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Abstract
In this manuscript, given a metric tensor on the probability simplex, we define differential
operators on theWasserstein space of probability measures on a graph. This allows us to pro-
pose a notion of graph individual noise operator and investigate Hamilton–Jacobi equations
on this Wasserstein space. We prove comparison principles for viscosity solutions of such
Hamilton–Jacobi equations and show existence of viscosity solutions by Perron’s method.
We also discuss a model optimal control problem and show that the value function is the
unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation.

Mathematics Subject Classification 35D40 · 35F21 · 35R15 · 49L25 · 49Q20

1 Introduction

Partial differential equations (PDE) in infinite dimensional and abstract spaces have been
studied steadily over the last several decades. Themain interest has always been in Hamilton–
Jacobi–Bellman (HJB) equations related to deterministic and stochastic optimal control
problems for control of PDE and stochastic PDE and other abstract differential equations.
Recently there has been a renewed interest in such equations in spaces of probability mea-
sures due to their connection to mean field control and mean field game problems. The theory
of first and second order PDE in Hilbert spaces has been developed the most. A complete
overview of various approaches, classical solutions, viscosity solutions, mild solutions, L2-
solutions, solutions using backward stochastic differential equations methods can be found
in [43]. Results about classical solutions of linear second order PDE can be found in [39]
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and earlier results about mild solutions for first order PDE and solutions using convex reg-
ularization procedures can be found in [4]. Viscosity solutions in Hilbert spaces have been
originally introduced by Crandall and Lions [32–37]. We refer to [43] for the full account
of the theory and further references. Some aspects of the theory for first order equations can
also be found in [68].

The original interest in the PDE in spaces of probability measures came from partially
observed optimal control problems through the study of fully observable so called separated
problems where one controls a new measure valued state process (unnormalized conditional
density of the original state with respect to the observation process) which satisfies the so-
called Duncan–Mortensen–Zakai equation. Early attempts to look at HJB equations in the
space of measures for such a problem was made in [60]. A Bellman equation in the space of
measures was also studied in [61]. A renewed interest in HJB equations in spaces of proba-
bility measures started with the development of the theory of mass transport and a calculus
in the Wasserstein space of probability measures and later the study of mean field control
and mean field game problems. The first definition of a viscosity solution using sub- and
super-differentials in the Wasserstein space appeared in [52] and later different notions of
viscosity solutions were introduced of equations in the space of probability measures and
more abstract metric spaces in various contexts. In particular a notion of the so-called L-
viscosity solution was introduced in [70] which “lifts” the equation from the Wasserstein
space to an Hilbert space of L2 random variables and this approach was developed further
in [56] (see also [22, 23] for more on the lifting procedure). We refer the readers to [5, 8–13,
16–18, 20, 21, 29, 40–42, 50, 51, 53, 54, 58, 62–64, 74, 79–81] for equations related to mean
field control and optimal control/variational problems in spaces of probability measures. In
particular convergence problems for particle approximations have been studied using PDE
methods in [18, 20, 21, 40, 41, 50, 58, 74]. Equations related to control problems with partial
observation were studied in [6] and equations related to differential games were investigated
in [30, 65]. HJB equations in the Wasserstein and metric spaces with formal Riemannian
structure as well as completely regular spaces, mostly related to control of gradient flows,
large deviations and fluid dynamics were studied by different techniques in [27, 28, 44–
48, 66, 67]. Various comparison theorems and uniqueness results for appropriately defined
viscosity solutions were proved in these papers. HJB equations in abstract metric spaces
were studied by various techniques in [1, 14, 15, 53, 55, 59, 71, 72, 77, 78]. Uniqueness
of appropriately defined viscosity solutions of first order HJB equations in the Wasserstein
space was proved in [5, 64]. Uniqueness of viscosity solutions of a second order Bellman
master equation in the Wasserstein space arising in stochastic optimal control problems for
McKean-Vlasov diffusion processes was established in [29]. In [9, 41] general comparison
results for viscosity solutions of second-order parabolic partial differential equations in the
Wasserstein space were proved. Other papers containing uniqueness results are [17], where a
uniqueness result for a notion of viscosity solution for a class of integro-differential Bellman
equations of a special type was shown, and [81], where well-posedness of viscosity solu-
tions of parabolic master equations, including HJB master equations associated with control
problems for McKean-Vlasov stochastic differential equations was established. There is also
vast literature on master equations of mean field games which are integro-differential PDE
in the space of probability measures. We do not discuss them here since they are not HJB
equations.

In this manuscript we investigate Hamilton–Jacobi equations on the Wasserstein space of
probability measures on graphs. Discrete optimal transport calculus, in the space of prob-
ability measures on graphs and gradient and Hamiltonian like flows on graphs, have been
studied in many papers; we refer for instance to [25, 38, 73, 75]. In particular, finite state
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mean field games have received significant attention in recent years. Master equation for
finite state mean field games with Wright–Fisher common noise have been studied in [7]
and [57] derived master equations from finite state Hamilton–Jacobi equation which appear
in potential games. However very little is known about Hamilton–Jacobi equations in such
spaces. The only results in this direction are in [24] about Hamilton–Jacobi equations on
complete graphs (every pair of distinct vertices is connected by a unique edge). Therefore,
the analysis in [24] does not involve a graph structure and the underlying probability measure
space is endowed with the flat Euclidean metric �2. Note that the �2 differential structure
is not comparable to the differential structures considered in this manuscript. Indeed in our
set up, each point μ ∈ P(G) comes with a metric tensor g(μ), which naturally leads us to
consider the Wasserstein space of probability measures on general connected graphs. Our
goal is to introduce a notion of viscosity solution and develop a well-posedness theory. Since
the set of probability measures on a graph with n vertices is identified with a simplex in
R

n , one may be tempted to recast our work within the theory of viscosity solutions in finite
dimension on Riemannian manifolds with boundary (see Remark 4.4). We refer for instance
to [3] for the theory of viscosity solutions on Riemannian manifolds. The analogy we point
out in Remark 4.4 does not facilitate our work even if in our case the manifold (the simplex)
is flat. Indeed, we have to deal with Hamiltonians which vanish near the boundary of the
simplex since we are working on the Wasserstein space. This makes our study different from
the classical theory of viscosity solutions. Hence, we present everything from the beginning
and with details.

We focus on initial value problems for a class of Hamilton–Jacobi–Bellman equations
with a convex and somehow coercive Hamiltonian which degenerates close to the boundary,
which also involves a linear operator obtained by discretizing the so–called individual noise
operator in Mean Field Games (cf. e.g. [26]). Of course different types of equations can be
considered and we expect the theory to be developed in various directions. It is certainly also
interesting to study initial boundary value problems on open subsets of the set of probability
measures, however in this paper we only consider equations on the whole space. We prove
two comparison results, the main one for the initial value problem where the boundary is
irrelevant and a version of it for the initial boundary value problem. We also study the
optimal control problem associated with a model Hamilton–Jacobi–Bellman equation and
we prove that the value function is continuous on the whole space and it is the unique
viscosity solution of the HJB equation. For our model control problem, the value function,
and hence the unique viscosity solution of the HJB equation which is continuous up to the
boundary of the set of probability measures, is predetermined on the boundary and cannot
be prescribed there. Our viscosity solutions are only defined on the interior of the set of
probability measures and our comparison theorem does not need any information about the
behavior of viscosity sub/supersolutions on the boundary. However, it may be possible to
consider viscosity solutions to such problems on the whole space or treat them as constrained
viscosity solutions (solutions to state constraint problems). This is left for future research.
Finally, we also discuss the existence of viscosity solutions by Perron’s method. Even though
Perron’s method here is a rather straightforward adaptation of the classical Perron’s method,
we present full details for the sake of completeness.

Throughout this manuscript, we fix an undirected graph G = (V , E, ω), where V =
{1, · · · , n} is the set of vertices and E ⊂ V 2 is the set of edges. The weight ω = (ωi j ) is a n
by n symmetric matrix with nonnegative entries such that ωi j > 0 if (i, j) ∈ E . As in [49],
we assume for simplicity that the graph is connected, simple, with no self-loops or multiple
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edges. We denote by P(G) the probability simplex

{
ρ ∈ [0, 1]n

∣∣∣
n∑

i=1

ρi = 1
}
.

We use a symmetric function g : [0, 1]2 → [0,∞), to induce an equivalence relation on
S

n×n, the set of n by n skew-symmetric matrices: if ρ ∈ P(G), we say that v, ṽ ∈ S
n×n are

ρ-equivalent if (vi j − ṽi j )gi j (ρ) = 0 for all (i, j) ∈ E . We denote the quotient space by
Hρ . Under appropriate conditions which will later be specified, g is used to define a metric
tensor on P(G) and endow Hρ with an inner product and a discrete norm as follows:

(v, ṽ)ρ := 1

2

∑
(i, j)∈E

vi j ṽi j gi j (ρ) and ‖v‖ρ := √(v, v)ρ, ∀ v, ṽ ∈ S
n×n . (1.1)

Here the coefficient 1/2 accounts for the fact that whenever (i, j) ∈ E then ( j, i) ∈ E .
If φ : V → R

n , its graph gradient denoted ∇Gφ is defined as

∇Gφ := √
ωi j (φi − φ j )(i, j)∈E .

The adjoint of ∇G for the (·, ·)ρ inner product is −divρ : Hρ → R
n given by

divρ(v) =
( n∑

j=1

√
ωi jv j i gi j (ρ)

)n

i=1
, ∀ v ∈ S

n×n .

We call divρ the divergence operator. In this manuscript, we impose that

∫ 1

0

dr√
g(r , 1 − r)

< +∞, (1.2)

to ensure that the expression W , defined below in (2.7), is a metric on P(G) (cf. [73] and
[49]).

We fix T > 0 and assume that we are givenF, U0 ∈ C(P(G)) andH ∈ C(P(G)×S
n×n).

We denote by L(ρ, ·) the Legendre transform of H(ρ, ·) with respect to the inner product
(·, ·)ρ . Setting

ḡ(s, t) := log s − log t

s − t
g(s, t),

for s 
= t such that s, t > 0, in this introduction, we will keep our focus on the cases where
g satisfies (2.5), or more generally when

ḡ has a unique continuous extension to [0, 1]2. (1.3)

As a consequence of (1.3), as a function a-priori defined on a subset of (0, 1)n ,

ρ → divρ

(∇G log ρ
)

has a unique continuous extension to [0, 1]n . (1.4)

In light of (1.4), standard ODEs theory ensures that given v̄ ∈ L1(0, T ; S
n×n) and � ≥ 0,

the system of equations

σ̇ + divσ

(
v̄ + �∇G log σ

)
= 0 (1.5)

has a distributional solution σ : [0, T ] → R
n , of class W 1,1.
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When the range of σ is contained in P(G), we call v̄ a control for σ on [0, T ]. For
t ∈ (0, T ] we consider

U(t, μ) = inf
(σ,v̄)

{
U0(σ0) +

∫ t

0

(
L(σ, v̄)ds − F(σ )

)
ds : σt = μ

}
, (1.6)

where the infimum is performed over the set of (σ, v̄) such that v̄ is a control for σ over [0, t].
Formally at least, we expect U to satisfy a Hamilton–Jacobi equation, after defining a suitable
notion of Wasserstein gradient operator on the set of functions on P(G). More precisely, we
expect that U would satisfy, in a sense which remains to be specified, the equation

∂tU(t, μ) + H
(
μ,∇WU(t, μ)

)+ F(μ) = ��indU(t, μ). (1.7)

Here

�indU(t, μ) :=
(
divμ

(∇WU(μ)
)
, logμ

)
= −Oμ

(∇WU(μ)
)

and we have set

Oμ(p) := −(p,∇G logμ
)
μ
, ∀(p, μ) ∈ P(G) × S

n×n .

We call �ind, the graph individual noise operator (see Subsection 3.4 for comments on how
�ind could be associated to stochastic processes which are time continuous Markov chains
on V ). The assumption (1.3) ensures that Oμ(p) satisfies (6.1), an essential condition in the
application of Perron’s method to obtain the existence of a solution to (1.7). Note thatOμ(p)

cannot be incorporated into the Hamiltonian since the modified Hamiltonian would fail to
satisfy (A-v) and so, the conditions imposed on H(μ, p) and Oμ(p) are of different types.

In this manuscript, the existence of a solution to (1.7) will not rely on the control problem
(1.6), brought up here only to motivate the study of (1.7).

Observe that (1.7) is linear in U , when F ≡ 0, H ≡ 0 and g is given by Example 2.5,
whichmeans ḡ(s, t) ≡ 1.When � = 1, the solution in to (1.7) case is given by (see subsection
3.4)

U(t, μ) := U0
(
eAtμ

)
,

where

Ai j =
⎧⎨
⎩

ωi j , if j ∈ N (i);
0, if j /∈ N (i), j 
= i;
−∑k∈N (i) ωik, if j = i .

(1.8)

Here, N (i) := { j ∈ V : ωi j > 0}. For each t ≥ 0, eAt is known to be a transition matrix and
A is a Q–matrix. Therefore, as we will explain in Subsection 3.4, there are Markov chains
associated to the paths (t, μ) → eAtμ.

The plan of paper is the following. In Sect. 2 we present the definitions, notation and
the mathematical setup for the Wasserstein space of probability measures on a finite graph.
Section3 collects preliminary material about calculus on the Wasserstein space on a graph
and in Definition 3.18, we introduce the so-called individual noise operator. In Sect. 4 we
introduce the definition of viscosity solution and in Sect. 5 we prove comparison results.
Existence of viscosity solutions by Perron’s method and some regularity results are presented
in Sect. 6. In Sect. 7 we discuss a model optimal control problem and show that the value
function is the unique viscosity solution of the associated HJB equation.
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2 Definitions and Notation

We denote the set of skew–symmetric n × n matrices as S
n×n . Let G = (V , E, ω) denote an

undirected graph of vertices V = {1, ..., n} and edges E , with a weighted metric ω = (ωi j )

given by an n by n symmetric matrix with nonnegative entries ωi j and such that ωi j > 0 if
(i, j) ∈ E . For simplicity, assume that the graph is connected and simple, with no self–loops
or multiple edges.

We set

λ̄ω := sup
(i, j)∈E

ω−1
i j and Cω := sup

(i, j)∈E

√
ωi j .

The range and kernel of the gradient operator. It is customary to identify a function
φ : V → R with a vector φ = (φi )

n
i=1 ∈ R

n . We use the standard inner product and norm
on R

n :

(φ, φ̃) :=
n∑

i=1

φi φ̃i and ‖φ‖ = √(φ, φ), ∀ φ, φ̃ ∈ R
n .

