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Abstract

Electrospinning is a robust technique for producing micro/nano-scale fibrous structures, influenced by intricate interplays of fluid
dynamics, aerodynamics, and electromagnetic forces. Depending on the desired outcome, these fibers can adopt various
morphologies, including solid, tubular, concentric, and gradient. Such i d such as

are by
collector configuration, flow rate, voltage, solution properties, and nozzle dimensions. However, the task of modeling and
predicting these multifaceted morphologies remains complex. Aligned microfibers with 3D orientation hold promise in tissue
engineering, regenerative medicine, and drug delivery, necessitating meticulous control over the fabrication parameters. In our
research, we tapped into machine learning (ML) to address these challenges. Classification ML models were designed to predict

Sfibrous | random, or jet branching—based on like voltage, flow rate, and collector configurations
‘Notably, the Random Forest (RF) and Support Vector Machine (SVM) models, especially with radial kernel-trick, displayed

ing predictive ilities on the test data. based ML was harnessed to discern fiber alignment
coherency and inter-fiber distances. Models such as Lasso and Ridge ion elucidated predictive for these

character

scenarios. Key findings the o

tics, while ensemble models, like gradient-boosting (GB) decision trees (DT), showcased prowess in regression
s like plate gap for alignment coherency and needle-to-collector
distance for inter-fiber spacing. As we strive to gain granular mmm! over

feature in

predict sponse dynamics is . Our undersc
both and precision in
offers potential, ly in Bio-F

es the essential role of ML in enhancing

ad\ vanced fibrous structures. Moreover, fusing ML with real-time process

high-precision manufacturing remains a top priority.

‘medicine, and tissue engineering, where
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1. Introduction

Electrospinning is a rapid fabrication technique for
polymer-based fibrous structures at the micro and nanoscale
using dielectric polymer solutions. With applications spanning
across diverse domains like healthcare, soft materials, flexible

electronics, energy harvesting, chemical storage, and catalysis,
its relevance cannot be overstated [1, 2]. The functional utility
of these fibrous structures in specific application areas hinges
predominantly on their micro and macro attributes. At the
microscopic level, properties such as diameter of the fibrous
structures, surface porosity, material composition, and hollow

s are o [3]. On the
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macroscopic scale, attributes like fiber orientation (be it aligned
or random), orientation degree, dominant directional flow,
inter-fiber spacmg, and fiber density play pivotal roles [4, 5]
Froma the

of process paramcwrs facilitates the creation of fibrous
constructs that exhibit the desired micro and macro
characteristics. Hollow tubular scaffold ~structures are
increasingly sought afier in microfluidics, finding applications
in areas such as healthcare, drug delivery, and tissue
engineering [6, 7]. When it comes to the fabrication of these
hollow, micro-scale fibrous structures (referred to as
microtubes), process parameters like flow rate, the distance
between needle and collector, and plate-gap critically influence
the final product's orientation and fiber density. Electrospun
fibrous assemblies with a high degree of alignment have found
substantial use in tissue engincering, discase modelling, and
studies of cell migration, to name a few [8, 9].

One of the major challenges of fabricating highly aligned
micro/nano fibers via electrospinning is its high sensitivity to
variations in process parameters. To fully harness control over
this fabrication technique, it is crucial to understand how these
process parameters (predictors) influence both the micro and

macro-outcomes  (responses) of our process.  Various
experimental modeling techniques, such as design of
experiments,  correlation analysis, principal
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However, these techniques frequently encounter the bias-
variance tradeoff, especially in complex model forms [19].
Therefore, selecting an appropriate model that can accurately
fit training data with low bias and predict unknown data with
low variance is of paramount importance for process modeling.

Another crucial challenge arises when complex machine
learning models act as "Black Box" models, where there is no
information available about cause-effect relationships based on
physical mechanisms despite their high prediction accuracies
[20]. This phenomenon is common in complex models such as
neural networks, random forests, and various boosting
techniques [21]. While simpler models such as regression and
decision trees might not always match the prediction accuracy
of more complex modc]s they offer a clear advamagc in

ility [22]. process impi
not just about achlevmg high predictive accuracy:
the between predictor
and response variables — essentially how the model derives its
predictions — is equally crucial.

In this experiment, our goal was to utilize minimal data
from the post-fabrication process to assess qualitative process
variations that result in classifiable outcomes such as
random/align fibers (from single jets) and multi-jet
inni i in our effort to

analysis, regression, and other statistical and machine learning

fubricate highly aligned microfibers, we employed muliple

models, are currently employed to develop pred
models for the properties of Electrospun fibrous structures at
both the macro and micro scales [10-13].

