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Abstract
In bioprinting, printing resolution and structural stability depend closely on the bioinks’ rheological properties such as zero
shear viscosity, storage modulus, thixotropic recovery, viscoelasticity, and gelation point. Thus, understanding the material-
heol printability is crucial for multi-material bioinks. This study adopted a design of experiment (DoE)
with response surface using a central composite design to ically investigate the r ical and print-
ability parameters of bio-inks formed through combinations of sodium alginate, gelatin, and a nano-clay reinforcing agent
(laponite) for enhanced storage modulus and cellular attachment. The material composition for the optimal printability was
determined by the multi-response optimization method. Furthermore, this study incorporated machine learning techniques to
generalize the effects of various rheological properties on printability and extrusion pressure. Multi-objective optimization
was employed to statistically optimize solution properties based on the two opposing parameters: printed structure conform-
ity and minimum extrusion pressure. The optimized bioinks demonstrated high-fidelity printing performance: less than 5%
deformation from the computer-aided-design (CAD) models at low extrusion pressures below 30 Kpa for maintaining good
cell viability. Resampling data from the DoE-fitted model equations facilitated the generation of extensive datasets for train-
ing artificial neural network (ANN) models. This process resulted in a robust machine learning model capable of accurately
predicting bioink printability with a maximum 6.3% mean absolute error (MAE) solely based on the rheological properties.
In summary, the DoE-based data sampling, MRO optimization, and ML modeling approach enabled the development of a

robust bioink formulation method applicable to creating bioinks with extreme properties. The study underscores the crucial

d bioprinting for tissue engineering applications.
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1 Introduction

Extrusion-based bioprinting is a well-established 3D bio-
fabrication method that involves precise extrusion and layer-
by-layer deposition of bio-inks [1-4]. It is renowned for its
ability to maintain high cell viability through delicate and
controlled ink deposition, allowing for the printing of thick
and intricate structures with high cell density, along with
a wide range of biomaterial choices [5, 6]. In extrusion-
based bioprinting, achieving an optimized composition of
the bioink is crucial to attain the desired characteristics of
the printed structures. Furthermore, the extrusion pressure
is preferred to be kept below a critical limit to reduce the
shear force for cell viability [7, 8]. Altering the material
type and the percentage of composition impacts various
mechanical and fluidic properties, as well as their biocom-
patibility, printing pressure, and printability. In our research,
we focused on studying and optimizing the rheological char-
acteristics of a combination of sodium alginate, gelatin, and
laponite to create a bioink with high printability and excel-
lent cellular viability.

Sodium alginate is a widely recognized hydrogel due to
its biocompatibility and its ability to form a stable hydrogel
structure by reacting with divalent cations like calcium ions
[9. 10]. It will maintain long-term structural integrity under
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properties, and power law fit models, as essential criteria
for hydrogel-based bioink printability, leading to the devel-
opment of high-fidelity inks [21]. Townsend et al. stressed
the importance of rheology in ensuring high-shape fidel-
ity in 3D bioprinting, highlighting the need for quantifiable
standardized methods based on shear performance, recov-
ery time, and yield stress to assess bio-ink printability [22].
Ouyang highlighted the trade-off between cellular viability
and printed structure resolution, emphasizing the crucial role
of rheology and ical behavior in hydrogel-based bio-
printing [23].

In this study, we employed a design of experiment
approach to investigate how variations in the concentration
of these raw ingredients affect the rheology and printabil-
ity of the hydrogel structure. We examined key rheologi-
cal parameters, including zero-shear viscosity (ZSV), yield
stress (YS), shear-thinning index (STI), linear viscoelastic
region storage modulus (LVER G’), gelation cross over
shear stress (COST), and thixotropic viscosity recovery time
(THIX). We employed a central composite design (CCD) to
correlate input variables (concentrations of gelatin, laponite,
and sodium alginate) with individual rheological and print-
ability parameters. Surface response plots were generated
based on the models developed from the CCD experiment.
Furthermore, we applied a desirability function analysis

(DFA), a multi-resp (MRO) technique, to

various incubation conditions. Gelatin contains cell-adhesi
peptides which facilitate cell and proli
[11-13]. Laponite is a synthetic smectite clay nanomaterial

containing layered silicates with magnesium and lithium
ions, which can physically and chemically interact with the
polymeric matrix of hydrogels [14, 15]. It is used in bio-inks
as atheology modifier to enhance the structural integrity and
‘mechanical support [16, 17]. Our research goal is to develop
hybrid bioinks, consisting of these three biomaterials in an
optimized formulation, aimed at enhancing printability and
structural integrity while maintaining cellular viability.

To achieve this goal, we focused on the interrelationships
between bioink composition, theology, and printability. For
bioprinting, rheology heavily influences ink deformation
and flow under various conditions, determining printing
outcomes such as shape retention and fluid behavior during
and after printing [18, 19]. Numerous studies underscore the
pivotal role of theology in bioprinting hydrogels [20-25].
Researchers emphasize its significance as a key physi-
ochemical predictor for high fidelity printing, particularly
in extrusion-based bioprinting [20]. Paxton et al. identified
rheological parameters, including yield stress, shear thinning
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optimize raw i ions for printed
structure conformity and viscoelastic properties while mini-
mizing extrusion pressure to ensure high cellular viability.
Lastly, we utilized an artificial neural Network (ANN)-based
machine learning (ML) approach to establish general corre-
lations between rheological and printability parameters that
are independent of raw material concentrations. Overall, this
study established a quantitative correlation, demonstrating
how variations in material concentration significantly influ-
ence both theological properties and printability parameters.

2 Materials and methods
2.1 Materials

Sodium Alginate (CAS 9005-38-3), derived from brown
algae, was acquired from Sigma-Aldrich (MO, USA) with
a standard viscosity range of 4-12 ¢P in 1% H,0 at 25 °C,
Quality level 200. Gelatin (CAS 9000-70-8), sourced from
porcine skin and characterized by a gel strength of 300 g
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bloom (Type A), was also obtained from Sigma Aldrich
(MO, USA). Laponite RD, featuring specifications includ-
ing a bulk density of 1000 kg/m* and a pH of 9.8 in a 2%
suspension, was procured from BYK (Wesel, Germany). For
crosslinking the final structures in the swell ratio test, anhy-
drous CaCl, (>96.0%) from J.T. Baker (NJ, USA), which
was analyzed and sourced from Avantor (PA, USA), was
employed.

2.2 Design of experiments

For the current RSM (Response Surface Methodology)
analysis, we employed a central composite design (face-cen-
tered) model to accommodate all response variables across
different concentrations of the materials. The data collected
underwent quadratic model fitting, which encompasses main
effects, quadratic effects, and interaction effects among the
various dependent variables involved in the experiment [26,
27]. In this study, we considered a 3-factor design with high
and low levels for the RSM fittings. The total number of
experimental samples required was 25 +2 k+1=15 (where
k=15). To assess the robustness of our models derived from
RSM fitting, we replicated the central point (start point)
three times to calculate experimental error and evaluate the
lack of fit. The 15 sets of design points obtained for fit-
ting the RSM model with Laponite (3,6), Gelatin (2,8), and
Sodium Alginate (2,5) are presented in the supplementary
Table S1.

The model equation for the central composite design are
as follows [28-30]:

Y =by+bX) + ... + X, + b X, X, + b3 X, X5
2
F et b X X+ by (X)) m
o+ DRE(X,) e

where, b,=model intercept.

by, by, ..., by=co-efficient terms with the main effect
terms.

by, by, . fficient terms with the i ct
effect terms.

by byay eevey by = co-efficient terms with the quadratic

effect terms.

€=CITOr.

