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Abstract
In bioprinting, printing resolution and structural stability depend closely on the bioinks’ rheological properties such as zero 
shear viscosity, storage modulus, thixotropic recovery, viscoelasticity, and gelation point. Thus, understanding the material-
rheology-printability relationships is crucial for multi-material bioinks. This study adopted a design of experiment (DoE) 
with response surface methodology using a central composite design to systematically investigate the rheological and print-
ability parameters of bio-inks formed through combinations of sodium alginate, gelatin, and a nano-clay reinforcing agent 
(laponite) for enhanced storage modulus and cellular attachment. The material composition for the optimal printability was 
determined by the multi-response optimization method. Furthermore, this study incorporated machine learning techniques to 
generalize the effects of various rheological properties on printability and extrusion pressure. Multi-objective optimization 
was employed to statistically optimize solution properties based on the two opposing parameters: printed structure conform-
ity and minimum extrusion pressure. The optimized bioinks demonstrated high-fidelity printing performance: less than 5% 
deformation from the computer-aided-design (CAD) models at low extrusion pressures below 30 Kpa for maintaining good 
cell viability. Resampling data from the DoE-fitted model equations facilitated the generation of extensive datasets for train-
ing artificial neural network (ANN) models. This process resulted in a robust machine learning model capable of accurately 
predicting bioink printability with a maximum 6.3% mean absolute error (MAE) solely based on the rheological properties. 
In summary, the DoE-based data sampling, MRO optimization, and ML modeling approach enabled the development of a 
robust bioink formulation method applicable to creating bioinks with extreme properties. The study underscores the crucial 
role of data-driven modelling and optimization approaches in extrusion-based bioprinting for tissue engineering applications.
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1 Introduction

Extrusion-based bioprinting is a well-established 3D bio-
fabrication method that involves precise extrusion and layer-
by-layer deposition of bio-inks [1–4]. It is renowned for its 
ability to maintain high cell viability through delicate and 
controlled ink deposition, allowing for the printing of thick 
and intricate structures with high cell density, along with 
a wide range of biomaterial choices [5, 6]. In extrusion-
based bioprinting, achieving an optimized composition of 
the bioink is crucial to attain the desired characteristics of 
the printed structures. Furthermore, the extrusion pressure 
is preferred to be kept below a critical limit to reduce the 
shear force for cell viability [7, 8]. Altering the material 
type and the percentage of composition impacts various 
mechanical and fluidic properties, as well as their biocom-
patibility, printing pressure, and printability. In our research, 
we focused on studying and optimizing the rheological char-
acteristics of a combination of sodium alginate, gelatin, and 
laponite to create a bioink with high printability and excel-
lent cellular viability.

Sodium alginate is a widely recognized hydrogel due to 
its biocompatibility and its ability to form a stable hydrogel 
structure by reacting with divalent cations like calcium ions 
[9, 10]. It will maintain long-term structural integrity under 
various incubation conditions. Gelatin contains cell-adhesive 
peptides which facilitate cell attachment and proliferation 
[11–13]. Laponite is a synthetic smectite clay nanomaterial 
containing layered silicates with magnesium and lithium 
ions, which can physically and chemically interact with the 
polymeric matrix of hydrogels [14, 15]. It is used in bio-inks 
as a rheology modifier to enhance the structural integrity and 
mechanical support [16, 17]. Our research goal is to develop 
hybrid bioinks, consisting of these three biomaterials in an 
optimized formulation, aimed at enhancing printability and 
structural integrity while maintaining cellular viability.

To achieve this goal, we focused on the interrelationships 
between bioink composition, rheology, and printability. For 
bioprinting, rheology heavily influences ink deformation 
and flow under various conditions, determining printing 
outcomes such as shape retention and fluid behavior during 
and after printing [18, 19]. Numerous studies underscore the 
pivotal role of rheology in bioprinting hydrogels [20–25]. 
Researchers emphasize its significance as a key physi-
ochemical predictor for high fidelity printing, particularly 
in extrusion-based bioprinting [20]. Paxton et al. identified 
rheological parameters, including yield stress, shear thinning 

properties, and power law fit models, as essential criteria 
for hydrogel-based bioink printability, leading to the devel-
opment of high-fidelity inks [21]. Townsend et al. stressed 
the importance of rheology in ensuring high-shape fidel-
ity in 3D bioprinting, highlighting the need for quantifiable 
standardized methods based on shear performance, recov-
ery time, and yield stress to assess bio-ink printability [22]. 
Ouyang highlighted the trade-off between cellular viability 
and printed structure resolution, emphasizing the crucial role 
of rheology and mechanical behavior in hydrogel-based bio-
printing [23].

In this study, we employed a design of experiment 
approach to investigate how variations in the concentration 
of these raw ingredients affect the rheology and printabil-
ity of the hydrogel structure. We examined key rheologi-
cal parameters, including zero-shear viscosity (ZSV), yield 
stress (YS), shear-thinning index (STI), linear viscoelastic 
region storage modulus (LVER G’), gelation cross over 
shear stress (COST), and thixotropic viscosity recovery time 
(THIX). We employed a central composite design (CCD) to 
correlate input variables (concentrations of gelatin, laponite, 
and sodium alginate) with individual rheological and print-
ability parameters. Surface response plots were generated 
based on the models developed from the CCD experiment. 
Furthermore, we applied a desirability function analysis 
(DFA), a multi-response optimization (MRO) technique, to 
optimize raw ingredient concentrations for maximum printed 
structure conformity and viscoelastic properties while mini-
mizing extrusion pressure to ensure high cellular viability. 
Lastly, we utilized an artificial neural Network (ANN)-based 
machine learning (ML) approach to establish general corre-
lations between rheological and printability parameters that 
are independent of raw material concentrations. Overall, this 
study established a quantitative correlation, demonstrating 
how variations in material concentration significantly influ-
ence both rheological properties and printability parameters.

2  Materials and methods

2.1  Materials

Sodium Alginate (CAS 9005-38-3), derived from brown 
algae, was acquired from Sigma-Aldrich (MO, USA) with 
a standard viscosity range of 4–12 cP in 1%  H2O at 25 °C, 
Quality level 200. Gelatin (CAS 9000-70-8), sourced from 
porcine skin and characterized by a gel strength of 300 g 
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bloom (Type A), was also obtained from Sigma Aldrich 
(MO, USA). Laponite RD, featuring specifications includ-
ing a bulk density of 1000 kg/m3 and a pH of 9.8 in a 2% 
suspension, was procured from BYK (Wesel, Germany). For 
crosslinking the final structures in the swell ratio test, anhy-
drous  CaCl2 (≥ 96.0%) from J.T. Baker (NJ, USA), which 
was analyzed and sourced from Avantor (PA, USA), was 
employed.

2.2  Design of experiments

For the current RSM (Response Surface Methodology) 
analysis, we employed a central composite design (face-cen-
tered) model to accommodate all response variables across 
different concentrations of the materials. The data collected 
underwent quadratic model fitting, which encompasses main 
effects, quadratic effects, and interaction effects among the 
various dependent variables involved in the experiment [26, 
27]. In this study, we considered a 3-factor design with high 
and low levels for the RSM fittings. The total number of 
experimental samples required was  2 k + 2 k + 1 = 15 (where 
k = 15). To assess the robustness of our models derived from 
RSM fitting, we replicated the central point (start point) 
three times to calculate experimental error and evaluate the 
lack of fit. The 15 sets of design points obtained for fit-
ting the RSM model with Laponite (3,6), Gelatin (2,8), and 
Sodium Alginate (2,5) are presented in the supplementary 
Table S1.

The model equation for the central composite design are 
as follows [28–30]:

where, bo = model intercept.
b1, b2, …., bk = co-efficient terms with the main effect 

terms.
b12, b23, …., bk-1,k = co-efficient terms with the interaction 

effect terms.
b11, b22, …., bk,k = co-efficient terms with the quadratic 

effect terms.
ϵ = error.
The upper and lower bounds of the constituent compo-

sitions were determined based on preliminary experimen-
tal observations and prior literature. To form physical gel 
structures, Laponite concentrations of at least 3% (w/v) 
were deemed necessary [31]. Sodium alginate concentra-
tions below 2% (w/v) exhibited low mechanical stiffness 
and lacked the necessary crosslinked structural stability for 
hydrogel scaffolds [32, 33]. Previous studies have reported 

(1)

Y = b0 + b1X1 +…+ bkXk + b12X1X2 + b13X1X3

+…+ bk−1,kXk−1Xk + b11

(
X1

)2

+…+ bkk
(
Xk
)2 + 𝜀

varying starting concentrations of gelatin ranging from 1 to 
3%, resulting in improved cellular attachment, proliferation, 
and viability [34–37]. Our preliminary experiments indi-
cated that endothelial cells exhibited noticeable attachment 
at a minimum of 2% (w/v) for the commercial gelatin used 
in our experiment. In earlier literature, alginate concentra-
tions ≥ 6% were associated with a significant reduction in 
cellular viability due to increased viscosity and extrusion 
pressure (> 35 Kpa). Therefore, for our current experiment, 
alginate concentrations were fixed between 2 and 5%, strik-
ing a balance between the necessary crosslinked strength and 
optimal rheology for cellular viability. Prior studies on gela-
tin-based bioinks have assessed concentrations in the range 
of 5–10% (w/v) for non-heated extrusion systems, and con-
centrations above 10% (w/v) were used for heated extruders 
[38–40]. In line with published literature [41] that explored 
gelatin-alginate-based bioink extrusion at room temperature, 
we set our upper limit for gelatin at 8% (w/v). Increasing 
laponite concentration does add stiffness to the material but 
can impede polymer flow due to the high laponite matrix 
density at higher concentrations [42]. Previous research has 
shown that concentrations of Laponite above 6% (w/v) result 
in reduced structural height conformity in raised printed 
structures [43]. Herefore, for our current work, we consid-
ered 6% (w/v) as the upper limit for Laponite concentration.