Supervised machine learning (ML) techniques, such as
linear regression, decision trees, support vector machines, and
neural networks, have been successfully integrated into the
electrospinning fabrication process [13-16]. Pervez et al. used
partial least squares (PLS) and support vector regression-based
ML techniques to predict diameters of chitosan-based
nanofibers with a high prediction accuracy [14]. Sarma et al.
used an ensemble of ML techniques such as gradient boosting
(GB), XGboost (XGB), linear regression, and random forest
(RF) to determine crucial predictors such as feed, polymer
concentration, and Flory-Huggins Chi parameter, and how they
affect the polyvinylidene fluoride (PVDF) polymer  fiber
diameter [15]. Morphological parameters such as diameter and
inter fiber separation as well as post-fabrication mechanical
properties such as strain at break and ultimate tensile strength
for polyvinyl alcohol (PVA) for seven different process
parameters were modelled using artificial neural network
(ANN) by Rolddn et al. [17]. Their ML-based modelling
approach showed high prediction accuracy and allowed the
biomimetic vascular implant fabrication using PVA for their
optimal manufacturing setup mined through their ML models
[17). Furthermore, ML techniques are also used to model post-
fabrication of in tissue
applications. For instance, Sujceun ef al. investigated the
crucial in-vitro_and physio-chemical data of Elcctrospun

and machine  learning
techniques to map process parameters to outcomes with high
alignment y and density. Classifi based ML
enabled us to identify sets of process parameters conducive to
forming cither aligned or random fibers from single jets and
discerning scenarios of jet branching from singular
electrospinning jets. For the classification problem, we
employed Naive Bayes (NB), Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), Decision Trees (DT),
and Random Forest (RF). For regression predictions on fibrous
structure alignment coherency and inter-fiber distance, we used
penalized linear regression models like Lasso and Ridge,
Decision Trees, Random Forest Regressor, and Gradient
Boosting (GB) ensemble techniques. Prior literature indicates
that these techniques perform well with small datasets (< 100
data points) [15, 23, 24], unlike deep learning techniques,
which achieve accurate predictions but require larger training
datasets [25). Floares ef al. demonstrated the impact of sample
size on the performance of the random forest (RF) technique.
Their results showed that prediction accuracy reached a
threshold with an area under the curve (AUC) > 95% with a
sample size < 100[26]. While these techniques have proven
effective under limited data conditions, model training through
augmented or synthetic data, using design of experiments
(DOE)-based techniques and random noise addition, has been
reported to mitigate the limitations associated with small data
samples from experimental rescarch [27, 28].

Our hndmgs undcr;mred a trade-off: while simpler
N the .

polymeric ~scaffolds applied to skin tissue
applications [18]. Their experiment showed that fiber and pore
diameter were the most crucial physio-chemical predictors of
performance for the synthetic tissues [18]. Hence, ML has
shown that it is possible to predict and interpret process
parameters that affect the overall clectrospinning outcomes.

models el between predictors and
responses, they sometimes compromised on prediction
accuracy. Conversely, sophisticated ensemble models like
Random Forest and Gradient Boosting excelled in accuracy. In
this research, we melded the strengths of both easily
interpretable models, shedding light on influential process
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parameters, and more intricate leuhmquea knuwn for their
predictive prowess. The d: affirm that
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table underwem augmentation to incorporate the necessary

machine learning is adept at process classification and adeptly
predicting unfamiliar data, especially when traditional linear
models fall short. This suggests the potential of machine
learning as an invaluable tool for in-process diagnostics,
enabling real-time parameter adjustments grounded in live
learning from accumulated data.

2. Materials and Methods

2.1. Electrospinning System

The electrospinning process was carried out in the core-
sheath co-axial mode with the objective of producing tube-like
fibrous structures. Poly-Caprolactone (PCL) with a molecular
weight of 80,000, acquired from Sigma-Aldrich (St. Louis,
MO), was prepared in a 12% (w/v) concentration by mixing it
with Dichloromethane (DCM) obtained from VWR (Radnor,
PA). Poly-ethylene-oxide (PEO) with a molecular weight of
300,000, also purchased from Sigma-Aldrich, was prepared in
a 6% (w/v) solution by mixing it with DCM. The PCL-DCM
solution served as the sheath solution, while the PEO-DCM
solution was used as the core solution in the co-axial
electrospinning system. For our experiment, a robotic
clectrospinning system (Tongli-Tech, China) was utilized, as
depicted in Figure 1. An in-house parallel plate collector with
an adjustable plate gap was employed for collecting the fibrous
structures. The co-axial setup utilized 26 core needles and 21
sheath needles. In this experiment, the core-to-sheath flow rate
was maintained at a 1:2 ratio, with the combined volumetric
flow rate indicating their bulk flow rate.