The upper and lower bounds of the constituent compo-
sitions were determined based on preliminary experimen-
tal observations and prior literature. To form physical gel
structures, Laponite concentrations of at least 3% (w/v)
were deemed necessary [31]. Sodium alginate concentra-
tions below 2% (w/v) exhibited low mechanical stiffness
and lacked the necessary crosslinked structural stability for
hydrogel scaffolds [32, 33]. Previous studies have reported

varying starting concentrations of gelatin ranging from I to
3%, resulting in improved cellular attachment, proliferation,
and viability [34-37]. Our preliminary experiments indi-
cated that endothelial cells exhibited noti

at a minimum of 2% (w/v) for the commercial gelatin used
in our experiment. In earlier literature, alginate concentra-
tions > 6% were associated with a significant reduction in
cellular viability due to increased viscosity and extrusion
pressure (> 35 Kpa). Therefore, for our current experiment,
alginate concentrations were fixed between 2 and 5%, strik-
ing a balance between the necessary crosslinked strength and
optimal rheology for cellular viability. Prior studies on gela-
tin-based bioinks have assessed concentrations in the range
of 5-10% (w/v) for non-heated extrusion systems, and con-
centrations above 10% (w/v) were used for heated extruders
[38-40]. In line with published literature [41] that explored
gelatin-alginate-based bioink extrusion at room temperature,
we set our upper limit for gelatin at 8% (w/v). Increasing
laponite concentration does add stiffness to the material but
can impede polymer flow due to the high laponite matrix
density at higher concentrations [42]. Previous research has
shown that concentrations of Laponite above 6% (w/v) result
in reduced structural height conformity in raised printed
structures [43]. Herefore, for our current work, we consid-
ered 6% (w/v) as the upper limit for Laponite concentration.

2.3 Rheological measurements

All rheological were d using an
Anton Parr MCR-92 modular RheoCompass instrument
from Austria. Depending on the specific rheological experi-
ments, two types of parallel rotating plates were utilized:
(a) 25 mm diameter plates with a 0-degree angle and (b)
25 mm diameter plates with a 2-degree angle. For robustness
in future investigations, experimental data were collected for
three runs to assess the sampling error rate.

2.3.1 Zero shear viscosity (ZSV)

The zero-shear viscosity was determined using a 25 mm
parallel plate with a 0-degree inclination in rotary mode. A
constant gap of 500 um was maintained for all samples to
ensure consistent shear force across all experimental runs.
Shear rate values were measured in the range of 0.01-1000,
with exponentially increasing values at higher shear rates.
Initially, the Carreau-Yasuda Model [44, 45] was employed
to fit the viscosity data points. Once the model parameters
were determined from the fit, the zero-shear viscosity (ZSV)
was subsequently calculated using the model equation, as
shown below:
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where = viscosity value at any given shear rate (y)

e = viscosity at infinite shear value.

1, = viscosity at zero shear value (ZSV).

y = SHEAR rate.

k = consistency parameter (characteristics time).

n=power law index.

a=parameter describing the transition from Newtonian
plateau to power law region.

Once the model equation has been fitted to the obtained
data, the values of k, n, and a are obtained which are then
used to determine the ZSV value at the effective zero shear
value. Hence, the obtained ZSV value is an extrapolated
value where the shear rate is effectively low enough that it
replicates the ideal situation mimicking the material at rest.

2.3.2 Shear thinning index (STI)

The shear-thinning property of the prepared bio-inks were
assessed using the Ostwald de Waele power-law model [46,
47] which is shown in the following equation:

o=K@)" 3)

where, 6= shear stress.

K =consistency index.

y = shear rate.

n=power-law index.

The viscosity data was collected for shear rates rang-
ing from 0.01 to 100 mPa.s using a rotary rheometer and
25 mm flat plate. The Ostwald de Waele power-law was fit-
ted against the obtained data and the value of the power-law
index was tabulated and used as the shear thinning index

TI).

2.3.3 Linear viscoelastic region (LVER) storage modulus (G")

The storage and loss moduli of the bio-inks were deter-
mined using oscillatory sweep mode to assess the viscoe-
lastic properties of the prepared bio-ink formulations. All
experiments were conducted with a fixed gap of 100 pm,
as larger gap values yielded inconsistent results for fluids
with low storage modulus. To establish the linear viscoe-
lastic region (LVER) limit, an amplitude sweep experi-
ment was performed. The LVER limit represents the maxi-
mum strain rate at which the material exhibits a constant
storage modulus (G”). Within the LVER limit, the material
undergoes elastic deformation, meaning that upon removal
of the shear stress, it returns to its initial form. Beyond the
LVER limit, the material experiences permanent deforma-
tion and does not recover when the applied shear stress is
removed. The i of oscillation was i

&) Springer

increased, varying for different bio-inks since those char-
acterized as viscoelastic liquids typically exhibited LVER
limits at lower shear stresses than bio-inks with solid-like
viscoelastic characteristics. During this experiment, G*
values were recorded as the maximum storage modulus
demonstrated by the bio-inks at their respective LVER
limits.

2.3.4 Cross-over (gelation point) shear stress

The gelation point is the specific shear force that triggers a
transition in a viscoelastic material from a solid-like state
to a liquid-like state. At this juncture, the value of the
storage modulus (G”) equals that of the loss modulus (G”).
Further increase in shear stress beyond this point causes
the loss modulus to surpass the storage modulus, leading
to a liquid-like flow behavior in the material. The determi-
nation of the gelation point, also known as the crossover
point, involves the same amplitude sweep experiment used
for characterizing the linear viscoelastic region (LVER)
limiting G". In this experiment, we identify the maximum
shear stress at which the gelation point occurs (G*=G").

2.3.5 Thixotropic viscosity recovery

Thixotropic behavior refers to the time-dependent change
in the viscosity of structured fluids when they are subjected
to shear forces. This property is particularly valuable for
characterizing bio-inks because it allows us to replicate the
conditions, in terms of changing shear forces, that bio-inks
encounter during extrusion printing. All measurements
were conducted in rotary mode with a consistent 500 pm
gap. A pre-shear value of 10 1/s was applied under isother-
mal conditions at 25 °C. The experiment consisted of two
phases: In the first phase, we obtained five data points at
alow shear rate of 0.1 1/s to simulate a resting condition.
Data points were collected at a rate of one data point per
second. In the second phase, we applied a high shear rate
of 100 1/s to replicate the shear forces experienced by bio-
inks during the extrusion process. This high shear rate was.
maintained for one second, with data points collected at
arate of ten data points per second. After this high shear
phase, the spindle returned to the low shear rate of 0.1 1/,
and viscosity values were recorded at a rate of two data
points per second for a total of 10 min. In this experiment,
the recovery rate is defined as the percentage of the initial
viscosity that the bio-ink regains within a 5-s timeframe
following the high-shear phase. This fixed timeframe was
determined based on an assessment of filament spreading
due to viscosity breakdown from shear forces in prelimi-
nary experiments.
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2.3.6 Vield stress

In rheology, yield stress is the minimum amount of stress
required to initiate the flow in non-Newtonian materials.
All the prepared bio-inks are structured fluids, with some
showing properties similar to Bingham plastics [48]. Below
a certain threshold stress, they showed solid-like behavior.
The yield stress is a crucial theological parameter that cor-
relates to the extrusion pressure requirement for 3D bio-
printing applications. For the current project, flow curve
measurements were performed at isothermal temperature
conditions, with shear rates ranging from 0.01 to 100 1/s.
The Herschel-Bulkley model [22, 49, 50] was used to fit the
data and determine the yield point. The model equation is
shown as follows:

=yt @

where 7 = shear stress.

7,5 = Herschel Bulkley yield point.

c=flow coefficient.

y= shear rate.

p=Herschel Bulkley index.

The value of the Herschel Bulkley yield point was
obtained following a model fitting of the obtained data.

2.4 Minimum extrusion pressure

The minimum extrusion pressure (MEP) was determined
prior to the printing experiments. The extrusion pressure is
dependent on the needle and syringes used. Literature sur-
vey shows that extrusion needles with diameter <0.4 mm
results in significant reduction in cellular viability induced
by cellular stretching and large transition velocity gains
[51-53]. The 21G needle with~0.5 mm internal diam-
cter is a popular choice in bioprinting applications owing
to the match between high cellular viability and printing
resolution [54-56] and hence is used in the current work.
Furthermore, prior literature shows a linearly proportional
relationship between nozzle diameter and extrusion pres-
sure [57]. Hence, based on the appropriate scaling factor,
the obtained models can be applied to other nozzle config-
urations with varying internal diameter and nozzle length.
Tt was the extrusion pressure that resulted in the formation
of a0.98 mm? ink volume extruded from a 21G needle in
1 s using a near-field camera and image processing. This
corresponded to a flowrate volume of 5.88 ml/min of a fil-
ament-like material extruded from a 21G nozzle moving at
5 mm/s to form a continuous filament. Since the mixture of
the materials show yielding rheological behavior, different
extrusion pressure would be required to obtain the same
flowrate for different mixtures. The minimum extrusion

pressure in this experiment is defined as the pressure in
kPa at which the material starts to flow out from the noz-
zle. To determine this pressure, we loaded the materials
into a 10 mL syringe and allowed them to flow through a
0.5 mm nozzle. The syringe was pressurized with measur-
able air pressure, and the nozzle tip was observed using a
microscopic camera system. We collected 10 measurement
values for each sample (design points) and recorded both
the average and standard deviation values.

