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Abstract—We construct a succinct classical argument system
for QMA, the quantum analogue of NP, from generic and
standard cryptographic assumptions. Previously, building on the
prior work of Mahadev (FOCS ’18), Bartusek et al. (CRYPTO
’22) also constructed a succinct classical argument system for
QMA. However, their construction relied on post-quantumly
secure indistinguishability obfuscation, a very strong primitive
which is not known from standard cryptographic assumptions. In
contrast, the primitives we use (namely, collapsing hash functions
and a mild version of quantum homomorphic encryption) are
much weaker and are implied by standard assumptions such as
LWE. Our protocol is constructed using a general transformation
which was designed by Kalai et al. (STOC ’23) as a candidate
method to compile any quantum nonlocal game into an argu-
ment system. Our main technical contribution is to analyze the
soundness of this transformation when it is applied to a succinct
self-test for Pauli measurements on maximally entangled states,
the latter of which is a key component in the proof of MIP⇤ = RE
in quantum complexity.

Index Terms—quantum complexity, interactive protocols, suc-
cinct arguments, quantum cryptography, post-quantum cryptog-
raphy

I. INTRODUCTION

Succinct verification of computation is a notion that has
been extensively studied in the classical setting. A weak
classical client may delegate a classical computation to a
powerful server, and may then wish to check whether the
server performed the computation correctly without having to
compute the answer for itself. In this case, the client can ask
the server to execute a succinct interactive argument, in which
the server (efficiently) convinces the client beyond reasonable
doubt that the computation was performed correctly, and the
client only has to do work scaling with poly log T in order
to be convinced, where T is the time that it took to do the
computation itself. The messages in this succinct interactive
protocol should also be poly log T in length.

Not long after it came to light that quantum algorithms could
outperform the best known classical algorithms in certain
computational tasks, the question was posed of whether a
quantum prover could convince a classical verifier of the
answer to a problem in BQP without requiring the classical
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verifier to simulate the computation itself. For certain prob-
lems, like factoring, a classical verifier can check correctness
by exploiting the fact that the problem lies in NP; however,
NP is not known to contain BQP, and for some problems
this may be infeasible. This line of inquiry was initiated by
Gottesman in 2004 [2], and has led to a long line of work on
the problem now known as quantum verification.

Mahadev’s work in 2018 [3] showed that it is indeed
possible for an efficient quantum prover to convince a classical
verifier of the answer to any problem in BQP, given that the
quantum prover is subject to certain (post-quantum) crypto-
graphic assumptions. (In fact, her work also showed that it is
possible for an efficient quantum prover to convince a classical
verifier of the answer to any problem in QMA, assuming the
prover is given polynomially many copies of the witness state
for the QMA problem.) Mahadev’s quantum verification proto-
col inspired a slew of followup work in which her techniques
were used to design other cryptographic quantum verification
protocols with desirable additional properties, e.g. the property
of being non-interactive [4] or composable [5] or linear-
time [6]. In 2022, Bartusek et al. [7] showed, assuming post-
quantum iO, that some version of Mahadev’s protocol can be
made succinct, in the same sense that we described in the
opening paragraph: the classical verifier only needs to read
messages that are poly log n bits long, where n is the size
of the instance, and do work scaling with poly log T + Õ(n),
where T is the time required to execute the verification circuit.
iO, or indistinguishability obfuscation, is an immensely

powerful and subtle primitive that has recently been con-
structed from a combination of several standard assump-
tions [8]. However, some of these assumptions are not
post-quantum, and there is currently no construction of
post-quantum iO from standard assumptions. Post-quantum
iO is known to imply other elusive cryptographic objects,
e.g. public-key quantum money [9], and constructing it from
standard post-quantum assumptions remains a difficult and
important open problem.

The essential difficulty, and the reason for the use of iO

in [7], is that Mahadev’s approach to verification is in some
sense a qubit-by-qubit approach, and requires ⌦(�) bits of
communication (where � is the security parameter) for every
qubit in the prover’s witness state, because the verifier needs
to send the prover as many ⌦(�)-sized public keys as the
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witness has qubits. As a result, Mahadev’s approach is difficult
to make succinct, since setting up the keys already requires at
least n · ⌦(�) bits of communication, where n is the number
of qubits in the prover’s witness. The authors of [7] use iO

in a clever way to compress the keys and thus reduce the
amount of required communication to poly(�) · poly log n;
this is the bulk of their work. More specifically, the authors
begin by constructing a question-succinct (short questions,
long answers) protocol for verifying QMA using iO. Then they
present a general compiler which uses a recent post-quantum
analysis of Killian’s succinct arguments of knowledge [10],
[11] to turn any question-succinct protocol that satisfies certain
properties into a fully succinct protocol.