2.3  Rheological measurements

All rheological measurements were conducted using an 
Anton Parr MCR-92 modular RheoCompass instrument 
from Austria. Depending on the specific rheological experi-
ments, two types of parallel rotating plates were utilized: 
(a) 25 mm diameter plates with a 0-degree angle and (b) 
25 mm diameter plates with a 2-degree angle. For robustness 
in future investigations, experimental data were collected for 
three runs to assess the sampling error rate.

2.3.1  Zero shear viscosity (ZSV)

The zero-shear viscosity was determined using a 25 mm 
parallel plate with a 0-degree inclination in rotary mode. A 
constant gap of 500 μm was maintained for all samples to 
ensure consistent shear force across all experimental runs. 
Shear rate values were measured in the range of 0.01–1000, 
with exponentially increasing values at higher shear rates. 
Initially, the Carreau-Yasuda Model [44, 45] was employed 
to fit the viscosity data points. Once the model parameters 
were determined from the fit, the zero-shear viscosity (ZSV) 
was subsequently calculated using the model equation, as 
shown below:
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where 𝜂 = viscosity value at any given shear rate ( 𝛾)
𝜂∞ = viscosity at infinite shear value.
𝜂o = viscosity at zero shear value (ZSV).
𝛾 = SHEAR rate.
k = consistency parameter (characteristics time).
n = power law index.
a = parameter describing the transition from Newtonian 

plateau to power law region.
Once the model equation has been fitted to the obtained 

data, the values of k, n, and a are obtained which are then 
used to determine the ZSV value at the effective zero shear 
value. Hence, the obtained ZSV value is an extrapolated 
value where the shear rate is effectively low enough that it 
replicates the ideal situation mimicking the material at rest.

2.3.2  Shear thinning index (STI)

The shear-thinning property of the prepared bio-inks were 
assessed using the Ostwald de Waele power-law model [46, 
47] which is shown in the following equation:

where, σ = shear stress.
K = consistency index.
𝛾 = shear rate.
n = power-law index.
The viscosity data was collected for shear rates rang-

ing from 0.01 to 100 mPa.s using a rotary rheometer and 
25 mm flat plate. The Ostwald de Waele power-law was fit-
ted against the obtained data and the value of the power-law 
index was tabulated and used as the shear thinning index 
(STI).

2.3.3  Linear viscoelastic region (LVER) storage modulus (G’)

The storage and loss moduli of the bio-inks were deter-
mined using oscillatory sweep mode to assess the viscoe-
lastic properties of the prepared bio-ink formulations. All 
experiments were conducted with a fixed gap of 100 μm, 
as larger gap values yielded inconsistent results for fluids 
with low storage modulus. To establish the linear viscoe-
lastic region (LVER) limit, an amplitude sweep experi-
ment was performed. The LVER limit represents the maxi-
mum strain rate at which the material exhibits a constant 
storage modulus (G’). Within the LVER limit, the material 
undergoes elastic deformation, meaning that upon removal 
of the shear stress, it returns to its initial form. Beyond the 
LVER limit, the material experiences permanent deforma-
tion and does not recover when the applied shear stress is 
removed. The amplitude of oscillation was incrementally 

(2)
𝜂 − 𝜂∞

𝜂o − 𝜂∞

= [1 + (k𝛾)a]
n−1

a

(3)𝜎 = K(𝛾)n

increased, varying for different bio-inks since those char-
acterized as viscoelastic liquids typically exhibited LVER 
limits at lower shear stresses than bio-inks with solid-like 
viscoelastic characteristics. During this experiment, G’ 
values were recorded as the maximum storage modulus 
demonstrated by the bio-inks at their respective LVER 
limits.

2.3.4  Cross-over (gelation point) shear stress

The gelation point is the specific shear force that triggers a 
transition in a viscoelastic material from a solid-like state 
to a liquid-like state. At this juncture, the value of the 
storage modulus (G’) equals that of the loss modulus (G”). 
Further increase in shear stress beyond this point causes 
the loss modulus to surpass the storage modulus, leading 
to a liquid-like flow behavior in the material. The determi-
nation of the gelation point, also known as the crossover 
point, involves the same amplitude sweep experiment used 
for characterizing the linear viscoelastic region (LVER) 
limiting G’. In this experiment, we identify the maximum 
shear stress at which the gelation point occurs (G’ = G”).

2.3.5  Thixotropic viscosity recovery

Thixotropic behavior refers to the time-dependent change 
in the viscosity of structured fluids when they are subjected 
to shear forces. This property is particularly valuable for 
characterizing bio-inks because it allows us to replicate the 
conditions, in terms of changing shear forces, that bio-inks 
encounter during extrusion printing. All measurements 
were conducted in rotary mode with a consistent 500 μm 
gap. A pre-shear value of 10 1/s was applied under isother-
mal conditions at 25 °C. The experiment consisted of two 
phases: In the first phase, we obtained five data points at 
a low shear rate of 0.1 1/s to simulate a resting condition. 
Data points were collected at a rate of one data point per 
second. In the second phase, we applied a high shear rate 
of 100 1/s to replicate the shear forces experienced by bio-
inks during the extrusion process. This high shear rate was 
maintained for one second, with data points collected at 
a rate of ten data points per second. After this high shear 
phase, the spindle returned to the low shear rate of 0.1 1/s, 
and viscosity values were recorded at a rate of two data 
points per second for a total of 10 min. In this experiment, 
the recovery rate is defined as the percentage of the initial 
viscosity that the bio-ink regains within a 5-s timeframe 
following the high-shear phase. This fixed timeframe was 
determined based on an assessment of filament spreading 
due to viscosity breakdown from shear forces in prelimi-
nary experiments.
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2.3.6  Yield stress

In rheology, yield stress is the minimum amount of stress 
required to initiate the flow in non-Newtonian materials. 
All the prepared bio-inks are structured fluids, with some 
showing properties similar to Bingham plastics [48]. Below 
a certain threshold stress, they showed solid-like behavior. 
The yield stress is a crucial rheological parameter that cor-
relates to the extrusion pressure requirement for 3D bio-
printing applications. For the current project, flow curve 
measurements were performed at isothermal temperature 
conditions, with shear rates ranging from 0.01 to 100 1/s. 
The Herschel-Bulkley model [22, 49, 50] was used to fit the 
data and determine the yield point. The model equation is 
shown as follows:

where 𝜏 = shear stress.
𝜏HB = Herschel Bulkley yield point.
c = flow coefficient.
𝛾= shear rate.
p = Herschel Bulkley index.
The value of the Herschel Bulkley yield point was 

obtained following a model fitting of the obtained data.

2.4  Minimum extrusion pressure

The minimum extrusion pressure (MEP) was determined 
prior to the printing experiments. The extrusion pressure is 
dependent on the needle and syringes used. Literature sur-
vey shows that extrusion needles with diameter ≤ 0.4 mm 
results in significant reduction in cellular viability induced 
by cellular stretching and large transition velocity gains 
[51–53]. The 21G needle with ~ 0.5 mm internal diam-
eter is a popular choice in bioprinting applications owing 
to the match between high cellular viability and printing 
resolution [54–56] and hence is used in the current work. 
Furthermore, prior literature shows a linearly proportional 
relationship between nozzle diameter and extrusion pres-
sure [57]. Hence, based on the appropriate scaling factor, 
the obtained models can be applied to other nozzle config-
urations with varying internal diameter and nozzle length. 
It was the extrusion pressure that resulted in the formation 
of a 0.98  mm3 ink volume extruded from a 21G needle in 
1 s using a near-field camera and image processing. This 
corresponded to a flowrate volume of 5.88 ml/min of a fil-
ament-like material extruded from a 21G nozzle moving at 
5 mm/s to form a continuous filament. Since the mixture of 
the materials show yielding rheological behavior, different 
extrusion pressure would be required to obtain the same 
flowrate for different mixtures. The minimum extrusion 

(4)𝜏 = 𝜏HB + c.𝛾p

pressure in this experiment is defined as the pressure in 
kPa at which the material starts to flow out from the noz-
zle. To determine this pressure, we loaded the materials 
into a 10 mL syringe and allowed them to flow through a 
0.5 mm nozzle. The syringe was pressurized with measur-
able air pressure, and the nozzle tip was observed using a 
microscopic camera system. We collected 10 measurement 
values for each sample (design points) and recorded both 
the average and standard deviation values.