2.5 Printing conformity

To assess printing conformity, we measured the dimen-
sional accuracy of the printed structure in comparison to
the ideal 3D CAD model. In this experiment, a modified
INKREDIBLE™ bioprinter (Gothenburg, Sweden) with a
fixed nozzle diameter of approximately 0.5 mm was used
(Supplementary Figure S1). The printer offers dual extrusion
nozzle with heading up to 120 °C,
translational X-Y accuracies of 10 pm, layer resolution of
100 pm, pressure range of 0-400 Kpa, UV sterilization and
curing modes. The flowrate of the bioink is controlled using
a pneumatic pump procured from Central Pneumatic (Cama-
rillo, California) operating at 1750 RPM with a maximum
delivery pressure of 404 Kpa. The CAD models were sliced
using the sli3er (open-source) software and the g-codes and
tool path were customized using the Repetier Host (Wil-
lich, Germany) software. Various bio-inks were used to print
CAD model structures with line widths matching the nozzle
diameter, at extrusion pressures slightly higher (around 10%)
than their minimum extrusion pressures. We maintained a
constant linear transition rate of 10 mm/s and used layer
heights of 0.5 mm with a total layer count of 20, resulting in
a1 cm long structure. The layer height was chosen based on
experimental trial and error that reduced prior-printed layer
penetration by the printing needle for the bioink mixtures
that did not strictly follow a filament-like shape. The overall
structure was designed to reach a height of 1 cm. After the
printing process, we measured the line width and overall
height of the uncross-linked structures using ImageJ. We
developed a comparative statistic to evaluate how closely the
bio-inks adhered to the specified height and width dimen-
sions without undesired spreading or collapsing. Structures
with low printed structure conformity tended to either
collapse under their own weight or spread sideways. The
printed structure conformity (PSC) value is essentially an
averaged cross-sectional area measurement of the 3D path

d to the modeled tional area. In our experi-
ment, we collected height and width data from 20 locations
(location index) along the printed sample. The printed struc-
ture conformity was assessed using the following equation:
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where i =location index.

b=measured width.

h=measured height.

n=number of measurements.

B =modelled width.

H=modelled height.

2.6 Filament stability

‘We quantitatively assessed filament stability in various sam-
ples using a custom shadowgraph micro-imaging system,
examining different temporal and spatial locations. This
allowed us to evaluate the stability of the filament from its
exit point at the nozzle to specific downstream locations.
We also studied how the fluidic properties influenced fila-
ment changes at different time intervals within the same
spatial locations. The materials were subjected to extrusion
pressures approximately 5-10% higher than their mini-
mum extrusion pressures. Shadowgraph images of the fila-
ments were captured at a frame rate of 8 frames per second
(FPS) starting from the moment the liquid began to emerge
from the nozzle. We selected three distinct axial positions:
Y =0 mm (at the nozzle exit), Y =5 mm, and Y = 10 mm as
spatial measurement points. For assessing temporal stabil-
ity, we measured the filaments at time intervals of 5, 10,
and 15s.

their wet state. To determine the swelling ratio, we placed
the samples in a hot oven at 60 °C for 12 h before re-meas-
uring their dry weights. The swelling ratio was calculated
using the following equation [58, 59]:

W, —W,
%8, =~

* 100 (@)

where S,, = swelling ratio
W,= wet structure weight.
W,= dry structure weight.

2.8 Desi function

To optimize the rheological and printability parameters con-
cerning the concentration of the constituent mixture com-
ponents, we employed Derringer’s desirability function,
a valuable tool for multi-objective problem optimization.
This analysis entails converting each response variable into
a desirability index (d,), with values ranging from 0 to 1[60].
These values are assigned a weight parameter (W,), which
is utilized to calculate the composite desirability index (D)
encompassing all response variables. The equation below

the between the desir-
ability index and the individual desirability index [61]:

D=dl\d;d} ... i} ®

where, di = Individual Desirability index
W, = weight assigned to the individual des
D= ite desirability index

ility index

The equation used to characterize the filament
morphology as an indicator of filament stability for the dif-
ferent design points:

(6)

where N=nominal needle inside diameter.
X; = spatial diameter.
emporal diameter.
=0.1,2,4 mm.
,3,8s.
n=total number of data points for all spatial and temporal
diameters.

2.7 Swelling ratio

The swelling index of a hydrogel material represents its
capacity to absorb water or other solvents, typically meas-
ured as the ratio of its dry weight to wet weight. In our cur-
rent experiment, we prepared samples measuring 2.5 cm
in diameter and 1 cm in thickness. These structures were
crosslinked in a 2% CaCl, solution for a total duration of
5 min each. Subsequently, we measured the structures in
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The individual desirability indices are then maximized,
minimized, or matched to target values using one-sided
transformations. The functions for these operations are as
follows [62]:

03f,00 < A
4 =9 EEYIn <fx0 <B %)
Liff(X) > B

0iff,(X) > B
ann = (%)Y,ﬂ] <fX)<B (9b)
Liff,(X) < A

Ay < [0 <1,
dt =9 (i < f 0 < B %)

lotherwise

where A = lower acceptable limit.
B= upper acceptable limit.
1,= target value.
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5,51, 52 = desirability satisfaction criteria.

[,(X) = the function to be maximized, minimized, or tar-
et matched.

The coefficients derived from the RSM models served as
the basis for generating objective functions for each rheo-
logical and printability parameter. The desirability approach
represents a multi-response optimization (MRO) process
wherein multiple objective functions are concurrently opti-
mized while adhering to specified limit(s). This

of the amount of material merging-induced deformation at
the connection node between two filaments in adjacent lay-
ers [20]. Various factors, such as material diffusion and sur-
face tension, influence the amount of filament merging at the
nodes [20]. In an ideal case, the diameter of the intermediary
filament (R2) would be equal to the diameter of the filament
(R1) in the node area. For merging filaments, R2 <R1. The
filament merging characteristic is given by the following

optimization process was executed using a scripted program
developed in RStudio. The desirability package library in
R was utilized to define the composite desirability func-
tion based on user-defined individual desirability indices.
A penalty approach (rmsOPT), involving the square root of
the sum of squares or absolute values of independent vari-
ables, was employed to define the optimal input search grid.
This grid was designed as either circular or square, depend-
ing on the penalty chosen. The search grid was expanded to
explore optimal values of the response variables, consider-
ing input variables within the experimental ranges. With
a search length of 10 per input, this approach resulted in a
total of 1000 search combinations for the three materials.
An iterative brute-force grid search was conducted to locate
the global optimum, and the optimization routine employed
was the Nelder-Mead simplex algorithm for convergence.

2.9 Printal

ity assessment of the optimal solution

The optimal solution(s) obtained through the MRO were
then assessed using various printability tests based on lit-
erature [20, 63]. The filament collapse test is a classical fila-
ment performance test used to assess the structural integrity
of a filament supported at two ends over a distance [63]. A
test bed with sequentially incremental gaps of 1,2, 3, 4, 5,
10, and 20 mm was designed for the collapse test. A sche-
matic of the filament collapse test is available in the supple-
mentary Figure S2. Three different printing speed levels 5,
10, 20 mm/s—were assessed to check the effect of printing
speed on filament stability. Images were taken to measure
the theoretical area (A,) of the gap region and deformed arca
(Ay) to obtain the collapse area factor (Cy) using the follow-
ing equation [64]:

A=A

G x 100% (10)

The filament merging and printability index are two pop-
ular methods for quantifying the printability of bio-inks.
For these tests, grid-shaped structures with 2 mm square-
shaped pores were printed, as shown in the supplementary
Figure S3a, b. The print path was designed to follow a recti-
linear propagation of the printing needle, as illustrated in the
supplementary Figure S3c, d. Filament merging is a measure

Filament Merging = (R2/R1) X 100% (11a)

The filament printability index is a quantitative measure
of printability using grid structures defined in prior literature
[65]. This is determined using the following formula [65].

2
pr=L

=1 (11b)

where Pr, L, and A represent the printability index, perim-
eter, and the area of the pore region. In ideal cases, the Pr
value is equal to 1 [65], resulting in uniform geometric
pores. For non-uniform pores formed due to under-gelation
of the bioink, the Pr< 1, resulting in pore areas less than the
designed model [65]. In grid structures printed from over-
gelation bioinks, the printability index will be greater than
1 [65]. Since our ideal bioink composition would include
gelatin, which exhibits temperature-sensitive flow behavior
[66], we tested the ideal bio-ink composition at a fixed print-
ing speed of 15 mm/s, a flow rate of approximately 10%
over the minimum extrusion pressure, and varying extruder
temperatures (room temperature, 30 °C, and 40 °C) to assess
filament merging and printability index.