OUR RESULT

Our main contribution in this paper is to construct suc-
cinct classical-verifier arguments for QMA from standard
(and even relatively general) assumptions, without relying on
post-quantum iO. More specifically, we prove the following
theorem:

Theorem I.1. Assume that a quantum levelled homomorphic
encryption scheme exists which specialises to a classical
encryption scheme when it is used on classical plaintexts.1
Assume also that post-quantum succinct arguments of classical
knowledge exist.2 Then a constant-round classical-verifier
argument system for any promise problem in QMA exists, in
which:

1) the honest quantum prover runs in quantum polynomial
time, given polynomially many copies of an accepting
QMA witness state,

2) the completeness-soundness gap is a constant, and
3) the total communication required is of length poly log n ·

poly �, where n is the instance size and � is the security
parameter. The verifier runs in time poly(log T,�) +
Õ(n), where T is the size of the QMA verification circuit.

The main advantage of our protocol compared with Bartusek
et al.’s protocol [7] is that our protocol does not use post-
quantum iO, which at this time cannot be instantiated from
standard assumptions. Even setting aside the issue of post-
quantum iO, however, we remark that the non-iO assumptions
that our approach relies on are more generic than the Learning
With Errors (LWE)–based assumptions which Bartusek et
al. use. For example, our approach avoids using the delicate
‘adaptive hardcore bit’ property of LWE-based trapdoor claw-
free functions (TCFs), which was introduced in [13] and

1In fact, we do not need all the properties of a typical QHE scheme: for
example, we do not use the standard notion of compactness, which says that
decryption time cannot depend on the size of the circuit being evaluated.
Instead, we only need a weak notion of compactness which says that classical
ciphertexts encrypted under the QHE scheme should be classically decryptable
(in any polynomial time, even if the decryption time depends on the evaluated
circuit). We also expect that the weaker primitive of classical-client quantum
blind delegation (in which interaction is allowed) would likely suffice. These
weaker primitives could plausibly be instantiated from weaker assumptions
than LWE, since they do not imply classical FHE, which is only known
assuming LWE to date. For recent progress towards this, see [12].

2These can be constructed from any collapsing hash function.

used in Mahadev’s original verification protocol (as well as
Bartusek et al.’s protocol). The main primitive we rely on,
quantum homomorphic encryption (QHE), can be constructed
in its usual form from LWE without the adaptive hardcore
bit assumption [14]. Moreover, we do not in fact need all
the properties of standard QHE: for example, we do not
use the standard notion of compactness, which says that
decryption time cannot depend on the size of the circuit being
evaluated. Instead, we only need a weak notion of compactness
which says that classical ciphertexts encrypted under the QHE
scheme should be classically decryptable (in any polynomial
time, even if the decryption time depends on the evaluated
circuit). This more general notion of non-compact QHE with
classical decryption for classical ciphertexts plausibly exists
from assumptions other than LWE: for instance, [12] repre-
sents recent progress in this direction. As such, our approach
shows that the important primitive of quantum verification—
and even succinct verification—may exist from a wider range
of assumptions than LWE only. (In contrast, a large number of
post-quantum primitives that use techniques from Mahadev’s
original verification protocol can only, as far as we can see,
be constructed from LWE.)

We achieve Theorem I.1 by combining powerful
information-theoretic tools which originate in the study
of nonlocal games (e.g. those found in [15]) with tools that
cryptography offers (in particular, cryptographic succinct
arguments of knowledge turn out to be very useful for
us). The resulting protocol is (compared with the protocol
designed by Bartusek et al.) a remarkably clean object which
has a natural intuitive interpretation. The tool that allows
us to combine self-testing techniques with cryptographic
techniques is a compilation procedure introduced by Kalai,
Lombardi, Vaikuntanathan, and Yang [16], which Natarajan
and Zhang [17] recently exploited in order to achieve
classical-verifier quantum verification using a different
approach from Mahadev’s original approach.

A. A different approach to verification based on nonlocal
games

Since Bell’s historical observation [18] that there are certain
nonlocal games which quantum entangled players can win
with higher probability than classical players, the entangled
two-prover model of computation has been a model of great
interest in quantum complexity theory and quantum founda-
tions [19]. A nonlocal game is a game played between a
single efficient classical referee (or verifier) and two or more
unbounded players (or provers) who cannot communicate with
each other but are allowed to share entanglement. The study
of the computational power of nonlocal games (i.e. what can
the verifier compute efficiently with the help of the provers, if
the verifier doesn’t trust the provers?) has led to a fruitful line
of work which, in particular, has shown that the verifier in this
setting can decide any problem in RE [20]. In addition, it is
known [21] that, even if the honest provers are required to be
efficient, the verifier can still decide any problem in BQP (or
QMA, if one of the provers gets access to polynomially many
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copies of a witness). Put another way, quantum verification in
the entangled two-prover setting is known to exist.

In 2023 Natarajan and Zhang [17] presented a reproof
of Mahadev’s result which took a different approach to her
original approach, building on previous work on quantum blind
delegation [14] and the work of Kalai, Lombardi, Vaikun-
tanathan, and Yang [16]. Kalai, Lombardi, Vaikuntanathan, and
Yang used quantum blind delegation (in particular, quantum
homomorphic encryption) in order to design a compilation
scheme which maps any entangled two-prover proof system
to a single-prover argument, using cryptography to enforce
the no-communication assumption between the provers. Kalai
et al. showed that their compilation scheme preserves quantum
completeness and classical soundness, and Natarajan and
Zhang showed that it also preserves quantum soundness for
a certain restricted class of two-prover nonlocal games, which
was sufficient to compile a two-prover quantum verification
protocol into a single-prover cryptographic protocol and thus
recover Mahadev’s result.