2.5  Printing conformity

To assess printing conformity, we measured the dimen-
sional accuracy of the printed structure in comparison to 
the ideal 3D CAD model. In this experiment, a modified 
INKREDIBLE™ bioprinter (Gothenburg, Sweden) with a 
fixed nozzle diameter of approximately 0.5 mm was used 
(Supplementary Figure S1). The printer offers dual extrusion 
nozzle attachments with heading capabilities up to 120 °C, 
translational X–Y accuracies of 10 μm, layer resolution of 
100 μm, pressure range of 0–400 Kpa, UV sterilization and 
curing modes. The flowrate of the bioink is controlled using 
a pneumatic pump procured from Central Pneumatic (Cama-
rillo, California) operating at 1750 RPM with a maximum 
delivery pressure of 404 Kpa. The CAD models were sliced 
using the sli3er (open-source) software and the g-codes and 
tool path were customized using the Repetier Host (Wil-
lich, Germany) software. Various bio-inks were used to print 
CAD model structures with line widths matching the nozzle 
diameter, at extrusion pressures slightly higher (around 10%) 
than their minimum extrusion pressures. We maintained a 
constant linear transition rate of 10 mm/s and used layer 
heights of 0.5 mm with a total layer count of 20, resulting in 
a 1 cm long structure. The layer height was chosen based on 
experimental trial and error that reduced prior-printed layer 
penetration by the printing needle for the bioink mixtures 
that did not strictly follow a filament-like shape. The overall 
structure was designed to reach a height of 1 cm. After the 
printing process, we measured the line width and overall 
height of the uncross-linked structures using ImageJ. We 
developed a comparative statistic to evaluate how closely the 
bio-inks adhered to the specified height and width dimen-
sions without undesired spreading or collapsing. Structures 
with low printed structure conformity tended to either 
collapse under their own weight or spread sideways. The 
printed structure conformity (PSC) value is essentially an 
averaged cross-sectional area measurement of the 3D path 
compared to the modeled cross-sectional area. In our experi-
ment, we collected height and width data from 20 locations 
(location index) along the printed sample. The printed struc-
ture conformity was assessed using the following equation:
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where i = location index.
b = measured width.
h = measured height.
n = number of measurements.
B = modelled width.
H = modelled height.

2.6  Filament stability

We quantitatively assessed filament stability in various sam-
ples using a custom shadowgraph micro-imaging system, 
examining different temporal and spatial locations. This 
allowed us to evaluate the stability of the filament from its 
exit point at the nozzle to specific downstream locations. 
We also studied how the fluidic properties influenced fila-
ment changes at different time intervals within the same 
spatial locations. The materials were subjected to extrusion 
pressures approximately 5–10% higher than their mini-
mum extrusion pressures. Shadowgraph images of the fila-
ments were captured at a frame rate of 8 frames per second 
(FPS) starting from the moment the liquid began to emerge 
from the nozzle. We selected three distinct axial positions: 
Y = 0 mm (at the nozzle exit), Y = 5 mm, and Y = 10 mm as 
spatial measurement points. For assessing temporal stabil-
ity, we measured the filaments at time intervals of 5, 10, 
and 15 s.

The equation used to characterize the filament shape/size 
morphology as an indicator of filament stability for the dif-
ferent design points:

where N = nominal needle inside diameter.
Xi = spatial diameter.
Tj = temporal diameter.
X = 0.1, 2, 4 mm.
T = 1, 3, 8 s.
n = total number of data points for all spatial and temporal 

diameters.

2.7  Swelling ratio

The swelling index of a hydrogel material represents its 
capacity to absorb water or other solvents, typically meas-
ured as the ratio of its dry weight to wet weight. In our cur-
rent experiment, we prepared samples measuring 2.5 cm 
in diameter and 1 cm in thickness. These structures were 
crosslinked in a 2%  CaCl2 solution for a total duration of 
5 min each. Subsequently, we measured the structures in 

(5)PSC =

∑i

1
bi∗hi

n

B ∗ H
.

(6)
∑t=t

t=t1

∑x=x

x=x1
(N − xitj)

n

their wet state. To determine the swelling ratio, we placed 
the samples in a hot oven at 60 °C for 12 h before re-meas-
uring their dry weights. The swelling ratio was calculated 
using the following equation [58, 59]:

where  Sw = swelling ratio
Wi = wet structure weight.
Wd = dry structure weight.

2.8  Desirability function optimization

To optimize the rheological and printability parameters con-
cerning the concentration of the constituent mixture com-
ponents, we employed Derringer’s desirability function, 
a valuable tool for multi-objective problem optimization. 
This analysis entails converting each response variable into 
a desirability index  (di), with values ranging from 0 to 1[60]. 
These values are assigned a weight parameter  (Wk), which 
is utilized to calculate the composite desirability index (D) 
encompassing all response variables. The equation below 
demonstrates the relationship between the composite desir-
ability index and the individual desirability index [61]:

where, di = Individual Desirability index
Wk = weight assigned to the individual desirability index
D = composite desirability index
The individual desirability indices are then maximized, 

minimized, or matched to target values using one-sided 
transformations. The functions for these operations are as 
follows [62]:

where A = lower acceptable limit.
B= upper acceptable limit.
to = target value.

(7)%Sw =
Wi − Wd

Wi

∗ 100

(8)D = d
w1

1
d

w2

2
d

w3

3
… .d

wk

k1

(9a)dmax
r

=

⎧⎪⎨⎪⎩

0iffr(X) < A

(
fr(X)−A

B−A
)SifA ≤ fr(X) ≤ B

1iffr(X) > B

(9b)dmin
r

=

⎧⎪⎨⎪⎩

0iffr(X) > B

(
fr(X)−B

A−B
)SifA ≤ fr(X) ≤ B

1iffr(X) < A

(9c)dtarget
r

=

⎧⎪⎨⎪⎩

(
fr(X)−A

to−A
)s1 ifA ≤ fr(X) ≤ to

(
fr(X)−B

to−B
)s2 ifto ≤ fr(X) ≤ B

1otherwise



Progress in Additive Manufacturing 

s, s1, s2 = desirability satisfaction criteria.
fr(X) = the function to be maximized, minimized, or tar-

get matched.
The coefficients derived from the RSM models served as 

the basis for generating objective functions for each rheo-
logical and printability parameter. The desirability approach 
represents a multi-response optimization (MRO) process 
wherein multiple objective functions are concurrently opti-
mized while adhering to specified constraint limit(s). This 
optimization process was executed using a scripted program 
developed in RStudio. The desirability package library in 
R was utilized to define the composite desirability func-
tion based on user-defined individual desirability indices. 
A penalty approach (rmsOPT), involving the square root of 
the sum of squares or absolute values of independent vari-
ables, was employed to define the optimal input search grid. 
This grid was designed as either circular or square, depend-
ing on the penalty chosen. The search grid was expanded to 
explore optimal values of the response variables, consider-
ing input variables within the experimental ranges. With 
a search length of 10 per input, this approach resulted in a 
total of 1000 search combinations for the three materials. 
An iterative brute-force grid search was conducted to locate 
the global optimum, and the optimization routine employed 
was the Nelder-Mead simplex algorithm for convergence.

2.9  Printability assessment of the optimal solution

The optimal solution(s) obtained through the MRO were 
then assessed using various printability tests based on lit-
erature [20, 63]. The filament collapse test is a classical fila-
ment performance test used to assess the structural integrity 
of a filament supported at two ends over a distance [63]. A 
test bed with sequentially incremental gaps of 1, 2, 3, 4, 5, 
10, and 20 mm was designed for the collapse test. A sche-
matic of the filament collapse test is available in the supple-
mentary Figure S2. Three different printing speed levels 5, 
10, 20 mm/s—were assessed to check the effect of printing 
speed on filament stability. Images were taken to measure 
the theoretical area  (At) of the gap region and deformed area 
 (Ad) to obtain the collapse area factor  (Cf) using the follow-
ing equation [64]:

The filament merging and printability index are two pop-
ular methods for quantifying the printability of bio-inks. 
For these tests, grid-shaped structures with 2 mm square-
shaped pores were printed, as shown in the supplementary 
Figure S3a, b. The print path was designed to follow a recti-
linear propagation of the printing needle, as illustrated in the 
supplementary Figure S3c, d. Filament merging is a measure 

(10)Cf =
(At − Ad)

At

× 100%

of the amount of material merging-induced deformation at 
the connection node between two filaments in adjacent lay-
ers [20]. Various factors, such as material diffusion and sur-
face tension, influence the amount of filament merging at the 
nodes [20]. In an ideal case, the diameter of the intermediary 
filament (R2) would be equal to the diameter of the filament 
(R1) in the node area. For merging filaments, R2 < R1. The 
filament merging characteristic is given by the following 
expression:

The filament printability index is a quantitative measure 
of printability using grid structures defined in prior literature 
[65]. This is determined using the following formula [65].

where Pr, L, and A represent the printability index, perim-
eter, and the area of the pore region. In ideal cases, the Pr 
value is equal to 1 [65], resulting in uniform geometric 
pores. For non-uniform pores formed due to under-gelation 
of the bioink, the Pr < 1, resulting in pore areas less than the 
designed model [65]. In grid structures printed from over-
gelation bioinks, the printability index will be greater than 
1 [65]. Since our ideal bioink composition would include 
gelatin, which exhibits temperature-sensitive flow behavior 
[66], we tested the ideal bio-ink composition at a fixed print-
ing speed of 15 mm/s, a flow rate of approximately 10% 
over the minimum extrusion pressure, and varying extruder 
temperatures (room temperature, 30 °C, and 40 °C) to assess 
filament merging and printability index.