2.10 Biocompati
of the post printed structure

In order to determine the biocompatibility of the prepared
bioink, we examined the cellular viability of the optimal
composition printed at 10% over its minimum extrusion
pressure (~ 35 Kpa) resulting in a flowrate of approximately
6 mL/ min at an extrusion temperature of 37 °C and print-
ing speed of 5 mmy/s. Green fluorescent expressing human
umbilical vein endothelial cells (GFP-HUVEC) were pur-
chased from Angio-Protemie (Boston, MA). Cells were
cultured in 75 mm? flasks with endothelial growth medium
(Angio-Protemie, Boston, MA) supplemented with ampi-
cillin (0.1 mg/ml, Thermo Scientific Chemicals, Waltham,
Ma). The original cells were passaged twice before the
experiment. The cells were vortexed with bio-ink (2.7 mL)
to achieve a final cell density of 0.33 million cells/mL. Fol-
lowing the bioprinting process, the cells were stained using
Live Dead Viability Kit (AAT Bioquest, Pleasanton, CA,
USA) at 37 °C for 30 min. The live cells were detectable
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under the green fluorescent protein (GFP) and the dead cells
were detectable under the Red Fluorescent Protein (RFP)
mode, respectively.

2.11 Machine learning approach for rheological
and pri il i

In this study, an artificial neural network (ANN) method
was employed to establish correlations between rheological
parameters and printability parameters. The ANN model was
used primarily as a multivariate non-linear regressor tool.
Six rheological parameters served as input variables for the
ANN, while the outputs consisted of minimum extrusion
pressure (MEP) and printed structure conformity (PSC),
representing during-process printability parameters. The
analysis did not utilize the swelling index ratio trend for
different rheological as it is not idered a
during-process printability parameter.

Two distinct neural architectures were developed to pre-
dict two different printing parameters: MEP and PSC. These
parameters were determined based on the above-mentioned
six rheological parameters: ZSV, THIX, COST, YS, STI,
and LVER. The initial dataset, consisting of 15 rows of data,
was expanded to 1000 row data using iterative resampling
through Monte-Carlo simulations. The DOE-fitted func-
tion resampling method using Monte-Carlo simulation was
shown effective in prior literature for dataset expansions
[67-70]. To assess the printability parameters beyond the
input variable range, synthetic data points were generated
using a generative adversarial network (GAN) architecture,
resulting in an additional 1000 rows of data. The GAN-gen-
erated data was validated using the original 15 DOE design
points which were used as the test set for evaluating the
data accuracy. For both models, the Keras Sequential and
TensorFlow packages within R were employed. The spe-
cific architectures of both models were generated using a
trial-and-error approach to determine the optimal number of
layers that would minimize the mean squared error (MSE)
for each model.

Initially, we started with a single hidden layer containing
six neurons and progressively added subsequent layers with
the same number of neurons. For the PSC data, we found
that adding three hidden layers would yield the lowest MSE,
while for the MEP data, two hidden layers resulted in the
lowest MSE. However, for more than three hidden layers,
data overfitting occurred for both MEP and PSC, as evi-
denced by the validation error surpassing the training error
after 50 epochs. This indicates that the model tended to shift
towards low-bias and high-variance models with higher lay-
ers [71]. Hence, the chosen number of layers provided a suit-
able model complexity that struck the optimal bias-variance
trade-off [72]. After determining the number of hidden lay-
ers for each model, we conducted hyperparameter tuning
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using the Keras Tuner [73]. This involved optimizing the
number of neurons in each layer within specified ranges,
ranging from 2 (2/3 of input neurons) to 32 (5.33 times the
input neurons) for each layer. The goal was to minimize
both the training and validation errors over 100 epochs.
A Random Search Keras tuner algorithm [74] with three
executions per trial was performed to match the objective of
minimizing training/validation error. The models with the
lowest training and validation errors are depicted in Figure 3.

The first phase of testing involved one-fold cross-valida-
tion. The dataset from Multi-Response Optimization (MRO)
was split into an 80:20 ratio for training and testing sets
of the neural network models for both MEP and PSC. A
validation split of 20% was applied to the training dataset.
Subsequently, the models were tested again using k=3 for
k-fold cross-validation, and the average mean squared error
(MSE) and mean absolute error (MAE) were found to be
similar to those obtained in the single-fold cross-validation.
To normalize the dataset, a standard scaler was applied.

The PSC model featured three hidden layers with four
hyperbolic tangent (TanH) activation neurons, four rectified
linear unit (ReLU) neurons, and three leaky-ReLU neurons
in the respective layers. Additionally, it employed an L1
regularization scheme with a regularization factor of 0.001
and a layer dropout rate of 0.1 to prevent overfitting. The
output layer consisted of one neuron with a linear activation
function suitable for numerical model fitting.

On the other hand, the MEP model employed two hid-
den layers with four TanH and four ReLU neurons in the
subsequent hidden layers. It incorporated L1 regularization
with a factor of 0.01, a layer dropout rate of 0.5 in the first
layer, and a layer dropout rate of 0.1 in the second layer
to prevent overfitting. The TanH function squashes input
values into a range between —1 and 1, while ReLU converts
values to a range between 0 and 1, setting values less than 0
10 0. To address the ‘dying ReLU” problem caused by nega-
tive values being set to 0, the leaky ReL.U was used, which
introduced a small bias (¢) to prevent 0 values for negative
inputs. The functional form of the TanH, ReLU and Leaky
ReLU activation functions [75-78] are as follows:

TanH : g(x) = &<

e+ e (123
ReLU : g(x) = max(0,x) (12b)
Leaky ReLU: g(x) = max (ex,x)with e << | (12¢)

Both the models were compiled with loss definitions
set to mean square error (MSE). The Adam optimizer with
learning rates of 0.005 was used to update the weights of
the neural network. The Adam optimizer was chosen owing
10 its advantages of momentum and adaptive learning rates.
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The neural network shapes for predicting the PSC and MEP
are shown in Fig. 1.

3 Results and discussion

3.1 Model equations and response surface
from the CCD-RSM method

Following the data obtained from the experimental proce-
dures based on the design of experiment table, the model
coefficients are obtained by regression fitting to the model
Eq. 1 which contains the Main effects, and the significant
interaction, and quadratic effects. The model fitting was
performed using the RSM package in RStudio which is an
extension of the linear model (Im) function in base R [79].
For better elucidation of the intercept and the unit change of
response for unit change in factor, a scale-invariant method
is implied by coding the factor estimates. The following
model equations provide the estimates (P <0.1) using coded

LVER-G' = 636.33 + 210(X,)-94.1(X,)
+193.6(X5) +372.27(X,)’
— 247.88(X, X;) [Model RSq = 0.83]

(13¢)

THIX = 0.72 — 0.06(X,)~0.14(X,)
+0.03(X3) +0.09(X; ) ~0.14(X,. X5)
~0.09(X,. X;) [Model RSq = 0.82]

(13d)

COST = 33.82 + 283.56(X) + 42.02(X;)

—137.68(X3) + 266.75(X,)’
—~ 309.68(X;. X;) [Model RSq = 0.90]

(13e)

Swelling Ratio = 28.48-2.60(X,)—5.60(X,)~7.08(X;)
+ 8.85(X;)" + 281X, X,)
[Model RSg = 0.90]

factor levels (half-effects): 30
Yield Stress = 17.61 + 17.52(X)-9.67(X;)
ZSV = 10.64 +21.76(X,) + 7.12(X,)— 4.55(X3) N )
2 p ~6.53(X;) + 12.13(X,)” - 8.22(X,)
+14.74(X,)* +7.57(Xy) + 16.52(X,. X,) 3 N (13¢)
RE —
—17.47(X,.X3) —5.33(X,. X) +14.89(X;)" = 29.61(X;. X;)
[Model RSq = 0.96] (Unit: x 10°mPa.S) [Model kSq = 082]
STI = 0.57- 0.06(X,)  0.1(Xy) + 0.128(X,) Printing Conformity = 16.14 +26.62(X,)~11.72(X,)
13b, i
 0.16(X,) = 0.06(X, Xy [Model RS = 051] (13b) + 5.50X,) + 27.78(X, ) 125X, X;)
—8.19(X;. X3 ) [Model RSq = 0.85]
(13h)
g ® (b)
Output
Layers LVER G'
-
: STI
I
\ i
: THIX
19! Predicted PSC H ~Predicted MEP|
H ¥s
'
i
'
i zsv
I i
V) |
cosT— 4t = cosT
Fig.1 The neural network architectures used to model the relationship between the rheological parameters and a PSC b MEP
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Minimum Extrusion Pressure = 14.58 + 18.92(X,)
—4.97(X,)-5.12(X;) + 13.69(x|)2
—14.65(X; X;) [Model RSq = 091]
(13i)
where, (X,) = Y= 5 X . = arbitrary gelatin

concentration.
Xsudiumatgianie =3
(Xy) = =2

3 Xsodiumalginae = arbitrary sodium
alginate concentration.

(Xy) = My
concentration.