2.2. Design of Experiments and DOE-informed data
augmentation

In this experiment, we employed four predictor variables:
Voltage, Bulk Flow Rate, Needle to Collector Distance, and
Plate Gap. A rule of thumb is to use a training dataset that is 10
times larger than the total number of features for training [29-
31]. These variables were utilized to predict fiber orientation,
alignment coherency, and inter-fiber distance. The design of
experiments (DOE) followed a full factorial design [32] with
four factors, each having three levels. This setup resulted in a
total of 81 data points for analysis. The ranges of the operating
parameters for our design space are shown in Table 1:

Table 1. Predictor variable bounds for the design space

Parameter Lower Bound Upper Bound
Voltage 0KV 20KV

Bulk Flowrate 3.5 mlh 8 ml/h
Plate Gap 2cm 6cm

NC distance 10em 25em

Additionally, 30 additional design points were generated
using the Box-Behnken design [33]. These points included six
replicates of the center point and were designated for use as our
test set data. Due to the imbalanced response from the initial
DOE dataset, consisting of 81 data points, we opted for design
augmentation to address this issue by manually introducing
additional parameter combinations within the existing design
space. To rectify the imbalance, we gathered supplementary
parameter configurations corresponding to Aligned, -Jet
branch, or Random fibers. The original full factorial design
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were obtained to distinguish between single, multiple, or no jet
formation on the Taylor Cone. The images were used to label
the original data set for the classification-type machine learning
approach.

2.4. Machine Learning techniques

The machine learning problems of the classification type
involved identifying process parameters that led to aligned
fibers, random fiber formation, or jet branching from the Taylor
Cone [41]. These phenomena were classified into three distinct
outcomes for our analysis. To predict these qualitative
outcomes, we employed classification models, namely Naive
Bayes, K-Nearest Neighbor, Support Vector Classifier, and
Decision Tree. The accuracy of the classification models was
calculated based on the total number of true positives and
negatives out of the overall observations in the predicted and
test sets which forms the confusion matrix [42], as follows:

True Positive+Tru_Negative

Accuracy =
Y Total Observations

1)

The naive bayes classification method is based on the Bayes
theorem condi ility that ines the i
outcome of event A given event B and is expressed by the
following form [43]:

P(AIB) = )

Local learners like the K-Nearest Neighbor classification
technique does not construct a specific model; instead, it
employs the training data to predict the classification of
unknown test data [44]. In this approach, the training set
essentially serves as the prediction model [44]. The user
specifies the number of neighbors (K) to be considered for
classifying the unknown data. The algorithm then computes the
Euclidean distance between the test point and neighboring
training data, as described by the formula [45]-

1 = y:)?

Here, (x; — y;) is the distance between the unknown point in
the test dataset and the known point in the training dataset. For
our KNN classification model, we used a wrapper function to
tune the hyperparameters of the model based on a 10-fold cross
validation approach by varying K from 1 to 1000 on the
training data st [46].

3)

The support vector machine (SVM) classifies responses by
fitting an optimal hyperplanc that best separates distinct
responses [47]. The data points in the training set closest to this
hyperplane, known as marginal points, are termed support
vectors [48]. In SVM machin learning, the data are sometimes
not linearly separable. In such cases, the Kernel Trick [49] is
applied, transforming the data into a higher-dimensional
feature space where it can be lincarly separable using an n-
dimensional hyperplane [50]. The SVM commonly employs
linear, polynomial, or radial kemel trick methods to aid

ion [51]. The of linear SVM (cost
function), polynomial SVM (cost function and degrees), and
radial SVM (cost function and gamma) were tuned using a
wrapper function based on 10-fold cross-validation. The values

for achieving a balanced response dataset for the
classifiable jet instances. Therefore, a balanced dataset,
including equal instances of aligned, random, and branching jet
conditions (1:1:1 ratio), was established by augmenting the
design table. This involved adding 42 new operating
combinations to the existing 81 data points, resulting in a total
of 123 row data. The selection of these new operating
conditions was done manually to ensure the occurrence of 41
instances each for aligned, random, or jet-branching fibers.
Subsequently, the data points obtained from the DOE approach
were fitted to a polynomial response-surface model (RSM).
The resulting models demonstrated a high multiple-adjusted R-
squared value (R? > 0.95) and an insignificant lack of fit (P >
0.10), indicating a robust fit to the augmented design table [34].
These models were then utilized to generate synthetic data
using a DOE-informed data augmentation approach [35]. For
the classification-type problems, synthetic data were generated
based on nominal logistic regression techniques based on
predictor-response data obtained using DOE [36-38]. This
served as training data for the proposed machine learning
models. To expand the dataset, the original 123 rows were
sampled based on the DOE-informed RSM model using a
Monte Carlo deterministic sampling method [39]. This process
yielded an approximate total of 1002 balanced synthetic data
points with 334 cases for each class, which were employed for
training machine learning techniques.