2.10  Biocompatibility assessment 
of the post printed structure

In order to determine the biocompatibility of the prepared 
bioink, we examined the cellular viability of the optimal 
composition printed at 10% over its minimum extrusion 
pressure (~ 35 Kpa) resulting in a flowrate of approximately 
6 mL/ min at an extrusion temperature of 37 °C and print-
ing speed of 5 mm/s. Green fluorescent expressing human 
umbilical vein endothelial cells (GFP-HUVEC) were pur-
chased from Angio-Protemie (Boston, MA). Cells were 
cultured in 75  mm2 flasks with endothelial growth medium 
(Angio-Protemie, Boston, MA) supplemented with ampi-
cillin (0.1 mg/ml, Thermo Scientific Chemicals, Waltham, 
Ma). The original cells were passaged twice before the 
experiment. The cells were vortexed with bio-ink (2.7 mL) 
to achieve a final cell density of 0.33 million cells/mL. Fol-
lowing the bioprinting process, the cells were stained using 
Live Dead Viability Kit (AAT Bioquest, Pleasanton, CA, 
USA) at 37 °C for 30 min. The live cells were detectable 

(11a)Filament Merging = (R2∕R1) × 100%

(11b)Pr =
L2

16A
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under the green fluorescent protein (GFP) and the dead cells 
were detectable under the Red Fluorescent Protein (RFP) 
mode, respectively.

2.11  Machine learning approach for rheological 
and printability response correlations

In this study, an artificial neural network (ANN) method 
was employed to establish correlations between rheological 
parameters and printability parameters. The ANN model was 
used primarily as a multivariate non-linear regressor tool. 
Six rheological parameters served as input variables for the 
ANN, while the outputs consisted of minimum extrusion 
pressure (MEP) and printed structure conformity (PSC), 
representing during-process printability parameters. The 
analysis did not utilize the swelling index ratio trend for 
different rheological parameters as it is not considered a 
during-process printability parameter.

Two distinct neural architectures were developed to pre-
dict two different printing parameters: MEP and PSC. These 
parameters were determined based on the above-mentioned 
six rheological parameters: ZSV, THIX, COST, YS, STI, 
and LVER. The initial dataset, consisting of 15 rows of data, 
was expanded to 1000 row data using iterative resampling 
through Monte-Carlo simulations. The DOE-fitted func-
tion resampling method using Monte-Carlo simulation was 
shown effective in prior literature for dataset expansions 
[67–70]. To assess the printability parameters beyond the 
input variable range, synthetic data points were generated 
using a generative adversarial network (GAN) architecture, 
resulting in an additional 1000 rows of data. The GAN-gen-
erated data was validated using the original 15 DOE design 
points which were used as the test set for evaluating the 
data accuracy. For both models, the Keras Sequential and 
TensorFlow packages within R were employed. The spe-
cific architectures of both models were generated using a 
trial-and-error approach to determine the optimal number of 
layers that would minimize the mean squared error (MSE) 
for each model.

Initially, we started with a single hidden layer containing 
six neurons and progressively added subsequent layers with 
the same number of neurons. For the PSC data, we found 
that adding three hidden layers would yield the lowest MSE, 
while for the MEP data, two hidden layers resulted in the 
lowest MSE. However, for more than three hidden layers, 
data overfitting occurred for both MEP and PSC, as evi-
denced by the validation error surpassing the training error 
after 50 epochs. This indicates that the model tended to shift 
towards low-bias and high-variance models with higher lay-
ers [71]. Hence, the chosen number of layers provided a suit-
able model complexity that struck the optimal bias-variance 
trade-off [72]. After determining the number of hidden lay-
ers for each model, we conducted hyperparameter tuning 

using the Keras Tuner [73]. This involved optimizing the 
number of neurons in each layer within specified ranges, 
ranging from 2 (2/3 of input neurons) to 32 (5.33 times the 
input neurons) for each layer. The goal was to minimize 
both the training and validation errors over 100 epochs. 
A Random Search Keras tuner algorithm [74] with three 
executions per trial was performed to match the objective of 
minimizing training/validation error. The models with the 
lowest training and validation errors are depicted in Figure 3.

The first phase of testing involved one-fold cross-valida-
tion. The dataset from Multi-Response Optimization (MRO) 
was split into an 80:20 ratio for training and testing sets 
of the neural network models for both MEP and PSC. A 
validation split of 20% was applied to the training dataset. 
Subsequently, the models were tested again using k = 5 for 
k-fold cross-validation, and the average mean squared error 
(MSE) and mean absolute error (MAE) were found to be 
similar to those obtained in the single-fold cross-validation. 
To normalize the dataset, a standard scaler was applied.

The PSC model featured three hidden layers with four 
hyperbolic tangent (TanH) activation neurons, four rectified 
linear unit (ReLU) neurons, and three leaky-ReLU neurons 
in the respective layers. Additionally, it employed an L1 
regularization scheme with a regularization factor of 0.001 
and a layer dropout rate of 0.1 to prevent overfitting. The 
output layer consisted of one neuron with a linear activation 
function suitable for numerical model fitting.

On the other hand, the MEP model employed two hid-
den layers with four TanH and four ReLU neurons in the 
subsequent hidden layers. It incorporated L1 regularization 
with a factor of 0.01, a layer dropout rate of 0.5 in the first 
layer, and a layer dropout rate of 0.1 in the second layer 
to prevent overfitting. The TanH function squashes input 
values into a range between −1 and 1, while ReLU converts 
values to a range between 0 and 1, setting values less than 0 
to 0. To address the ‘dying ReLU’ problem caused by nega-
tive values being set to 0, the leaky ReLU was used, which 
introduced a small bias (ε) to prevent 0 values for negative 
inputs. The functional form of the TanH, ReLU and Leaky 
ReLU activation functions [75–78] are as follows:

Both the models were compiled with loss definitions 
set to mean square error (MSE). The Adam optimizer with 
learning rates of 0.005 was used to update the weights of 
the neural network. The Adam optimizer was chosen owing 
to its advantages of momentum and adaptive learning rates. 

(12a)TanH ∶ g(x) =
ex − e−x

ex + e−x

(12b)ReLU ∶ g(x) = max(0, x)

(12c)Leaky ReLU: g(x) = max (𝜀x, x)with 𝜀 << 1
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The neural network shapes for predicting the PSC and MEP 
are shown in Fig. 1.

3  Results and discussion

3.1  Model equations and response surface 
from the CCD-RSM method

Following the data obtained from the experimental proce-
dures based on the design of experiment table, the model 
coefficients are obtained by regression fitting to the model 
Eq. 1 which contains the Main effects, and the significant 
interaction, and quadratic effects. The model fitting was 
performed using the RSM package in RStudio which is an 
extension of the linear model (lm) function in base R [79]. 
For better elucidation of the intercept and the unit change of 
response for unit change in factor, a scale-invariant method 
is implied by coding the factor estimates. The following 
model equations provide the estimates (P < 0.1) using coded 
factor levels (half-effects):

(13a)

𝐙𝐒𝐕 = 10.64 + 21.76(𝐗𝟏) + 7.12(𝐗𝟐)− 4.55(𝐗𝟑)

+ 14.74
(
𝐗𝟏

)𝟐 + 7.57
(
𝐗𝟑

)𝟐 + 16.52(𝐗𝟏.𝐗𝟐)
− 17.47

(
𝐗𝟏.𝐗𝟑

)
− 5.33

(
𝐗𝟐.𝐗𝟑

)

[Model RSq = 0.96]
(
Unit: × 10

4
mPa.S

)

(13b)
𝐒𝐓𝐈 = 0.57− 0.06(𝐗𝟏) − 0.1(𝐗𝟐) + 0.128(𝐗𝟑)

− 0.16
(
𝐗𝟏

)𝟐− 0.06(𝐗𝟏.𝐗𝟑) [Model RSq = 0.81]

(13c)

𝐋𝐕𝐄𝐑−𝐆′ = 636.33 + 210(𝐗𝟏)−94.1(𝐗𝟐)

+ 193.6(𝐗𝟑) + 372.27
(
𝐗𝟏

)𝟐

− 247.88(𝐗𝟐.𝐗𝟑) [Model RSq = 0.83]

(13d)

𝐓𝐇𝐈𝐗 = 0.72 − 0.06(𝐗𝟏)−0.14(𝐗𝟐)

+ 0.03(𝐗𝟑) + 0.09
(
𝐗𝟏

)𝟐−0.14(𝐗𝟐.𝐗𝟑)
−0.09(𝐗𝟏.𝐗𝟑) [Model RSq = 0.82]

(13e)

𝐂𝐎𝐒𝐓 = 33.82 + 283.56(𝐗𝟏) + 42.02(𝐗𝟐)

−137.68(𝐗𝟑) + 266.75
(
𝐗𝟏

)𝟐

− 309.68(𝐗𝟏.𝐗𝟑) [Model RSq = 0.90]

(13f)