The response surface contour plots displayed in Figs. 2,
3, 4 illustrate how rheological and printability parameters
change in response to variations in the concentrations (w/v)
of the constituent biopolymers, namely Gelatin, Laponite,
and Sodium Alginate. In these plots, since the model con-
siders the effects of all three input variables, when plot-
ting two out of the three constituents, the third constitu-
ent remains fixed at the center of the tested concentration
ranges. For example, in plots where a response variable is
represented in relation to Gelatin and Laponite concentra-
tions, the Sodium Alginate concentration is held constant
at 3.5%. This approach allows us to visualize how changes
in the concentrations of Gelatin and Laponite impact the
response variable while keeping Sodium Alginate at a con-
sistent level. Detailed perspective plots and contour plots
with independent color ranges for each concentration are
available in Supplementary Figures S4-S12.

Figure 2a—c illustrates the ZSV responses across differ-
ent concentration ranges of the raw constituents. In Fig. 2a,
where the concentration of sodium alginate is fixed at 3.5%,
an increase in gelatin concentration leads to higher ZSV val-
ues, particularly at low laponite ions. This behav-

Xiapome = arbitrary laponite

laponite such as ZSV is hindered as observed in the current
experiment and also previous literature [16].

Figure 2d—f illustrates the response of the shear-thinning
index as it relates to the constituent components. The figure
demonstrates the shear-thinning behavior of the mixture
system, as predicted by the CCD-RSM model. Figures 2d,
f show a positive correlation between the shear-thinning
index and the concentration of laponite. Laponite forms gels
through surface charge interactions held together by weak
van der Waals forces, which are easily disrupted by shear-
ing [87]. Therefore, in a system with a high concentration
of laponite, the viscosity formed through such electrostatic
attraction will rapidly decrease when subjected to shearing.
On the other hand, sodium alginate exhibits a negative cor-
relation with the shear-thinning index, as seen in Fig. 2e
and more prominently in Fig. 2f. Higher concentrations of
sodium alginate result in an increased concentration of Na™
ions in the system, which masks the negative surface charge
and reduces van der Waals attraction [88], thus diminishes
the shear-thinning effect of Laponite in the system. Simi-
larly, Gelatin also shows a negative correlation with the
shear-thinning index due to the strong crosslinked gel net-
work formed by the triple-helix structure at higher concen-
trations, which resists shear deformations [89].

Figure 2g—i illustrates the maximum storage modulus
(G’) within LVER. Higher concentrations of laponite result
in higher LVER-G” for all ranges of gelatin concentration,
with sodium alginate (SA) concentration fixed. This is
because laponite aqueous solution forms a stacked platelet
structure that enhances mechanical stiffness [90, 91]. Addi-
tionally, increasing gelatin concentration also contributes
to higher LVER-G’. At room temperature (25 °C), higher
concentrations of gelatin lead to a sol-gel transition, further

ior can be explained by the microstructure formed by the
electrostatic interactions among the edge-surface laponite
platelets, which grant laponite its rheological modifier char-
acteristics, including increased viscosity [16, 17]. However,
the presence of sodium alginate in the mixture hinders this
"house of cards" structure formation in laponite [17]. To
the best of our knowledge, no linear correlation between
viscosity and the concentration of specific constituents in
the mixture system has been reported. Both sodium alginate
and gelatin contribute to the rapid change in ZSV, as indi-
cated by the model equation for ZSV and Figs. 2a, b. This
is attributed to the ability of gelatin and sodium alginate
to elevate system viscosities through mechanisms such as
hydrogen bonding, polymer chain entanglements, and steric
hindrance [80-85]. For laponites, the electrostatic repulsion
in suspensions and layered-structure formation results in vis-
cosity modifications [86]. However, in systems containing
sodium alginate, the rheological-modification properties of
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stiffness within the LVER limit [92].
A plateau-like region shown in Fig. 2¢ indicates a drop in
LVER G’ at the intermediate gelatin concentrations between
3.51t0 6.5%. A similar trend is observed in Fig. 2h for vary-
ing gelatin concentration. In Fig. 2h gelatin demonstrates
high LVER-G’ at concentrations below 2.5% and above
7% with LVER-G’ less than 1 kPa in the central plateau
region. The sol—gel property of the mixture system depends
on the concentration ratio between gelatin and any polysac-
charide (sodium alginate). The stochiometric weight ratio
changes the sol-gel transition temperature and forms addi-
tional junction zones in the gel network [93]. This affects
the microstructure stability and changes the viscoelastic
characteristics [93]. Prior literature shows non-linear trends
of the storage modulus for changing gelatin and other poly-
saccharide (sodium alginate) concentration ratios [93, 94].
Laponite demonstrated a consistent increase in LVER-G’
values, approaching 1 kPa, with rising concentrations, par-
ticularly when combined with fixed gelatin and a low con-
centration of sodium alginate (less than 3.5%), as illustrated
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Fig.2 Response surface contour plots for different gelatin, alginate, and laponite compositions for a—c ZSV, d-f STI, and g-i LVER-G*

in Fig. 2i. Higher concentrations of sodium alginate interacts
with laponite to disrupt the “house of cards™ like layered
structure that primarily gives Laponite it’s high LVER G*
[17]. The original amplitude sweep data used to construct
the response surface data for the LVER-G’ are provided in
the Supplementary Figure S13.

Figure 3a—c show that high concentrations of laponite
(>4.5%) combined with low gelatin concentrations (<3%)
result in structures with 90% viscosity recovery within the
first 5 s after experiencing high shear deformations. This
rapid recovery of laponite viscosity aligns with findings
from previous literature [95-97]. When subjected to shear
forces, the microstructure of laponite di: i into flocs

concentrations and sodium alginate concentrations below
4.5%. This is attributed to the rate of disentanglement of
alginate their rate of itang]
ment, a phenomenon well-documented in previous studies
[98]. Similarly, when gelatin concentration is 5%, a similar
trend of high recovery rates (>75%) is observed as shown
in Fig. 3c. The original thixotropic recovery data used to
construct the response surface data for the STI can be found
in supplementary Figure S14.

Increased gelatin levels combined with reduced laponite
concentrations necessitate greater stress to achieve the gela-
tion point, as depicted in Fig. 3d. Laponite exhibits specific

" .

or platelets but swiftly reorganizes into its initial struc-
ture following the removal of force [95]. However, higher
concentrations of gelatin lead to reduced recovery rates at
high laponite concentrations, as seen in Fig. 3a. For a fixed
laponite concentration of 4.5%, Fig. 3b shows relatively high
viscosity recovery rates (> 75%) across all ranges of gelatin

s thinning behavior, which contributes to the reduction
in COST at higher concentrations [17]. On the contrary,
higher concentrations of gelatin increase the glass transi-
tion temperature, melting point, and promote the formation
of triple helix structures (physical aggregates) [99]. These
factors lead to the formation of a densely packed network
that is more resistant to shear forces, resulting in higher
COST values [99, 100]. The inverse relationship between
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COST and laponite concentration, as shown in Fig. 3ef, can
be attributed to the shear-thinning properties of laponite dis-
cussed earlier. The original amplitude sweep data used to
construct the response surface data for COST are provided
in Supplementary Figure S13.