2.3. Imaging Systems

The images were captured using an Olympus DSX series
digital microscope and subsequently processed using Imagel
[40] for getting numeric data about alignment coherency (using
AlignmentJ plugin) and inter fiber distance. The aligned and
random fibers were determined based on their orientation on
the collector (Figure 2e) and the Jet branching was determined
based on the near-field imaging of the Taylor cone. It is to be
mentioned that jet branching yielded fully chaotic instances of
microfibers emanating from multiple jets that cannot be
classified under random or aligned orientations, hence a
separate classification.

‘0 -
= 3
| B

Parail
Pluc
Collotr |
(w.

“E

Fig. 1. Schematic of the Electrospinning System Setup and the

predictor/ response data flow for machine learning techniques.

The near-field Taylor cone images were captured using a
Sigma 300 mm macro lens with a Nikon TC-201 2X
teleconverter on a Nikon D3200 DSLR camera. Together with
the teleconverter, macro lens, and the DSLR’s 1.5x crop factor,
a 900 mm equivalent 24.2 megapixels high resolution images
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varied within the range 22 < Cost Function < 28, 2 < Degrees
<8,and 0.001 < Gamma < 10.

Decision trees split data points continuously based on
similarities and differences in features (predictors) [52]. These
trees are interpretable through nodes, sub-nodes, and leaves
(end points) where data are classified based on separable
features [53]. Random Forests and bagging are ensemble
learning techniques [54] that enhance single decision tree
outputs by averaging decisions from numerous trees, reducing
overfitting in the training set. The decision tree was optimized
using pruning [55], identifying the optimal complexity
parameter (CP) [56] based on minimum error post-fitting, and
using this optimal hyperparameter for refitting a new tree.

In regression problems, we began with simple multiple
regression techniques, such as Lasso (least absolute shrinkage
and selection operator) and Ridge regressions. Ridge
regression, or L2 regularization, shrinks model coefficients
close to zero based on their influence [57]. Lasso regression
(L1 regularization) can set model coefficients to zero
depending on their influence [58]. Both Ridge and Lasso
regressions use a penalty function or shrinkage parameter
(lambda) to shrink the model coefficients [59]. The model
forms for Ridge and Lasso regressions are [60]:

“)
©)

Ridge Regression Model: RSS + a £7_, 7
Lasso Regression Model: RSS + a XJ_, 5]

Here, RSS is the residual sum of squares from an ordinary least
square (OLS) fit, p= number of predictors, # = shrinkage or the
penalty parameter. The optimal lambda was tuned using 10-
fold cross validation for glmnet (version 4.1-8).

For the regression problem, the Decision Tree regressor
was pruned using the optimal complexity parameter as in the
classification type problem. The Gradient Boosting (GB)
regressor uses error information from the prior trees to improve
the model for n number of tree constructs [61]. The learning
rate is a crucial parameter in this regard, and we tuned it with a
range of learning rates from 10"° to 10" and extracted the best
r-squared value in the test set using a loop function.

The r-square values for the regression models were
calculated as follows:

©6)
(@]
®)

- 9?

Var(y)

Where, MSE = mean squared error, Var(y)

actual response, §; = predicted response, ¥

variance, y; =
sample mean.

3. Results and Discussions

3.1. Microscopic and Near-Field Images

The data concerning jet branching and single-jet
electrospinning  was documented during the fabrication
process. The single or branched jetting methods produced
cither aligned fibers collected between two parallel plates or
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random fibers gathered in the space between these plates.
Figure 2 displays dark-field images captured with an Olympus
DSX microscope from single or multiple jet systems,
showcasing aligned and random. No fiber conditions (Figure
2e) occurred outside our design space depicted in Table 1. The
inset in Figure 2 shows formation of tubular micro fibrous
structure from the selected core: sheath configuration after
washing away the PEO core in water. It is to be mentioned that
jet branching yielded a full-chaotic scenario where end fiber
could not be classified into either random or aligned, hence a
fully different class was allotted to it. The Taylor cone near-
field images are presented in Figure 3. The single-jet condition
as depicted in Figure 3a and 3b both the single and branched-
Jjetconditions resulted in aligned and random fiber orientations.
It is to be mentioned that the no-fiber condition (Figure 2d)
resulted from the no jet Taylor cone instance (Figure 3c) and
did not appear in any experimental run within our design space.
Hence, the classification problems were mainly based on
aligned, random, and jet-by : no-fiber/ no-jet condi
were not present in our dataset.