From the point of view of designing succinct arguments, this
approach is more attractive than Mahadev’s original approach
as a starting point, because the verifier only needs to send
the prover a single public key of length poly(�) in order to
allow it to do homomorphic evaluations. One might then hope
to construct a succinct cryptographic verification protocol for
QMA in the following way: start with a succinct two-prover
quantum verification protocol, pass it through the KLVY com-
piler, and prove soundness using similar techniques to those
which Natarajan and Zhang used in [17]. This approach avoids
using iO entirely, because the KLVY compiler is ‘naturally’
succinct when applied to a succinct protocol.

B. Succinct quantum verification in the entangled two-prover
setting

It is therefore natural to ask whether succinct quantum
verification in the entangled two-prover setting is known.
The answer to this question is—unfortunately—no, but for
surprisingly complicated reasons. Below is a list of the partial
results in this area which are known:

1) If the honest provers are allowed to be inefficient, and if
the (classical) verifier is allowed to take poly n time, then
there is a protocol with poly log n total communication
in the entangled two-prover setting to decide QMA (in
fact, to decide all of RE). This was shown by [22].
Unfortunately, this result is not useful to us if our goal
is to compile a succinct two-prover proof system into a
succinct one-prover quantum verification protocol, since
we want the honest prover to be efficient.

2) In a setting where the verifier interacts with seven provers
instead of two, [23] claimed to show that efficient-prover
quantum verification of QMA is possible. However, the
proof of this result had two substantial errors in it. One
of these errors has been resolved by [24]. The other
one remains unresolved: see this erratum notice with an
explanation of the error [25].

Even assuming the errors in [23] can be fixed, a seven-
prover protocol is not useful to us because the techniques
from [16], [17] were only designed for nonlocal games
with two provers. It seems difficult to extend these
techniques to a larger number of provers, which would be
necessary to compile the seven-prover protocol from [23].

3) Examining the proof of MIP
⇤ = RE from [20] shows that

it relies on two so-called compression theorems: a ques-
tion reduction theorem which takes a two-prover nonlocal
game with long questions (messages from the verifier
to the provers) and maps it to a nonlocal game with
exponentially smaller questions while preserving most
other properties of the game, and an answer reduction
theorem which takes a two-prover nonlocal game with
long answers (messages from the provers to the verifier)
and maps it to a nonlocal game with exponentially smaller
answers.
One would think that these theorems would make prov-
ing succinctness in the nonlocal setting easy. Unfortu-
nately, these compression theorems come with caveats:
in particular, the answer reduction theorem can only
be applied to so-called oracularisable protocols, and no
one has come up with a two-prover verification protocol
for QMA with efficient honest provers which satisfies
this property. Moreover, even supposing that we had
a protocol to which we could apply answer reduction,
the answer reduction procedure itself happens to be so
complicated and delicate that there is no clear way to
analyse its soundness in the compiled setting, even given
the techniques from [17] and the additional techniques
for compiling nonlocal games which have been developed
since then [26].
Question reduction is both simpler and more lenient,
however: while it has never been published, question-
succinct quantum verification for QMA in the two-prover
setting can be elegantly obtained from known results [15],
[21].

C. The best of both worlds

The essential reason that two-prover succinct verification
remains an open problem is that nonlocal answer reduction is
hard. The only known way to make the answers in a nonlocal
game shorter is to use an ‘entanglement-sound’ classical PCPP,
and constructing this object is arguably the most technical
and delicate part of the proof that MIP

⇤ = RE. On the other
hand, one can make the questions in certain (useful) classes of
nonlocal games shorter using only the elegant machinery of de
la Salle [15], who simplified the question reduction theorems
of [20] by rephrasing them in terms of sampling from ✏-biased
sets. Therefore, in the nonlocal world, question reduction is
now considered to be relatively easy, and answer reduction
remains hard.

In Bartusek et al.’s approach to succinct verification, mean-
while, the situation was just the opposite: shortening the
questions in the Mahadev protocol using only cryptography
was a significant challenge, and shortening the answers could
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be done using known techniques in a relatively black-box
manner. Given that this is the case, one might hope to combine
the Bartusek et al. approach with the compilation approach
in order that the strengths of each might cancel out the
weaknesses of the other.

This is precisely what we do in this work. We construct a
succinct verification protocol for QMA by firstly compiling,
using the KLVY compiler, a question-succinct two-prover
protocol for QMA, and then compressing the answers in a
generic way using Bartusek et al.’s Killian-based compiler.

