o, we have
6> <C > mj. (7.4)
JEN (@)
This concludes the proof of (i).
2. Suppose that 19, t1 € [0, T] are such that 7y < #; and o; ([tp, t1]) C (0, +00). Then

2 2 2
1 mi; 1 o;
(5a) T 5 09
JEN()

Ok gz](o)

2 2‘
L(o,m) = % <Z 1) Z r'nk./ > %

kev %K) ek 8jk(@)

Thanks to Holder’s inequality, we have

"ol el N (M6 ?
(1 —zo)/ —5ds > (/ —ds> > (/ —ds) = (log (i (1)) — log (oi(to))> .
1o 0[ o O 1o Oi

(7.6)
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Combining (7.5) and (7.6) we thus obtain (ii).

3. Suppose now that there exists 7 € [0, T'] such that o; (f) = 0. Assume to the contrary
that we can find s such that o; (5) > 0. The openset {s € (0, T) : o;(s) > 0} has a connected
component / which contains s. We have that / is an open interval of the form (a, b) such that
either g;(a) = 0 or g;(b) = 0. Suppose for instance that o;(b) = 0. Then by (ii), whenever
0 <r <b—3s,wehave

T _ 2
2CT/ L(o, m)ds > (1og (0i(b—r)) — log (ai(s))) .
0

Letting r — 0T, we obtain a contradiction.

Ift >0and (o, m) € Cf)(-, p) for some p € P(G), we set

Ao, m) :=Up(c (0)) + /Ot (L(o,m) — F(0))ds.

We define the value function
U, p) == (1171,15) :Af](a, m): (o,m) € Cy(-, p)}.
Setting
o(s):=p, m(s):=0, Vs € [0, 1],

we have (o, m) € Cj(-, p) and so,

—e(t+ 1) Ut p) =1(£(p,0) = F(0)) +Un(p).
Since £(p, 0) = 0, we conclude that

Lz, p)l < (t + De. (1.7

Thus, if (o, m) € Cj(-, p) is such that

t

Up(0(0)) +/ (L(o,m) — F(o))ds <U(t, p) + 1, (7.8)
0
we have
t t
/ L(o,m)ds <U(t, p)+ 1 +f F(o)ds —Uy(0(0)) <2(t + Dc + 1.
0 0
and so by (7.2), we have
1 13
—2/ Iml|%ds < 2(t + 1)c + 1. (7.9)
2n 0
Theorem 7.2 Foreveryt € [0, T], p € P(G), there exists (o™, m*) € C(t)(-, p) such that
UG, p) = Ayo™. m*).
Proof If p € 9P (G), in light of Lemma 7.1, we have that the only pair (o, m) € C(’)(-, p) for
which Af)(a, m) < 400 is the trivial pair o (s) = p, m(s) = 0 for s € [0, t] so we are done.

Assume in the sequel that p € Po(G) and let (ox, mg) € C(’)(-,p) be such that
limg_ oo .Af)(ak, my) = U(t, p). We use Lemma 7.1 to conclude that (o} ) is bounded in
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HY (0, : R") and (my)x is bounded in L2(0, r; R"*"). Passing to a subsequence if neces-
sary, we can assume without loss of generality that there is (o*, m*) € H 1, ; R") x
L0, 1: S™*") such that o — o* uniformly and m;—m™* weakly in L2(O, t; "), We
use Lemma 7.1 to conclude that the range of each oy is contained on Py(G). Due to the
uniform convergence property of (ox)x and the fact that each oy ([0, ¢]) is a compact set we
can assume that that there exists ¢ > 0 such that

o ([0, t]) C P:(G), Vk € N. (7.10)

One checks that o*([0, t]) € P;/2(G) and (0%, m*) € C(’)(~, p). Since (7.10) expresses
the fact that the range of oy is uniformly aways from 0P(G), one uses standard method of
the calculus of variations to conclude, since £ is continuous on Po(G) x S*™*" and £L(j, -)
is convex, that

t t
liminf/ E_(ok,mk)dszf L(c*, m*)ds.
0

k—+o0 Jo

Since (o )i converges uniformly and F and U, are continuous, we deduce that

Afy(o*, m*) < liminf Af(ox, mg).
k——+o00
Theorem 7.3 The value function U is continuous on [0, T] x P(G).

Proof Letty € [0, T, po € P(G).Let {(#, pk)},‘(":“f be an arbitrary sequence in [0, T]x P (G)
such that |t — 79| — 0 and W(po, px) — 0 as k — +o00. By Remark 2.2, this is equivalent

to [lox — polle, = 0.