We denote by R(∇G) the range of ∇G (defined in the introduction) and by 1 ∈ R
n the vector

whose entries are all equal to 1. Since G is connected, the kernel of∇G is the one dimensional
space spanned by 1. The orthogonal complement in R

n of the latter space is ker (∇G)⊥, the
set of h ∈ R

n such that
∑n

i=1 hi = 0.
G-Divergence of vector field. The divergence operator associates to any vector field m

on G a function on V defined by

∇G · (m) = divG(m) :=
( ∑

j∈N (i)

√
ωi j m ji

)n

i=1
.

Set of probability measures and its boundary. We identify P(G), the set of probability
measures on V , with the simplex

P(G) =
{
ρ = (ρi )

n
i=1 ⊂ [0, 1]n

∣∣∣
n∑

i=1

ρi = 1
}
.

We denote for 0 ≤ ε < 1, Pε(G) := P(G) ∩ (ε, 1)n so that P0(G) is the interior of P(G).
The boundary of P(G) is P(G)\P0(G).

The set Ct
s(ρ

0, ρ1) of paths connecting probability measures. Given ρ0, ρ1 ∈ P(G)

and 0 ≤ s < t , we denote by Ct
s(ρ

0, ρ1) the set of pairs (σ, m) such that

σ ∈ H1(s, t;P(G)), m ∈ L2(s, t; S
n×n), (σ (s), σ (t)) = (ρ0, ρ1)

and for i = 1, ..., n,

σ̇i +
∑

j∈N (i)

√
ωi j m ji = 0, in the weak sense on (0, t). (2.1)

Throughout thismanuscript g : [0,∞)×[0,∞) → [0,∞) satisfies the following assump-
tions:

(H-i) g is continuous on [0,∞) × [0,∞) and is of class C∞ on (0,∞) × (0,∞);
(H-ii) g(r , s) = g(s, r) for any s, r ∈ [0,∞);
(H-iii) min{r , s} ≤ g(r , s) ≤ max{r , s} for any r , s ∈ [0,∞);
(H-iv) g(λr , λs) = λg(r , s) for any λ, s, r ∈ [0,∞);
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(H-v) g is concave.

We set

gi j (ρ) = g(ρi , ρ j ), ∀ ρ ∈ R
n, ∀ i, j ∈ V .

The Hilbert spaces Hρ and integration by parts. If ρ ∈ P(G), we shall use the inner
product defined in (1.1). Similarly, if m, m̃ ∈ S

n×n , we set

(m, m̃) := 1

2

∑
(i, j)∈E

mi j m̃i j and ‖m‖ := √(m, m).

If φ ∈ R
n and v ∈ S

n×n , we have the integration by parts formula

(∇Gφ, v)ρ = −(φ, divρ(v)). (2.2)

Using the notation from [49], we denote by TρP(G) the closure of the range of ∇G in Hρ.

We refer to TρP(G) as the tangent space to P(G). We denote by πρ the projection onto
TρP(G).

Using the fact that by (H-iii) gi j (ρ) ≤ ρi + ρ j , one shows that

‖divρ(v)‖�2 ≤ √
2nCω ‖v‖ρ, and so, ‖divρ(v)‖�1 ≤ √

2nCω ‖v‖ρ. (2.3)

Connected components. Let ρ ∈ P(G). We say that i, j ∈ V are g-connected if either
i = j or i 
= j but there are i1, i2, ..., ik ∈ V such that i1 = i , ik = j , (il , il+1) ∈ E for
l = 1, ..., k − 1 and

k∏
l=2

gil−1il (ρ) > 0.

Example 2.1 Examples of g satisfying (H-i)-(H-v) and (1.2) include

g(r , s) = r + s

2
, (2.4)

g(r , s) =
∫ 1

0
r1−t st dt =

⎧⎨
⎩

r−s
log r−log s , if r 
= s;

0, if r = 0 or s = 0;
r , if r = s,

(2.5)

and

g(r , s) =
{

0, if r = 0 or s = 0;
2

1
r + 1

s
, otherwise. (2.6)

One can generate more examples by taking convex combinations of the g’s in (2.4)-(2.6).

The Monge-Kantorovich metric In P(G). For ρ0, ρ1 ∈ P(G), we define the 2-Monge-
Kantorovich metric by

W(ρ0, ρ1) :=
(
inf
(σ,v)

{ ∫ 1

0
(v, v)σ dt

∣∣∣ σ̇ + divσ (v) = 0, σ (0) = ρ0, σ (1) = ρ1
}) 1

2

.

(2.7)
Here the infimum is performed over the set of pairs (σ, v) such that σ ∈ H1 (0, 1;P(G))

and v : [0, 1] → S
n×n is measurable. Recall that if Cg < +∞, then W(ρ0, ρ1) < +∞ for

any ρ0, ρ1 ∈ P(G) (see Proposition 3.7 [49]). There exists a minimizer (σ, v) in (2.7) such
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that ‖v‖σ = W(ρ0, ρ1) almost everywhere on (0, 1). Using the continuity equation and the
second identity in (2.3), we conclude that

‖σ̇ (t)‖�∞ ≤ √
2nCωW(ρ0, ρ1). (2.8)

This proves that the W 1,∞-norm of σ is bounded by a constant depending only on n, g, G, ω.

Further assume that γP (ρ0), γP (ρ1) > 0, where γP is the Poincaré function on G given in
[49]. By Remark 6.5 and Theorem 7.5 [49], we can find a Borel map φ ≡ φ[ρ0, ρ1] :
[0, 1] → R

n such that v = ∇Gφ and

vi j = ∇Gφ is uniquely determined on {t ∈ (0, 1) : gi j (σ (t)) > 0}. (2.9)

Under the stringent assumption that there exists ε > 0 such that ρ0, ρ1 ∈ Pε(G), Theorem
7.3 [49] asserts that ‖φ‖W 1,1(0,1) is bounded by a constant which is independent of ρ0 and
ρ1, but depends on ε. Thus,

(ρ0, ρ1) → φ[ρ0, ρ1](1) is continuous for the metric �1 on Pε(G) × Pε(G). (2.10)

Remark 2.2 We recall that the (P(G),W) topology is the same as the (P(G), �1) topology
(cf. [73]) and thus it is also the same as the �2–topology. Therefore, P(G) is a compact set
and the notion of a continuous function is the same for all these three topologies. In particular,
P0(G) is a dense subset of P(G) for the W-topology. Since P(G) is a compact set, it has a
finite diameter.

Throughout the paper, for any r > 0 and μ ∈ P(G), we denote the open ball with radius r
centered atμ in (P(G), ‖·‖�2) by Br (μ). ByRemark 2.2, Br (μ) is also an open neighborhood
ofμ in (P(G),W) and in (P(G), ‖·‖�1). Similarly, for any t ∈ [0, T ], r > 0, μ ∈ P(G), we
use Br (t, μ) to denote the open ball with radius r centered at (t, μ) in [0, T ]×(P(G), ‖·‖�2).

3 Preliminaries

Throughout the section, we use the same notation as in Sect. 2 and assume that (H-i)-(H-v)
and (1.2) hold. For ρ ∈ P(G), we set

λg(ρ) = sup
(i, j)∈E

{ √
2√

ωi j

n√
gi j (ρ)

: gi j (ρ) > 0

}
. (3.1)

Note that λg(ρ) < ∞ if ρ has a g-connected component of cardinality greater than or equal
to 2.

Remark 3.1 If ε > 0 andρ ∈ P(G) is such thatρi ≥ ε for all i ∈ V thenλg(ρ) ≤
√
2λ̄ωε−1n.

3.1 Further properties of tangent vectors and tangent spaces

For ρ ∈ P(G) and v ∈ TρP(G), denote by [v]ρ the set of ṽ ∈ TρP(G) such that v and ṽ are
ρ–equivalent.

Lemma 3.2 For any ρ ∈ P(G) such that λg(ρ) < ∞, there exists Pρ : TρP(G) → R
n such

that if φ ∈ R
n and we set ψ := Pρ

([∇Gφ
]
ρ

)
then

(i) ∇Gψ and ∇Gφ are ρ-equivalent and so,
∥∥∇Gφ

∥∥
ρ

= ∥∥∇Gψ
∥∥

ρ
.
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(ii) |ψi | ≤ λg(ρ)

∥∥∥∇Gφ

∥∥∥
ρ

for all i ∈ V .

Proof Let C1(ρ), · · · , CN (ρ) be all the g-connected components of ρ ∈ P(G) and for
l ∈ {1, · · · , N }, set

kl := min
k∈Cl (ρ)

k.

Given φ : V → R, we define

ψi := φi − φkl , ∀i ∈ Cl(ρ).

Note that if i, j ∈ Cl(ρ) then

ψkl = 0 and (∇Gψ)i j = (∇Gφ)i j . (3.2)

This is enough to conclude that ∇Gψ and ∇Gφ are ρ-equivalent.
If i ∈ Cl(ρ) and i 
= kl ,we can find l1 = kl , · · · , lαi = i such that gl1l2 , · · · , glαi −1lαi

> 0.
The identity

ψlm = ψlm−1 + (∇Gφ
)

lmlm−1
, ∀m ≥ 2

and ψl1 = 0 implies that the sequence
(
ψlm

)αi
m=1 is uniquely determined by ∇Gφ. This is

enough to conclude that the map Pρ is well–defined.
Let El be the set of (i, j) in E such that i, j ∈ Cl(ρ). We use the first identity in (3.2) to

conclude that

2
∥∥∥∇Gφ

∥∥∥
2

ρ
=

N∑
l=1

∑
(i, j)∈El

(∇Gψ
)2

i j gi j (ρ).

If i ∈ Cl(ρ) and i 
= kl , using the above notation, we have

2
∥∥∥∇Gφ

∥∥∥
2

ρ
≥ ωl1l2 ψ2

l2 gl1l2(ρ) +
αi∑

m=3

ωlm−1lm

(
ψlm−1 − ψlm

)2
glm−1lm (ρ).

One checks that

∣∣ψi
∣∣ ≤

αi∑
m=2

√
2√

ωlm−1lm

1√
glm−1lm (ρ)

∥∥∥∇Gφ

∥∥∥
ρ
.

We conclude that (ii) holds for i in the union of the sets Cl(ρ) of a cardinality greater
than or equal to 2. It is obvious that (ii) continues to hold for i in the union of the sets
Cl(ρ) with cardinality 1. The proof of (iii) follows from the fact that ψi = φi − φ1 and
ω1i |ψi |2 g1i (ρ) ≤ ∥∥∇Gφ

∥∥2
ρ
.

Corollary 3.3 By Lemma 3.2, if ρ ∈ P(G) and λg(ρ) < ∞, then for any v ∈ TρP(G) there
exists ψ ∈ R

n such that v = ∇Gψ and |ψi | ≤ λg(ρ)‖v‖ρ for all i ∈ V .

3.2 TheWasserstein metric and the space of absolutely continuous paths on
(P(G),W)

Lemma 3.4 For any ρ, ρ̄ ∈ P(G), we have ‖ρ̄ − ρ‖�1 ≤ 2
√

nCω W(ρ, ρ̄).
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Proof Since there exists a W geodesic connecting ρ to ρ̄, (cf. Theorem 4.5-(i) in [49]), we
use (2.8) to conclude.

Lemma 3.5 If ε > 0 and ρ, ρ̄ ∈ P(G) are such that ρi , ρ̄i ≥ ε for all i ∈ V then

√
ε W(ρ, ρ̄) ≤

√
2λ̄ωn ‖ρ̄ − ρ‖�1 .

Proof Setting

σ(t) = (1 − t)ρ + t ρ̄, ∀t ∈ [0, 1],
we have σi (t) ≥ ε for i ∈ V and t ∈ [0, 1]. We then use Remark 3.1 to conclude that

λg(σ (t))
√

ε ≤
√
2λ̄ωn. (3.3)

We define

E(φ) :=
∫ 1

0

(1
2
‖∇Gφ‖2σ(t) − (φ, ρ̄ − ρ)

)
dt, ∀φ ∈ L2(0, 1; R

n).

For φ ∈ L2(0, 1; R
n), using the operator Pσ(t) from Lemma 3.2 and setting ψ(t) = φ(t) −

φ1(t), we have

ψ ∈ L2(0, 1; R
n), ψ = Pσ

([∇Gφ(t)
]
σ

)
, E(φ) = E(ψ).

By (3.3),

E(ψ) ≥
∫ 1

0

( ε

4λ̄ωn3
‖ψ‖2�2 − ‖ψ‖�2 ‖ρ̄ − ρ‖�2

)
dt .

This proves that E is bounded from below and if (ψk)k is a sequence in the range of Pσ such
that

(
E(ψk)

)
k decreases to the infimum of E over L2(0, 1; R

n) then (ψk)k is bounded in
L2(0, 1; R

n).Hence, (ψk)k admits a point of accumulationψ∞ for the weak topology. Since
φ → E(φ) is a quadratic and convex function, we conclude that

lim inf
k→+∞ E(ψk) ≥ E(ψ∞).

We can assume without loss of generality that ψ∞ = Pσ

([∇Gψ∞
]
σ

)
. The Euler-Lagrange

equation satisfied by ψ∞ is
∫ 1

0

((∇Gψ∞,∇Gφ
)
σ

− (ρ̄ − ρ, φ)
)

dt = 0, ∀φ ∈ L2(0, 1; R
n). (3.4)

This means that
σ̇ + divσ (∇Gψ∞) = 0. (3.5)

Using φ = ψ∞ in (3.4), we obtain
∫ 1

0

∥∥∇Gψ∞
∥∥2

σ
dt =

∫ 1

0
(ρ̄ − ρ,ψ∞)dt

≤ ‖ρ̄ − ρ‖�1

∫ 1

0
‖ψ∞‖�∞dt ≤ ‖ρ̄ − ρ‖�1

∫ 1

0
λg(σ )‖∇Gψ∞‖σ dt .

We first use (3.3) and then use Hölder’s inequality to conclude that

∫ 1

0

∥∥∇Gψ∞
∥∥2

σ
dt ≤ ‖ρ̄ − ρ‖�1

√
2λ̄ωε−1n

√∫ 1

0
‖∇Gψ∞‖2σ dt .
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We simplify the previous identity and use the fact that, by (3.5), ∇Gψ∞ is a velocity for σ

to obtain

W
(
σ(0), σ (1)

) ≤
∫ 1

0
‖∇Gψ∞‖σ dt ≤

√∫ 1

0
‖∇Gψ∞‖2σ dt ≤ ‖ρ̄ − ρ‖�1

√
2λ̄ωε−1n.

This concludes the proof.

Remark 3.6 Let ε > 0 and let ρ ∈ P(G) be such that ρi ≥ ε for all i ∈ V . Suppose f ∈ R
n

is such that
∑n

i=1 fi = 0. As done in Lemma 3.5, one can show that there exists φ ∈ R
n

such that

f + divρ(∇Gφ) = 0, ‖∇Gφ‖ρ ≤ ‖ f ‖�1

√
2λ̄ωε−1n.