The success of this approach makes a case for using the
KLVY compiler as a general way to translate techniques that
are well-understood in the entangled two-prover world into the
single-prover cryptographic world. Once this has been done,
they can be combined with ‘natively’ cryptographic techniques
in order to marry the desirable properties of both. It seems
plausible that many of the existing results in the sphere of
classical-client quantum delegation and verification could have
been obtained in a more unified way and from milder or more
generic assumptions if the KLVY compiler had been known
at the time of their genesis, because many tasks that appear
difficult in the cryptographic single-prover setting are well-
studied already in the nonlocal setting (and vice versa).

II. TECHNICAL OVERVIEW

We focus here on how we obtain question-succinct quantum
verification in the single-prover cryptographic setting, since
the Killian-based answer compression protocol and its analysis
were already presented in [7, Section 9].

1) The basic template from [17]: Like [17], our starting
point is a basic framework for QMA verification in the two-
prover setting due to Grilo [21]. The verifier and the two
provers (who we will call Alice and Bob) receive as input
an instance of the QMA-complete promise problem 2-local
XZ Hamiltonian [27]. In other words, the problem that the
verifier is trying to decide is whether a certain Hamiltonian
H on n qubits, expressed as a sum of polynomially many 2-
local X/Z Pauli terms (where each term is a tensor product of
n operators, each of which is chosen from {id,�X ,�Z}, such
that all but 2 factors in the tensor product are id), has lowest
eigenvalue  ↵ or � � for two real numbers (↵,�), where
we are promised that � � ↵ �

1
poly(n) .

Honest Alice and Bob start out by sharing n EPR pairs. The
two-prover protocol underlying [17] for deciding whether H
has lowest eigenvalue  ↵ or � � consists of two subtests,
the Pauli braiding test and the energy test:

Protocol 1 (informal).

1) Pauli braiding. Alice and Bob execute a version of the
Pauli braiding protocol from [28], in which they play
interleaved copies of CHSH (or another similar game, like
Magic Square) and a simple game known as the ‘com-
mutation test’. This protocol is a robust self-test for the

n-qubit Pauli group3, in the sense that entangled players
who win with high probability in this game must both be
playing with measurement operators that are close (up to
local isometries) to actual Pauli measurements. In other
words, the Pauli braiding test allows the verifier to ‘force’
entangled provers to perform Pauli measurements when
requested to do so, even without trusting the provers. The
most modular analysis of this protocol proceeds via a
theorem from approximate representation theory that was
first proven by Gowers and Hatami [29].

2) Energy testing via teleportation. Alice is asked to
teleport the n-qubit witness state to Bob using their
n shared EPR pairs. She then reports the teleportation
corrections to the verifier. Bob is asked to measure certain
Pauli operators and report the outcomes. The verifier
corrects Bob’s reported outcomes using Alice’s reported
teleportation corrections, and interprets the result as a
measurement of a term from H . It accepts or rejects
depending on whether this measurement indicates that
the state which Alice was meant to teleport to Bob is
low-energy or high-energy.

The intuition for the soundness of Protocol 1 is as follows:
the Pauli braiding test guarantees in some sense, through the
use of the Gowers-Hatami theorem [29], that all successful
Bobs are in fact equivalent to honest Bob; and the energy
test is straightforward to analyse if Bob is honest. In order
to translate the intuition into reality, we have to make sure
that Bob uses the same strategy in both subtests so that the
guarantee on Bob in the Pauli braiding test also applies to
Bob in the energy test. That is, we must make sure he cannot
play honestly only in the Pauli braiding test and then deviate
however he likes in the energy test.

Suppose for the moment that the two subtests can be made
perfectly indistinguishable to Bob: that is, suppose that Bob’s
questions in both subtests are drawn from the same distribu-
tion. This would ensure that he does the same measurements
in both subtests, since he does not know which subtest is
being performed. The Pauli braiding subtest then guarantees
that these measurements are ‘close’ to honest measurements,
and the soundness of subtest (ii) follows directly from the
soundness of subtest (ii) with an honest Bob.

In [17], following a template laid out by Vidick in [30], the
two subtests were indistinguishable because Bob’s questions
are very simple: in both subtests, Bob only ever receives
one of two questions, each with 1

2 probability. One of these
two questions is an instruction to measure all of his qubits
in the Z basis (and report all n outcomes), and the other
is an instruction to measure all his qubits in the X basis.
Slightly more formally, honest Bob will in one case apply
the projective measurement {|zihz| : z 2 {0, 1}n}, and
in the other case he will apply the projective measurement
{H⌦n

|xihx|H⌦n : x 2 {0, 1}n}.

