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Abstract 

Electrospinning is a robust technique for producing micro/nano-scale fibrous structures, influenced by intricate interplays of fluid 
dynamics, aerodynamics, and electromagnetic forces. Depending on the desired outcome, these fibers can adopt various 
morphologies, including solid, tubular, concentric, and gradient. Such morphologies are modulated by parameters such as 
collector configuration, flow rate, voltage, solution properties, and nozzle dimensions. However, the task of modeling and 
predicting these multifaceted morphologies remains complex. Aligned microfibers with 3D orientation hold promise in tissue 
engineering, regenerative medicine, and drug delivery, necessitating meticulous control over the fabrication parameters. In our 
research, we tapped into machine learning (ML) to address these challenges. Classification ML models were designed to predict 
fibrous patterns—aligned, random, or jet branching—based on determinants like voltage, flow rate, and collector configurations. 
Notably, the Random Forest (RF) and Support Vector Machine (SVM) models, especially with radial kernel-trick, displayed 
outstanding predictive capabilities on the test data. Furthermore, regression-based ML was harnessed to discern fiber alignment 
coherency and inter-fiber distances. Models such as Lasso and Ridge regression elucidated predictive coefficients for these 
characteristics, while ensemble models, like gradient-boosting (GB) decision trees (DT), showcased prowess in regression 
scenarios. Key findings spotlighted the significance of parameters like plate gap for alignment coherency and needle-to-collector 
distance for inter-fiber spacing. As we strive to gain granular control over micro/nano feature morphology in electrospinning, 
understanding predictor-response dynamics is imperative. Our investigation underscores the essential role of ML in enhancing 
both qualitative and quantitative precision in fabricating advanced fibrous structures. Moreover, fusing ML with real-time process 
monitoring offers groundbreaking potential, particularly in Bio-Fabrication, regenerative medicine, and tissue engineering, where 
high-precision manufacturing remains a top priority. 
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1. Introduction 

Electrospinning is a rapid fabrication technique for 
polymer-based fibrous structures at the micro and nanoscale 
using dielectric polymer solutions. With applications spanning 
across diverse domains like healthcare, soft materials, flexible 

electronics, energy harvesting, chemical storage, and catalysis, 
its relevance cannot be overstated [1, 2]. The functional utility 
of these fibrous structures in specific application areas hinges 
predominantly on their micro and macro attributes. At the 
microscopic level, properties such as diameter of the fibrous 
structures, surface porosity, material composition, and hollow 
cross-sections are of paramount importance [3]. On the 
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macroscopic scale, attributes like fiber orientation (be it aligned 
or random), orientation degree, dominant directional flow, 
inter-fiber spacing, and fiber density play pivotal roles [4, 5]. 
From a manufacturing standpoint, the meticulous manipulation 
of process parameters facilitates the creation of fibrous 
constructs that exhibit the desired micro and macro 
characteristics. Hollow tubular scaffold structures are 
increasingly sought after in microfluidics, finding applications 
in areas such as healthcare, drug delivery, and tissue 
engineering [6, 7]. When it comes to the fabrication of these 
hollow, micro-scale fibrous structures (referred to as 
microtubes), process parameters like flow rate, the distance 
between needle and collector, and plate-gap critically influence 
the final product's orientation and fiber density. Electrospun 
fibrous assemblies with a high degree of alignment have found 
substantial use in tissue engineering, disease modelling, and 
studies of cell migration, to name a few [8, 9]. 
 

One of the major challenges of fabricating highly aligned 
micro/nano fibers via electrospinning is its high sensitivity to 
variations in process parameters. To fully harness control over 
this fabrication technique, it is crucial to understand how these 
process parameters (predictors) influence both the micro and 
macro-outcomes (responses) of our process. Various 
experimental modeling techniques, such as design of 
experiments, correlation analysis, principal component 
analysis, regression, and other statistical and machine learning 
models, are currently employed to develop predictor-response 
models for the properties of Electrospun fibrous structures at 
both the macro and micro scales [10-13]. 
 