Lower semicontinuity of ¢{/. To simplify the argument we assume that limy_, 1 oo U (tk, px) =
liminf; py— (9. 00) U, p). We fix § > 0 and suppose that #; < o + & for all k € N. Let
(o7, my) be optimal paths for U (#, pr). We consider the extensions to [0, fo + 8] and still
use the same notation to denote them, that is we set

of (@), t € [0, 1]; mi(t), t € [0, #];

* R
Pk t € [ty, 19 + 8], my (1) = {0, 1€ [t fo + 81, (7.11)

o (1) := {
By Lemma 7.1,

o

to+6 to+6 +3
/ Im})2ds < 2n2/ L(of, m¥)ds = 20U, pr) + 2n2f F(op)ds — Up(of (0))
0 0 0

and so, by (7.7), (my)x is bounded in L?(0, o + &§; S"*™). As it was done in the proof of
Theorem 7.2, we may assume without loss of generality that there is a pair (¢, m) such that

o — & in C([0, fg + 81; R™),
mp—m weakly in L2(0, 19 + 8; S™"), & e H' (0,19 + & R™).

We have
(&,m) = (p0,0) on [0,79+8] and  (5,m) € C§ (-, po).
Note that

. . 1 . to+6
Jim Ul po = lim Ao m) = tim (A5 ot m) + (0 + 8 — 0 F (o)
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Case 1. If pg € Po(G) we now argue as in the proof of Theorem 7.2 to conclude that

Jim Ul ) = AT G+ o+ 8~ 10)F (o)

=AY (5. 1)+ 8F (p) = Ultg. po) + 8F (p).

We use the fact that § > 0 is arbitrary to conclude that limg—_, 40 U (%, px) > U(to, po)-

Case 2. Suppose pg € IP(G) and (pp); = 0. If pr € 3P(G) then by Lemma 7.1(iii), we
have (o}, m}) = (o, 0). If px € Po(G), then, again by Lemma 7.1, we must have for every
t € [0, ]

174 _ 2
€12 € [ Lot mivds = (1og (o)) = lox (@)

for some absolute constants Cy, Co > 0. This implies that max{(c}); () : t € [0, %]} — O
and hence

173
/ lm}|>ds — 0.
0

We thus conclude that (6, m) = (po, 0) on [0, #p + 8]. It now easily follows that
lim U(tk, pi) = Uo(po) — 10F (po) = U(to, po)-
k——+00

Upper semicontinuity of ¢{. Let us assume now that limg_ oo U (fx, pr) =
lim sup, ;) (15, p0) U (t5 ). In the argument below, we distinguish between the case 7o = 0
and the case 79 > 0. Setting

my =0, or=p on [0, 1], (7.12)

we have (oy, my) € C(t)"(', ok) and so,

173
U(tr, pr) < Ag (ok, mp) = —/(; F(pi)ds + Uo(pr), (7.13)

When 7y = 0, since F and Uy are continuous, (7.13) implies that limy_, ;oo U(#, px) <
Up(p). Thus U is upper semicontinuous at (0, pg). In the sequel, we assume that 7o > 0 and
fix an optimal couple (o*, m™) in U (%o, po).

Case 1. Suppose that py € dP(G). Leti be suchthat (pg); = 0. Sinceby (7.7) L(c*, m*) €
LY(0, 1p), we use Lemma 7.1 to conclude that ai*([O, to]) = {0} and so,c*([0, 1p]) C AP(G).
Thus £(o*, m*) = 0on (0, fo) and so, m* = 0 on (0, fo). This proves that (¢*, m*) = (pg, 0)
on (0, tp). We choose (0%, my) as in (7.12) and apply (7.13) to conclude that

0
lim U (t, o) < —/ F(po)ds + Uo(po) = Af (a*, m*) = U(to, po).
k—+00 0

Case 2. Suppose that pg € Po(G). By Lemma 7.1, there is ¢ > 0 such that o *([0, 7p]) C
P:(G). Choose § € (0, tp) and assume without loss of generality that —§/2 <t — 19 < &
for all k so that

8/2 <t —tyg+ 8 <26, Vk € N. (7.14)

We first integrate (7.3) and use (7.4) and (7.2) to conclude that

10

lm*||*ds < 4n2C8/ L(c*, m*)ds =: 4n*Cdw(3).
to—38
’ (7.15)

to
o™ (t0) — o™ (10— ) |I” < 268/

to—35
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We define
k a* (1), t €10,1 —38]; ¢
o' (t) = _ _ 7.1
W= (1 - s )on + it o =9 1 e o — 8.0 71O
We note that 6% ([0, 7]) C P¢(G) and
.k Pk—0*(to—9)
= to — 6, ).
& P——— on (ty =8, 1)
We use Remark 3.6 to find ¢ € R” such that
. . . 2n
" +div,(Vo¢) =0 and  |[Veelly, < I6°IF, =
Setting
m; = 8ij(00)(V69), -
we conclude that (o%, m¥) € C(., pr) and
1 (mip)* _ 2hn 1642 2 on ok — %o — )17,
7 o = o llgy = _ 2
G )eE gl](pO) & (tx — 1o +9)
Since g;j(po) < 1, we infer
_ _4hon ok = o W) I, + 0™ (1) — o (10 — DI,
m
- (tx — 1o + 8)?
_4n? o = ¥ ()11, + 0™ (t0) — o (t0 — DI,
e (tx — to + 8)2 :
This, together with (7.14) and (7.15) implies
161,12
It 112 = === (llpx = 0" (), + 40’ C30(5))- (7.17)