3More precisely the Heisenberg-Weyl group, the group consisting of tensor
products of id,�X ,�Z with ±1 signs, but we ignore this distinction in this
introduction.
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Measurements of this form, as it turns out, are particularly
‘compatible’ with the Gowers-Hatami-based analysis of the
Pauli braiding test, in a sense that we will make somewhat
more precise later (when we explain our ‘mixed-vs-pure basis
test’ later in this overview). It would therefore be convenient if
this question structure was also sufficient for the energy test.
Fortunately, this happens to be the case in the non-succinct
setting: it turns out that 2-local X/Z Hamiltonian with inverse
polynomial gap is complete for QMA even if we restrict the
2-local terms to XX and ZZ terms, i.e., terms where the
two non-identity components of the n-fold tensor product are
always of the same type (�X or �Z). Note that the verifier
can reconstruct a measurement of any XX-type term from
the outcomes of an all-X measurement performed by Bob, and
any ZZ-type term from the outcomes of an all-Z measurement
performed by Bob. This means that in [17], it was sufficient
in both subtests to ask Bob the same two questions (all-X and
all-Z), each with 1

2 probability. Perfect indistinguishability of
the two subtests in Protocol 1 then follows.

2) Obtaining succinctness: In designing a (question-
)succinct protocol with two entangled provers (which we will
later compile into a crypographically secure single-prover
protocol), we are faced with two new challenges compared
with [17]:

1) The Pauli braiding test (subtest (i) of Protocol 1) does
not have succinct questions. In particular, while Bob’s
questions can easily be made succinct (as we just de-
scribed, it suffices to have only two Bob questions),
Alice’s questions are more complicated.

2) In the non-succinct setting, 1
poly(n) completeness-

soundness gap is generally tolerated because it is assumed
that poly(n) many rounds of sequential repetition can
be performed in order to boost the gap. In the succinct
setting, this is not feasible, since repeating a succinct
protocol poly(n) times results in poly log(n) · poly(n)
communication; therefore, in the succinct setting, we
must design a protocol which has constant soundness gap
even without any repetition. This means that we cannot
start with a 2-local XX/ZZ Hamiltonian, since it is not
known whether this problem is QMA-complete with a
constant promise gap. If we are to take the same approach
of starting from some Hamiltonian problem, then it has
to be a Hamiltonian problem with constant promise gap
such that the terms can be grouped into a small number
of subsets (at most 2poly log n subsets), each of which
contains only terms that commute. If this is the case,
then Bob can measure all the terms in a single subset
simultaneously and report all the outcomes together, and
the verifier only needs to use poly log n bits to tell Bob
which subset to measure. If this is not the case, then the
energy testing template from subtest (ii) of Protocol 1
will not work, since the verifier will not be able to tell
Bob which terms he should measure in a succinct way.

a) Subsampling Hamiltonians: We take a similar ap-
proach to Bartusek et al. [7] in order to deal with the second

issue. We use naı̈ve QMA parallel amplification (first written
down in [31]; the procedure simply repeats the QMA verifier
in parallel a polynomial number of times) in order to boost the
promise gap to a constant; this results in a Hamiltonian that
is a sum of exponentially many terms, each of which can be
efficiently measured by measuring each of the n qubits of the
witness in either the X or the Z Pauli basis (with potentially
different basis choices for different qubits). We then use a
generic PRG with soundness against adversaries with quantum
advice in order to ‘subsample’ these terms and emerge with a
Hamiltonian that is a sum of 2poly log n terms, each of which
can be efficiently measured by measuring each of the n qubits
of the witness in either the X or the Z Pauli basis.

b) The mixed-vs-pure basis test and a new self-testing-
oriented proof of Gowers-Hatami: At this point we have
created a new problem: the terms of the Hamiltonian we
want to use in the energy subtest can no longer be measured
by a Bob who only ever measures every qubit of his state
in either the X basis or the Z basis. This is because the
amplified Hamiltonian contains tensor products of arbitrary
combinations of XX and ZZ terms from the original Hamil-
tonian, and not only tensor products of terms in the same
basis. These mixed terms can be measured by a Bob who
does what we call mixed basis measurements (measurements
that involve measuring each of n qubits in either the X
or the Z basis, with potentially different basis choices for
different qubits). However, if the verifier picks the mixed
bases depending on the distribution induced by the constant-
gap Hamiltonian, the resulting distribution over Bob questions
is not necessarily ‘compatible’ with even the regular Pauli
braiding test. Moreover, it becomes even more difficult to use
anything other than the all-X and all-Z measurements when
we consider the succinct version of Pauli braiding, for reasons
that we will elaborate on shortly (in the section ‘Succinct Pauli
braiding’).

The natural solution is to use the all-X and all-Z mea-
surements when we play Pauli braiding, use the mixed basis
measurements when we do the energy test, and introduce
some sort of consistency test to ensure that the operators
that Bob uses in the energy test are in some sense the same
ones as the ones he uses in Pauli braiding. We call this test
the mixed-vs-pure basis test. Such tests have been analysed
in the nonlocal setting before [32], but we are the first to
attempt to analyse such a test in the compiled setting, and the
compilation introduces unforeseen difficulties (see ‘Difficulties
in the analysis of the mixed-vs-pure basis test’ below).

The easiest solution to the difficulties that we were able to
come up with involves reproving the Gowers-Hatami theorem
(or, rather, the parts of the theorem relevant for self-testing)
in a way that supports arbitrary non-uniform expectations.
The (informal) theorem statement for our version of Gowers-
Hatami is as follows:

Theorem II.1 (informal). Let f : G ! U(H) be a function
from a finite group G to the set of unitaries on some Hilbert
space H. Then there exists a finite-dimensional Hilbert space

1197

Authorized licensed use limited to: MIT. Downloaded on April 26,2025 at 19:56:30 UTC from IEEE Xplore.  Restrictions apply. 