Supervised machine learning (ML) techniques, such as 
linear regression, decision trees, support vector machines, and 
neural networks, have been successfully integrated into the 
electrospinning fabrication process [13-16]. Pervez et al. used 
partial least squares (PLS) and support vector regression-based 
ML techniques to predict diameters of chitosan-based 
nanofibers with a high prediction accuracy [14]. Sarma et al. 
used an ensemble of ML techniques such as gradient boosting 
(GB), XGboost (XGB), linear regression, and random forest 
(RF) to determine crucial predictors such as feed, polymer 
concentration, and Flory-Huggins Chi parameter, and how they 
affect the polyvinylidene fluoride (PVDF) polymer fiber 
diameter [15]. Morphological parameters such as diameter and 
inter fiber separation as well as post-fabrication mechanical 
properties such as strain at break and ultimate tensile strength 
for polyvinyl alcohol (PVA) for seven different process 
parameters were modelled using artificial neural network 
(ANN) by Roldán et al. [17]. Their ML-based modelling 
approach showed high prediction accuracy and allowed the 
biomimetic vascular implant fabrication using PVA for their 
optimal manufacturing setup mined through their ML models 
[17]. Furthermore, ML techniques are also used to model post-
fabrication application of nanofibers in tissue engineering 
applications. For instance, Sujeeun et al. investigated the 
crucial in-vitro and physio-chemical data of Electrospun 
polymeric scaffolds applied to skin tissue engineering 
applications [18]. Their experiment showed that fiber and pore 
diameter were the most crucial physio-chemical predictors of 
performance for the synthetic tissues [18]. Hence, ML has 
shown that it is possible to predict and interpret process 
parameters that affect the overall electrospinning outcomes. 

However, these techniques frequently encounter the bias-
variance tradeoff, especially in complex model forms [19]. 
Therefore, selecting an appropriate model that can accurately 
fit training data with low bias and predict unknown data with 
low variance is of paramount importance for process modeling. 

 
Another crucial challenge arises when complex machine 

learning models act as "Black Box" models, where there is no 
information available about cause-effect relationships based on 
physical mechanisms despite their high prediction accuracies 
[20]. This phenomenon is common in complex models such as 
neural networks, random forests, and various boosting 
techniques [21]. While simpler models such as regression and 
decision trees might not always match the prediction accuracy 
of more complex models, they offer a clear advantage in 
interpretability [22]. In manufacturing process improvement, 
it's not just about achieving high predictive accuracy; 
understanding the underlying relationships between predictor 
and response variables — essentially how the model derives its 
predictions — is equally crucial. 
 

In this experiment, our goal was to utilize minimal data 
from the post-fabrication process to assess qualitative process 
variations that result in classifiable outcomes such as 
random/align fibers (from single jets) and multi-jet 
electrospinning situations. Furthermore, in our effort to 
fabricate highly aligned microfibers, we employed multiple 
classification and regression-based machine learning 
techniques to map process parameters to outcomes with high 
alignment coherency and density. Classification-based ML 
enabled us to identify sets of process parameters conducive to 
forming either aligned or random fibers from single jets and 
discerning scenarios of jet branching from singular 
electrospinning jets. For the classification problem, we 
employed Naïve Bayes (NB), Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN), Decision Trees (DT), 
and Random Forest (RF). For regression predictions on fibrous 
structure alignment coherency and inter-fiber distance, we used 
penalized linear regression models like Lasso and Ridge, 
Decision Trees, Random Forest Regressor, and Gradient 
Boosting (GB) ensemble techniques. Prior literature indicates 
that these techniques perform well with small datasets (< 100 
data points) [15, 23, 24], unlike deep learning techniques, 
which achieve accurate predictions but require larger training 
datasets [25]. Floares et al. demonstrated the impact of sample 
size on the performance of the random forest (RF) technique. 
Their results showed that prediction accuracy reached a 
threshold with an area under the curve (AUC) > 95% with a 
sample size < 100[26]. While these techniques have proven 
effective under limited data conditions, model training through 
augmented or synthetic data, using design of experiments 
(DOE)-based techniques and random noise addition, has been 
reported to mitigate the limitations associated with small data 
samples from experimental research [27, 28]. 

 
Our findings underscored a trade-off: while simpler 

models elucidated the relationship between predictors and 
responses, they sometimes compromised on prediction 
accuracy. Conversely, sophisticated ensemble models like 
Random Forest and Gradient Boosting excelled in accuracy. In 
this research, we melded the strengths of both easily 
interpretable models, shedding light on influential process 
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parameters, and more intricate techniques known for their 
predictive prowess. The data-driven conclusions affirm that 
machine learning is adept at process classification and adeptly 
predicting unfamiliar data, especially when traditional linear 
models fall short. This suggests the potential of machine 
learning as an invaluable tool for in-process diagnostics, 
enabling real-time parameter adjustments grounded in live 
learning from accumulated data. 