laive Bayes (NB) Classifier

The Gaussian Naive Bayes classifiers compute the a-
posterior probabilities using Bayes' rule [62]. For each class, a
probability distribution plot (Figure 4) is generated based on
the predictors. Our model output plot shows that jet branching
is more prominent (higher probability) for large voltages (>15
kV) and shorter distances (<18 cm) with a moderate plate gap
(4 cm) and combined flow rate (6 mL/h). Aligned fibers exhibit
higher production probabilities for moderate voltage (~15 kV),
moderate needle-collector distance (18 cm), and a moderate
plate gap and flow rate, as depicted in Figure 4. Randomly
formed fibers have a higher probability at lower voltages (<14
kV), shorter needle-collector distances (<16 cm), larger plate
gaps (>5 cm), and lower flow rates (<6 mL/h). The Naive
Bayes classification achieved a high accuracy of 92% on our
test set. Although the Naive Bayes classification algorithm
requires feature independence [63], it has widely been used in
many experimental modeling applications with high prediction
accuracies [64-67]. Also, in our application, the descriptive
features, namely voltage, flow rate, plate gap, and needle-
collector distance, can be considered independent by the theory
of probability [68] if:

P(X1| X2)
P(X), X2

P(X7)
P(X)) x P(X2)

©)
(10)

where, X; represents the probable value of the feature variables
(such as voltage, distance, plate-gap, and needle-collector-
distance) given the value of another feature variable (X>) apart
from itself, it is notable that in our application, the value of one
feature variable does not depend on the value set for another
feature variable.

3.3. K-Nearest Neighbor (KNN) Classifier

In contrast, the KNN technique lacks interpretability like
the Naive Bayes approach. When applied to the test data, the
KNN approach exhibited a lower classification accuracy
(53%). Therefore, directly predicting the test set using the KNN
method, based on the training set data, did not prove to be
useful for our specific multiclass dataset. The classic KNN
models suffer from such skewed training datasets and the
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(branching, aligned, and random), the radial kenel SVM is the
preferable choice for building accurate models. Although

(a) (b) ©

Figure x: Near-field Taylor-cone images for (a) Single Jet (Aligned
Fibers) (b) Branched Jet (Aligned and Random Fibers) (c) No Jet
(No Fiber).

obtaining  interpretable  models.  Although  obtaining
interpretable model coefficients directly from an SVM model
is not possible, we created visual phase plots for the aligned,
random, and branching jet cases by plotting the predictors NC-
distance, plate gap, and flowrate against the predictor voltage.
In each of the two parameter selections, the other two were set
at their midpoint values, i.e., NC-distance = 17.5, Flowrate = 6
mL/h, and Plate Gap = 4.5 cm. These plots were constructed
using the radial kernel with the optimal hyperparameter values

2 w“

0

35 85

2 4 3 6.0
Parallel Plate Gap (cm) Flow Rate (mL/h)

Fig. 4. The probability distribution of the predictors using the
Gaussian Naive-Bayes classificr.

that yielded the best results in our study. In Figure 5, the
flowrate vs voltage plot shows that for 16 < voltage < 20 kV/
for flowrates between 4 to 8 ml/h draws the boundary between
the formation of Jet branching and Single jets (yielding aligned
or random fibers). A narrow region where random fibers were
generated was observed between the jet branching and aligned
fiber formation zones. The NC-distance vs voltage plot
indicated that when the plate gap was 4 cm and flowrate was 6
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classifications is heavily dominated by the majority class
during the test-set predictions [69]. This was avoided in our
case by balancing both the original data set and the augmented
data set with an equal number of cases for the training data.
Misclassification and sensitivity to outliers are major issues for
non-optimal neighbor size selection in the KNN algorithm
because it employs a distance-based prediction method [70-
73]. Classification on the test set ignores the closeness between
the data points and makes predictions based on the majority
vote in the conventional KNN algorithm [73]. Furthermore, the
curse of dimensionality is another common issue leading to low
accuracy in the KNN algorithm, as it results in inefficient
response predictions when the number of feature variables
74].

Aligned On
Parallel Plates

Random at

Fig. 2. Qualitative dark-field microscopic imaging of different fiber
orientations obtained from the experiment (a) aligned fibers
produced without jet branching (b) aligned fibers produced from jet
branching (c) randomly oriented fibers (d) no fibers formed or
collected between the parallel plates. (¢) Formation of aligned fibers
between the parallel plates and random fiber at the bottom of the
collector. Inset on Figure(d) shows the SEM image of tubular micro
fibrous structure formed.