Remark 3.7 Suppose that σ : [0, 1] → P(G) and v : [0, 1] → R
n is a Borel map such that

σ̇ + divσ (v) = 0 in the weak sense in (0, 1) and
∫ 1

0
‖v(t)‖2σ(t)dt < +∞.

By definition of W , we have that σ is an absolutely continuous curve on (P(G),W) since

W(σ (t), σ (s)) ≤
∫ t

s
‖v(τ)‖σ(τ)dτ, ∀0 ≤ s < t ≤ 1.

Hence, if we denote by |σ ′|W the W metric derivative of σ , then |σ ′|W ≤ ‖v‖σ a.e. on
(0, 1).

We next show that v can be chosen in an optimal way.

Proposition 3.8 Suppose that σ : [0, 1] → P(G) such that

W(σ (t), σ (s)) ≤
∫ s

t
β(τ)dτ and β ∈ L2(0, 1). (3.6)

Then there exists v : (0, 1) → S
n×n Borel such that v(t) ∈ Tσ(t)P(G) for almost every t,

σ̇ + divσ (v) = 0 in the weak sense in (0, 1) (3.7)

and
‖v‖σ ≤ |σ ′|W ≤ β, |σ̇ | ≤ √

2nCω|σ ′|W a.e. on [0, 1]. (3.8)

Proof We skip the proof since it is similar to the proof of Theorem 8.3.1 of [2].

3.3 TheWasserstein gradient onP(G)

Definition 3.9 (Wasserstein gradient) Let F : P(G) → R and ρ ∈ P(G).

(i) We say that F is W-differentiable at ρ if there exist v ∈ TρP(G) and C > 0 such that:
for every ε > 0 there exists δ > 0 such that if ρ̄ ∈ P(G) and v̄ ∈ TρP(G) then

‖ρ̄ − ρ‖�1 ≤ δ �⇒ ∣∣F(ρ̄) − F(ρ) − (v̄, v)ρ
∣∣ ≤ εW(ρ̄, ρ) + C

∥∥ρ̄ − ρ + divρ(v̄)
∥∥

�1
.

(3.9)

(ii) We write F ∈ C1(P0(G),W) if F is W-differentiable everywhere on P0(G) and its
Wasserstein gradient ∇WF is continuous on P0(G).
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Remark 3.10 Let F and ρ be as in Definition 3.9.

(i) We will later show that when there exists v as in Definition 3.9, it is uniquely determined.
If this is the case, we use the notation v = ∇WF(ρ) and call v the Wasserstein gradient
of F at ρ. One similarly defines Wasserstein sub and super gradients.

(ii) Observe that ifρ ∈ P0(G) then ‖·‖ρ and ‖·‖�2 are equivalent. Therefore inDefinition 3.9,
there is no confusion about what it means that ∇WF is continuous on P0(G). However,
if ρ ∈ ∂P(G), we may have ‖p‖ρ = 0 while we have ‖p‖�2 > 0.

Definition 3.11 (Fréchet derivative) Let F : P(G) → R and let ρ ∈ P(G).

(i) We say that F has a Fréchet derivative at ρ if there exists p ∈ R
n such that

n∑
i=1

pi = 0, and lim
s→0+

F((1 − s)ρ + sρ̄) − F(ρ)

s
= (p, ρ̄ − ρ), ∀ρ̄ ∈ P(G).

(3.10)
Wewill later show that there is at most one p ∈ R

n satisfying (3.10).When such p exists,
we write p = δF

δρ
(ρ) and call it the Fréchet derivative at ρ. Lemma 3.15 shows a relation

between δF
δρ

and ∇WF . One similarly defines Fréchet sub and super differentials.

(ii) We write that F ∈ C1(P0(G), �2) if F has a continuous Fréchet derivative everywhere
on P0(G).

Remark 3.12 Note that the Fréchet derivative is independent of the graph structure, i.e. the
edges E of the graph. However, the Wasserstein gradient depends on E and the metric tensor
g.

Lemma 3.13 If ∇WF(ρ) exists for some ρ ∈ P(G), then it is uniquely determined as an
element of the quotient space TρP(G).

Proof Assume v, ṽ ∈ TρP(G) are Wasserstein gradients of F at ρ. We are to show that if
(i, j) ∈ E and gi j (ρ) > 0 then vi j = ṽi j .We assume without loss of generality that ρi ≥ ρ j .

Since by (H-iii) we have (ρi , ρ j ) 
= (0, 0), we conclude that ρi > 0. For 0 < a << 1, we
set va

kl = 0 except that

va
i j = −va

ji = −
√

ωi j

gi j (ρ)
a. (3.11)

Note that divρ(va)k = 0 when k 
= i, j and

divρ(va)i = ωi j a = −divρ(va) j .

We set

σ(s) = ρ − sdivρ(va), ρ̄ = σ(1), v̄a(s) = va gi j (ρ)

gi j (σ (s))
, ∀s ∈ [0, 1]. (3.12)

Since 0 < a << 1, the range of σ is contained in P(G) and the range of gi j ◦ σ lies in
(0,∞).

Let ε > 0 and let δ > 0 be such that (3.9) holds for v and ṽ. Assuming 2ωi j a ≤ δ we get
‖ρ̄ − ρ‖�1 ≤ δ. Since ρ̄ − ρ + divρ(v̄) = 0, we conclude that

∣∣F(ρ̄) − F(ρ) − (va, v)ρ
∣∣, ∣∣F(ρ̄) − F(ρ) − (va, ṽ)ρ

∣∣ ≤ εW(ρ̄, ρ)

and so, ∣∣(va, v − ṽ)ρ
∣∣ ≤ 2εW(ρ̄, ρ). (3.13)
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But, ∣∣(va, v − ṽ)ρ
∣∣ = √

ωi j a|vi j − ṽi j | and divρ(va) = divσ (v̄a). (3.14)

The first identity in (3.12) and the last identity in (3.14) yield σ̇ + divσ (v̄a) = 0. Thus,

W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2ωi j

∫ 1

0

1

g(ρi − ωi j as, ρ j + ωi j as)
ds.

We conclude that for a sufficiently small, we have

W2(ρ̄, ρ) ≤
∫ 1

0
‖v̄a(s)‖2σ(s)ds = a2C2ωi j , C2 := 2

gi j (ρ)
. (3.15)

This, together with (3.13) and the first identity in (3.14), implies

√
ωi j a|vi j − ṽi j | ≤ 2

√
ωi jεaC .

Since ε > 0 is arbitrary, we conclude that |vi j − ṽi j | = 0.

Lemma 3.14 If δF
δρ

(ρ) exists for ρ ∈ P(G), then it is uniquely determined.

Proof Suppose ξ, ξ̃ ∈ R
n are Fréchet derivatives of F at ρ. The second identity in (3.10)

implies that (ξ̃ − ξ, ρ̄ − ρ) = 0 for all ρ̄ ∈ P(G). This means that ξ̃ − ξ is parallel
to 1 := (1, · · · , 1). The first identity in (3.10) implies that ξ̃ − ξ is perpendicular to 1.
Consequently, ξ̃ − ξ = 0.

Lemma 3.15 Let F : P(G) → R and ρ ∈ P(G).

(i) If F has both the Fréchet derivative and the Wasserstein gradient at ρ then ∇WF(ρ) =
∇G(δF/δρ)(ρ).

(ii) If F has the Fréchet derivative in an �1-neighborhood of ρ and if δF/δρ is continuous
at ρ for the �1 metric, then F has the Wasserstein gradient at ρ and v := ∇WF(ρ) =
∇G(δF/δρ)(ρ).

Proof (i) Suppose that F has both the Fréchet derivative and the Wasserstein gradient at ρ

and set v1 = ∇G(δF/δρ)(ρ), v2 = ∇WF(ρ). We are to show that whenever (i, j) ∈ E
is such that gi j (ρ) > 0, we have v1i j = v2i j . We can assume without loss of generality that
ρi ≥ ρ j . For 0 < a << 1, let va be as in (3.11) and let σ a(s) ∈ P(G) be as in (3.12). We
first use the fact that F has the Wasserstein gradient at ρ and then use that F has the Fréchet
derivative at ρ to obtain

(
va, v2

)
ρ

= lim
s→0+

F(σ a(s)) − F(ρ)

s
= −

(
δF
δρ

(ρ), divρ(va)

)
= (va, v1

)
ρ
.

This means

−a

√
ωi j

gi j (ρ)
v2i j = −a

√
ωi j

gi j (ρ)
v1i j , ∀0 < a << 1

and so, v1i j = v2i j .

(ii) Assume that F has the Fréchet derivative in an �1-neighborhood of ρ and δF/δρ

is continuous at ρ for the �1 metric. Thanks to Lemma 3.4, we may choose a constant
c ≡ c(G, g) such that ‖ · − · ‖�1 ≤ cW(·, ·). Let δ0 > 0 be such that F has the Fréchet
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derivative in B, the closed �1-ball of radius δ0 and centered at ρ. Let ε > 0 and choose
δ ∈ (0, δ0) such that

2c sup
η∈B

∥∥∥δF
δρ

(η) − δF
δρ

(ρ)

∥∥∥
�∞

≤ ε.

Assume

ρ̄ ∈ P(G) and ‖ρ̄ − ρ‖�1 ≤ δ0, v̄ ∈ TρP(G).

Set ρt := ρ + t(ρ̄ − ρ). If t ∈ (0, 1) and |h| is small enough, since ρt+h = ρt + h(ρ̄ − ρt ),
t → F(ρt ) is differentiable on (0, 1) and its Fréchet derivative is

(
δF/δρ(ρt ), ρ̄ − ρ

)
.

Since δF/δρ is continuous at ρ, its absolute value is bounded by a constant M on B. Thus,
t → F(ρt ) is Lipschitz and so,

F(ρ1) − F(ρ0) =
(δF

δρ
(ρ), ρ̄ − ρ

)
+
∫ 1

0

(δF
δρ

(ρt ) − δF
δρ

(ρ), ρ̄ − ρ
)

dt .

Thus,

F(ρ1) − F(ρ0) =
(

∇G
δF
δρ

(ρ), v̄

)

ρ

+
(

δF
δρ

(ρ), ρ̄ − ρ + divρ(v̄)

)

+
∫ 1

0

(
δF
δρ

(ρt ) − δF
δρ

(ρ), ρ̄ − ρ

)
dt .

Hence,
∣∣∣F(ρ̄) − F(ρ) − (v, v̄

)
ρ

∣∣∣

≤
∥∥∥δF

δρ
(ρ)

∥∥∥
�∞

‖ρ̄ − ρ + divρ(v̄)‖�1 + sup
η∈B

∥∥∥δF
δρ

(η) − δF
δρ

(ρ)

∥∥∥
�∞

‖ρ̄ − ρ‖�1 .

We bound the �1 norm by the W-metric and use the condition on ε to conclude (ii).

Lemma 3.16 Let T > 0 and σ ∈ AC2((0, T ) ; (P(G),W)) and let v be the velocity given
by Proposition 3.8. The proposition asserts that T , the set of t0 ∈ (0, T ) such that the metric
derivative of σ at t0 exists, v(t0) ∈ Tσ(t0)P(G), σ is differentiable at t0 and

σ̇ (t0) + divσ(t0)(v(t0)) = 0, (3.16)

is of full measure in (0, T ). If F : P(G) → R has the Wasserstein gradient at σ(t0) and
t0 ∈ T then

d

dt
F(σ (t))

∣∣∣
t=t0

=
(
∇WF(σ (t0)), v(t0)

)
σ(t0)

.

If we further assume that δF
δρ

(σ (t0)) exists, then

d

dt
F(σ (t))

∣∣∣
t=t0

=
(

δF
δσ

(σ (t0)), σ̇ (t0)

)
.

Proof Let t0 ∈ T and let C > 0 be such that for every ε > 0 there exists δ > 0 such that
if ρ ≡ σ(t0) and v̄ ∈ Tσ(t0)P(G) then (3.9) holds. Let ō : (−1, 1) → R be a function
continuous at 0 and such that ō(0) = 0 and

σ(t) − σ(t0) + (t − t0)divσ(t0)(v(t0)) = (t − t0)ō(t − t0).
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For ‖σ(t) − σ(t0)‖�1 << 1, we use (3.9) to infer
∣∣∣∣
F(σ (t)) − F(ρ))

t − t0
− (∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ ε
W
(
σ(t), ρ

)

|t − t0| + C‖ō(t − t0)‖�1 .

Hence,

lim sup
t→t0

∣∣∣∣
F(σ (t)) − F(ρ))

t − t0
− (∇WF(ρ), v(t0)

)
ρ

∣∣∣∣ ≤ ε|σ ′|(t0),

which proves the first statement of the lemma, as ε > 0 is arbitrary. In light of Lemma 3.15,
we now conclude that the second statement of the lemma holds.

Corollary 3.17 Assume that F : P0(G) → R has a local minimum at ρ ∈ P0(G).

(i) If F ∈ C1
(
P0(G),W) then ∇WF(ρ) = 0.

(ii) If F ∈ C1
(
P0(G), �2) then δF

δρ
(ρ) = 0.

Proof (i) Assume that F ∈ C1
(
P0(G),W). Let (σ, v̄a) be as in the proof of Lemma 3.13,

except that now, we can choose δ > 0 such that σ : [−δ, δ] → P0(G). Recall the weighted
metric satisfies ωi j > 0 for any (i, j) ∈ E . By Lemma 3.16 and the minimality property of
F and ρ, the following proves (i):

0 = F(σ (t)) − F(ρ)

t
=
(
∇WF(ρ), v̄a(0)

)
ρ

= a

(∇WF(ρ)
)

i jωi j

gi j (ρ)
.

(ii) Assume that F ∈ C1
(
P0(G), �2). For any f ∈ R

n such that
∑n

i=1 fi = 0, t →
F(ρ + t f ) achieves its minimum at t = 0 and so, its derivative at t = 0 is null, which means
( f , δF

δρ
(ρ)) = 0. We choose f = δF

δρ
(ρ) to conclude that δF

δρ
(ρ) = 0.

Definition 3.18 If u : P(G) → R is differentiable at ρ ∈ P0(G), the graph individual noise
operator �ind is defined by

�indu(ρ) :=
(
divρ

(∇Wu(ρ)
)
, log ρ

)
. (3.17)

When (1.3) holds, we can extend the definition of �indu(ρ) up to the boundary of P(G).

Integrating by parts (cf. (2.2)), we conclude that

�indu(ρ) = −
(
∇Wu(ρ),∇G log ρ

)
ρ
. (3.18)

Remark 3.19 In the continuum setting, the individual noise operator is known to be a second
order differential operator, obtained by differentiatingWasserstein derivatives with respect to
spatial derivatives. However, in the discrete setting, the individual noise operator is obtained
just as a special combination of first order Wasserstein derivatives. Here, the spatial graph
gradient exists for every function since there is no notion of smoothness with respect to the
graph gradient.