2. Materials and Methods 

2.1. Electrospinning System 
The electrospinning process was carried out in the core-

sheath co-axial mode with the objective of producing tube-like 
fibrous structures. Poly-Caprolactone (PCL) with a molecular 
weight of 80,000, acquired from Sigma-Aldrich (St. Louis, 
MO), was prepared in a 12% (w/v) concentration by mixing it 
with Dichloromethane (DCM) obtained from VWR (Radnor, 
PA). Poly-ethylene-oxide (PEO) with a molecular weight of 
300,000, also purchased from Sigma-Aldrich, was prepared in 
a 6% (w/v) solution by mixing it with DCM. The PCL-DCM 
solution served as the sheath solution, while the PEO-DCM 
solution was used as the core solution in the co-axial 
electrospinning system. For our experiment, a robotic 
electrospinning system (Tongli-Tech, China) was utilized, as 
depicted in Figure 1. An in-house parallel plate collector with 
an adjustable plate gap was employed for collecting the fibrous 
structures. The co-axial setup utilized 26 core needles and 21 
sheath needles. In this experiment, the core-to-sheath flow rate 
was maintained at a 1:2 ratio, with the combined volumetric 
flow rate indicating their bulk flow rate. 

2.2. Design of Experiments and DOE-informed data 
augmentation 

In this experiment, we employed four predictor variables: 
Voltage, Bulk Flow Rate, Needle to Collector Distance, and 
Plate Gap. A rule of thumb is to use a training dataset that is 10 
times larger than the total number of features for training [29-
31]. These variables were utilized to predict fiber orientation, 
alignment coherency, and inter-fiber distance. The design of 
experiments (DOE) followed a full factorial design [32] with 
four factors, each having three levels. This setup resulted in a 
total of 81 data points for analysis. The ranges of the operating 
parameters for our design space are shown in Table 1: 

 
Table 1. Predictor variable bounds for the design space 

Parameter Lower Bound Upper Bound 
Voltage 10 KV 20 KV 

Bulk Flowrate 3.5 ml/h 8 ml/h 
Plate Gap 2 cm 6 cm 

NC distance 10 cm 25 cm 
 

 Additionally, 30 additional design points were generated 
using the Box-Behnken design [33]. These points included six 
replicates of the center point and were designated for use as our 
test set data. Due to the imbalanced response from the initial 
DOE dataset, consisting of 81 data points, we opted for design 
augmentation to address this issue by manually introducing 
additional parameter combinations within the existing design 
space. To rectify the imbalance, we gathered supplementary 
parameter configurations corresponding to Aligned, -Jet 
branch, or Random fibers. The original full factorial design 

table underwent augmentation to incorporate the necessary 
conditions for achieving a balanced response dataset for the 
classifiable jet instances. Therefore, a balanced dataset, 
including equal instances of aligned, random, and branching jet 
conditions (1:1:1 ratio), was established by augmenting the 
design table. This involved adding 42 new operating 
combinations to the existing 81 data points, resulting in a total 
of 123 row data. The selection of these new operating 
conditions was done manually to ensure the occurrence of 41 
instances each for aligned, random, or jet-branching fibers. 
Subsequently, the data points obtained from the DOE approach 
were fitted to a polynomial response-surface model (RSM). 
The resulting models demonstrated a high multiple-adjusted R-
squared value (R² > 0.95) and an insignificant lack of fit (P > 
0.10), indicating a robust fit to the augmented design table [34]. 
These models were then utilized to generate synthetic data 
using a DOE-informed data augmentation approach [35]. For 
the classification-type problems, synthetic data were generated 
based on nominal logistic regression techniques based on 
predictor-response data obtained using DOE [36-38]. This 
served as training data for the proposed machine learning 
models. To expand the dataset, the original 123 rows were 
sampled based on the DOE-informed RSM model using a 
Monte Carlo deterministic sampling method [39]. This process 
yielded an approximate total of 1002 balanced synthetic data 
points with 334 cases for each class, which were employed for 
training machine learning techniques.  

2.3. Imaging Systems 
The images were captured using an Olympus DSX series 

digital microscope and subsequently processed using ImageJ 
[40] for getting numeric data about alignment coherency (using 
AlignmentJ plugin) and inter fiber distance.  The aligned and 
random fibers were determined based on their orientation on 
the collector (Figure 2e) and the Jet branching was determined 
based on the near-field imaging of the Taylor cone. It is to be 
mentioned that jet branching yielded fully chaotic instances of 
microfibers emanating from multiple jets that cannot be 
classified under random or aligned orientations, hence a 
separate classification.  
 