H
0, an isometry V : H ! H

0, and a unitary representation
⇡ : G ! U(H0) of G such that for all measures µ over G,

E
g⇠µ,h⇠Wn

kf(h)f(g)� f(hg)k2  ✏

=) E
g⇠µ

kf(g)� V †⇡(g)V k
2
 ✏

where we are being purposefully vague about the norm.

The difference between this theorem and the more typical
formulation is that the typical formulation has uniform ex-
pectations over the group everywhere. A version of Gowers-
Hatami similar to Theorem II.1 is often needed in the self-
testing setting when µ is in particular the uniform distribution
over {�Z(a) : a 2 {0, 1}n} or {�X(b) : b 2 {0, 1}n}, and it is
plausible that Theorem II.1 could also be proven by modifying
in some way Gowers and Hatami’s original proof of their the-
orem. Nonetheless, the proof that we present for Theorem II.1
is an entirely different proof that only uses basic tools from
quantum information, namely Stinespring dilation (instead of
matrix Fourier analysis on non-Abelian groups [29]). We
emphasise that our proof is not a reproof of the full Gowers-
Hatami theorem, because the original theorem gets bounds on
the dimension of the ‘post-rounding’ Hilbert space H

0 (which
one typically does not need in self-testing-related applications
of Gowers-Hatami). However, our proof has the advantage that
it is completely elementary and self-contained. We believe this
proof may be of independent interest, because the fact that it
is simple and self-contained makes it easier to modify the
statement when necessary to incorporate additional desirable
properties (such as, for example, the tolerance for non-uniform
expectations that we needed for this work). Together with a
‘distribution-switching’ trick (see [1] for details), we are able
to use this version of Gowers-Hatami to work out an analysis
of the mixed-vs-pure basis test. We give more details about
how we did this at the end of the following section.

c) Difficulties in the analysis of the mixed-vs-pure basis
test: Now we elaborate more thoroughly on the nature of the
difficulties that we encountered in analysing the mixed-vs-
pure basis test. We firstly justify the sense in which the all-X
and all-Z measurements are particularly ‘compatible’ with
Pauli braiding, in order to clarify why the consistency test is
necessary in the first place.

Why the mixed-vs-pure basis test is necessary. The reason
why the all-X and all-Z measurements are particularly suit-
able for use in the Pauli braiding protocol is that the all-Z
question can be interpreted as a simultaneous measurement
of the 2n binary observables {�Z(a) : a 2 {0, 1}n}, where
�Z(a) is the binary observable that is the tensor product of
�Z on all the qubits i where ai = 1 and identity other-
wise; and, similarly, the all-X question can be interpreted
as a simultaneous measurement of the 2n binary observables
{�X(b) : b 2 {0, 1}n}. Another (more precise) way to say this
is that, given the (potentially cheating) projective measurement
{PZ

u : u 2 {0, 1}n} that Bob applies when he receives
the instruction to measure everything in the Z basis, we can

construct a set of 2n binary observables {Z(a) : a 2 {0, 1}n}
which are exactly linear, in the sense that

Z(a)Z(a0) = Z(a+ a0), (II.1)

even if Bob is dishonest: simply take

Z(a) :=
X

u2{0,1}n

(�1)u·aPZ
u .

A similar statement holds true for the all-X measurement: we
can define a set of 2n binary observables {X(b) : b 2 {0, 1}n}
such that

X(b)X(b0) = X(b+ b0). (II.2)

We can use the CHSH game and the commutation test in order
to certify that these 2 · 2n binary observables {Z(a), X(b) :
a, b 2 {0, 1}n} satisfy the commutation relations that would
hold if they were genuine Paulis, i.e.

kZ(a)X(b)� (�1)a·bX(b)Z(a)k2  O(✏). (II.3)

Taking the linearity (Equation (II.1) and Equation (II.2)) and
commutation (Equation (II.3)) relations together, we can prove
that {Z(a) : a 2 {0, 1}n} and {X(b) : b 2 {0, 1}n} ap-
proximately satisfy the relations satisfied by the corresponding
elements of the Pauli group. Moreover, by taking products,
we can extend Z(a) and X(b) to a matrix-valued function
f(s, a, b) = (�1)sZ(a)X(b) that approximately obeys the
multiplication law of the Pauli group. The Gowers-Hatami
theorem then implies that there is a rounding of f which
exactly satisfies the Pauli group relations (up to isometry).
That is, there exists a representation ⇢ of the Pauli group such
that, on average over s, a, b, f(s, a, b) is close to ⇢(s, a, b)
conjugated by the isometry.