3.4 The individual noise operator�ind

The goal this section is to comment on the relation between the individual noise operator
�ind and some continuous time discrete state Markov chains. For the sake of illustration,
we keep our focus on the case where g satisfies (2.5). Let A be the matrix given in (1.8). It
satisfies the following properties:
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(a) Ai j ≥ 0 for all (i, j) ∈ V 2 such that i 
= j ;
(b) Aii = −∑ j 
=i Ai j for all i ∈ V ,

which, according to standard terminology in probability theory, makes A a rate–matrix (or a
Q–matrix). Therefore (cf. e.g. [69]), there exists a probability space (�,F, P) such that for
anyμ ∈ P(G),we canfindaMarkov chain S : [0, T ]×� → V such thatP

(
S(0, ·) = i

) = μi

and
P

(
S(t + h, ·) = i | S(t, ·) = j

)
= (eh A)

j i , ∀t, h ≥ 0,

for all i, j ∈ V such that P(S(t, ·) = j) 
= 0. Setting

σi (t) = P
(
S(t, ·) = i

)
, ∀i ∈ V ,

it is apparent that

σi (t + h) =
n∑

j=1

(
eh A)

j iσ j (t) =
(
1 + Aii h + o(h)

)
σi (t) +

n∑
j 
=i

(
A ji h + o(h)

)
σ j (t).

Hence, if A is symmetric, using (b), we conclude that

σi (t + h) − σi (t)

h
=

n∑
j 
=i

A ji

(
σ j (t) − σi (t)

)
+ o(h)

h
,

and so, if t is a point of differentiability for σ then

σ̇i (t) =
n∑

j 
=i

A ji
(
σ j (t) − σi (t)

)
(3.19)

for all i ∈ V . By (1.8), (3.19) is equivalent to

σ̇ (t) = divσ(t)
(∇G(logσ(t))

)
. (3.20)

Thus, the unique solution to (3.19), or equivalently the unique solution to (3.20), is given by

σ(t) = et Aμ.

Given a sufficiently smooth function U0 : P(G) → R, we define U : [0,+∞)×P(G) → R

by

U(t, μ) := U0
(
σ(t)

)
.

In the introduction, we recalled that for each t ≥ 0, eAt is known to be a transition matrix.
One checks that there exists a continuous function t → Ct ∈ (0,+∞) such that if μi ≥ ε

for all i ∈ V then (e−Atμ)i ≥ Ctε for all i ∈ V . Therefore, if σ(t) ∈ P0(G) then for h > 0
small enough, the path h → ν(h) := e−Ahσ(t) belongs to P0(G) and satisfies the identity

ν̇(h) + divν(h)

(∇G(logν(h))
) = 0.

Since U(t + h, ν(h)) = U0(σ (t)), we use Lemma 3.16 to infer

0 = d

dh
U(t + h, ν(h)) = ∂tU(t + h, ν(h)) +

(
∇WU(t + h, ν(h)),∇G log ν(h)

)
ν(h)

.

Setting h = 0, we conclude that

0 = ∂tU(t, σ (t)) − �indU(t, σ (t)).
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This links the laws of the Markov chains (St )t≥0 to the PDE

∂tU = �indU, on (0,+∞) × P(G), U(0, ·) = U0. (3.21)

4 Viscosity solutions onP(G)

In this section we introduce a notion of viscosity solution. We assume that (1.2) holds. We
fix T > 0 and assume that F ∈ C(P(G)) and H ∈ C(P(G) × S

n×n).
Recall that we denote by C1(P0(G), �2) the set of real valued functions on P0(G) which

have a continuous Fréchet derivative and we denote by C1(P0(G),W) the set of real valued
functions on P0(G) which have a continuous Wasserstein gradient. By Lemma 3.15 (ii),

C1(P0(G), �2
) ⊂ C1(P0(G),W

)
.

Note that for ν ∈ P(G), the function

μ → J (μ, ν) := 1/2‖μ − ν‖2�2 (4.1)

is of class C1(P0(G), �2). Similarly, J (μ, ·) is of class C1(P0(G), �2) and we have

∇WJ (·, ν)(μ) ≡ ∇G(μ − ν) and ∇WJ (μ, ·)(ν) ≡ ∇G(ν − μ).

We also consider the function

μ → I(μ) :=
n∑

i=1

1

μi
=

n∑
i=1

Ii (μ), ∀μ ∈ P0(G), (4.2)

which is of class C1(P0(G), �2).
For each μ ∈ P(G), we assume to be given a linear functional

Oμ : S
n×n → R

such that μ → Oμ(p) is continuous for all p ∈ S
n×n .

Remark 4.1 Any H̄ : P(G) × S
n×n → R, can be written as H̄(μ, p) = H(μ, p) + F(μ),

where

H(μ, p) := H̄(μ, p) − H̄(μ, 0), F(μ) := H̄(μ, 0).

In the sequel, we chose to adopt the notationH(μ, p)+F(μ) only to emphasize the fact that
we will impose assumptions on H̄(μ, p) − H̄(μ, 0). Therefore,H(μ, p) +F(μ) represents
a large class of Hamiltonians and is not limited to the class of the discrete analogue of the so-
called “separable Hamiltonians”. Observe that the separable Hamiltonians are widely used
in the mean field control and mean field game literature, see e.g. [19, 23, 51, 76]. In the
sequel, we adopt the notationH(μ, p)+F(μ) only to emphasize the fact that we are making
assumptions on H̄(μ, p) − H̄(μ, 0).

Given U0 : P(G) → R, we consider the Hamilton–Jacobi equation

∂t u(t, μ) + H
(
μ,∇Wu(t, μ)

)+ F(μ) = Oμ

(∇Wu(t, μ)
)
, u(0, ·) = U0 (4.3)

for a class of Hamiltonian functions H which will be specified later.
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Definition 4.2 (i) A function u ∈ USC([0, T ) × P0(G)) is a viscosity subsolution to (4.3)
if u(0, ·) ≤ U0 and for every (t0, ρ0) ∈ (0, T ) × P0(G) and every ϕ ∈ C1

(
(0, T ) ×

P0(G), �2
)
such that u − ϕ has a local maximum at (t0, ρ0), we have

∂tϕ(t0, ρ0) + H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≤ Oρ0

(∇Wϕ(t0, ρ0)
)
.

(ii) A function u ∈ LSC([0, T )×P0(G)) is a viscosity supersolution to (4.3) if u(0, ·) ≥ U0

and for every (t0, ρ0) ∈ (0, T ) × P0(G) and every ϕ ∈ C1
(
(0, T ) × P0(G), �2

)
such

that u − ϕ has a local minimum at (t0, ρ0), we have

∂tϕ(t0, ρ0) + H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≥ Oρ0

(∇Wϕ(t0, ρ0)
)
.

(iii) A function u is a viscosity solution of (4.3) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 4.3 By Corollary 3.17, every ϕ ∈ C1
(
(0, T ) × P0(G), �2

)
which achieves a local

maximum at (t, μ) ∈ (0, T ) × P0(G), satisfies ∂tϕ(t, μ) = 0 and ∇Wϕ(t, μ) = 0. Hence,
every smooth function for which (4.3) holds pointwise on (0, T )×P0(G), is also a viscosity
solution. An analogous conclusion can be drawn for viscosity subsolutions and supersolu-
tions.

Remark 4.4 For any (i, j) ∈ E such that 1 ≤ i < j ≤ n, we define ei j ∈ R
n to be such that

all its entries are null, except that the i-th entry is−1 and the j th entry is 1. If u : P(G) → R

and its Fréchet derivative exists at ρ ∈ P0(G), we can define the following limit when it
exists:

∇ei j u(ρ) := lim
t→0

u(ρ + tei j ) − u(ρ)

t
.

When the Fréchet derivative of u exists in a neighborhood of ρ and is continuous at ρ, then

∇Wu(ρ) = ∇G

(
δu

δρ

)
(ρ)

and so,
√

ωi j∇ei j u(ρ) are the entries of ∇Wu(ρ).
Thus, if we consider P0(G) to be a flat Riemannian manifold, ∇Wu(ρ) only depends on

the derivatives of u in the directions that span the tangent space. Hence, we can conclude
that if u is a Wasserstein-viscosity solution to

∂t u(t, ρ) + H(ρ,∇Wu(t, ρ)) + F(ρ) = Oρ

(∇Wu(t, ρ)
)

then at least formally, u is a viscosity solution to

∂t u(t, ρ) + H
(
ρ, (

√
ωi j∇ei j u(t, ρ))

)
+ F(ρ) = Oρ

(
(
√

ωi j∇ei j u(t, ρ))
)

which we can consider to be a PDE on a flat Riemannian manifold. Moreover, after a change
of coordinates, the equation can be transformed into an equation on (0, T ) × �, where � is
an open subset of R

n−1.

5 Comparison principles

The goal of this section is to show a comparison principle for viscosity solutions to equation
(4.3) and its version for a boundary value problem.
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We now introduce the assumptions on H and O. We fix κ > 1 and assume that and there
exist positive constants t∗ > 1 and non-negative functions γ, γ̄ , ω∗ ∈ C([0,∞)) such that
for any μ, ν ∈ P0(G), and p, q ∈ S

n×n, the following hold:

(A-i) H ∈ C
(
P0(G) × S

n×n
)
and H(μ, ·) is convex.

(A-ii) limt→1+ γ̄ (t) = 1, γ (t) > 1 for any t ∈ (1, t∗) and we have

tγ (t)H(μ, p) ≤ H(μ, tp) ≤ γ̄ (t)H(μ, p), ∀t > 0.

(A-iii) For every 0 < ε < 1 there exists θε > 0 such that θε‖p‖κ
μ ≤ H(μ, p) for all

μ ∈ Pε(G).
(A-iv) We haveH(μ, 0) = 0 and there are moduli ωε and constants Cε for 0 < ε < 1 such

that

H(μ, p) − H(ν, p)

≥ −ωε(‖μ − ν‖�2 )‖p‖κ
μ − Cε

∣∣‖p‖μ − ‖p‖ν

∣∣(‖p‖κ−1
μ + ‖p‖κ−1

ν

)
, ∀μ ∈ Pε(G).

(A-v) If I is as in (4.2) then

|H(μ, p)| ≤ C‖p‖κ
μI(μ)−κ , ∀(μ, p) ∈ P0(G) × S

n×n .

(O) There exist a constant C ≥ 0 and for every 0 < ε < 1 a constant Cε such that for
every b1, b2 ≥ 0 (if J is as in (4.1))

Oμ

(
b1∇WJ (·, ν)(μ) + b2∇WI(μ)

)
+ Oν

(
b1∇WJ (μ, ·)(ν) + b2∇WI(ν)

)

≤ Cεb1‖μ − ν‖2�2 + Cb2(‖∇WI(μ)‖μI(μ)−1+‖∇WI(ν)‖νI(ν)−1), ∀μ, ν ∈ Pε(G).

(5.1)

Example 5.1 Let a ∈ C(P(G)) be non-negative such that aIκ is bounded from above and
for every ε > 0, there exists θε > 0 such that a ≥ θε when μ ∈ Pε(G). Setting H(μ, p) :=
a(μ)‖p‖κ

μ, we have

H(μ, p) = H(ν, q) + (a(μ) − a(ν)
)
)‖p‖κ

μ + a(ν)
(‖p‖κ

μ − ‖q‖κ
ν

)
.

We choose ω∗ to be the modulus of continuity of a and we use the fact that

∣∣∣‖p‖κ
μ̄ − ‖q‖κ

ν

∣∣∣ ≤ κ
∣∣‖p‖μ − ‖q‖ν

∣∣
(

‖p‖κ−1
μ + ‖q‖κ−1

ν

)
,

to conclude that (A-i)-(A-v) hold.
Observe that the �2-Lipschitz constant of the function J := I−1 on P0(G) is less than or

equal to 1 and so, J admits a uniqueLipschitz extension onP(G)whichwe continue to denote
by J . Since on P0(G), J (μ) ≤ μi for all i ∈ V , one concludes that n J ≤ ∑i∈V μi = 1 on
P(G), and J vanishes on the boundary of P(G). Therefore, (A-i)-(A-v) hold for

a(μ) := C0 J κ (μ), θε = C0ε
κn−κ , Cε := κC0n−κ .

Remark 5.2 Since I−1 is bounded from above by n, (A-v) implies that

|H(μ, p)| ≤ Cn−κ‖p‖κ
μ, ∀(μ, p) ∈ P(G) × S

n×n . (5.2)
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Example 5.3 Assume that Oμ is the graph individual noise operator so that

Oμ(p) = −(p,∇G logμ
)
μ
.

We have

Oμ

(
∇WI(μ)

)
= − 1

2

∑
(k,l)∈E

(∇WI(μ)
)

kl gkl(μ)
(∇G logμ

)
kl

= − 1

2

∑
(k,l)∈E

( n∑
j=1

∇WI j (μ)
)

kl gkl(μ)
(∇G logμ

)
kl .

One checks that

δI j

δμ
(μ) = 1

μ2
j

(1
n

, · · · ,
1

n
,
1

n
− 1,

1

n
, · · · ,

1

n

)T
, ∇G

(
δI j

δμ

)
(μ)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if k, l 
= j or k = l = j,

−√
ω jlμ

−2
j if k = j, l 
= j,

√
ω jkμ

−2
j if k 
= j, l = j .

(5.3)

Hence,

Oμ

(
∇WI(μ)

)
=
∑

( j,l)∈E

ω jl g jl(μ)
1

μ2
j

(
logμ j − logμl

)

=
∑

( j,l)∈E, j<l

ω jl g jl(μ)

(
1

μ2
j

− 1

μ2
l

)(
logμ j − logμl

)

= −
∑

( j,l)∈E, j<l

ω jl g jl(μ)

(
μl + μ j

μ2
jμ

2
l

)(
logμ j − logμl

)
(μ j − μl) ≤ 0,

(5.4)

where we have used the fact that
(
logμ j − logμl

)
(μ j − μl) ≥ 0.

Note that

Oμ

(
∇WJ (·, ν)(μ)

)
= −1

2

∑
(i, j)∈E

ωi j
(
(μi − νi ) − (μ j − ν j )

)(
logμi − logμ j

)
gi j (μ).