 
Fig. 1. Schematic of the Electrospinning System Setup and the 

predictor/ response data flow for machine learning techniques. 
 

The near-field Taylor cone images were captured using a 
Sigma 300 mm macro lens with a Nikon TC-201 2X 
teleconverter on a Nikon D3200 DSLR camera. Together with 
the teleconverter, macro lens, and the DSLR’s 1.5x crop factor, 
a 900 mm equivalent 24.2 megapixels high resolution images 
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were obtained to distinguish between single, multiple, or no jet 
formation on the Taylor Cone. The images were used to label 
the original data set for the classification-type machine learning 
approach.  

2.4. Machine Learning techniques 
The machine learning problems of the classification type 

involved identifying process parameters that led to aligned 
fibers, random fiber formation, or jet branching from the Taylor 
Cone [41]. These phenomena were classified into three distinct 
outcomes for our analysis. To predict these qualitative 
outcomes, we employed classification models, namely Naïve 
Bayes, K-Nearest Neighbor, Support Vector Classifier, and 
Decision Tree. The accuracy of the classification models was 
calculated based on the total number of true positives and 
negatives out of the overall observations in the predicted and 
test sets which forms the confusion matrix [42], as follows: 

 
                              (1) 

  
The naïve bayes classification method is based on the Bayes 

theorem conditional probability that determines the conditional 
outcome of event A given event B and is expressed by the 
following form [43]: 
 

                                                              (2) 
 

Local learners like the K-Nearest Neighbor classification 
technique does not construct a specific model; instead, it 
employs the training data to predict the classification of 
unknown test data [44]. In this approach, the training set 
essentially serves as the prediction model [44]. The user 
specifies the number of neighbors (K) to be considered for 
classifying the unknown data. The algorithm then computes the 
Euclidean distance between the test point and neighboring 
training data, as described by the formula [45]- 
 

                                                          (3) 

 
Here, ) is the distance between the unknown point in 
the test dataset and the known point in the training dataset. For 
our KNN classification model, we used a wrapper function to 
tune the hyperparameters of the model based on a 10-fold cross 
validation approach by varying K from 1 to 1000 on the 
training data set [46]. 

 
The support vector machine (SVM) classifies responses by 

fitting an optimal hyperplane that best separates distinct 
responses [47]. The data points in the training set closest to this 
hyperplane, known as marginal points, are termed support 
vectors [48]. In SVM machine learning, the data are sometimes 
not linearly separable. In such cases, the Kernel Trick [49] is 
applied, transforming the data into a higher-dimensional 
feature space where it can be linearly separable using an n-
dimensional hyperplane [50]. The SVM commonly employs 
linear, polynomial, or radial kernel trick methods to aid 
classification [51]. The hyperparameters of linear SVM (cost 
function), polynomial SVM (cost function and degrees), and 
radial SVM (cost function and gamma) were tuned using a 
wrapper function based on 10-fold cross-validation. The values 

varied within the range 22 ≤ Cost Function ≤ 28, 2 ≤ Degrees 
≤ 8, and 0.001 ≤ Gamma ≤ 10. 
 

Decision trees split data points continuously based on 
similarities and differences in features (predictors) [52]. These 
trees are interpretable through nodes, sub-nodes, and leaves 
(end points) where data are classified based on separable 
features [53]. Random Forests and bagging are ensemble 
learning techniques [54] that enhance single decision tree 
outputs by averaging decisions from numerous trees, reducing 
overfitting in the training set. The decision tree was optimized 
using pruning [55], identifying the optimal complexity 
parameter (CP) [56] based on minimum error post-fitting, and 
using this optimal hyperparameter for refitting a new tree. 

 
In regression problems, we began with simple multiple 

regression techniques, such as Lasso (least absolute shrinkage 
and selection operator) and Ridge regressions. Ridge 
regression, or L2 regularization, shrinks model coefficients 
close to zero based on their influence [57]. Lasso regression 
(L1 regularization) can set model coefficients to zero 
depending on their influence [58]. Both Ridge and Lasso 
regressions use a penalty function or shrinkage parameter 
(lambda) to shrink the model coefficients [59]. The model 
forms for Ridge and Lasso regressions are [60]: 
 
Ridge Regression Model:                         (4) 
Lasso Regression Model:                       (5) 
 
Here, RSS is the residual sum of squares from an ordinary least 
square (OLS) fit, = number of predictors,  = shrinkage or the 
penalty parameter. The optimal lambda was tuned using 10-
fold cross validation for glmnet (version 4.1-8). 
 