Like the COST values, a high concentration of gelatin
leads to a higher yield stress (>70 Pa) at low laponite
concentrations, as shown in Fig. 3g. However, increasing
the laponite concentration at high gelatin concentration
reduces the yield stress to less than 30 Pa for laponite con-
centrations above 5.5%. This reduction can be explained
by the increased concentration of sodium ions with higher
laponite concentrations [101] which in turn reduces the
yield-stress as established in prior literature [31]. When
both sodium alginate (SA) and gelatin concentrations are
high, a maximum yield stress of 45 Pa is observed when
laponite concentration is 4.5%, as shown in Fig. 3h. Fig-
ure 3i shows that with sodium alginate less than 3%, low-
ering the laponite concentration to less than 3.5% increases
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the yield stress, as there may be an insufficient number of
phase-separating Na* ions from laponite or alginate [102].
Figure 4a-c shows the swelling ratio response plotted
against the mixture i Laponite i
exhibits an inverse relationship with the swelling ratio for
different ranges of gelatin and sodium alginate concen-
trations. Higher laponite concentrations increase physical
crosslinking and reduce the dissolution of the polymer in
the solvent due to covalent interactions [103]. This effec-
tively reduces the overall water uptake capacity of the
hydrogel, leading to a lower swelling ratio. Furthermore,
for a fixed laponite concentration of 4.5%, the swelling
index with i i i of both
gelatin and sodium alginate. The triple-helix structure in
the gelatin acts as a physical crosslink that resists solvent
uptake, thereby reducing the swelling ratio[104]. Hence
at higher gelatin concentrations, the polymer networks
are more tightly packed that result in reduced swelling
ratio [104]. A similar trend of reduced swelling ratio with
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increasing sodium alginate concentrations have been
reported in prior literature [105] and can be attributed to
the similar phenomena of packed polymer network density.
Figure 4d—f shows that PSC is dominated by gelatin
concentrations. Notably, even with the maximum laponite
concentration of 6% and SA at a minimum of 2%, the high-
est achieved PSC is only 40%. From our current analysis
of the PSC data, it becomes evident that a high gelatin
concentration above 7.5% is desirable to achieve a PSC
ereater than 70% across various ranges of SA and laponite
Further details ding the process and
methodology for obtaining PSC are discussed in the
upcoming Sect. 3.4.
Figure 4g—i shows the relationship between the MEP

and bioink concentrations. For gelatin concentrations
below 6%, the desired extrusion pressure (<30 kPa) is
achieved when the laponite concentration is below 4.5%.
In this range, the bio-ink exhibits a zero-shear viscosity
of less than 30 x 10* mPa-s (Fig. 4a) and a yield stress
value of less than 50 Pa (Fig. 4g). The maximum extrusion

pressure (22 kPa) is observed at low laponite (< 3.5%)
and sodium alginate (< 3.25%) concentrations, with gela-
tin fixed at 5.5%. This is due to the low values of ZSV
(< 15%10* mPa.S), LVER-G’ (< 600 Pa), and yield stress
(<40 Pa) in this concentration range. Since our PSC data
shows that the gelatin concentration needs to be above
7.5% to achieve high PSC, it is possible to adjust the mini-
mum extrusion pressure to be less than 30 kPa by increas-
ing the laponite concentration up to 6% and beyond, as
indicated by the nonlinear trends in the contour plot in
Fig. 4g. This possibility is further explored in the desir-
ability function analysis section.

3.2 Bio-ink sol-gel characteristics

The results of the vial inversion test are presented in Fig. 5.
It is evident that DP-3, 6,7, 9, 10, 11, 12, and 14 display
strong gel-like behavior, characterized by ZSV exceed-

ing 15x 10* mPa-s and yield stress over 20 Pa. DP-1 and
13 exhibit moderate levels of flowability, demonstrating
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intermediate gel-sol transition characteristics, with ZSV
ranging from 10 to 15x 10* mPa-s and yield stress from
10-30 Pa. As for bioinks DP-2, 4, 5, 8, and 15 they display
solution-like characteristics, featuring ZSV below 10° mPa-s
and yield stress less than 5 Pa.

3.3 Bio-ink filament characteristics

The filament morphological information and images are pre-
sented in Fig. 6. DP-3, 6, 7, 11, 12, 13, and 14 show tubular
filament characteristics. In all these bioinks the LVER-G”
was greater than 800 Pa, the ZSV greater than 10° mPa-s,
and the yield point greater than 10 Pa. However, DP-6 and
DP-12 showed higher filament diameter variability and aver-
age diameter owing to low THIX of 50% within the first 2 s
following the extrusion process. Hence, based on the tem-
poral and spatial stability, DP-3, 7, 11, 13, and 14 showed
the least variability in filament diameter and the average
diameter was closer to the nozzle diameter of i

was achieved when ZSV > 10° mPa-s, THIX >75% within
the first 2 s, Yield point> 10 Pa, and LVER-G’ > 800 Pa.

3.4 Printed structure precision

‘We measured printed structure conformity using a 1 cm
tall M-shaped 3D computer model with a 0.5 mm nozzle.
As shown in Fig. 7, DP-2, 4, 5, and 8 did not form fila-
ments. DP-3, 7, 11, and 13 had the best filament width and
height conformity. However, DP-14, while stable, resulted
in merged structures with poor width and height conformity
due to under-gelation, possibly linked to its higher tempera-
ture-sensitive viscosity. The temperature-viscosity relation
was determined by fitting viscosity data points obtained at
a constant shear rate of 50 1/s using the Vogel power-law
model [106] in the range of 20-40 °C. The temperature
sensitivity is estimated from the higher temperature expo-
nent constant as seen in the fitted power law equation in

0.5 mm. Hence the highest tubular-like filament conformity

the 'y Figure S15. DP-3 exhib-
ited over-gelation characteristics [107, 108] due to its higher

DP 11-15

Fig.5 The bioink flowability at room temperature (25 °C) after 60 s of vile inversion

[ ®
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Fig.6 a Filament diameter as an indicator of stability over different temporal and spatial points. b Filament in the near-field location of 10 mm

from the nozzle for DP1 to DP-15
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Fig.7 a Printed structure
height and width conformity -
(%) with respect to the original
3D model; Numbers inside the
histogram bars indicate the
design points (DP). b Images of
the printed structures for DP-1
to DP-15 ¢ 3D model path used
to inspect the conformity

Height Conformity (%)

Width Conformity (%)

e

yield stress (> 100 Pa) and high gel crossover shear stress
(> 1100 Pa-s) values, despite its high structural conformity.

3.5 Desirability function analysis

In the \p approach, param-
eters were introduced to bias the optimization process in
a preferred direction. For example, the MEP target range
was set from 5 to 40 kPa, with a low-scale value of 0.2 and
a high-scale value of 1.5, as illustrated in Fig. 8. The opti-
mizer will prioritize searching for optimal MEP values in
thel le region (apy 5 kPa) to maximize the
desirability index. Similarly, for PSC, we defined the target
range from 80 to 100%, with a low-range scale factor of 3
and a very small low-scale value of 0.0001. The optimizer
will focus on finding optimal PSC values between 80 to
100%, with a stronger emphasis on values closer to 100%.
Regarding LVER-G’, we used a maximization range with
a scale factor set to 2, ranging from 1100 up to a variable
upper limit. The minimum value of 1100 Pa for LVER-G”
was chosen based on experimental observations that resulted
in good structural integrity.

The targets for MEP and PSC, and the upper limit of
the LVER-G’ were iteratively generated using a loop func-
tion, as illustrated in Fig. 8d. The value-generating loop
function was nested under an outer loop function that also
encompassed the desirability functions. The generative loop
function dynamically produced values for parameters a, b,
and c. As a result, we obtained multiple optimal composi-
tions for the bioinks that met the criteria of 5 <MEP <40,
80% <PSC <100%, and LVER-G’ > 1100 Pa. By imple-
menting this expanded grid search, we extended our solu-
tion points beyond the range tested in the experiments. This

allowed us to maximize the desirability of multiple objective
functions and identify a broader set of solutions. The desir-
ability ions with the specified search
are presented in supplementary section as Equations S1a—d.
Based on the optimality search, we classified solutions
into five different categories with their corresponding char-
acteristics, constituent materials, response values, and desir-
ability index D as shown in Table 1. Following our optimi-
zation approach, we designated OP-5 as the ideal solution,
which combines high LVER-G (> 1100 Pa), high PSC
(>90%), and low MEP (< 30 kPa). Supplementary Table S2
presents the differences between the predicated valutes and
experimental values, demonstrating the good performance
of our models. Figure 9 presents PSC and qulitative images
of different sutrucres printed using OP-5.