We similarly compute Oν

(
∇WJ (μ, ·)(ν)

)
to conclude that

Oμ

(
∇WJ (·, ν)(μ)

)
+ Oν

(
∇WJ (μ, ·)(ν)

)

= −1

2

∑
(i, j)∈E

ωi j
(
(μi − νi ) − (μ j − ν j )

)((
logμi − logμ j

)
gi j (μ) − ( log νi − log ν j

)
gi j (ν)

)
.
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We denote by Ei j each one of the expressions in the above sum. Since

Ei j = − 1

2
ωi j
(
(μi − νi ) − (μ j − ν j )

)((
logμi − log νi

)+ ( log ν j − logμ j
))

gi j (μ)

− 1

2
ωi j
(
(μi − νi ) − (μ j − ν j )

)(
log νi − log ν j

)
(gi j (μ) − gi j (ν)),

we conclude that

Ei j ≤ Cε‖μ − ν‖2�2
where

Cε := 2Cω log
(1

ε

)
Lip(g|[ε,1]2) + 2Cω

ε
.

Hence,

Oμ

(
∇WJ (·, ν)(μ)

)
+ Oν

(
∇WJ (μ, ·)(ν)

)
≤ n2Cε‖μ − ν‖2�2 .

This concludes the proof of (5.1).

Remark 5.4 The conclusion (5.4) in Example 5.3 continues to hold if instead of I(μ) =∑
i∈V 1/μi , we take I(μ) = ∑

i∈V �(μi ) for any positive function � ∈ C∞(0,+∞) such
that �′ < 0.

Let u be a viscosity subsolution and v be a viscosity supersolution to (4.3) such that u and
−v are bounded above. For any a, β, ε, δ ∈ (0, 1], λ ∈ ( 12 , 1], we define

�0(t, s, μ, ν) := λu(t, μ) − v(s, ν) − β

T − t
− β

T − s

and

�a,ε,δ(t, s, μ, ν) := �0(t, s, μ, ν) − ‖μ − ν‖2�2
2ε

− (t − s)2

2δ
− a

n∑
i=1

( 1

μi
+ 1

νi

)
.

We set

M := sup
[0,T )×P0(G)

�0(t, t, μ, μ),

Ma := sup
[0,T )×P0(G)

(
�0(t, t, μ, μ) − 2a

n∑
i=1

1

μi

)
,

Ma,ε := sup
[0,T )×P0(G)2

(
�0(t, t, μ, μ) − ‖μ − ν‖2�2

2ε
− a

n∑
i=1

( 1

μi
+ 1

νi

))
,

Ma,ε,δ := sup
[0,T )2×P0(G)2

�a,ε,δ.

Since for every β, a, ε, δ ∈ (0, 1] and 1
2 ≤ λ ≤ 1, Ma,ε,δ ≤ M∗ for some constant M∗, it is

easy to see (see e.g. [31], Proposition 3.7 for such argument) that

lim
δ→0

Ma,ε,δ = Ma,ε, (5.5)

lim
δ→0

Ma,ε = Ma, (5.6)

lim
δ→0

Ma = M . (5.7)
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Theorem 5.5 (Comparison Principle) Assume thatH satisfies (A-i)-(A-v) andF ∈ C(P(G)).
Assume further that O is as above and satisfies (O). If u is a viscosity subsolution to (4.3),
v is a viscosity supersolution to (4.3), u,−v are bounded above and u(0, ·) ≤ v(0, ·) on
P0(G), then u ≤ v in [0, T ) × P0(G).

Proof Suppose on the contrary that u ≤ v in [0, T )×P0(G) fails. Let (t̃, μ̃) ∈ (0, T )×P0(G)

be such that 3e := u(t̃, μ̃) − v(t̃, μ̃) > 0.
Step 1. Properties of maximizer of �a,ε,δ . We will use the notation � in place of �a,ε,δ

and to alleviate the notation, we simply denote a maximizer of �a,ε,δ by (t̄, s̄, μ̄, ν̄), without
displaying the dependence in β, a, ε, δ. It is clear that there exist 0 < λ0 < 1, β0 > 0, a0 > 0
such that if λ0 < λ < 1, 0 < β < β0 and 0 < a < a0, then �(t̄, s̄, μ̄, ν̄) > 2e and
λu(0, μ̄) − v(0, μ̄) < e. Moreover, we always have

μ̄i , ν̄i ≥ c1a, ∀i ∈ V (5.8)

for some independent constant c1.
We start by observing that

Ma,ε,δ + (t̄ − s̄)2

4δ
= �(t̄, s̄, μ̄, ν̄) + (t̄ − s̄)2

4δ
≤ Ma,ε,2δ (5.9)

and

Ma,ε,δ + ‖μ̄ − ν̄‖2
4ε

+ (t̄ − s̄)2

4δ
≤ Ma,2ε,2δ. (5.10)

Thus, (5.9), together with (5.5), implies that

lim
δ→0

(t̄ − s̄)2

δ
= 0, ∀a, ε > 0. (5.11)

Now (5.5), (5.6) and (5.10) give us

lim
ε→0

lim sup
δ→0

‖μ̄ − ν̄‖2�2
ε

= 0. (5.12)

Similarly, since

Ma,ε,δ + a

2
(I(μ̄) + I(ν̄)) + ‖μ̄ − ν̄‖2

4ε
+ (t̄ − s̄)2

4δ
≤ Ma/2,2ε,2δ, (5.13)

(5.5), (5.6) and (5.7) yield

lim
a→0

lim sup
ε→0

lim sup
δ→0

a(I(μ̄) + I(ν̄)) = 0. (5.14)

Since � is upper semicontinuous, in particular it follows from (5.8), (5.11) and (5.12) (even
though the full conclusions of (5.8), (5.11), (5.12) are not necessary) that for λ0 < λ <

1, 0 < β < β0, 0 < a < a0 and for sufficiently small ε, δ, we must have t̄, s̄ > 0.
Step 2. Control on gradients of C1functions which touch ufrom above or touch vfrom

below.
Observe that,

ϕ : (t, μ) → β

λ(T − t)
+ J (μ, ν̄)

λε
+ (t − s̄)2

2λδ
+ a

λ

n∑
i=1

1

μi
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belongs to C1
(
(0, T ) ×P0(G), �2

)
and is such that u − ϕ achieves its maximum at (t̄, μ̄) in

(0, T ) × P0(G). Since u is a viscosity subsolution, we infer

β

(T − t̄)2
+ t̄ − s̄

δ
+ λH

(
μ̄,

p̄

λ

)
+ λF(μ̄) ≤ λOμ̄

( p̄

λ

)
,

where we have set

p̄ := ∇WJ (·, ν̄)(μ̄)

ε
+ a∇WI(μ̄) =: p̄1 + p̄2.

Let F∞ ∈ R be such that |F | ≤ F∞. We have

β

T 2 + t̄ − s̄

δ
+ λH

(
μ̄,

p̄

λ

)
+ F(μ̄) − Oμ̄( p̄) ≤ (1 − λ)F∞. (5.15)

By (5.3), we can find a constant C independent of μ such that

‖∇WI(μ̄)‖μ̄ ≤ C
n∑

i=1

1

μ̄2
i

. (5.16)

Since H(μ̄, ·) is a convex function and η := (1 + λ)/2 is between 0 and 1, we have

λH
(
μ̄,

p̄

λ

)
≥ λ

η
H
(
μ̄, η

p̄1
λ

)
− λ(1 − η)

η
H
(
μ̄,

η

1 − η

p̄2
λ

)
.

Using (5.16) and (A-v), we obtain for a constant C̄ > C independent of a, ε, δ such that

λH
(
μ̄,

p̄

λ

)
≥ λ

η
H
(
μ̄, η

p̄1
λ

)
− C̄

∣∣∣∣
η

(1 − η)λ

∣∣∣∣
κ
(

aκ
n∑

i=1

1

μ̄2κ
i

)
1

I(μ̄)κ
.

By (5.14), we can find ω(a, ε, δ) such that lima→0 lim supε→0 lim supδ→0 ω(a, ε, δ) = 0
and

λH
(
μ̄,

p̄

λ

)
≥ λ

η
H
(
μ̄, η

p̄1
λ

)
− ω(a, ε, δ).

Now (A-ii) and (5.15) imply

β

T 2 + t̄ − s̄

δ
+ γ

(η

λ

)
H(μ̄, p̄1) + F(μ̄) − Oμ̄( p̄) ≤ (1 − λ)F∞ + ω(a, ε, δ). (5.17)

Similarly,

ϕ̃ : (s, ν) → β

T − s
+ J (μ̄, ν)

ε
+ (t̄ − s)2

2δ
+ a

n∑
i=1

1

νi

belongs to C1
(
(0, T ) × P0(G), �2

)
and is such that v + ϕ̃ achieves its minimum at (s̄, ν̄) in

(0, T ) × P0(G). Using the fact that v is a viscosity supersolution, we infer

− β

T 2 − s̄ − t̄

δ
+ H(ν̄, q̄) + F(ν̄) − Oν̄ (q̄) ≥ 0. (5.18)

Here, we have set

q̄ := −1

ε
∇WJ (μ̄, ·)(ν̄) − a∇W I (ν̄) =: −q̄1 − q̄2.

We notice that −q̄1 = p̄1.
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Since η > λ, in light of (A-ii), for τ < 1 sufficiently close to 1 we have

r := γ
(η

λ

)
− τ γ̄

( 1
τ

)
> 0.

Similarly as before, we use the convexity of H(ν̄, ·), (A-ii) and (A-v), to obtain

H
(
ν̄, q̄

)
≤ τH

(
ν̄,

p̄1
τ

)
+ (1 − τ)H

(
ν̄,− 1

1 − τ
q̄2
)

≤ τ γ̄
( 1

τ

)
H
(
ν̄, p̄1

)
+ ω(a, ε, δ),

where ω is as before. This, together with (5.18) implies that

− β

T 2 − s̄ − t̄

δ
+ τ γ̄

( 1
τ

)
H(ν̄, p̄1) + F(ν̄) − Oν̄ (q̄) + ω(a, ε, δ) ≥ 0.

We combine this with (5.17) to conclude that

γ
(η

λ

)
H(μ̄, p̄1) − τ γ̄

( 1
τ

)
H(ν̄, p̄1) + F(μ̄) − F(ν̄)

≤ (1 − λ)F∞ − 2βT −2 + Oμ̄( p̄) − Oν̄ (q̄) + ω(a, ε, δ).

By (5.1), (5.12), (5.14) and (5.16),

γ
(η

λ

)
H(μ̄, p̄1) − τ γ̄

( 1
τ

)
H(ν̄, p̄1) + F(μ̄) − F(ν̄) ≤ (1 − λ)F∞ − 2βT −2 + ω(a, ε, δ)

(for a different ω(a, ε, δ) satisfying the same properties) and hence, using (A-iii),

τ γ̄
( 1

τ

)(
H
(
μ̄, p̄1

)− H
(
ν̄, p̄1

))+ F(μ̄) − F(ν̄)

+rθac1‖ p̄1‖κ
μ̄ ≤ (1 − λ)F∞ − 2βT −2 + ω(a, ε, δ).

Thanks to (A-iv), we conclude that if ωF is the �2-modulus of continuity of F then

− τ γ̄
( 1

τ

)(
ωac1(‖μ̄ − ν̄‖�2 )‖ p̄1‖κ

μ̄ + Cac1
∣∣‖ p̄1‖μ̄ − ‖ p̄1‖ν̄

∣∣ (‖ p̄1‖κ−1
μ̄

+ ‖ p̄1‖κ−1
ν̄

))
+ rθac1‖ p̄1‖κ

μ̄

≤ (1 − λ)F∞ − 2βT −2 + ωF
(‖μ̄ − ν̄‖�2

)+ ω(a, ε, δ). (5.19)

Step 3. Relative smallness of
∣∣‖ p̄1‖μ̄ − ‖ p̄1‖ν̄

∣∣. Using the fact that μi , νi ≥ ac1 for all
i = 1, ..., n, we easily have

∣∣‖ p̄1‖μ̄ − ‖ p̄1‖ν̄

∣∣ ≤ ∣∣‖ p̄1‖2μ̄ − ‖ p̄1‖2ν̄
∣∣ 12

=
⎛
⎝1

2

∣∣∣∣
∑

(i, j)∈E

( p̄1)
2
i j

(
gi j (μ̄) − gi j (ν̄)

)∣∣∣∣

⎞
⎠

1
2

≤ Ka‖ p̄1‖μ̄‖‖μ̄ − ν̄‖
1
2
�2

and

‖ p̄1‖ν̄ ≤ Ka‖ p̄1‖μ̄

for some constant Ka .
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Putting it all together in (5.19) we obtain that for some constant Ka

− Ka

(
ωac1(‖μ̄ − ν̄‖�2) + ‖μ̄ − ν̄‖

1
2
�2

)
‖ p̄1‖κ

μ̄ + rθac1‖ p̄1‖κ
μ̄

≤ (1 − λ)F∞ − 2βT −2 + ωF
(‖μ̄ − ν̄‖�2

)+ ω(a, ε, δ).

We now take λ so that (1− λ)F∞ < βT −2 and then take lima→0 lim supε→0 lim supδ→0 of
both sides of the above and use (5.12) to obtain a contradiction.

We next show that a comparison principle still holds even if we weaken the assumptions
on H and Oμ, provided we have additional information about how u and v behave on
[0, T ) × ∂P(G).

Theorem 5.6 (Comparison Principle, Boundary Condition) Let the assumptions of Theorem
5.5 be satisfied except that we now only require H to satisfy (A-i)-(A-iv) and Oμ to satisfy (O)
with b2 = 0. If u ∈ U SC([0, T )×P(G)) is a viscosity subsolution to (4.3),v ∈ L SC([0, T )×
P(G)) is a viscosity supersolution to (4.3), u,−v are bounded above, u(0, ·) ≤ v(0, ·) on
P(G) and u ≤ v on [0, T ) × ∂P(G), then u ≤ v in [0, T ) × P(G).

Proof Since the arguments here are similar to those of the proof ofTheorem5.5,we just sketch
the necessary adjustments. Suppose that u � v on [0, T )×P(G). For 0 < λ < 1, β, ε, δ > 0
we consider the function

�ε,δ(t, s, μ, ν) := λu(t, μ) − v(s, ν) − ‖μ − ν‖2�2
2ε

− (t − s)2

2δ
− β

T − t
− β

T − s

and we denote its maximizer by (t̄, s̄, μ̄, ν̄). It is easy to see that there exist 0 < λ0 < 1, β0 >

0 such that for every λ0 < λ < 1, 0 < β < β0 there is η > 0 (depending only on λ, β) such
that for sufficiently small ε, δ > 0, we have η < t̄, s̄ < T − η, μ̄, ν̄ ∈ Pη. The proof now
repeats the lines of the proof of Theorem 5.5 and is easier since we do not need to deal with
terms coming from the functions I(μ) and I(ν). We have in place of (5.15)

β

T 2 + t̄ − s̄

δ
+ γ (

1

λ
)H
(
μ̄, p̄

)
+ F(μ̄) − Oμ̄( p̄) ≤ (1 − λ)F∞,

where

p̄ := ∇WJ (·, ν̄)(μ̄)

ε
.