3.4. Support Vector Machine (SVM) Classifier

The SVM approach with a radial kemel (SVM-R)
demonstrated the highest accuracy on the test set compared to
the linear (SVM-L) or polynomial kernels (SVM-P), with an
optimal cost function (= 4) and gamma (= 0.189). Therefore,
for classifying multiclass objects such as in our case
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mL/h, NC-distance < 12 resulted in random fibers for voltages
< 14 kV. Additionally, random fibers were observed for plate
gaps larger than 5 cm and voltages < 15 kV, as shown in the
plate gap vs voltage plot in Figure 5.

3.5. Decision-Tree (DT) and Random Forest (RF) Classifiers

The optimal decision tree, with the appropriate
hyperparameters, is depicted in Figure 6. The first split is based
on whether the nc-distance is smaller or larger than 18 cm. It is
observed that jet branching primarily occurs when the voltage
is > 17 kV, especially for needle-collector distances < 18 cm,
and when the voltage surpasses 19 KV for needle-collector
distances less than 21 cm. Therefore, both voltage and needle-
collector distance emerged as crucial indicators of jet
branching phenomena, as revealed by the decision tree
analysis. Moreover, the distinction between random and
aligned fiber formation seems to be influenced by the needle-
collector distance and plate gap when the voltage is < 16 kV.
The tree classifies that for a large plate gap (> 5 cm) and a nc-
distance < 18 cm, random fibers are formed. The optimal
decision tree exhibited an 89% prediction accuracy on the test
data. This accuracy was further improved through the
application of Random Forest, an ensemble technique that
utilizes bootstrap aggregation [75] to combine outcomes from
multiple trees based on majority voting or averaging in
classification problems [76].

6 7 8

Flowrate (mL/h)
5

4
Branch Random Aligned Branch Random Aligned

NC Distance (cm)
0 14 18 22
L ee—

Plate Gap (cm)
4 5 61

3

L —
Branch Random Aligned

12

16

Voltage (kV)

Fig. 5. Phase-Plot of the classification problem using a radial
kernel support vector machine (SVM).

18 20

Despite the high prediction accuracy offered by the Random
Forest model, it lacks interpretability and operates as a "Black
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Box" model, providing limited insight into the underlying
factors influencing the outcomes.

The formation of random, aligned, or jet branching
using various machine learning
model for our microfiber dataset has been tabulated in Table 2.
Itis observed that Naive Bayes, Support Vector machines with
Linear, and radial kernels showed prediction accuracies > 90%
for our interpretable models. Ensemble techniques like RF also
showed high prediction accuracies, although no efforts were
made in the current experiment to decipher the black-box
ensemble technique.

nedistan <18 (5]

voltage >= 16

\

phtg-p >=5

L

nedistan < 15 Ran) ncduhn <14(Br:

voltage >=19

/

voltage >= 17 nedistan <21

(Branch)( Align vnlllge>—|4 Align

platgap >=4

Fig. 6. Decision Tree Classification Aligned, Branch, and Ran

(Random) Fiber based on different process parameters. Ran =
Random Fiber

Table 2. Classification Machine Learning Summay

Technique ‘Additional Parameter Prediction
information Aceurac

NB " 94%
KNN Tuned Neighbour Size (k =12) 53%
SVM-L incar Kernal 94%
SVM-P Polynomial Kernal 74%
SVM-R Radial Kernal 97%
D Pruncd (CP=0.01) 9%
N= 500 Decision Trees 98%

RF
*“Null: No additional parameters

3.6. Pearson Correlation for collinearity determination
The Pearson Correlation Coefficient (r) indicates the linear
correlation between two variables. In regression-based
machine learning techniques, it provides insights into choosing
suitable models (either linear or non-linear fitting) for a given
dataset. Figure 7 displays the Pearson Correlation matrix. It is
noticeable that Alignment Coherency (Align) exhibits a
ositive correlation with ne-distance (named *Dist’
in Figure 7) and voltage. It also shows a significant negative
correlation with the plate gap (P.Gap). Additionally, the inter-
fiber distance (Fib.D) displays a notable negative correlation
with bulk flowrate (Flow). Consequently, we employed both
linear machine learning models such as Lasso and Ridge
regression, as well as non-linear model fits like Random Forest
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demonstrated slightly improved R® values for both the
alignment coherency and inter-fiber distance data, as indicated
in Table 4.