Zooming back out to the level of designing Bob’s questions,
note that the all-Z and all-X questions were particularly nice
for the Pauli braiding test because (1) the sets {�Z(a) :
a 2 {0, 1}n} and {�X(b) : b 2 {0, 1}n} taken together
generate the entire n-qubit Pauli group, and (2) the trick of
constructing many binary observables from a single projective
measurement gave us exact linearity on the Z side and the X
side individually almost for free: that is, {Z(a) : a 2 {0, 1}n}
is automatically an exact representation of Zn

2 , and the same
is true of {X(b) : b 2 {0, 1}n}.

There is no guarantee that these nice properties hold if we
consider (instead of the all-X and all-Z questions) the set
of mixed-basis questions induced by the energy test for our
constant-gap Hamiltonian. In particular, there is no guarantee
that the binary observables which can be constructed from
Bob’s set of mixed basis measurements will generate the whole
Pauli group, in the way that {�Z(a) : a 2 {0, 1}n} and
{�X(b) : b 2 {0, 1}n} generate the whole Pauli group. It
becomes even more important to use the all-X and all-Z
questions if we want to eventually make the Pauli braiding
test question-succinct: we give some intuition as to why this
is the case in the section ‘Succinct Pauli braiding’.

The easiest solution seems to be to introduce a consistency
test between Bob’s mixed basis measurements (that we would
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like Bob to use when he plays the energy test) and Bob’s pure
basis measurements (that we would like Bob to use when he
plays the Pauli braiding test). More specifically—following
the standard template for designing tests of this form—we
will introduce two new questions into Alice’s question set
that are identical to Bob’s pure basis questions (i.e. ‘measure
all in X’ and ‘measure all in Z’); we will ask Bob to play his
pure basis operators against Alice’s pure basis operators, in
order to check that Bob’s pure basis operators are consistent
with Alice’s pure basis operators; and then we will ask Bob
to play his mixed basis operators against Alice’s pure basis
operators, and check that they agree whenever the bases
align, which (since we checked that Bob’s and Alice’s pure
basis operators agree) is essentially equivalent to checking
that Bob’s mixed basis operators are consistent with Bob’s
pure basis operators. We might hope that this test, combined
with the usual analysis, will be sufficient to allow us to
‘round’ Bob’s mixed operators in the same way that we can
round Bob’s all-X and all-Z measurements by using the
usual Gowers-Hatami analysis.

Difficulties in the analysis. Unfortunately, instantiating this
intuition proves to be nontrivial in the compiled setting, even
though the analysis is fairly routine in the nonlocal setting. The
tensor product structure of the provers’ Hilbert space in the
nonlocal setting is useful because it supports a large range
of convenient operations that are loosely grouped together
under the name of ‘prover-switching’. The ordinary nonlocal
analysis of a consistency test like this one would proceed
primarily through prover-switching calculations. While we did
find it necessary to prove some lemmas which capture certain
applications of prover-switching in the compiled setting, we
found that these lemmas were insufficient in order to analyse
the mixed-vs-pure basis test.

More specifically, the main difficulty we encountered was
the following. The statement we would like to show, in order
to make the energy test work in the presence of mixed terms,
is of the following form. Let w 2 {id, X, Z}

n be a string
indicating which Pauli bases to measure n qubits in. We want
to show that, if Alice and Bob win in our protocol with high
probability, then there exists an isometry V such that, for the
distribution D on Pauli basis choices induced by the constant-
gap Hamiltonian,

E
w⇠D

E
a2{0,1}n

kOw(a)� V †(�w(a)⌦ idaux)V k
2
 small,

where �w(a) is the honest Pauli observable that corresponds
to the tensor product

�w(a) =
O

i

�ai
wi

.

and Ow(a) is Bob’s potentially cheating version of �w(a).
Normal pure-basis Gowers-Hatami tells us that, if Alice and

Bob win with high probability in Pauli braiding, then for any
W 2 {X,Z} it is the case that

E
a2{0,1}n

kW (a)� V †(�W (a)⌦ idaux)V k
2
 small, (II.4)

for some fixed isometry V . One idea for proceeding with the
analysis might be to show that Ow(a) ⇡ Z(c)X(d) using
the mixed-vs-pure basis test (with c being the string such that
ci = 1 iff ai = 1 and wi = W , and similarly for d), and then
to ‘round’ Z(c) and X(d) separately using Equation (II.4).
Unfortunately, rounding something of the form Z(c)X(d)
naı̈vely using Equation (II.4) produces something of the form

V †(�Z(c)⌦ idaux)V V †(�X(d)⌦ idaux)V.

Since V is an isometry and not a unitary, V V † is not
necessarily id, and it is unclear how to get rid of it: we call this
the ‘V V † problem’. There are ways to bypass this problem
in the nonlocal setting using tensor product structure, but we
were not able to replicate these techniques in the compiled
setting.