The part from (5.15) to (5.17) is skipped and we have in place of (5.18)

− β

T 2 − s̄ − t̄

δ
+ H(ν̄, p̄) + F(ν̄) − Oν̄ ( p̄) ≥ 0.

We set r = γ ( 1
λ
) − 1 > 0 and we obtain instead of (5.19),

− ωη(‖μ̄ − ν̄‖�2)‖ p̄‖κ
μ̄ − Cη

∣∣‖ p̄1‖μ̄ − ‖ p̄1‖ν̄

∣∣ (‖ p̄1‖κ−1
μ̄ + ‖ p̄1‖κ−1

ν̄

)
+ rθη‖ p̄1‖κ

μ̄

≤ (1 − λ)F∞ − 2βT −2 + ωF
(‖μ̄ − ν̄‖�2

)+ Cη

‖μ̄ − ν̄‖2�2
ε

. (5.20)

This allows us to conclude as in Step 3 of the proof of Theorem 5.5 by taking
limε→0 lim supδ→0 of both sides of the above.
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6 Perron’s method

The goal of this section is to use Perron’s method to show the existence of a viscosity
solution to (4.3). Throughout the section, we assume that F ∈ C(P(G)),H is continuous on
P0(G) × S

n×n and Oμ : S
n×n → R is linear, μ → Oμ(p) is continuous for all p ∈ S

n×n

and there exists a constant CO such that

|Oμ(p)| ≤ CO‖p‖�2 , ∀(μ, p) ∈ P0(G) × S
n×n . (6.1)

For example when (1.3) holds, the individual noise operator satisfies (6.1).
When S is a topological space, for a function f defined on a subset of Q ⊂ S, wewill write

f ∗ to denote its upper semicontinuous envelope and f∗ to denote its lower semicontinuous
envelope, i.e.

f ∗(y) = lim sup
z→y

f (z) and f∗(y) = lim inf
z→y

f (z).

InLemma6.1wedonot consider the initial condition to be part of the definition of viscosity
subsolution and we consider viscosity subsolutions to be functions on (0, T ) × P0(G).

Lemma 6.1 Let S be a family of viscosity subsolutions to (4.3). Let v := sup{w; w ∈ S} and
assume that v∗ < +∞ on (0, T ) × P0(G). Then v∗ is a viscosity subsolution to (4.3).

Proof Suppose that ϕ ∈ C1
(
(0, T ) × P0(G), �2

)
and there exists r > 0 and (t0, μ0) ∈

(0, T ) × P0(G) such that v∗ − ϕ achieves its maximum on B̄r (t0, μ0) at (t0, μ0). We may
assume without loss of generality that B̄r (t0, μ0) ⊂ (0, T ) × P0(G). By the definition of
v∗, there exists (tn, μn) and wn ∈ S such that

(tn, μn) → (t0, μ0) and wn(tn, μn) → v∗(t0, μ0) as n → +∞. (6.2)

Set

ϕδ(t, μ) := ϕ(t, μ) + δ|t − t0|2 + δ‖μ − μ0‖2�2 on (0, T ) × P0(G).

Note that ϕδ is of class C1
(
(0, T ) × P0(G), �2

)
. Furthermore, (t0, μ0) is a strict maximizer

for v∗(t, μ)−ϕδ(t, μ) on B̄r (t0, μ0). For any n ∈ N, let (t̂ n, μ̂n) be a maximizer of wn −ϕδ

over B̄r (t0, μ0). Observe that

wn(tn, μn) − ϕδ(t
n, μn) ≤ wn(t̂ n, μ̂n) − ϕδ(t̂

n, μ̂n) ≤ v∗(t̂ n, μ̂n) − ϕδ(t̂
n, μ̂n).

Thus, if (t∞, w∞) is a point of accumulation for
(
(t̂ n, μ̂n)

)
n then by (6.2), we have

v∗(t0, μ0) − ϕδ(t
0, μ0)

= lim sup
n→+∞

(wn(tn, μn) − ϕδ(t
n, μn)) ≤ lim sup

n→+∞
(v∗(t̂ n, μ̂n) − ϕδ(t̂

n, μ̂n)).

We use the fact that v∗ is upper semicontinuous to conclude that

v∗(t0, μ0) − ϕδ(t
0, μ0) ≤ v∗(t∞, μ∞) − ϕδ(t

∞, μ∞).

Since (t0, μ0) is the uniquemaximizer ofv∗−ϕδ over B̄r (t0, μ0), we conclude that (t0, μ0) =
(t∞, w∞) and so, (t0, μ0) is the unique point of accumulation of

(
(t̂ n, μ̂n)

)
n . Thus, thewhole

sequence
(
(t̂ n, μ̂n)

)
n converges to (t0, μ0) and so, for n large enough, (t̂ n, μ̂n) belongs to

Br (t0, μ0). Note that

∂tϕδ(t, μ) = ∂tϕ(t, μ) + 2δ(t − t0) and ∇Wϕδ(t, μ) = ∇Wϕ(t, μ) + 2δ∇G(μ − μ0).
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Since wn ∈ S and (t̂ n, μ̂n) maximizes wn − ϕδ over B̄r (t0, μ0), we obtain that

∂tϕ(t̂ n, μ̂n) + 2δ(t̂ n − t0) + H
(
μ̂n,∇Wϕ(t̂ n, μ̂n) + 2δ∇G(μ̂n − μ0)

)+ F(μ̂n)

≤ Oμ̂n
(∇Wϕ(t̂ n, μ̂n)

)+ 2δOμ̂n
(∇W∇G(μ̂n − μ0)

)
.

Observe that since μ0 ∈ P0(G), ‖ · ‖μ̂n and ‖ · ‖�2 are equivalent.
Letting n → +∞ and using the continuity of F,H,Oμ, and (6.1), we obtain

∂tϕ(t0, μ0) + H(μ0,∇Wϕ(t0, μ0)) + F(μ0) ≤ Oμ

(∇Wϕ(t0, μ0)
)
.

This concludes the proof of the lemma.

Lemma 6.2 Suppose that u is a viscosity subsolution to (4.3) such that u∗ is not a viscosity
supersolution to (4.3). Then, there exist (t0, μ0) ∈ (0, T ) × P0(G), δ, r > 0, such that
B2r (t0, μ0) ⊂ (0, T ) ×P0(G) and a viscosity subsolution v to (4.3) such that the following
hold.

(i) v ≥ u on [0, T ) × P0(G) and v = u on ([0, T ) × P0(G))\Br (t0, μ0).
(ii) There exists a sequence

(
(tn, μn)

)
n ⊂ (0, T ) × P0(G) such that

(tn, μn) → (t0, μ0), u(tn, μn) → u∗(t0, μ0), v(tn, μn) − u(tn, μn) → δ as n → +∞.

Proof Since u∗ is not a supersolution to (4.3), there exists ϕ ∈ C1
(
(0, T ) × P0(G), �2

)
,

r > 0 and (t0, μ0) ∈ (0, T ) × P0(G) such that u∗ − ϕ attains the minimum value 0 at
(t0, μ0) ∈ (0, T ) × P0(G) on B2r (t0, μ0) ⊂ (0, T ) × P0(G) and

∂tϕ(t0, μ0) + H(μ0,∇Wϕ(t0, μ0)) + F(μ0) < Oμ

(∇Wϕ(t0, μ0)
)
.

By a continuity argument, if δ, γ > 0 are sufficiently small, reducing the value of r if
necessary, we obtain that

(t, μ) → ϕδ,γ (t, μ) := ϕ(t, μ) + δ − γ ‖μ − μ0‖2�2 − γ |t − t0|2

is a classical subsolution to (4.3) on Br (t0, μ0) ⊂ (0, T ) × P0(G). Thus, by Remark 4.3,
ϕδ,γ is a viscosity subsolution to (4.3) on Br (t0, μ0). Observe that

u(t, x) ≥ u∗(t, x) ≥ ϕ(t, x) on Br (t
0, μ0).

If we choose δ = r2γ
8 , then

u(t, μ) > ϕδ,r (t, μ) on Br (t
0, μ0) \ B̄ r

2
(t0, μ0).

Setting

v(t, μ) =
{
max{u(t, μ), ϕδ,γ (t, μ)}, on Br (t0, μ0),

u(t, μ), otherwise,
(6.3)

we conclude that v = u on the open set

� := (0, T ) × P0(G) \ B̄ r
2
(t0, μ0).

Thus, v is a viscosity subsolution to (4.3) on �. Since, by Lemma 6.1, v = max{u, ϕδ,γ }
is a viscosity subsolution to (4.3) on Br (t0, μ0) and since the union of the open sets �

and Br (t0, μ0) is (0, T ) × P0(G), we conclude that v is a viscosity subsolution to (4.3) on
[0, T ) × P0(G).
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Let {(tn, μn)}n∈N ⊂ (0, T ) × P0(G) be such that

lim
n→+∞(tn, μn) = (t0, μ0) and lim

n→+∞ u(tn, μn) = u∗(t0, μ0).

We have

lim
n→+∞(v(tn, μn) − u(tn, μn)) ≥ ϕδ,γ (t0, μ0) − u∗(t0, μ0) = u∗(t0, μ0) + δ − u∗(t0, μ0) = δ,

which completes the proof of (ii).

Theorem 6.3 (Perron’s Method) Let the assumptions of Theorem 5.5 be satisfied, let (6.1)
hold and let U0 ∈ C(P0(G)). Suppose that u is a bounded viscosity subsolution to (4.3), ū
is a bounded viscosity supersolution to (4.3) and in addition u∗(0, μ) = ū∗(0, μ) = U0(μ)

for all μ ∈ P0(G). Then, setting

S :=
{
w : u ≤ w ≤ ū on [0, T ) × P0(G) and w is a viscosity subsolution to (4.3)

}
,

the function u := supw∈S w is a viscosity solution to (4.3).

Proof By Lemma 6.1, u∗ is a viscosity subsolution to (4.3). Since u ≤ u ≤ ū, we have
u ≤ u∗ ≤ ū and U0(μ) = u∗(0, μ) ≤ u∗(0, μ) ≤ u∗(0, μ) ≤ ū∗(0, μ) =: U0(μ) and
so, u∗(0, μ) = u∗(0, μ) = U0(μ) for μ ∈ P0(G). By the maximality property of u, this
implies that u = u∗ and so, u is a viscosity subsolution to (4.3). If u∗ fails to be a viscosity
supersolution to (4.3), let v be the viscosity subsolution to (4.3) provided by Lemma 6.2.
Observe that v(0, ·) = U0(·). By the comparison principle, v ≤ ū on [0, T ) × P0(G). Also
u ≤ u ≤ v by the construction of v. Hence v ∈ S and so, by the maximality property of u,we
have v ≤ u, which contradicts (ii) of Lemma 6.2. Thus, u∗ is also a viscosity supersolution
to (4.3) and then comparison yields u∗ ≤ u∗. Therefore u = u∗ = u∗ is a viscosity solution
to (4.3).

In light of Theorems 5.5 and 6.3, to show that (4.3) has a unique viscosity solution, it
suffices to construct a viscosity subsolution u and a viscosity supersolution ū to (4.3). We
show how this can be done in the rest of this section.

Proposition 6.4 Let the assumptions of Theorem 5.5 be satisfied (recall that we assume (6.1)
in this section). Suppose that U0 : P0(G) → R is a function such that one of the following
two conditions holds:

(i) U0 is �2-Lipschitz;
(ii) O ≡ 0 and U0 is W-Lipschitz.

Then there exists a constant C0 > 0 which depends only on U0,H,F such that the functions

u(t, μ) = −C0t + U0(μ), u(t, μ) = C0t + U0(μ)

are respectively a viscosity subsolution and a viscosity supersolution to (4.3). Moreover, if
u is a bounded viscosity solution to (4.3) then u(·, μ) is C0-Lipschitz on [0, T ) for every
μ ∈ P0(G) and for every ε > 0 there is a constant Kε such that

|u(t, μ) − u(t, ν)| ≤ Kε‖μ − ν‖�2 for all t ∈ [0, T ], μ, ν ∈ Pε(G). (6.4)
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Proof In the case (i), we assume l0 is the �2–Lipschitz constant of U0. We fix C0 > C > 0
whose value will be specified later and set u(t, μ) ≡ −C0t + U0(μ). Let ϕ ∈ C1

(
(0, T ) ×

P0(G), �2
)
be such that there are r > 0 and (t0, ρ0) such that B̄r (t0, ρ0) ⊂ (0, T ) ×P0(G)

and u −ϕ achieves its maximum on B̄r (t0, ρ0) at (t0, ρ0). Note that ∂tϕ(t0, ρ0) = −C0 and∥∥ δϕ
δμ

(t0, μ0)
∥∥

�2
≤ l0 and so,

‖∇Wϕ(t0, μ0)‖μ0 ≤ 2n2l0Cω.

Set

C := COl0 + sup
(μ,p)

{∣∣H(μ, p) + F(μ)
∣∣ : μ ∈ P0(G), p ∈ S

n×n, ‖p‖μ ≤ 2n2l0Cω

}
.

We have

∂tϕ(t0, ρ0) + H(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) − Oρ0
(∇Wu(t0, ρ0)

) ≤ −C0 + C .

This proves that u is a viscosity subsolution to (4.3) such that u(0, ·) = U0. In a similar
manner, we construct a viscosity supersolution ū to (4.3), which is such that ū(0, ·) = U0.
We apply Theorems 5.5 and 6.3 to conclude the proof in case (i).

In the case (ii), one shows that if u − ϕ achieves a local maximum at (t0, ρ0) ∈ (0, T ) ×
P0(G), then ‖∇Wϕ(t0, μ0)‖μ0 ≤ nl0C . We follow the same lines of arguments to conclude
the proof in the case (ii) when CO = 0.

To show Lipschitz continuity in t , we notice that comparison principle gives us

− C0t + U0(μ) ≤ u(t, μ) ≤ C0t + U0(μ) = C0t + U0(μ) (6.5)

for any t ∈ [0, T ) and μ ∈ P0(G). Let s > 0 and define v(t, μ) = u(t + s, μ). Since H is
time independent, v is a viscosity solution to (4.3) such that v(0, ·) = u(s, ·). We have

v(0, ·) − ‖v(0, ·) − u(0, ·)‖∞ ≤ u(0, ·) ≤ v(0, ·) + ‖v(0, ·) − u(0, ·)‖∞.

By the comparison principle,

v(t, ·) − ‖v(0, ·) − u(0, ·)‖∞
≤ u(t, ·) ≤ v(t, ·) + ‖v(0, ·) − u(0, ·)‖∞ on (0, T − s) × P0(G).