Table 3. Ridge and Lasso Regression model co-efficient.
Ridge Las

Predictor asso Ridge Lasso
(alignment  (alignment  (inter (inter
coherency) _coherency) ___fiber) fiber)

Optn Lambda 0041 0.0003 184 0.081

(Intercept) 3865 04191 152285 126552
Bulk Flowrate 0024 x 104783 324854
Plate Gap 00332 00312 6418 12254
NC Distance 001114 00107 3911 3.9987

Voltage 001644 00153 2760 162154

3.9. Gradient Boost (GB) regressor

To enhance our prediction accuracy using decision tree
variants, we turned to an ensemble method, Gradient Boosting.
This approach constructs the next best model by combining
previous models, aiming to minimize prediction errors.
Boosting not only decreases model bias but also enhances
generalization for predicting unknown datasets, exhibiting
lower variance when compared to methods llke RF and other
ensemble The key lies in an optimal
learning rate that prevents the model from overfitting the
training data. In our model, we optimized the learning rate
using a looped function, varying the rate from 10" to 1, and
minimizing the R? on the test set for cach iteration. The
optimized Gradient Boosting models achieved high R* values
(~80%) for both the alignment and inter-fiber distance test
datasets.

The figure displaying the relative influence of predictors in
reducing the mean square error (MSE) in the training dataset
for the Gradient Boosting (GB) model is presented in Figure
9. The relative influence assigns standardized numeric values
on a scale of 1-100 to each of the predictors such that their
cumulative equals to 100 [77]. Predictors that are more crucial
in reducing the MSE in the training models are assigned a
higher relative influence over others [77]. Plate Gap (P.Gap)
and needle-to-collector distance (Dist) appeared to exert the
most significant influence on the alignment coherency and
inter-fiber distance models, as depicted in Figure 9a and 9b,
respectively. Therefore, for our regression analysis, the
ensemble method using Gradient Boosting demonstrated the
most accurate predictions on the test set. Figures 9¢ and 9d
illustrate the comparison between actual and predicted data for
the GB model in alignment coherency and inter-fiber distance,
respectively.

Table 3 includes a summary of the machine learning
models utilized, along with their corresponding R? values and
parameter optimization details. While linear regression models
offered interpretability, their predictive accuracy was limited
due to the nonlinear correlation between predictors and
responses. The Decision Tree technique exhibited low bias,
resulting in a good training set R?, but suffered from high
variance, leading to a poor test set R%. To enhance the bias-
variance trade-off [78], the incorporation of ensemble
techniques, such as gradient boosting, improved fest set
accuracy, albeit at the expense of reduced model
interpretability.
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(RF) and Gradient Boosting. The proper choice of linear versus
non-linear regressor machine learning models are crucial for
numerical data as it may lead to higher or lower prediction
accuracies of numerical data based on the chosen model type.

3.7. Ridge & LASSO regressor

Table 3 provides a summary of the intercept and predictor
coefficients for the linear machine learning techniques (Ridge
and Lasso) applied to our alignment coherency and inter-fiber
distance data. In the alignment coherency data, the ridge
on model coefficients exhibit smaller values compared
of the inter-fiber distance. The plate gap exerts the
most significant influence on alignment coherency, displaying
an inverse relationship. Hence, within the tested plate gap range
(2 - 6 cm), smaller plate gaps lead to better alignment
coherency. Furthermore, bulk flowrate has the least impact on
the alignment model, as indicated by the ridge regression
coefficient. The optimal penalty lambda (‘Optm Lambda’ in
Table 3) sets the bulk flowrate coefficient to zero (indicated by
x on Table 3) due to its negligible effect on the alignment
coherency lasso model. In contrast, for the inter-fiber distance
model, the bulk flowrate has the most significant effect. With
an increase in flowrate, the bulk volume of formed fibers rises,
subsequently reducing the inter-fiber distance due to higher
fiber density. Both the Ridge and Lasso regression models for
the alignment coherency data exhibit high R* values (~81%),
whereas those for the inter-fiber distance show only 55%. This
discrepancy can be attributed to the non-linear relationship

between the predictors and the inter-fiber distance, as
demonstrated in the Pearson correlation matrix in Figure 7.
Pearson’s  (a) ®)
Correlation 000 2 000 %
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01 o 000 000 000 =
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Align Volt Flow P.Gap Fib.D Volt Flow P.Gap

Fig. 7. Pearson’s Correlation Table for (a) alignment coherency (%)
(Align) and (b) Inter-Fiber Distance (Fib.D) in relation to the
different predictors.

3.8, Decision Tree and Random Forest (RF) regressor

Given the non-linear relationship between the predictors
and the response variables, we turned to employing non-linear
machine learning models, such as decision trees. The decision
tree, optimized with the appropriate CP, achieved R2 values of
71% and 64% on the training set data. The decision tree
regressor resulted in intricate tree structures, as illustrated in
Figure 8.