3.6 Printability performance of the optimized
bio-ink

Figure 10 shows the filament collapse test results for OP-5.
At the printing speed of 20 mm/s, the filaments exhibit the
least deformation. Conversely, lower printing speeds lead
to a higher volume of filaments deposited per unit length,
causing them to yield more under their own weight. Fig-
ure 10f summarizes the collapse area factor under different
gaps, speeds, and time intervals after filament depositions.
For gaps greater than 10 mm, significant statistical differ-
ences (i-test) were found when speed varied. At the optimal
printing speed, our optimized bioink demonstrates approxi-
mately 7.5 times better resistance against filament collapsing
compared to previous results using oxidized alginate-gelatin
bioinks reinforced with low laponite concentrations [102].
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Fig.8 The desirability ramp and parameters to optimize the multi-
response-objective (MRO) problem. a Maximization ramp for LVER-
G’ b target-ramp for MEP and ¢ target-ramp for PSC. Red dot indi-

cates optimal responses from DFA for OP-5 d the looped iterative
search for an optimal max or target value for the MRO problem

Table 1 Sets of 5 optimal points

N N Optimal points ~ Characteristics ~ Gel ~ SA Lap LVERG’ MEP PSC D
obtained by DFA optimization limiting var  target var target var
@ (@ (©
OP-1 High PSC 849 656 256 1100 2 9 0.98
op-2 High LVER-G' 957 531 644 1900 36 80 0.94
op3 Low MEP 826 667 209 1100 18 9% 0.99
High PSC
oP-4 High PSC 942 641 472 1500 36 9% 0.97
High LVER
op-5 High PSC 869 231 673 2200 28 9 0.99
High LVER
Low MEP
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Fig.9 a Top view and b side view of a zig-zag structure with the
bioink compostion at the optimal point (OP-5). ¢ Isometric view and
d Side view of a thin-walled (~0.5 mm) cylindrical structure with
the bioink compostion at the Optimal Point (OP-5) (14 layers with

M Gap=sm

)
-

Specd(mms)

pse Area Factor (%]

[N S —
0 min 20 min

0 min 20 min

0 min 20 min

0.5 mn/ layer). e Isometric g front (focused) f top and h front (full)
view of a 3-layered 2 cm long tubular structure printed with OP-5.
i Side and j isometric view of a meniscus model printed with OP-5
OP-5 in e-j color textured using 0.

2% (v/v) red dye (Allura Red AC)

Fig.10 a Uncollapsed structure in low pillar gaps (1-5 mm), collapse characteristics for a traversing speed of b 5 mm/s ¢ 10 mmv/s d 15 mn/s e
20 mm/s. f Collapse Area Factor percentage plotted for different printing speed, wall gap, and time

Figure 11 shows the filament merging and printability
index of OP-5. At room temperature, the filaments exhibit
over-gelatin characteristics, leading to broken grid struc-
tures. When the temperature is set to 30 °C, the filaments
align well and exhibit morphology matching with the
3D design. However, at higher temperatures (40 °C), the
bioink begins to display under-gelation characteristics,

resulting in the formation of thick printed filaments.
Analysis of variance (ANOVA) followed by t-tests reveals
significant statistical differences in the printability index
of the optimal bioinks printed at different temperatures.
Printing at 30 °C yields the best printability index. To sum
up, a printing speed of ~20 mm/s at 30 °C resulted in the
best printability performane.
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Fig. 11 The filament merge and
printabilit index for different
temperatures using OP-5 at a
22°Ch30°C 40 °C. d The
isometric view of the grid shape
formed at 40 °C. e The print-
ability index (Pr) and f filament
merging (%) of OP-5 at different
temperatures
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3.7 Post-extrusion cell viability

GFP-HUVEC were mixed in the OP-5 bioink and printed
in a single layer with thickness of 0.5 mm. The extrusion
pressure was set at 35 Kpa with nozzles heated to 37 °C to
minimize thermally induced cellular death. The live-dead
staining of the cells in this printed bioink are presented
in Fig. 12. High cellular viability, averaging 93%, was

confirmed through image analysis across multiple (n=5)
images. Consequently, due to the low extrusion pressure
provided by the optimized bio-ink, it can be affirmed that
the shear-induced forces experienced by the cells in the
bioink result in less than 7% cell death.

Status

) Live

| =

=
z

P=0.0048(*)

Cell Density (no. of cells/ sq.mm)

Fig.12 a RFP and GFP overlaid images in different regions of a 0.5 mm printed layers. b Statistical information on the Live/ Dead cell distribu-

tion in the printed structure
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hear-thi

3.8 Machine learning based resp

We used the neural network model to establish a non-linear
i between the ical and print-
ability parameters. The predicted versus actual PSC and
MEP using the rheological predi are shown
in Fig. 13. The strong correlation between predicted and
actual values demonstrates the reliability of our MEP and
PSC models. The hyperparameters of the machine learning
model, including the number of layers, activation functions,
learning rates, epochs, batch size, layer drop rate, regulari-
zation factor, and scheme, were selected through iterative
improvements, resulting in reduced model errors. No spe-
cific hyperparameter scheme was i
for the learning rate. In this experiment, we explored the
MEP and PSC trends by varying LVER-G’ while keeping
the other rheological parameters fixed at their optimal solu-
tion values (OP-5).

Figures 14 and 15 illustrates how PSC and MEP vary
with rheological parameters LVER-G’ and COST. Fig-
ure 14a shows that PSC positively correlates with LVER-G”
but remains relatively stable with COST. However, at low
LVER-G’ values (1000 Pa), inconsistent PSC is observed,
with significant drops occurring at high COST (> 750 Pa). It
could be attributed to the fact that at low LVER-G", bioinks
that require high shear stress to undergo gel-sol transi-
tion may show over-gelation behavior [65, 109] resulting
in reduced structural integrity. The MEP shows a positive
correlation with COST for LVER-G’ > 1200 Pa as shown
in Fig. 15a. With the increase in the COST, the viscoelas-
tic bioink requires a higher amount of shear stress to go
through the gel-sol transition [110]. Increasing COST leads
to higher extrusion pressure. As LVER-G’ levels rise from
1000 to 2000 Pa, MEP consistently increases, in line with
prior literature [41]. These MEP and PSC predictions apply
when the biomaterial has specific properties, including a

index of 0.38, thixotropic recovery rate of
94%, yield stress of 29.07 Pa, and ZSV of 22.28 x 104 Pa,
as defined in the optimal solution OP-5.

Figure 14b and 15b present the effects of STI and LVER-
G’ on PSC and MEP, respectively. PSC positively correlates
with both LVER-G’ and STI. Bioinks with good shear-thin-
ning properties exhibit high printability, reducing nozzle
clogging, enabling precise deposition, and ensuring smooth
extrusion [46, 111, 112] especially at sufficient LVER-G”
levels. But STI has a negative correlation with MEP across
the entire LVER-G’ range. This is because an increase in the
shear-thinning index leads to a reduction in yield stress [113,
114] subsequently lowering the MEP required to extrude the
bioink from the nozzle at a fixed LVER-G’. These MEP and
PSC predictions for different STI and LVER-G’ values are
valid under the condition that other rheological values (ZSV,
COST, YS. and THIX) remain fixed at their optimal solution
values in as in OP-5.

Figure I4c and 15c¢ show the interactions of yield stress
and LVER-G’. The increase in PSC alongside higher yield
stress can be ascribed to the structure’s enhanced resilience
against deformations and collapses. This is due to the neces-
sity for greater shear stress to initiate flow in viscoelastic
materials, a concept previously discussed. Moreover, MEP
shows a markedly positive correlation with yield stress
across increasing LVER-G’ intervals. This aligns with
established literature, indicating that yield stress is a pri-
mary determinant of extrusion pressure for specific nozzle
sizes [115].

In Fig. 14d, PSC decreases as ZSV increases when
LVER-G’ <1600 Pa because of the higher loss modulus
and a lower storage modulus [116]. Consequently, the drop
in the storage modulus leads to decreased PSC. Beyond a
ZSV threshold of 60 x 104 mPa.s, PSC begins to rise again,
as viscous forces become strong enough to counteract flow
deformations, thus preserving structural integrity [20,

Fig. 13 Predicted vs test data

fora PSC and b MEP ° @
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Fig. 14 Response surface plots
showing the response of PSC
for LVER-G’ vs a COST b STI
€ YS dZSV and e THIX
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117-119]. As demonstrated in Fig. 15d, MEP negatively
correlates with increasing ZSV; a higher ZSV, for a fixed
complex viscosity, implies a greater loss component and
lesser elastic component [41]. Consequently, the material
tends towards more viscous behavior with enhanced flowa-
bility and lower MEP. However, at extremely high ZSV val-
ues above 30 x 10* mPa-S, the minimum extrusion pressure
plateaus, indicating no further decrease.