𝐒𝐰𝐞𝐥𝐥𝐢𝐧𝐠𝐑𝐚𝐭𝐢𝐨 = 28.48−2.60(𝐗𝟏)−5.60(𝐗𝟐)−7.08(𝐗𝟑)

+ 8.85
(
𝐗𝟑

)𝟐 + 2.81(𝐗𝟏.𝐗𝟐)
[Model RSq = 0.90]

(13g)

𝐘𝐢𝐞𝐥𝐝 𝐒𝐭𝐫𝐞𝐬𝐬 = 17.61 + 17.52(𝐗𝟏)−9.67(𝐗𝟐)

−6.53(𝐗𝟑) + 12.13
(
𝐗𝟏

)𝟐 − 8.22
(
𝐗𝟐

)𝟐

+ 14.89
(
𝐗𝟑

)𝟐 − 29.61(𝐗𝟏.𝐗𝟑)
[Model RSq = 0.82]

(13h)

𝐏𝐫𝐢𝐧𝐭𝐢𝐧𝐠𝐂𝐨𝐧𝐟𝐨𝐫𝐦𝐢𝐭𝐲 = 16.14 + 26.62(𝐗𝟏)−11.72(𝐗𝟐)

+ 5.50(𝐗𝟑) + 27.78
(
𝐗𝟏

)𝟐−12.5(𝐗𝟏.𝐗𝟑)

− 8.19
(
𝐗𝟐.𝐗𝟑

)
[Model RSq = 0.85]

Fig. 1  The neural network architectures used to model the relationship between the rheological parameters and a PSC b MEP
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where, (X1) = XGelatin−5

3
 ; XGelatin = arbitrary gelatin 

concentration.

(X2) = XSodiumAlgiante−3.5

1.5
; XSodiumAlginate = arbitrary sodium 

alginate concentration.

(X3) = XLaponite−4.5

1.5
;  XLapointe = arbitrary laponite 

concentration.
The response surface contour plots displayed in Figs. 2, 

3, 4 illustrate how rheological and printability parameters 
change in response to variations in the concentrations (w/v) 
of the constituent biopolymers, namely Gelatin, Laponite, 
and Sodium Alginate. In these plots, since the model con-
siders the effects of all three input variables, when plot-
ting two out of the three constituents, the third constitu-
ent remains fixed at the center of the tested concentration 
ranges. For example, in plots where a response variable is 
represented in relation to Gelatin and Laponite concentra-
tions, the Sodium Alginate concentration is held constant 
at 3.5%. This approach allows us to visualize how changes 
in the concentrations of Gelatin and Laponite impact the 
response variable while keeping Sodium Alginate at a con-
sistent level. Detailed perspective plots and contour plots 
with independent color ranges for each concentration are 
available in Supplementary Figures S4–S12.

Figure 2a–c illustrates the ZSV responses across differ-
ent concentration ranges of the raw constituents. In Fig. 2a, 
where the concentration of sodium alginate is fixed at 3.5%, 
an increase in gelatin concentration leads to higher ZSV val-
ues, particularly at low laponite concentrations. This behav-
ior can be explained by the microstructure formed by the 
electrostatic interactions among the edge-surface laponite 
platelets, which grant laponite its rheological modifier char-
acteristics, including increased viscosity [16, 17]. However, 
the presence of sodium alginate in the mixture hinders this 
"house of cards" structure formation in laponite [17]. To 
the best of our knowledge, no linear correlation between 
viscosity and the concentration of specific constituents in 
the mixture system has been reported. Both sodium alginate 
and gelatin contribute to the rapid change in ZSV, as indi-
cated by the model equation for ZSV and Figs. 2a, b. This 
is attributed to the ability of gelatin and sodium alginate 
to elevate system viscosities through mechanisms such as 
hydrogen bonding, polymer chain entanglements, and steric 
hindrance [80–85]. For laponites, the electrostatic repulsion 
in suspensions and layered-structure formation results in vis-
cosity modifications [86]. However, in systems containing 
sodium alginate, the rheological-modification properties of 

(13i)

𝐌𝐢𝐧𝐢𝐦𝐮𝐦𝐄𝐱𝐭𝐫𝐮𝐬𝐢𝐨𝐧 𝐏𝐫𝐞𝐬𝐬𝐮𝐫𝐞 = 14.58 + 18.92(𝐗𝟏)

−4.97(𝐗𝟐)−5.12(𝐗𝟑) + 13.69
(
𝐗𝟏

)𝟐

−14.65(𝐗𝟏.𝐗𝟑) [Model RSq = 0.91]

laponite such as ZSV is hindered as observed in the current 
experiment and also previous literature [16].

Figure 2d–f illustrates the response of the shear-thinning 
index as it relates to the constituent components. The figure 
demonstrates the shear-thinning behavior of the mixture 
system, as predicted by the CCD-RSM model. Figures 2d, 
f show a positive correlation between the shear-thinning 
index and the concentration of laponite. Laponite forms gels 
through surface charge interactions held together by weak 
van der Waals forces, which are easily disrupted by shear-
ing [87]. Therefore, in a system with a high concentration 
of laponite, the viscosity formed through such electrostatic 
attraction will rapidly decrease when subjected to shearing. 
On the other hand, sodium alginate exhibits a negative cor-
relation with the shear-thinning index, as seen in Fig. 2e 
and more prominently in Fig. 2f. Higher concentrations of 
sodium alginate result in an increased concentration of  Na+ 
ions in the system, which masks the negative surface charge 
and reduces van der Waals attraction [88], thus diminishes 
the shear-thinning effect of Laponite in the system. Simi-
larly, Gelatin also shows a negative correlation with the 
shear-thinning index due to the strong crosslinked gel net-
work formed by the triple-helix structure at higher concen-
trations, which resists shear deformations [89].

Figure 2g–i illustrates the maximum storage modulus 
(G’) within LVER. Higher concentrations of laponite result 
in higher LVER-G’ for all ranges of gelatin concentration, 
with sodium alginate (SA) concentration fixed. This is 
because laponite aqueous solution forms a stacked platelet 
structure that enhances mechanical stiffness [90, 91]. Addi-
tionally, increasing gelatin concentration also contributes 
to higher LVER-G’. At room temperature (25 °C), higher 
concentrations of gelatin lead to a sol–gel transition, further 
enhancing mechanical stiffness within the LVER limit [92]. 
A plateau-like region shown in Fig. 2g indicates a drop in 
LVER G’ at the intermediate gelatin concentrations between 
3.5 to 6.5%. A similar trend is observed in Fig. 2h for vary-
ing gelatin concentration. In Fig. 2h gelatin demonstrates 
high LVER-G’ at concentrations below 2.5% and above 
7% with LVER-G’ less than 1 kPa in the central plateau 
region. The sol–gel property of the mixture system depends 
on the concentration ratio between gelatin and any polysac-
charide (sodium alginate). The stochiometric weight ratio 
changes the sol–gel transition temperature and forms addi-
tional junction zones in the gel network [93]. This affects 
the microstructure stability and changes the viscoelastic 
characteristics [93]. Prior literature shows non-linear trends 
of the storage modulus for changing gelatin and other poly-
saccharide (sodium alginate) concentration ratios [93, 94]. 
Laponite demonstrated a consistent increase in LVER-G’ 
values, approaching 1 kPa, with rising concentrations, par-
ticularly when combined with fixed gelatin and a low con-
centration of sodium alginate (less than 3.5%), as illustrated 
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in Fig. 2i. Higher concentrations of sodium alginate interacts 
with laponite to disrupt the “house of cards” like layered 
structure that primarily gives Laponite it’s high LVER G’ 
[17]. The original amplitude sweep data used to construct 
the response surface data for the LVER-G’ are provided in 
the Supplementary Figure S13.

Figure 3a–c show that high concentrations of laponite 
(> 4.5%) combined with low gelatin concentrations (< 3%) 
result in structures with 90% viscosity recovery within the 
first 5 s after experiencing high shear deformations. This 
rapid recovery of laponite viscosity aligns with findings 
from previous literature [95–97]. When subjected to shear 
forces, the microstructure of laponite dissociates into flocs 
or platelets but swiftly reorganizes into its initial struc-
ture following the removal of force [95]. However, higher 
concentrations of gelatin lead to reduced recovery rates at 
high laponite concentrations, as seen in Fig. 3a. For a fixed 
laponite concentration of 4.5%, Fig. 3b shows relatively high 
viscosity recovery rates (> 75%) across all ranges of gelatin 

concentrations and sodium alginate concentrations below 
4.5%. This is attributed to the rate of disentanglement of 
alginate macromolecules outpacing their rate of re-entangle-
ment, a phenomenon well-documented in previous studies 
[98]. Similarly, when gelatin concentration is 5%, a similar 
trend of high recovery rates (> 75%) is observed as shown 
in Fig. 3c. The original thixotropic recovery data used to 
construct the response surface data for the STI can be found 
in supplementary Figure S14.