Thanks to (6.5), we conclude that

−C0s ≤ −‖u(s, ·) − u(0, ·)‖∞
≤ u(t + s, ·) − u(t, ·) ≤ ‖u(s, ·) − u(0, ·)‖∞ ≤ C0s on (0, T − s) × P0(G).

Thus, u(·, μ) is C0-Lipschitz on [0, T ) for μ ∈ P0(G).
To prove (6.4), for every δ > 0 we define the sup-convolution of u in the μ variable by

uδ(t, μ) = sup
ρ∈P0(G)

{
u(t, ρ) − ‖μ − ρ‖2�2

2δ

}
.

Let ρ̄ be a maximizing point. It is easy to see that we must have

‖μ − ρ̄‖�2 ≤ 2
√‖u‖∞δ =: Cδ.

Let now 0 < t < T , μ ∈ PCδ (G). Then ρ̄ ∈ P0(G). Suppose uδ − ϕ has a maximum at
(t, μ). Then

u(t, ρ̄) − ‖μ − ρ̄‖2�2
2δ

− ϕ(t, μ) ≥ u(s, ρ) − ‖ν − ρ‖2�2
2δ

− ϕ(s, ν) (6.6)
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for all s, ν, ρ. If we set ν = ρ + (μ − ρ̄) we thus have

u(t, ρ̄) − ϕ(t, μ) ≥ u(s, ρ) − ϕ(s, ρ + (μ − ρ̄))

so u − ϕ(·, · + (μ − ρ̄)) has a maximum at (t, ρ̄). Thus, using the definition of viscosity
subsolution,

∂tϕ(t, μ) + H(ρ̄,∇Wϕ(t, μ)) + F(ρ̄) ≤ Oρ̄

(∇Wϕ(t, μ)
) ≤ CO‖∇Wϕ(t, μ)‖�2 . (6.7)

Assume in the sequel that μ ∈ Pε(G) and δ is sufficiently small so that Cδ < ε
2 . Since

u(·, μ) is C0-Lipschitz, |∂tϕ(t, μ)| ≤ C0. We use in (6.7), (A-iii) and the fact that by (H-iii)
‖ · ‖ρ̄ ≥ √

ε‖ · ‖�2 on Pε(G), to deduce that

θ ε
2
ε

κ
2 ‖∇Wϕ(t, μ))‖κ

�2
≤ CO‖∇Wϕ(t, μ)‖�2 + C0 + F∞,

where |F | ≤ F∞. Thus, some constant Kε independent of δ we have

‖∇Wϕ(t, μ)‖�2 ≤ Kε. (6.8)

Setting s = t, ρ = ρ̄ in (6.6) we also see that the function

ν → −‖ν − ρ̄‖2�2
2δ

− ϕ(t, ν)

has a maximum at μ so
δϕ

δρ
(t, μ) = ρ̄ − μ

δ
. (6.9)

Since G is connected ∇G p = 0 if and only if pi = p j = 0 for all i, j and thus,
on the set of null average p, ‖∇G p‖�2 and ‖p‖�2 are two equivalent norms. Hence, since
∇Wϕ(t, μ) = ∇G(

δϕ
δρ

)(t, μ), there is a constant C such that

∥∥∥δϕ

δρ
(t, μ)

∥∥∥
�2

≤ Cε‖∇Wϕ(t, μ)‖�2 .

Thus, (6.8) and (6.9) imply

‖ ρ̄ − μ

δ
‖�2 ≤ Kε (6.10)

for some constant Kε.
The set of points (t, μ) such that uδ − ϕ has a maximum at (t, μ) for a smooth function

ϕ is dense in (0, T ) × P0(G) (where in P0(G) we take the ‖ · ‖�2 norm). This can be seen
by considering for every (t0, μ0) ∈ (0, T ) × P0(G), n = 1, 2, ..., the functions

uδ(t, μ) − n((t − t0)
2 + ‖μ − μ0‖2�2)

which, for large n, will have maxima close to (t0, μ0). We thus conclude from (6.10) that for
every (t, μ) ∈ (0, T ) ×Pε(G) there is a sequence (tn, μn) such that if ρ̄n is the maximizing
point for uδ(tn, μn), then

∥∥∥ ρ̄n − μn

δ

∥∥∥
�2

≤ Kε.

Thus, by passing to a subsequence, we obtain that for every (t, μ) ∈ (0, T ) × Pε(G), there
exists a maximizing point ρ̄ for uδ(t, μ) such that (6.10) holds.

Let now t ∈ (0, T ), μ, ν ∈ Pε(G). We define the function

ψδ(s) = uδ(t, μ + s(ν − μ)), ∀s ∈ [0, 1].
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The function ψδ is Lipschitz and hence differentiable a.e. Let 0 < s̄ < 1 be a point of
differentiability of ψδ and let h ∈ C1(R) be a function such that ψδ − h has a maximum at
s̄. Let ρ̄ be a maximizing point for uδ(t, μ + s(ν − μ)) satisfying (6.10). Then the function

s → u(t, ρ̄) − ‖μ + s(ν − μ) − ρ̄‖2�2
2δ

− h(s)

has a maximum at s̄. Therefore

h′(s̄) =
(

ρ̄ − (μ + s(ν − μ))

δ
, ν − μ

)

and thus |h′(s̄)| ≤ Kε‖ν − μ‖�2 . We now conclude that

|uδ(t, ν) − uδ(t, μ)| = |ψδ(1) − ψδ(0)| ≤ Kε‖ν − μ‖�2 .

It remains to send δ → 0.

If U0 ∈ C(P(G)) (and hence U0 is uniformly continuous), let uδ
0 for 0 < δ < 1 be the

sup-convolution of U0 defined as in the proof of Proposition 6.4. Then uδ
0 is �2-Lipschitz and

U0 ≤ uδ
0 ≤ U0 + aδ , where aδ → 0 as δ → 0. Therefore for every 0 < δ < 1 there is a

constant Cδ > 0 such that

uδ(t, μ) := Cδt + uδ
0(μ)

is a viscosity supersolution to (4.3). Then the function

u := inf
0<δ<1

uδ

is a bounded continuous viscosity supersolution to (4.3) such that u(0, μ) = U0(μ) for all
μ ∈ P0(G). We can construct a bounded continuous viscosity subsolution u in the same way
by approximating U0 by its inf-convolutions.

7 Optimal control problem

In this section we apply our results to a model optimal control problem and show that the
value function is a unique viscosity solution of the associated Hamilton–Jacobi equation. The
Hamiltonian for ourmodel problem is of the type fromExample 5.1 andOμ = 0. Throughout
this section we assume that

U0, F ∈ C
(
P(G)

)
,

and c > 0 is such that |U0|, |F | ≤ c.
We define the function L̄ : P(G) × S

n×n → [0,+∞] by

L̄(μ, m) =

⎧
⎪⎨
⎪⎩

0, if μ ∈ ∂P(G), m = 0;
+∞, if μ ∈ ∂P(G), m 
= 0;

1
2a(μ)

∑
(i, j)∈E

m2
i j

gi j (μ)
, if μ ∈ P0(G),

(7.1)

where

a(μ) := 1

I2(μ)
.
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It is easy to see that if μ ∈ P0(G) then

sup
m∈Sn×n

{
(p, m) − L̄(μ, m)

}
= 1

2
a(μ)‖p‖2μ =: H̄(μ, p), ∀p ∈ S

n×n .

Moreover, if μ ∈ ∂P(G)

sup
m∈Sn×n

{
(p, m) − L̄(μ, m)

}
= sup

m∈Sn×n
(p, m) =

{
0, if p = 0;

+∞, if p 
= 0.

Recall that, given ρ0, ρ1 ∈ P(G), we denote by Ct
0(ρ

0, ρ1) the set of pairs (σ, m) such that

σ ∈ H1(0, t;P(G)
)
, m ∈ L2(0, t; S

n×n), (σ (0), σ (t)) = (ρ0, ρ1)

and

σ̇ + divG(m) = 0, in the weak sense on (0, t).

Given ρ ∈ P(G), we define Ct
0(·, ρ) to be the union of all Ct

0(ρ
0, ρ) such that ρ0 ∈ P(G),

and similarly we define Ct
s(·, ρ) for 0 < s < t .

Lemma 7.1 Let ρ ∈ P(G) and fix i ∈ {1, · · · , n}. Suppose that (σ, m) ∈ CT
0 (·, ρ) is such

that L̄(σ, m) ∈ L1(0, T ). Then there exists a positive constant C independent of σ such that
the following hold.

(i) We have ‖m‖2
L2(0,T )

≤ 2n2‖L̄(σ, m)‖L1(0,T ) and ‖σ̇‖L2(0,T ) ≤ √
C‖m‖L2(0,T ).

(ii) If there exist t0, t1 ∈ [0, T ] such that t0 < t1 and σi ([t0, t1]) ⊂ (0,+∞) then

2C(t1 − t0)
∫ t1

t0
L̄(σ, m)ds ≥

(
log
(
σi (t1)

)− log
(
σi (t0)

))2
.

(iii) Either σi0([0, T ]) ⊂ (0,+∞) or σi0([0, T ]) = {0}.
Proof 1.We use the fact that a ≤ n2 and gi j ≤ 1 to obtain

L̄(σ, m) ≥ 1

2n2 ‖m‖2. (7.2)

Furthermore, the identity
σ̇i +

∑
j∈N (i)

√
ωi j mi j = 0, (7.3)

implies that for some positive constant C independent of σ , we have

|σ̇i |2 ≤ C
∑

j∈N (i)

m2
i j . (7.4)

This concludes the proof of (i).
2. Suppose that t0, t1 ∈ [0, T ] are such that t0 < t1 and σi ([t0, t1]) ⊂ (0,+∞). Then

L̄(σ, m) = 1

2

(∑
k∈V

1

σk

)2 ∑
(k, j)∈E

m2
k j

g jk(σ )
≥ 1

2

(∑
k∈V

1

σk

)2 ∑
j∈N (i)

m2
i j

gi j (σ )
≥ 1

2C

σ̇ 2
i

σ 2
i

. (7.5)

Thanks to Hölder’s inequality, we have

(t1 − t0)
∫ t1

t0

σ̇ 2
i

σ 2
i

ds ≥
(∫ t1

t0

|σ̇i |
σi

ds

)2
≥
(∫ t1

t0

σ̇i

σi
ds

)2
=
(
log
(
σi (t1)

)− log
(
σi (t0)

))2

.

(7.6)
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Combining (7.5) and (7.6) we thus obtain (ii).
3. Suppose now that there exists t̄ ∈ [0, T ] such that σi (t̄) = 0. Assume to the contrary

that we can find s̄ such that σi (s̄) > 0. The open set {s ∈ (0, T ) : σi (s) > 0} has a connected
component I which contains s̄.We have that I is an open interval of the form (a, b) such that
either σi (a) = 0 or σi (b) = 0. Suppose for instance that σi (b) = 0. Then by (ii), whenever
0 < r < b − s̄, we have

2CT
∫ T

0
L̄(σ, m)ds ≥

(
log
(
σi (b − r)

)− log
(
σi (s̄)

))2
.

Letting r → 0+, we obtain a contradiction.

If t ≥ 0 and (σ, m) ∈ Ct
0(·, ρ) for some ρ ∈ P(G), we set

At
0(σ, m) := U0(σ (0)) +

∫ t

0

(
L̄(σ, m) − F(σ )

)
ds.

We define the value function

U(t, ρ) := inf
(σ,m)

{
At

0(σ, m) : (σ, m) ∈ Ct
0(·, ρ)

}
.

Setting

σ(s) := ρ, m(s) := 0, ∀s ∈ [0, t],
we have (σ, m) ∈ Ct

0(·, ρ) and so,

−c(t + 1) ≤ U(t, ρ) ≤ t
(
L̄(ρ, 0) − F(ρ)

)
+ U0(ρ).

Since L̄(ρ, 0) = 0, we conclude that

|U(t, ρ)| ≤ (t + 1)c. (7.7)

Thus, if (σ, m) ∈ Ct
0(·, ρ) is such that

U0(σ (0)) +
∫ t

0

(
L̄(σ, m) − F(σ )

)
ds ≤ U(t, ρ) + 1, (7.8)

we have
∫ t

0
L̄(σ, m)ds ≤ U(t, ρ) + 1 +

∫ t

0
F(σ )ds − U0(σ (0)) ≤ 2(t + 1)c + 1.

and so by (7.2), we have
1

2n2

∫ t

0
‖m‖2ds ≤ 2(t + 1)c + 1. (7.9)

Theorem 7.2 For every t ∈ [0, T ], ρ ∈ P(G), there exists (σ ∗, m∗) ∈ Ct
0(·, ρ) such that

U(t, ρ) = At
0(σ

∗, m∗).

Proof If ρ ∈ ∂P(G), in light of Lemma 7.1, we have that the only pair (σ, m) ∈ Ct
0(·, ρ) for

which At
0(σ, m) < +∞ is the trivial pair σ(s) = ρ, m(s) = 0 for s ∈ [0, t] so we are done.

Assume in the sequel that ρ ∈ P0(G) and let (σk, mk) ∈ Ct
0(·, ρ) be such that

limk→∞ At
0(σk, mk) = U(t, ρ). We use Lemma 7.1 to conclude that (σk)k is bounded in
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H1(0, t; R
n) and (mk)k is bounded in L2(0, t; R

n×n). Passing to a subsequence if neces-
sary, we can assume without loss of generality that there is (σ ∗, m∗) ∈ H1(0, t; R

n) ×
L2(0, t; S

n×n) such that σk → σ ∗ uniformly and mk⇀m∗ weakly in L2(0, t; S
n×n). We

use Lemma 7.1 to conclude that the range of each σk is contained on P0(G). Due to the
uniform convergence property of (σk)k and the fact that each σk([0, t]) is a compact set we
can assume that that there exists ε > 0 such that

σk([0, t]) ⊂ Pε(G), ∀k ∈ N. (7.10)

One checks that σ ∗([0, t]) ∈ Pε/2(G) and (σ ∗, m∗) ∈ Ct
0(·, ρ). Since (7.10) expresses

the fact that the range of σk is uniformly aways from ∂P(G), one uses standard method of
the calculus of variations to conclude, since L̄ is continuous on P0(G) × S

n×n and L̄(μ, ·)
is convex, that

lim inf
k→+∞

∫ t

0
L̄(σk, mk)ds ≥

∫ t

0
L̄(σ ∗, m∗)ds.

Since (σk)k converges uniformly and F and U0 are continuous, we deduce that

At
0(σ

∗, m∗) ≤ lim inf
k→+∞ At

0(σk, mk).

Theorem 7.3 The value function U is continuous on [0, T ] × P(G).