Figure 14e and 15e illustrate how the PSC) and MEP
vary with changes in the THIX and LVER-G’. At LVER-
G’ values below 1400 Pa, an increase in THIX leads to a
marked decrease in PSC, indicating that higher THIX may

&) Springer

produce more viscous-dominant gels with increased yield-
ing behavior, thus reducing stiffness and PSC [120]. While
there is a negative correlation between MEP and THIX
across all LVER-G’ levels. This is likely due to these
materials’ enhanced ability for micro-structure polymer
chain network reconstruction [121]. In conditions where
other rheological parameters are constant, materials with
higher THIX may exhibit rapid polymer structure break-
down under low external force, contributing to lower MEP.
These observations, derived from data mining techniques,
are specific to conditions where other rheological proper-
ties are maintained constant for the OP-5.
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Fig.15 Response surface plots
showing the response of MEP
for LVER-G® vs a COST b STI
€YSdZSV and e THIX

3.9 Discussion and future perspectives

To demonstrate the capability of our ANN model on bioinks
containing materials other than laponite, gelatin, or alginate,
we utilized corn, potato, and rice starch mixed at varying
concentrations. We determined the rheological parameters
and proceeded with PSC and MEP inati i
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1400
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Supplementary Figure S20 provides images of the printed
structures. These models are exclusively applicable to
bioinks where all six input predictors can be ascertained. For
bioinks lacking any of these theological parameters, accu-
rate determination of PSC and MEP data becomes challeng-
ing. For instance, we tested aqueous solutions of 15% (w/v)
oxide (PEO), which exhibited no characteristic

the same procedure as applied to our experimental bioinks.
The results indicate prediction accuracies exceeding 82%
and 89% with average of 85.4% and 89.7% for MEP and
PSC, respectively, as presented in supplementary Table S3.

|
yield point or cross-over shear stress features, resulting in
a low PSC, as depicted in supplementary Figure S20j, k.
Our ANN models do not accept ‘Null’ values in any of the
six input nodes. Therefore, we assigned a very small value
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(0.1 Pa) to determine the PSC and MEP values. This led to
diminished prediction accuracies for both PSC and MEP.

Bioprinting has recently witnessed remarkable progress
propelled by various machine learning techniques, including
convolutional neural network models for image data, pro-
cess optimization, tool path planning, prediction of cellular
behavior and viability, quality detection, and data pattern
analysis, among others [122—134]. Our work demonstrated
the excellent performance of the ANNs in predicting the
intricate relationships between rheological properties and
printability parameters (MEP and PSC). In addition, we
applied a linear regression model to the primary dataset,
focusing solely on the main effects (rheological param-
eters) and i i quadratic, or highs d
terms related to printability parameters. Although the linear
regression model resulted in a relatively modest R-squared
value, it still affirmed the overall positive and negative cor-
relations observed in our ANN models.

Although the proposed modeling technique is designed
for tissue engineering scaffold applications, the rheology-
based printability and extrusion force modeling technique
can be extended to other areas of extrusion-based processes
that involve viscoelastic materials. For example, metal
particles in bi s have been
utilized as 3D printable materials, followed by sintering to
produce metallic components [135], flexible electronics, and
polymer-based transducers [136, 137]. The printability per-
formance of these materials is significantly influenced by
the rheological properties of the metal-embedded organic
inks, which can be predicted using the proposed modeling
techniques. 3D printing is also loyed in digitization and

formulation, it will be essential to model and optimize a
series of operational parameters, including flow rate, print-
ing speed, and layer height. These approaches in optimiza-
tion and predictive modeling hold substantial potential for
advancing the field of bioprinting as a whole.

4 Conclusion

This paper presented a systematic methodology for deter-
mining the material composition ratios of multi-material
bioinks to achieve optimal printability. It established a
general correlation between the rheological properties of
bioinks and their printability, irrespective of the specific
bioink composition. Specifically, the study investigates
and printability including
zero-shear viscosity, maximum storage modulus within the
linear viscoelastic region (LVER), cross-over shear stress
(COST), yield stress, printed structure conformity (PSC),
and extrusion pressure. The results demonstrated positive
correlations with gelatin concentration for most parameters,
while gelatin exhibited negative correlations with the shear-
thinning index, thixotropic recovery rate, and swelling index.
Sodium alginate concentration displayed a positive correla-
tion with zero-shear viscosity and cross-over shear stress
but negatively influenced other rheological and printability
parameters. The addition of laponite enhanced the printed
structure integrity and reduced extrusion pressure. Based
on the proposed model, the optimal bioink formulations for
optimal printability featured high gelatin (> 8%) and laponite

various r

controlled nutrition distribution in food products [138] or
viscoelastic drug design [139]. In such cases, predictions of
print quality based on ingredient rheology can play a crucial
role.

In terms of biocompatibility, this paper only assessed
the immediate cell viability after printing. Even though the

(>6%) but low sodium alginate (<2.5%) con-
centration. The optimal solution has a cross-over shear stress
of 178 Pa, yield stress of 29 Pa, a high viscosity thixotropic
recovery of 94%, a shear thinning index of 0.38 (Ostwald de
‘Waele power-law model).

Furthermore, an artificial neural network data mining
approach revealed general correlations between various

gelatin-alginate formulation has d for
its ability to improve proliferation and cellular attachment
across diverse cell types [140, 141], future studies should
focus on the long-term cell viability and proliferation in this
hybrid bioink. Cell attachment and proliferation rates are
dependent on a range of factors including hydrophilicity,
hydration levels, pore sizes, polymer chain density, and the
degree of crosslinking. These properties can be further opti-
mized by integrating bioactive additives. Subsequently, the
printability prediction model using ANN, as demonstrated
in this paper, can be effectively utilized to assess printabil-
ity parameters influenced by these altered rheological char-
acteristics. Future research will also expand these machine
learning models by integrating nozzle and syringe specifica-
tions as labeled data, thereby enhancing their applicability
to a wider array of scenarios. Moreover, to refine bio-ink
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r and extrusion pressure. The cros
over shear stress demonstrated, and yield stress exhibited
positive correlations with MEP across all LVER-G’ ranges.
Conversely, the shear-thinning index and zero-shear viscos-
ity were negatively correlated with MEP. LVER-G’ dem-
onstrated a strong positive correlation with MEP and PSC
across all factors. ding to our
model, bioinks with a higher shear-thinning index > 0.30,
yield stress > 20 Pa, a thixotropic recovery rate > 85%,
zero-shear viscosity >20x 10* mPa.s, and a LVER-G’
value > 1200 Pa will result in high PSC of over 90%. Mean-
while, it is essential to keep the yield stress <80 Pa, thixo-
tropic recovery rate>60%, and LVER-G’ ranging from 1200
to 2200 Pa to make the MEP less than 35 Kpa, which is the
upper limit for cell viability. The models predicting PSC and
MEP demonstrated high accuracy, with MAE) of up to 6.3%
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for PSC and 8.1% for MEP in the tested composite bioink
materials. For other structured fluid materials not included
in the training set, the models achieved average MAEs
of approximately 10% for PSC and 14.6% for MEP. This
demonstrates the versatility and the strength of ML-based

i in bioprinting ications. Future
investigations are required to build models with higher pre-
diction accuracies involving training with greater number of
predictors, wider range of rheology and concentration data,
flexible number of predictor inputs, and different biomateri-
als to develop a universally applicable model. Furthermore,
formulation of ingredients, strategies, and modeling tech-
niques for connecting long-term culture viability, spreading,
and proliferation with the immediate post-fabrication viabil-
ity can be explored to develop a standardized high-fidelity
bioink with long-term cell sustaining capability.

In summary, this study provides valuable insights into
the rheological and printability behavior of gelatin-laponite-
sodium alginate-based bioinks. The results provide essential
insights for choosing the right rheological parameters, based
on the composition of materials, to enable the creation of
high-fidelity bioprinted structures. These parameters are
crucial for establishing optimal extrusion conditions that
minimize cellular damage. This work lays the foundation for
future endeavors aimed at improving bioink formulation and
optimization techniques and machine learning approaches
for extrusion-based bioprinting in the creation of cell-incor-
porated hydrogel tissue scaffolds.

Supplementary Information The online version contains supplemen-
tary material available at hitps://doi.org/10.1007/540964-024-00828- 1.
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