Increased gelatin levels combined with reduced laponite 
concentrations necessitate greater stress to achieve the gela-
tion point, as depicted in Fig. 3d. Laponite exhibits specific 
shear-thinning behavior, which contributes to the reduction 
in COST at higher concentrations [17]. On the contrary, 
higher concentrations of gelatin increase the glass transi-
tion temperature, melting point, and promote the formation 
of triple helix structures (physical aggregates) [99]. These 
factors lead to the formation of a densely packed network 
that is more resistant to shear forces, resulting in higher 
COST values [99, 100]. The inverse relationship between 

Fig. 2  Response surface contour plots for different gelatin, alginate, and laponite compositions for a–c ZSV, d–f STI, and g–i LVER-G’
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COST and laponite concentration, as shown in Fig. 3ef, can 
be attributed to the shear-thinning properties of laponite dis-
cussed earlier. The original amplitude sweep data used to 
construct the response surface data for COST are provided 
in Supplementary Figure S13.

Like the COST values, a high concentration of gelatin 
leads to a higher yield stress (> 70 Pa) at low laponite 
concentrations, as shown in Fig. 3g. However, increasing 
the laponite concentration at high gelatin concentration 
reduces the yield stress to less than 30 Pa for laponite con-
centrations above 5.5%. This reduction can be explained 
by the increased concentration of sodium ions with higher 
laponite concentrations [101] which in turn reduces the 
yield-stress as established in prior literature [31]. When 
both sodium alginate (SA) and gelatin concentrations are 
high, a maximum yield stress of 45 Pa is observed when 
laponite concentration is 4.5%, as shown in Fig. 3h. Fig-
ure 3i shows that with sodium alginate less than 3%, low-
ering the laponite concentration to less than 3.5% increases 

the yield stress, as there may be an insufficient number of 
phase-separating  Na+ ions from laponite or alginate [102].

Figure 4a–c shows the swelling ratio response plotted 
against the mixture constituents. Laponite concentration 
exhibits an inverse relationship with the swelling ratio for 
different ranges of gelatin and sodium alginate concen-
trations. Higher laponite concentrations increase physical 
crosslinking and reduce the dissolution of the polymer in 
the solvent due to covalent interactions [103]. This effec-
tively reduces the overall water uptake capacity of the 
hydrogel, leading to a lower swelling ratio. Furthermore, 
for a fixed laponite concentration of 4.5%, the swelling 
index decreases with increasing concentrations of both 
gelatin and sodium alginate. The triple-helix structure in 
the gelatin acts as a physical crosslink that resists solvent 
uptake, thereby reducing the swelling ratio[104]. Hence 
at higher gelatin concentrations, the polymer networks 
are more tightly packed that result in reduced swelling 
ratio [104]. A similar trend of reduced swelling ratio with 

Fig. 3  Response surface contour plots for different gelatin, alginate, and laponite compositions for a–c THIX, d–f COST, and g–i YS
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increasing sodium alginate concentrations have been 
reported in prior literature [105] and can be attributed to 
the similar phenomena of packed polymer network density.

Figure 4d–f shows that PSC is dominated by gelatin 
concentrations. Notably, even with the maximum laponite 
concentration of 6% and SA at a minimum of 2%, the high-
est achieved PSC is only 40%. From our current analysis 
of the PSC data, it becomes evident that a high gelatin 
concentration above 7.5% is desirable to achieve a PSC 
greater than 70% across various ranges of SA and laponite 
concentrations. Further details regarding the process and 
methodology for obtaining PSC are discussed in the 
upcoming Sect. 3.4.

Figure 4g–i shows the relationship between the MEP 
and bioink concentrations. For gelatin concentrations 
below 6%, the desired extrusion pressure (< 30 kPa) is 
achieved when the laponite concentration is below 4.5%. 
In this range, the bio-ink exhibits a zero-shear viscosity 
of less than 30 ×  104 mPa·s (Fig. 4a) and a yield stress 
value of less than 50 Pa (Fig. 4g). The maximum extrusion 

pressure (22 kPa) is observed at low laponite (< 3.5%) 
and sodium alginate (< 3.25%) concentrations, with gela-
tin fixed at 5.5%. This is due to the low values of ZSV 
(< 15 ×  104 mPa.S), LVER-G’ (< 600 Pa), and yield stress 
(< 40 Pa) in this concentration range. Since our PSC data 
shows that the gelatin concentration needs to be above 
7.5% to achieve high PSC, it is possible to adjust the mini-
mum extrusion pressure to be less than 30 kPa by increas-
ing the laponite concentration up to 6% and beyond, as 
indicated by the nonlinear trends in the contour plot in 
Fig. 4g. This possibility is further explored in the desir-
ability function analysis section.

3.2  Bio-ink sol–gel characteristics

The results of the vial inversion test are presented in Fig. 5. 
It is evident that DP-3, 6, 7, 9, 10, 11, 12, and 14 display 
strong gel-like behavior, characterized by ZSV exceed-
ing 15 ×  104 mPa·s and yield stress over 20 Pa. DP-1 and 
13 exhibit moderate levels of flowability, demonstrating 

Fig. 4  Response surface contour plots for different gelatin, alginate, and laponite compositions for a–c SI, d–f PSC, and g–i MEP
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intermediate gel-sol transition characteristics, with ZSV 
ranging from 10 to 15 ×  104 mPa·s and yield stress from 
10–30 Pa. As for bioinks DP-2, 4, 5, 8, and 15 they display 
solution-like characteristics, featuring ZSV below  105 mPa·s 
and yield stress less than 5 Pa.

3.3  Bio-ink filament characteristics

The filament morphological information and images are pre-
sented in Fig. 6. DP-3, 6, 7, 11, 12, 13, and 14 show tubular 
filament characteristics. In all these bioinks the LVER-G’ 
was greater than 800 Pa, the ZSV greater than  105 mPa·s, 
and the yield point greater than 10 Pa. However, DP-6 and 
DP-12 showed higher filament diameter variability and aver-
age diameter owing to low THIX of 50% within the first 2 s 
following the extrusion process. Hence, based on the tem-
poral and spatial stability, DP-3, 7, 11, 13, and 14 showed 
the least variability in filament diameter and the average 
diameter was closer to the nozzle diameter of approximately 
0.5 mm. Hence the highest tubular-like filament conformity 

was achieved when ZSV >  105 mPa·s, THIX > 75% within 
the first 2 s, Yield point > 10 Pa, and LVER-G’ > 800 Pa.

3.4  Printed structure precision

We measured printed structure conformity using a 1 cm 
tall M-shaped 3D computer model with a 0.5 mm nozzle. 
As shown in Fig. 7, DP-2, 4, 5, and 8 did not form fila-
ments. DP-3, 7, 11, and 13 had the best filament width and 
height conformity. However, DP-14, while stable, resulted 
in merged structures with poor width and height conformity 
due to under-gelation, possibly linked to its higher tempera-
ture-sensitive viscosity. The temperature-viscosity relation 
was determined by fitting viscosity data points obtained at 
a constant shear rate of 50 1/s using the Vogel power-law 
model [106] in the range of 20–40 °C. The temperature 
sensitivity is estimated from the higher temperature expo-
nent constant as seen in the fitted power law equation in 
the supplementary Figure S15. Additionally, DP-3 exhib-
ited over-gelation characteristics [107, 108] due to its higher 

Fig. 5  The bioink flowability at room temperature (25 °C) after 60 s of vile inversion

Fig. 6  a Filament diameter as an indicator of stability over different temporal and spatial points. b Filament in the near-field location of 10 mm 
from the nozzle for DP1 to DP-15
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yield stress (> 100 Pa) and high gel crossover shear stress 
(> 1100 Pa·s) values, despite its high structural conformity.

3.5  Desirability function analysis

In the target-ramp approach, desirability satisfaction param-
eters were introduced to bias the optimization process in 
a preferred direction. For example, the MEP target range 
was set from 5 to 40 kPa, with a low-scale value of 0.2 and 
a high-scale value of 1.5, as illustrated in Fig. 8. The opti-
mizer will prioritize searching for optimal MEP values in 
the lower-scale region (approaching 5 kPa) to maximize the 
desirability index. Similarly, for PSC, we defined the target 
range from 80 to 100%, with a low-range scale factor of 3 
and a very small low-scale value of 0.0001. The optimizer 
will focus on finding optimal PSC values between 80 to 
100%, with a stronger emphasis on values closer to 100%. 
Regarding LVER-G’, we used a maximization range with 
a scale factor set to 2, ranging from 1100 up to a variable 
upper limit. The minimum value of 1100 Pa for LVER-G’ 
was chosen based on experimental observations that resulted 
in good structural integrity.

The targets for MEP and PSC, and the upper limit of 
the LVER-G’ were iteratively generated using a loop func-
tion, as illustrated in Fig. 8d. The value-generating loop 
function was nested under an outer loop function that also 
encompassed the desirability functions. The generative loop 
function dynamically produced values for parameters a, b, 
and c. As a result, we obtained multiple optimal composi-
tions for the bioinks that met the criteria of 5 ≤ MEP ≤ 40, 
80% ≤ PSC ≤ 100%, and LVER-G’ ≥ 1100 Pa. By imple-
menting this expanded grid search, we extended our solu-
tion points beyond the range tested in the experiments. This 

allowed us to maximize the desirability of multiple objective 
functions and identify a broader set of solutions. The desir-
ability equations with the user-specified search parameters 
are presented in supplementary section as Equations S1a–d.