Since (%, m*) € C(t)k(-, 0k), we have
17 _
Ulte, p) < Af (6%, mF) = AR (o, m*) + / (L(o*, mby — F(o"))ds

to—§8

We use the fact that o % ([0, #]) C P.(G) to infer 8ij (6%) > ¢ and a(c®) > €2/n? and so,

Ao ko k n’ k2
L(",m") < gllm I

Since m¥ is a constant on [ty — 8, ;] and |F| < ¢, we have
) n’ k2
Ut po) =AY @ ™) + (= 10) (S5 Im 12 +-c).

We now use (7.17) and the fact that |ty — f9]| < J to obtain

Ult, pr) < AD (0™, m*) + ¢8 +

16a,n* ( ok — /OOII%2
g4 b

+ 4n2Cw(8)>.
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We first let k — +o00 and then § — 07 to infer

lim Ult, pr) < AQ (0%, m*) = U(to, po).
k—+00
Thus, U is upper semicontinuous at (fo, 0p).

Theorem 7.4 U(¢, p) satisfies the Dynamic Programming Principle (DPP), i.e. for any
(t0, po) € [0, T] x P(G) and t € (0, 19]

0] _
u(ro,po)z(inf){ / (L@ (). m(s) = F@())ds +Ult, 0 0) : (0,m) € COC, p0) .
o,m t
(7.18)

Theorem 7.5 U is the unique bounded viscosity solution to (4.3).

Proof The uniqueness part follows directly from Theorem 5.5. We only need to show that ¢/
is a viscosity solution to (4.3). It is obvious that Z/(0, i) = Up(1).

Viscosity subsolution. Let ¢ € C'((0, T) x Po(G), £2) be such that u — ¢ has a local
maximum at (fg, pg) € (0, T) x Py(G). Let ¥ € R". We denote v = Vgr. Since pg €
Po(G), there exists a constant r € [0, fp] and o € C! ([to —r,19]; (Po(G), Zz)) which solves

6 (s) +dive(s)(v) =0, o(t) = po.
Thus, for any ¢ € [to — r, tp], we have by Theorem 7.4

_ U(to, po) — @(ty, po) —U(t, o (1)) + @(t, o (1))
- to—1t

1 o,
< ( / (£ (), dive ) = F(())ds — plt0, po) + ¢, a(z))) :
o —1t '
(7.19)

0

Letting t — 1, in (7.19) and using Lemma 3.16, we now have

0= £(po, divpy (v)) = F(po) = (div ), Ve (to, p0)) = 8o, po)

Therefore, taking the infimum above over all v = V¢ and using the fact that Vyy (o, po) €
T, P(G), we obtain

0 < —a:¢(to, po) — F(po)
+inf {L‘(po, divp (1)) — (divpo(v), Ve (io, po)) v =V, ¥ € R”}
= —8¢(to, po) — F(po) + inf {5(,00, m) — (m Vwe(to, ,00)) tm e S"X"}
= —d¢(to, po) — F(po) — H(po, Vwe(to, 00))-

Viscosity supersolution. Let ¢ € C! ((0, T) x Po(G), Kz) be such that u — ¢ has a local
minimum at (g, po) € (0, T) X Po(G). Then, for any sufficiently small ¢ > Oand r € (0, ty],
there exists (o, m) € Cfg_r(-, 00) such that

0 > U(ty, po) — @(to, po) —U(to — 1,0ty — 7)) +@(to — 1,00 — 1)) (7.20)
o _
> —gor + / (C(G(S), m(s)) — J-'(G(S)))ds — (9, po) + @(to —r,o(tg —1)).
to—r
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Using Lemma 7.1, we have o (t) € Po(G) for any ¢ € [t9 — r, t9]. Dividing by r on (7.20),
we can get by Lemma 3.16

™
v

1 o/
;( [ (E@6rmn = Fa6n)ds = ptto. ) + ot = .00 - r)))
1

0o—r

L[ /-
L (Ee6ne) - Fe) - auts.06) - (Twels. a6 m) ) ds
r fo—r
1 [h -
> [ (200006 — o), Twpls. a61) = Flo))ds.
o

—r

Sending » — 0" and then ¢ — 0", we obtain

de(to, po) + H(po, Vwe(to, po)) + F(po) = 0.
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