Instead, we bypass the problem by ‘directly’ proving a
form of Gowers-Hatami that, perhaps surprisingly, allows us
to round in expectation over any distribution over the Pauli
group, even though the Pauli braiding test is only played
with the uniform distribution. More specifically, we prove
our version of Gowers-Hatami (Theorem II.1, see [1] for
the formal version), which can be used to round arbitrary
distributions over the underlying group, provided with the
right hypothesis; and then we prove, using a ‘distribution-
switching’ trick (see [1]), that the hypothesis of Theorem II.1
can be obtained for any distribution µ even if we only start
with commutation relations that hold on uniform average over
pure-basis elements (and a few other conditions, such as exact
linearity), which is what we have access to through the pure-
basis Pauli braiding test.

d) Succinct Pauli braiding: Finally, armed with the
mixed-vs-pure basis test, we can focus on making the Pauli
braiding test succinct (where, by ‘Pauli braiding test’, we mean
the version in which Bob always gets asked either the all-X
or the all-Z question). Our starting point for this mission is
de la Salle’s elegant simplification [15] of ‘question reduction’
from [20], in which he introduces a version of Pauli braiding
where Alice’s questions are sampled from ✏-biased sets. The
normal Pauli braiding game proceeds as follows:

• The verifier chooses two strings a, b 2 {0, 1}n uniformly
at random.

• The verifier decides what to do next based on the parity
of a · b:
– If a · b = 0, the verifier referees a commutation game

(in which honest Alice plays with �Z(a) and �X(b)).
– If a · b = 1, the verifier referees an anticommutation

game (in which, again, honest Alice plays by embed-
ding �Z(a) and �X(b) into her strategy).

The commutation game is designed to test that two particular
operators commute, and the anticommutation game (based on
CHSH or Magic Square) is designed to test that two particular
operators anticommute.

Note that the verifier has to send a, b to Alice for this
protocol to work. The protocol was made succinct by de la
Salle simply by choosing a, b from ✏-biased sets instead of
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from all of {0, 1}n. This is a natural idea, but it is at first
surprising that it works at all: after all, the sets of Paulis
{�Z(a) : a 2 S} and {�X(b) : b 2 S} for some ✏-biased
S, where |S| = poly(n), only cover an exponentially small
fraction of the Pauli group! All that the protocol directly
certifies is commutation and anticommutation relations among
pairs of operators in these sets. Naı̈vely, to deduce relations
about representations of general group elements, one would
need to write these elements as poly(n)-length words in
the group elements from the ✏-biased sets, and apply the
relations on the ✏-biased sets poly(n)-many times. This would
seemingly rule out a test with constant soundness.

Miraculously, however, everything still works as before,
and the reason is that we do probe the entire group through
Bob, who still measures the all-X and all-Z mesaurements. In
particular, we have ‘for free’ (or by construction) that Bob’s
X(b) operators, taken as a set, form an exact representation
of Zn

2 , and the same for his Z(a) operators. Meanwhile,
all elements of the Pauli group can be written as words of
constant length in the operators {�Z(a) : a 2 {0, 1}n} and
{�X(b) : b 2 {0, 1}n}. In some sense, de la Salle’s test works
because probing the commutation relations between two exact
representations of Zn

2 on only an ✏-biased set is sufficient
to establish the commutation relations everywhere, because
the function of ✏-biased sets is precisely to ‘fool’ exactly
linear functions. In fact, de la Salle’s test and its analysis are
analogous to the “derandomized BLR test” for linear functions
and the Fourier-based analysis of it presented in Section 6.4
of [33].

In order to use the succinct version of Pauli braiding in
our protocol, we have to come up with a version of the
analysis that works in the compiled setting. Unfortunately, de
la Salle’s original proof in the nonlocal case is written in the
‘synchronous’ setting, in which the provers (even malicious
provers) are assumed to start out by sharing EPR pairs. This
assumption simplifies the calculations because it allows us to
move (‘prover switch’) measurements freely from one prover
to the other. The synchronicity assumption is without loss of
generality in the nonlocal setting by [34], but no compiled
version of this result exists. Therefore, we have to redo the
proof in our setting using the state-dependent distance, and
come up with ways to use the cryptography to simulate the
“prover switching” steps in de la Salle’s analysis. (At the time
of [17] it was not known whether the cryptography could in
fact simulate these properties.) In the process, we pare down
de la Salle’s proof to the parts that are essential for analysing
succinct Pauli braiding and state it in more computer-science-
like language, which may be useful for future readers with a
computer science background.

e) Related work: Simultaneously, a succinct argument
system for QMA based only on the post-quantum security of
LWE (a standard assumption) was achieved by [35]. Both of
these works use tools from [7], in particular the technique of
“subsampling” a Hamiltonian using a PRG, and the technique
of transforming a semi-succinct protocol into a fully succinct
one by using succinct arguments of knowledge. However,

the methods they use to solve the key technical challenge
of succinctly delegating many-qubit Pauli measurements are
essentially disjoint. In particular, for us, the “heavy lifting”
to achieve question-succinctness is performed information
theoretically, in our question-succinct two-prover self-test for
EPR pairs, whereas for them, succinctness is achieved by using
specific technical features of a cryptographic construction
using LWE.
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ments to quantum states,” 2024, to appear.

1201

Authorized licensed use limited to: MIT. Downloaded on April 26,2025 at 19:56:30 UTC from IEEE Xplore.  Restrictions apply. 