Based on the optimality search, we classified solutions 
into five different categories with their corresponding char-
acteristics, constituent materials, response values, and desir-
ability index D as shown in Table 1. Following our optimi-
zation approach, we designated OP-5 as the ideal solution, 
which combines high LVER-G’ (> 1100 Pa), high PSC 
(> 90%), and low MEP (< 30 kPa). Supplementary Table S2 
presents the differences between the predicated valutes and 
experimental values, demonstrating the good performance 
of our models. Figure 9 presents PSC and qulitative images 
of different sutrucres printed using OP-5.

3.6  Printability performance of the optimized 
bio-ink

Figure 10 shows the filament collapse test results for OP-5. 
At the printing speed of 20 mm/s, the filaments exhibit the 
least deformation. Conversely, lower printing speeds lead 
to a higher volume of filaments deposited per unit length, 
causing them to yield more under their own weight. Fig-
ure 10f summarizes the collapse area factor under different 
gaps, speeds, and time intervals after filament depositions. 
For gaps greater than 10 mm, significant statistical differ-
ences (t-test) were found when speed varied. At the optimal 
printing speed, our optimized bioink demonstrates approxi-
mately 7.5 times better resistance against filament collapsing 
compared to previous results using oxidized alginate-gelatin 
bioinks reinforced with low laponite concentrations [102].

Fig. 7  a Printed structure 
height and width conformity 
(%) with respect to the original 
3D model; Numbers inside the 
histogram bars indicate the 
design points (DP). b Images of 
the printed structures for DP-1 
to DP-15 c 3D model path used 
to inspect the conformity
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(a) (b) (c)

(d)

Fig. 8  The desirability ramp and parameters to optimize the multi-
response-objective (MRO) problem. a Maximization ramp for LVER-
G’ b target-ramp for MEP and c target-ramp for PSC. Red dot indi-

cates optimal responses from DFA for OP-5 d the looped iterative 
search for an optimal max or target value for the MRO problem

Table 1  Sets of 5 optimal points 
obtained by DFA optimization

Optimal points Characteristics Gel SA Lap LVER G’ 
limiting var 
(a)

MEP 
target var 
(b)

PSC 
target var 
(c)

D

OP-1 High PSC 8.49 6.56 2.56 1100 26 99 0.98

OP-2 High LVER-G’ 9.57 5.31 6.44 1900 36 80 0.94

OP-3 Low MEP
High PSC

8.26 6.67 2.09 1100 18 96 0.99

OP-4 High PSC
High LVER

9.42 6.41 4.72 1500 36 96 0.97

OP-5 High PSC
High LVER
Low MEP

8.69 2.31 6.73 2200 28 90 0.99
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Figure 11 shows the filament merging and printability 
index of OP-5. At room temperature, the filaments exhibit 
over-gelatin characteristics, leading to broken grid struc-
tures. When the temperature is set to 30 °C, the filaments 
align well and exhibit morphology matching with the 
3D design. However, at higher temperatures (40 °C), the 
bioink begins to display under-gelation characteristics, 

resulting in the formation of thick printed filaments. 
Analysis of variance (ANOVA) followed by t-tests reveals 
significant statistical differences in the printability index 
of the optimal bioinks printed at different temperatures. 
Printing at 30 °C yields the best printability index. To sum 
up, a printing speed of ~ 20 mm/s at 30 °C resulted in the 
best printability performane.

Fig. 9  a Top view and b side view of a zig-zag structure with the 
bioink compostion at the optimal point (OP-5). c Isometric view and 
d Side view of a thin-walled (~ 0.5  mm) cylindrical structure with 
the bioink compostion at the Optimal Point (OP-5) (14 layers with 

0.5 mm/ layer). e Isometric g front (focused) f top and h front (full) 
view of a 3-layered 2  cm long tubular structure printed with OP-5. 
i Side and j isometric view of a meniscus model printed with OP-5. 
OP-5 in e-j color textured using 0.2% (v/v) red dye (Allura Red AC)

Fig. 10  a Uncollapsed structure in low pillar gaps (1–5 mm), collapse characteristics for a traversing speed of b 5 mm/s c 10 mm/s d 15 mm/s e 
20 mm/s. f Collapse Area Factor percentage plotted for different printing speed, wall gap, and time
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3.7  Post-extrusion cell viability

GFP-HUVEC were mixed in the OP-5 bioink and printed 
in a single layer with thickness of 0.5 mm. The extrusion 
pressure was set at 35 Kpa with nozzles heated to 37 °C to 
minimize thermally induced cellular death. The live-dead 
staining of the cells in this printed bioink are presented 
in Fig. 12. High cellular viability, averaging 93%, was 

confirmed through image analysis across multiple (n = 5) 
images. Consequently, due to the low extrusion pressure 
provided by the optimized bio-ink, it can be affirmed that 
the shear-induced forces experienced by the cells in the 
bioink result in less than 7% cell death.

Fig. 11  The filament merge and 
printabilit index for different 
temperatures using OP-5 at a 
22 °C b 30 °C c 40 °C. d The 
isometric view of the grid shape 
formed at 40 °C. e The print-
ability index (Pr) and f filament 
merging (%) of OP-5 at different 
temperatures

Fig. 12  a RFP and GFP overlaid images in different regions of a 0.5 mm printed layers. b Statistical information on the Live/ Dead cell distribu-
tion in the printed structure
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3.8  Machine learning based response modeling

We used the neural network model to establish a non-linear 
regression relationship between the rheological and print-
ability parameters. The predicted versus actual PSC and 
MEP responses using the rheological predictors are shown 
in Fig. 13. The strong correlation between predicted and 
actual values demonstrates the reliability of our MEP and 
PSC models. The hyperparameters of the machine learning 
model, including the number of layers, activation functions, 
learning rates, epochs, batch size, layer drop rate, regulari-
zation factor, and scheme, were selected through iterative 
improvements, resulting in reduced model errors. No spe-
cific hyperparameter optimization scheme was implemented 
for the learning rate. In this experiment, we explored the 
MEP and PSC trends by varying LVER-G’ while keeping 
the other rheological parameters fixed at their optimal solu-
tion values (OP-5).

Figures 14 and 15 illustrates how PSC and MEP vary 
with rheological parameters LVER-G’ and COST. Fig-
ure 14a shows that PSC positively correlates with LVER-G’ 
but remains relatively stable with COST. However, at low 
LVER-G’ values (1000 Pa), inconsistent PSC is observed, 
with significant drops occurring at high COST (> 750 Pa). It 
could be attributed to the fact that at low LVER-G’, bioinks 
that require high shear stress to undergo gel-sol transi-
tion may show over-gelation behavior [65, 109] resulting 
in reduced structural integrity. The MEP shows a positive 
correlation with COST for LVER-G’ > 1200 Pa as shown 
in Fig. 15a. With the increase in the COST, the viscoelas-
tic bioink requires a higher amount of shear stress to go 
through the gel-sol transition [110]. Increasing COST leads 
to higher extrusion pressure. As LVER-G’ levels rise from 
1000 to 2000 Pa, MEP consistently increases, in line with 
prior literature [41]. These MEP and PSC predictions apply 
when the biomaterial has specific properties, including a 

shear-thinning index of 0.38, thixotropic recovery rate of 
94%, yield stress of 29.07 Pa, and ZSV of 22.28 × 104 Pa, 
as defined in the optimal solution OP-5.

Figure 14b and 15b present the effects of STI and LVER-
G’ on PSC and MEP, respectively. PSC positively correlates 
with both LVER-G’ and STI. Bioinks with good shear-thin-
ning properties exhibit high printability, reducing nozzle 
clogging, enabling precise deposition, and ensuring smooth 
extrusion [46, 111, 112] especially at sufficient LVER-G’ 
levels. But STI has a negative correlation with MEP across 
the entire LVER-G’ range. This is because an increase in the 
shear-thinning index leads to a reduction in yield stress [113, 
114] subsequently lowering the MEP required to extrude the 
bioink from the nozzle at a fixed LVER-G’. These MEP and 
PSC predictions for different STI and LVER-G’ values are 
valid under the condition that other rheological values (ZSV, 
COST, YS, and THIX) remain fixed at their optimal solution 
values in as in OP-5.

Figure 14c and 15c show the interactions of yield stress 
and LVER-G’. The increase in PSC alongside higher yield 
stress can be ascribed to the structure’s enhanced resilience 
against deformations and collapses. This is due to the neces-
sity for greater shear stress to initiate flow in viscoelastic 
materials, a concept previously discussed. Moreover, MEP 
shows a markedly positive correlation with yield stress 
across increasing LVER-G’ intervals. This aligns with 
established literature, indicating that yield stress is a pri-
mary determinant of extrusion pressure for specific nozzle 
sizes [115].

In Fig.  14d, PSC decreases as ZSV increases when 
LVER-G’ < 1600 Pa because of the higher loss modulus 
and a lower storage modulus [116]. Consequently, the drop 
in the storage modulus leads to decreased PSC. Beyond a 
ZSV threshold of 60 × 104 mPa.s, PSC begins to rise again, 
as viscous forces become strong enough to counteract flow 
deformations, thus preserving structural integrity [20, 

Fig. 13  Predicted vs test data 
for a PSC and b MEP
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117–119]. As demonstrated in Fig. 15d, MEP negatively 
correlates with increasing ZSV; a higher ZSV, for a fixed 
complex viscosity, implies a greater loss component and 
lesser elastic component [41]. Consequently, the material 
tends towards more viscous behavior with enhanced flowa-
bility and lower MEP. However, at extremely high ZSV val-
ues above 30 ×  104 mPa·S, the minimum extrusion pressure 
plateaus, indicating no further decrease.