In our regression-type problems, single decision trees didn't
perform well on our test data, despite fitting the training data
very effectively. Decision trees exhibit this bias-variance trade-
off issuc in regression problems, displaying low bias in the
training set but resulting in higher variance in test sets. To
enhance the cfficiency of our regression model, we opted for
Random Forest (RF) with n = 1000. Subsequently, it
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In the current project, we examined only two continuous
response variables using four process parameters as predictors.
Other factors, such as solution and fluidic properties of the
core/sheath materials, relative humidity, and environmental
temperature, were not included in the modeling process.
Additionally, many other essential macro and micro
parameters, including fiber diameter, cross-sectional hollow
portion for microtubular structures, and fiber surface pore
composition, have not been modeled using machine learning
approaches.

3.10. Discussion and Future Scope

The present paper delves into the applications of
interpretable machine learning techniques for the classification
and regression modeling of the electrospinning technique.
While black-box models such as Neural Networks, Long-
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Short-Term Memory (LSTM), and recurrent neural networks
(RNN), etc. may offer more accurate predictions, relying solely
on these models does not inherently provide an explanation of
how the predictions are made. Nowadays, various model-
agnostic interpretability techniques are employed to unveil the
workings of these black-box techniques, aiming to combine
high accuracy with model interpretability. Partial dependency
(PD) plots serve as an example of such techniques, where
individual predictors are perturbed to observe their effects on
the response variable [79]. However, PD plots assume
independence among inputs [80), may generate unrcalistic
scenarios through predictor perturbation [81], and fail to
consider interactions between predictor variables. Similar to
PD plots, individual conditional expectations (ICE) plots
decode black-box models based on data perturbations [82].
While PD plots aim to average the effect of a feature across the
entire dataset, ICE plots analyze the effect of a single feature
on one observation [83]. Shapley values represent a refinement
over PD plots, incorporating feature interactions and avoiding
unrealistic predictor settings to provide a more realistic
portrayal of black-box models [84]. Local interpretable model-
agnostic explanations (LIME) offer another approach to
interpreting  black-box models by providing local
interpretations using surrogate models such as general linear
models (GLM) and LASSO [85]. Hence, the surrogate models
elucidate the black-box model within the local region. Tree-
based surrogate models, such as decision trees, are also utilized
to interpret black-box models by identifying feature importance
through node splitting [86]. In the future, our objective is to
develop models based on artificial neural networks (ANN) and
provide interpretability for these constructed models using
o - ; :

Table 4. Regression Machine Learning Summary
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from the gradient boosting decision tree regression.

4. Conclusion
In this study, we leveraged ML techniques to model both

categorical and numerical responses in electrospinning, based
on diverse predictors. The work the use of

traditional machine learning techniques that combine the
advantages of good prediction accuracy, interpretability, and
limited experimental ~data. ~Classification
including Naive Bayes, Support Vector Classifier,

Technique _Parameter info Alignment R’ Fiber Dist R’
RIDGE Tuned Lambda 81% 55%
LASSO Tuned Lambda. 80% 59%
DT Pruned (CP=0.001) 71% 647 training  on
RF nTrees = 1000 76% 74
GB (lambda = 0.67) 81% 82

In future investigations, we intend to employ a more
comprehensive set of predictors to forecast the outcomes of the
clectrospinning process across a wider range of response
parameters. The experiments will include more categorical
measures based on the jetting and fiber collection methods as
well as numeric measures for regression modelling. We also
intend to use deep-learning techniques with larger datasets on
top of the existing machine learning techniques. The deep
learning techniques will be used with the model-agnostic
interpretability techniques to combine high prediction
accuracies with model interpretability that will ensure proper
and educated use of black box machine learning models.
Additionally, we plan to utilize an in-situ process monitoring
system to gather qualitative process information related to the

inning jet, including like whipping length,
branching distance, and the number of whips. This data will
enable us to create a more accurate model for predicting the
final fibrous structure outcome. The goal of using fibrous
micro-tubular structure in future experiments will be to aid in
nutrient and oxygen transport to and removal of waste and
biochemical byproducts from tissue culture in 3D micro-
environments in hydrogel scaffolds.
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Pearson Correlation. However, predictions for inter-fiber
distance were suboptimal due to inherent non-linearities.
Incorporating non-linear regressors, such as the Decision Tree
Regressor, led to a modest enhancement in predictive
performance. Remarkably, ensemble methods like Random
Forest and Gradient Boosting consistently delivered the highest
prediction accuracies across both classification and regression
tasks. This research accentuates the efficacy of ML in
accurately  classifying and  predicting  outcomes  in
electrospinning micro-fibrous structures. Looking ahead, we
aim to integrate ML with in-situ process monitoring, enabling
real-time data acquisition for continuous training and
optimization of the fabrication process.
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