Proof Let t0 ∈ [0, T ], ρ0 ∈ P(G). Let {(tk, ρk)}+∞
k=1 be an arbitrary sequence in [0, T ]×P(G)

such that |tk − t0| → 0 andW(ρ0, ρk) → 0 as k → +∞. By Remark 2.2, this is equivalent
to ‖ρk − ρ0‖�2 → 0.
Lower semicontinuity of U .To simplify the argumentwe assume that limk→+∞ U(tk, ρk) =
lim inf(t,ρ)→(t0,ρ0) U(t, ρ). We fix δ > 0 and suppose that tk ≤ t0 + δ for all k ∈ N. Let
(σ ∗

k , m∗
k ) be optimal paths for U(tk, ρk). We consider the extensions to [0, t0 + δ] and still

use the same notation to denote them, that is we set

σ ∗
k (t) :=

{
σ ∗

k (t), t ∈ [0, tk];
ρk, t ∈ [tk, t0 + δ], m∗

k(t) :=
{

m∗
k(t), t ∈ [0, tk];

0, t ∈ [tk, t0 + δ], (7.11)

By Lemma 7.1,

∫ t0+δ

0
‖m∗

k‖2ds ≤ 2n2
∫ t0+δ

0
L̄(σ∗

k , m∗
k )ds = 2n2U(tk , ρk ) + 2n2

∫ t0+δ

0
F(σ∗

k )ds − U0(σ
∗
k (0))

and so, by (7.7), (mk)k is bounded in L2(0, t0 + δ; S
n×n). As it was done in the proof of

Theorem 7.2, we may assume without loss of generality that there is a pair (σ̄ , m̄) such that

σk → σ̄ in C([0, t0 + δ]; R
n),

mk⇀m̄ weakly in L2(0, t0 + δ; S
n×n), σ̄ ∈ H1(0, t0 + δ; R

n).

We have

(σ̄ , m̄) ≡ (ρ0, 0) on [0, t0 + δ] and (σ̄ , m̄) ∈ Ct0
0 (·, ρ0).

Note that

lim
k→+∞U(tk, ρk) = lim

k→+∞Atk
0 (σ ∗

k , m∗
k) = lim

k→+∞

(
At0+δ

0 (σ ∗
k , m∗

k) + (t0 + δ − tk)F(ρk)
)
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Case 1. If ρ0 ∈ P0(G) we now argue as in the proof of Theorem 7.2 to conclude that

lim
k→+∞U(tk , ρk) ≥ At0+δ

0 (σ̄ , m̄) + (t0 + δ − t0)F(ρ)

= At0
0 (σ̄ , m̄) + δF(ρ) ≥ U(t0, ρ0) + δF(ρ).

We use the fact that δ > 0 is arbitrary to conclude that limk→+∞ U(tk, ρk) ≥ U(t0, ρ0).
Case 2. Suppose ρ0 ∈ ∂P(G) and (ρ0)i = 0. If ρk ∈ ∂P(G) then by Lemma 7.1(iii), we

have (σ ∗
k , m∗

k) ≡ (ρk, 0). If ρk ∈ P0(G), then, again by Lemma 7.1, we must have for every
t ∈ [0, tk]

C1 ≥ C2

∫ tk

0
L̄(σ ∗

k , m∗
k )ds ≥

(
log
(
(ρk)i

)− log
(
(σ ∗

k )i (t)
))2

for some absolute constants C1, C2 > 0. This implies that max{(σ ∗
k )i (t) : t ∈ [0, tk]} → 0

and hence
∫ tk

0
‖m∗

k‖2ds → 0.

We thus conclude that (σ̄ , m̄) ≡ (ρ0, 0) on [0, t0 + δ]. It now easily follows that

lim
k→+∞U(tk, ρk) ≥ U0(ρ0) − t0F(ρ0) = U(t0, ρ0).

Upper semicontinuity of U . Let us assume now that limk→+∞ U(tk, ρk) =
lim sup(t,ρ)→(t0,ρ0) U(t, ρ). In the argument below, we distinguish between the case t0 = 0
and the case t0 > 0. Setting

mk ≡ 0, σk ≡ ρk on [0, tk], (7.12)

we have (σk, mk) ∈ Ctk
0 (·, ρk) and so,

U(tk, ρk) ≤ Atk
0 (σk, mk) = −

∫ tk

0
F(ρk)ds + U0(ρk), (7.13)

When t0 = 0, since F and U0 are continuous, (7.13) implies that limk→+∞ U(tk, ρk) ≤
U0(ρ). Thus U is upper semicontinuous at (0, ρ0). In the sequel, we assume that t0 > 0 and
fix an optimal couple (σ ∗, m∗) in U(t0, ρ0).

Case 1. Suppose thatρ0 ∈ ∂P(G). Let i be such that (ρ0)i = 0.Since by (7.7) L̄(σ ∗, m∗) ∈
L1(0, t0),we use Lemma 7.1 to conclude that σ ∗

i ([0, t0]) = {0} and so, σ ∗([0, t0]) ⊂ ∂P(G).

Thus L̄(σ ∗, m∗) ≡ 0 on (0, t0) and so,m∗ ≡ 0 on (0, t0). This proves that (σ ∗, m∗) ≡ (ρ0, 0)
on (0, t0). We choose (σk, mk) as in (7.12) and apply (7.13) to conclude that

lim
k→+∞U(tk, ρk) ≤ −

∫ t0

0
F(ρ0)ds + U0(ρ0) = At0

0 (σ ∗, m∗) = U(t0, ρ0).

Case 2. Suppose that ρ0 ∈ P0(G). By Lemma 7.1, there is ε > 0 such that σ ∗([0, t0]) ⊂
Pε(G). Choose δ ∈ (0, t0) and assume without loss of generality that −δ/2 ≤ tk − t0 ≤ δ

for all k so that
δ/2 ≤ tk − t0 + δ ≤ 2δ, ∀k ∈ N. (7.14)

We first integrate (7.3) and use (7.4) and (7.2) to conclude that

‖σ ∗(t0)−σ ∗(t0 − δ)‖2 ≤ 2Cδ

∫ t0

t0−δ

‖m∗‖2ds ≤ 4n2Cδ

∫ t0

t0−δ

L̄(σ ∗, m∗)ds =: 4n2Cδω(δ).

(7.15)
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We define

σ k(t) :=
{

σ ∗(t), t ∈ [0, t0 − δ];(
1 − tk−t

tk−t0+δ

)
ρk + tk−t

tk−t0+δ
σ ∗(t0 − δ), t ∈ [t0 − δ, tk ]. (7.16)

We note that σ k([0, tk]) ⊂ Pε(G) and

σ̇ k = ρk − σ ∗(t0 − δ)

tk − t0 + δ
, on (t0 − δ, tk).

We use Remark 3.6 to find φ ∈ R
n such that

σ̇ k + divρ(∇Gφ) = 0 and ‖∇Gφ‖2ρ0 ≤ ‖σ̇ k‖2�1
2nλ̄ω

ε
.

Setting

mk
i j = gi j (ρ0)

(∇Gφ
)

i j ,

we conclude that (σ k, mk) ∈ C(·, ρk) and

1

2

∑
(i, j)∈E

(mk
i j )

2

gi j (ρ0)
≤ 2λ̄ωn

ε
‖σ̇ k‖2�1 = 2λ̄ωn

ε

‖ρk − σ ∗(t0 − δ)‖2�1
(tk − t0 + δ)2

.

Since gi j (ρ0) ≤ 1, we infer

‖mk‖2 ≤4λ̄ωn

ε

‖ρk − σ ∗(t0)‖2�1 + ‖σ ∗(t0) − σ ∗(t0 − δ)‖2�1
(tk − t0 + δ)2

≤4λ̄ωn2

ε

‖ρk − σ ∗(t0)‖2�2 + ‖σ ∗(t0) − σ ∗(t0 − δ)‖2�2
(tk − t0 + δ)2

.

This, together with (7.14) and (7.15) implies

‖mk‖2 ≤ 16λ̄ωn2

εδ2

(
‖ρk − σ ∗(t0)‖2�2 + 4n2Cδω(δ)

)
. (7.17)

Since (σ k, mk) ∈ Ctk
0 (·, ρk), we have

U(tk, ρk) ≤ Atk
0 (σ k, mk) = At0−δ

0 (σ ∗, m∗) +
∫ tk

t0−δ

(
L̄(σ k, mk) − F(σ k)

)
ds

We use the fact that σ k([0, tk]) ⊂ Pε(G) to infer gi j (σ
k) ≥ ε and a(σ k) ≥ ε2/n2 and so,

L̄(σ k, mk) ≤ n2

ε3
‖mk‖2

Since mk is a constant on [t0 − δ, tk] and |F | ≤ c, we have

U(tk, ρk) ≤ At0−δ
0 (σ ∗, m∗) + (tk − t0)

(n2

ε3
‖mk‖2 + c

)
.

We now use (7.17) and the fact that |tk − t0| ≤ δ to obtain

U(tk, ρk) ≤ At0−δ
0 (σ ∗, m∗) + cδ + 16λ̄ωn4

ε4

(‖ρk − ρ0‖2�2
δ

+ 4n2Cω(δ)

)
.
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We first let k → +∞ and then δ → 0+ to infer

lim
k→+∞U(tk, ρk) ≤ At0

0 (σ ∗, m∗) = U(t0, ρ0).

Thus, U is upper semicontinuous at (t0, ρ0).

Theorem 7.4 U(t, ρ) satisfies the Dynamic Programming Principle (DPP), i.e. for any
(t0, ρ0) ∈ [0, T ] × P(G) and t ∈ (0, t0]

U(t0, ρ0) = inf
(σ,m)

{∫ t0

t

(
L̄(σ (s), m(s)) −F(σ (s))

)
ds + U(t, σ (t)) : (σ, m) ∈ Ct0

t (·, ρ0)
}
.

(7.18)

Theorem 7.5 U is the unique bounded viscosity solution to (4.3).

Proof The uniqueness part follows directly from Theorem 5.5. We only need to show that U
is a viscosity solution to (4.3). It is obvious that U(0, μ) = U0(μ).

Viscosity subsolution. Let ϕ ∈ C1
(
(0, T ) × P0(G), �2

)
be such that u − ϕ has a local

maximum at (t0, ρ0) ∈ (0, T ) × P0(G). Let ψ ∈ R
n . We denote v = ∇Gψ . Since ρ0 ∈

P0(G), there exists a constant r ∈ [0, t0] and σ ∈ C1
([t0 −r , t0]; (P0(G), �2)

)
which solves

σ̇ (s) + divσ(s)(v) = 0, σ (t0) = ρ0.

Thus, for any t ∈ [t0 − r , t0], we have by Theorem 7.4

0 ≤ U(t0, ρ0) − ϕ(t0, ρ0) − U(t, σ (t)) + ϕ(t, σ (t))

t0 − t

≤ 1

t0 − t

(∫ t0

t

(
L̄(σ (s), divσ(s)(v)) − F(σ (s))

)
ds − ϕ(t0, ρ0) + ϕ(t, σ (t))

)
.

(7.19)

Letting t → t−0 in (7.19) and using Lemma 3.16, we now have

0 ≤ L̄(ρ0, divρ0(v)) − F(ρ0) −
(
divρ0(v),∇Wϕ(t0, ρ0)

)
− ∂tϕ(t0, ρ0)

Therefore, taking the infimumabove over all v = ∇Gψ and using the fact that∇Wϕ(t0, ρ0) ∈
Tρ0P(G), we obtain

0 ≤ −∂tϕ(t0, ρ0) − F(ρ0)

+ inf
{
L̄(ρ0, divρ0(v)) −

(
divρ0(v),∇Wϕ(t0, ρ0)

)
: v = ∇Gψ,ψ ∈ R

n
}

= −∂tϕ(t0, ρ0) − F(ρ0) + inf
{
L̄(ρ0, m) −

(
m,∇Wϕ(t0, ρ0)

)
: m ∈ S

n×n
}

= −∂tϕ(t0, ρ0) − F(ρ0) − H̄(ρ0,∇Wϕ(t0, ρ0)).

Viscosity supersolution. Let ϕ ∈ C1
(
(0, T ) ×P0(G), �2

)
be such that u − ϕ has a local

minimum at (t0, ρ0) ∈ (0, T )×P0(G). Then, for any sufficiently small ε > 0 and r ∈ (0, t0],
there exists (σ, m) ∈ Ct0

t0−r (·, ρ0) such that

0 ≥ U(t0, ρ0) − ϕ(t0, ρ0) − U(t0 − r , σ (t0 − r)) + ϕ(t0 − r , σ (t0 − r)) (7.20)

≥ −ε0r +
∫ t0

t0−r

(
L̄(σ (s), m(s)) − F(σ (s))

)
ds − ϕ(t0, ρ0) + ϕ(t0 − r , σ (t0 − r)).
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Using Lemma 7.1, we have σ(t) ∈ P0(G) for any t ∈ [t0 − r , t0]. Dividing by r on (7.20),
we can get by Lemma 3.16

ε ≥ 1

r

(∫ t0

t0−r

(
L̄(σ (s), m(s)) − F(σ (s))

)
ds − ϕ(t0, ρ0) + ϕ(t0 − r , σ (t0 − r))

)

= 1

r

∫ t0

t0−r

(
L̄(σ (s), m(s)) − F(σ (s)) − ∂tϕ(s, σ (s)) −

(
∇Wϕ(s, σ (s)), m(s)

))
ds

≥ 1

r

∫ t0

t0−r

(
− ∂tϕ(s, ϕ(s)) − H̄(σ (s),∇Wϕ(s, σ (s))) − F(σ (s))

)
ds.

Sending r → 0+ and then ε → 0+, we obtain

∂tϕ(t0, ρ0) + H̄(ρ0,∇Wϕ(t0, ρ0)) + F(ρ0) ≥ 0.
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43. Fabbri, G., Gozzi, F., Święch, A.: Stochastic Optimal Control in Infinite Dimension: Dynamic Program-
ming and HJB Equations, with a contribution by M. Fuhrman and G. Tessitore. Probability Theory and
Stochastic Modelling, vol. 82. Springer, Cham (2017)

44. Feng, J., Katsoulakis, M.: A comparison principle for Hamilton–Jacobi equations related to controlled
gradient flows in infinite dimensions. Arch. Ration. Mech. Anal. 192(2), 275–310 (2009)

45. Feng, J., Kurtz, T.G.: Large Deviations for Stochastic Processes. Mathematical Surveys andMonographs,
vol. 131. American Mathematical Society, Providence (2006)

46. Feng, J., Mikami, T., Zimmer, J.: A Hamilton–Jacobi PDE associated with hydrodynamic fluctuations
from a nonlinear diffusion equation. Commun. Math. Phys. 385(1), 1–54 (2021)

47. Feng, J., Nguyen, T.: Hamilton–Jacobi equations in space of measures associated with a system of con-
servation laws. J. Math. Pures Appl. (9) 97(4), 318–390 (2012)
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