Figure 14e and 15e illustrate how the PSC) and MEP 
vary with changes in the THIX and LVER-G’. At LVER-
G’ values below 1400 Pa, an increase in THIX leads to a 
marked decrease in PSC, indicating that higher THIX may 

produce more viscous-dominant gels with increased yield-
ing behavior, thus reducing stiffness and PSC [120]. While 
there is a negative correlation between MEP and THIX 
across all LVER-G’ levels. This is likely due to these 
materials’ enhanced ability for micro-structure polymer 
chain network reconstruction [121]. In conditions where 
other rheological parameters are constant, materials with 
higher THIX may exhibit rapid polymer structure break-
down under low external force, contributing to lower MEP. 
These observations, derived from data mining techniques, 
are specific to conditions where other rheological proper-
ties are maintained constant for the OP-5.

Fig. 14  Response surface plots 
showing the response of PSC 
for LVER-G’ vs a COST b STI 
c YS d ZSV and e THIX
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3.9  Discussion and future perspectives

To demonstrate the capability of our ANN model on bioinks 
containing materials other than laponite, gelatin, or alginate, 
we utilized corn, potato, and rice starch mixed at varying 
concentrations. We determined the rheological parameters 
and proceeded with PSC and MEP determination, employing 
the same procedure as applied to our experimental bioinks. 
The results indicate prediction accuracies exceeding 82% 
and 89% with average of 85.4% and 89.7% for MEP and 
PSC, respectively, as presented in supplementary Table S3. 

Supplementary Figure S20 provides images of the printed 
structures. These models are exclusively applicable to 
bioinks where all six input predictors can be ascertained. For 
bioinks lacking any of these rheological parameters, accu-
rate determination of PSC and MEP data becomes challeng-
ing. For instance, we tested aqueous solutions of 15% (w/v) 
polyethylene oxide (PEO), which exhibited no characteristic 
yield point or cross-over shear stress features, resulting in 
a low PSC, as depicted in supplementary Figure S20j, k. 
Our ANN models do not accept ‘Null’ values in any of the 
six input nodes. Therefore, we assigned a very small value 

Fig. 15  Response surface plots 
showing the response of MEP 
for LVER-G’ vs a COST b STI 
c YS d ZSV and e THIX
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(0.1 Pa) to determine the PSC and MEP values. This led to 
diminished prediction accuracies for both PSC and MEP.

Bioprinting has recently witnessed remarkable progress 
propelled by various machine learning techniques, including 
convolutional neural network models for image data, pro-
cess optimization, tool path planning, prediction of cellular 
behavior and viability, quality detection, and data pattern 
analysis, among others [122–134]. Our work demonstrated 
the excellent performance of the ANNs in predicting the 
intricate relationships between rheological properties and 
printability parameters (MEP and PSC). In addition, we 
applied a linear regression model to the primary dataset, 
focusing solely on the main effects (rheological param-
eters) and excluding interactions, quadratic, or higher-order 
terms related to printability parameters. Although the linear 
regression model resulted in a relatively modest R-squared 
value, it still affirmed the overall positive and negative cor-
relations observed in our ANN models.

Although the proposed modeling technique is designed 
for tissue engineering scaffold applications, the rheology-
based printability and extrusion force modeling technique 
can be extended to other areas of extrusion-based processes 
that involve viscoelastic materials. For example, metal 
particles embedded in biodegradable hydrogels have been 
utilized as 3D printable materials, followed by sintering to 
produce metallic components [135], flexible electronics, and 
polymer-based transducers [136, 137]. The printability per-
formance of these materials is significantly influenced by 
the rheological properties of the metal-embedded organic 
inks, which can be predicted using the proposed modeling 
techniques. 3D printing is also employed in digitization and 
controlled nutrition distribution in food products [138] or 
viscoelastic drug design [139]. In such cases, predictions of 
print quality based on ingredient rheology can play a crucial 
role.

In terms of biocompatibility, this paper only assessed 
the immediate cell viability after printing. Even though the 
gelatin-alginate formulation has extensively researched for 
its ability to improve proliferation and cellular attachment 
across diverse cell types [140, 141], future studies should 
focus on the long-term cell viability and proliferation in this 
hybrid bioink. Cell attachment and proliferation rates are 
dependent on a range of factors including hydrophilicity, 
hydration levels, pore sizes, polymer chain density, and the 
degree of crosslinking. These properties can be further opti-
mized by integrating bioactive additives. Subsequently, the 
printability prediction model using ANN, as demonstrated 
in this paper, can be effectively utilized to assess printabil-
ity parameters influenced by these altered rheological char-
acteristics. Future research will also expand these machine 
learning models by integrating nozzle and syringe specifica-
tions as labeled data, thereby enhancing their applicability 
to a wider array of scenarios. Moreover, to refine bio-ink 

formulation, it will be essential to model and optimize a 
series of operational parameters, including flow rate, print-
ing speed, and layer height. These approaches in optimiza-
tion and predictive modeling hold substantial potential for 
advancing the field of bioprinting as a whole.

4  Conclusion

This paper presented a systematic methodology for deter-
mining the material composition ratios of multi-material 
bioinks to achieve optimal printability. It established a 
general correlation between the rheological properties of 
bioinks and their printability, irrespective of the specific 
bioink composition. Specifically, the study investigates 
various rheological and printability parameters, including 
zero-shear viscosity, maximum storage modulus within the 
linear viscoelastic region (LVER), cross-over shear stress 
(COST), yield stress, printed structure conformity (PSC), 
and extrusion pressure. The results demonstrated positive 
correlations with gelatin concentration for most parameters, 
while gelatin exhibited negative correlations with the shear-
thinning index, thixotropic recovery rate, and swelling index. 
Sodium alginate concentration displayed a positive correla-
tion with zero-shear viscosity and cross-over shear stress 
but negatively influenced other rheological and printability 
parameters. The addition of laponite enhanced the printed 
structure integrity and reduced extrusion pressure. Based 
on the proposed model, the optimal bioink formulations for 
optimal printability featured high gelatin (> 8%) and laponite 
(> 6%) concentrations but low sodium alginate (< 2.5%) con-
centration. The optimal solution has a cross-over shear stress 
of 178 Pa, yield stress of 29 Pa, a high viscosity thixotropic 
recovery of 94%, a shear thinning index of 0.38 (Ostwald de 
Waele power-law model).

Furthermore, an artificial neural network data mining 
approach revealed general correlations between various 
rheological parameters and extrusion pressure. The cross-
over shear stress demonstrated, and yield stress exhibited 
positive correlations with MEP across all LVER-G’ ranges. 
Conversely, the shear-thinning index and zero-shear viscos-
ity were negatively correlated with MEP. LVER-G’ dem-
onstrated a strong positive correlation with MEP and PSC 
across all combined rheological factors. According to our 
model, bioinks with a higher shear-thinning index > 0.30, 
yield stress > 20  Pa, a thixotropic recovery rate > 85%, 
zero-shear viscosity > 20 ×  104  mPa.s, and a LVER-G’ 
value > 1200 Pa will result in high PSC of over 90%. Mean-
while, it is essential to keep the yield stress < 80 Pa, thixo-
tropic recovery rate > 60%, and LVER-G’ ranging from 1200 
to 2200 Pa to make the MEP less than 35 Kpa, which is the 
upper limit for cell viability. The models predicting PSC and 
MEP demonstrated high accuracy, with MAE) of up to 6.3% 
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for PSC and 8.1% for MEP in the tested composite bioink 
materials. For other structured fluid materials not included 
in the training set, the models achieved average MAEs 
of approximately 10% for PSC and 14.6% for MEP. This 
demonstrates the versatility and the strength of ML-based 
modelling approaches in bioprinting applications. Future 
investigations are required to build models with higher pre-
diction accuracies involving training with greater number of 
predictors, wider range of rheology and concentration data, 
flexible number of predictor inputs, and different biomateri-
als to develop a universally applicable model. Furthermore, 
formulation of ingredients, strategies, and modeling tech-
niques for connecting long-term culture viability, spreading, 
and proliferation with the immediate post-fabrication viabil-
ity can be explored to develop a standardized high-fidelity 
bioink with long-term cell sustaining capability.

In summary, this study provides valuable insights into 
the rheological and printability behavior of gelatin-laponite-
sodium alginate-based bioinks. The results provide essential 
insights for choosing the right rheological parameters, based 
on the composition of materials, to enable the creation of 
high-fidelity bioprinted structures. These parameters are 
crucial for establishing optimal extrusion conditions that 
minimize cellular damage. This work lays the foundation for 
future endeavors aimed at improving bioink formulation and 
optimization techniques and machine learning approaches 
for extrusion-based bioprinting in the creation of cell-incor-
porated hydrogel tissue scaffolds.
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tary material available at https:// doi. org/ 10. 1007/ s40964- 024- 00828-1.
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