For the regression problem, the Decision Tree regressor 
was pruned using the optimal complexity parameter as in the 
classification type problem. The Gradient Boosting (GB) 
regressor uses error information from the prior trees to improve 
the model for n number of tree constructs [61]. The learning 
rate is a crucial parameter in this regard, and we tuned it with a 
range of learning rates from 10-10 to 101 and extracted the best 
r-squared value in the test set using a loop function. 
 

The r-square values for the regression models were 
calculated as follows:  
 

                                                       (6) 

                                               (7) 

                                                                     (8) 
 
Where, MSE = mean squared error, Var(y) = variance, = 
actual response,  = predicted response, = sample mean.  

3. Results and Discussions 

3.1. Microscopic and Near-Field Images 
The data concerning jet branching and single-jet 

electrospinning was documented during the fabrication 
process. The single or branched jetting methods produced 
either aligned fibers collected between two parallel plates or 
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random fibers gathered in the space between these plates. 
Figure  2 displays dark-field images captured with an Olympus 
DSX microscope from single or multiple jet systems, 
showcasing aligned and random. No fiber conditions (Figure 
2e) occurred outside our design space depicted in Table 1. The 
inset in Figure 2 shows formation of tubular micro fibrous 
structure from the selected core: sheath configuration after 
washing away the PEO core in water. It is to be mentioned that 
jet branching yielded a full-chaotic scenario where end fiber 
could not be classified into either random or aligned, hence a 
fully different class was allotted to it. The Taylor cone near-
field images are presented in Figure 3. The single-jet condition 
as depicted in Figure 3a and 3b both the single and branched-
jet conditions resulted in aligned and random fiber orientations. 
It is to be mentioned that the no-fiber condition (Figure 2d) 
resulted from the no jet Taylor cone instance (Figure 3c) and 
did not appear in any experimental run within our design space. 
Hence, the classification problems were mainly based on 
aligned, random, and jet-branching; no-fiber/ no-jet conditions 
were not present in our dataset. 

 
3.2. Naïve Bayes (NB) Classifier 

The Gaussian Naïve Bayes classifiers compute the a-
posterior probabilities using Bayes' rule [62]. For each class, a 
probability distribution plot (Figure 4) is generated based on 
the predictors. Our model output plot shows that jet branching 
is more prominent (higher probability) for large voltages (>15 
kV) and shorter distances (<18 cm) with a moderate plate gap 
(4 cm) and combined flow rate (6 mL/h). Aligned fibers exhibit 
higher production probabilities for moderate voltage (~15 kV), 
moderate needle-collector distance (18 cm), and a moderate 
plate gap and flow rate, as depicted in Figure 4. Randomly 
formed fibers have a higher probability at lower voltages (<14 
kV), shorter needle-collector distances (<16 cm), larger plate 
gaps (>5 cm), and lower flow rates (<6 mL/h). The Naïve 
Bayes classification achieved a high accuracy of 92% on our 
test set. Although the Naïve Bayes classification algorithm 
requires feature independence [63], it has widely been used in 
many experimental modeling applications with high prediction 
accuracies [64-67]. Also, in our application, the descriptive 
features, namely voltage, flow rate, plate gap, and needle-
collector distance, can be considered independent by the theory 
of probability [68] if: 

 
P(X1| X2) = P(X1)                                                             (9) 
P(X1, X2) = P(X1) × P(X2)                                               (10) 

 
where, X1 represents the probable value of the feature variables 
(such as voltage, distance, plate-gap, and needle-collector-
distance) given the value of another feature variable (X2) apart 
from itself, it is notable that in our application, the value of one 
feature variable does not depend on the value set for another 
feature variable. 
 
3.3. K-Nearest Neighbor (KNN) Classifier 

In contrast, the KNN technique lacks interpretability like 
the Naïve Bayes approach. When applied to the test data, the 
KNN approach exhibited a lower classification accuracy 
(53%). Therefore, directly predicting the test set using the KNN 
method, based on the training set data, did not prove to be 
useful for our specific multiclass dataset. The classic KNN 
models suffer from such skewed training datasets and the 

classifications is heavily dominated by the majority class 
during the test-set predictions [69]. This was avoided in our 
case by balancing both the original data set and the augmented 
data set with an equal number of cases for the training data. 
Misclassification and sensitivity to outliers are major issues for 
non-optimal neighbor size selection in the KNN algorithm 
because it employs a distance-based prediction method [70-
73]. Classification on the test set ignores the closeness between 
the data points and makes predictions based on the majority 
vote in the conventional KNN algorithm [73]. Furthermore, the 
curse of dimensionality is another common issue leading to low 
accuracy in the KNN algorithm, as it results in inefficient 
response predictions when the number of feature variables 
increases [74]. 

 

 
Fig. 2. Qualitative dark-field microscopic imaging of different fiber 

orientations obtained from the experiment (a) aligned fibers 
produced without jet branching (b) aligned fibers produced from jet 

branching (c) randomly oriented fibers (d) no fibers formed or 
collected between the parallel plates. (e) Formation of aligned fibers 

between the parallel plates and random fiber at the bottom of the 
collector. Inset on Figure(d) shows the SEM image of tubular micro 

fibrous structure formed.  
 

3.4. Support Vector Machine (SVM) Classifier 
   The SVM approach with a radial kernel (SVM-R) 
demonstrated the highest accuracy on the test set compared to 
the linear (SVM-L) or polynomial kernels (SVM-P), with an 
optimal cost function (= 4) and gamma (= 0.189). Therefore, 
for classifying multiclass objects such as in our case 
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(branching, aligned, and random), the radial kernel SVM is the 
preferable choice for building accurate models. Although  

 

 
Figure x: Near-field Taylor-cone images for (a) Single Jet (Aligned 
Fibers) (b) Branched Jet (Aligned and Random Fibers) (c) No Jet 

(No Fiber). 
 

obtaining interpretable models. Although obtaining 
interpretable model coefficients directly from an SVM model 
is not possible, we created visual phase plots for the aligned, 
random, and branching jet cases by plotting the predictors NC-
distance, plate gap, and flowrate against the predictor voltage. 
In each of the two parameter selections, the other two were set 
at their midpoint values, i.e., NC-distance = 17.5, Flowrate = 6 
mL/h, and Plate Gap = 4.5 cm. These plots were constructed 
using the radial kernel with the optimal hyperparameter values  

 
Fig. 4. The probability distribution of the predictors using the 

Gaussian Naïve-Bayes classifier. 
 

that yielded the best results in our study. In Figure 5, the 
flowrate vs voltage plot shows that for 16 < voltage < 20 kV 
for flowrates between 4 to 8 ml/h draws the boundary between 
the formation of Jet branching and Single jets (yielding aligned 
or random fibers). A narrow region where random fibers were 
generated was observed between the jet branching and aligned 
fiber formation zones. The NC-distance vs voltage plot 
indicated that when the plate gap was 4 cm and flowrate was 6 

mL/h, NC-distance < 12 resulted in random fibers for voltages 
< 14 kV. Additionally, random fibers were observed for plate 
gaps larger than 5 cm and voltages < 15 kV, as shown in the 
plate gap vs voltage plot in Figure 5. 
 
3.5. Decision-Tree (DT) and Random Forest (RF) Classifiers 

The optimal decision tree, with the appropriate 
hyperparameters, is depicted in Figure 6. The first split is based 
on whether the nc-distance is smaller or larger than 18 cm. It is 
observed that jet branching primarily occurs when the voltage 
is > 17 kV, especially for needle-collector distances < 18 cm, 
and when the voltage surpasses 19 kV for needle-collector 
distances less than 21 cm. Therefore, both voltage and needle-
collector distance emerged as crucial indicators of jet 
branching phenomena, as revealed by the decision tree 
analysis. Moreover, the distinction between random and 
aligned fiber formation seems to be influenced by the needle-
collector distance and plate gap when the voltage is < 16 kV. 
The tree classifies that for a large plate gap (> 5 cm) and a nc-
distance < 18 cm, random fibers are formed. The optimal 
decision tree exhibited an 89% prediction accuracy on the test 
data. This accuracy was further improved through the 
application of Random Forest, an ensemble technique that 
utilizes bootstrap aggregation [75] to combine outcomes from 
multiple trees based on majority voting or averaging in 
classification problems [76]. 

 
Fig. 5. Phase-Plot of the classification problem using a radial 

kernel support vector machine (SVM). 
 

Despite the high prediction accuracy offered by the Random 
Forest model, it lacks interpretability and operates as a "Black 
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Box" model, providing limited insight into the underlying 
factors influencing the outcomes. 

 
The formation of random, aligned, or jet branching 

phenomena using various classification-type machine learning 
model for our microfiber dataset has been tabulated in Table 2. 
It is observed that Naïve Bayes, Support Vector machines with 
Linear, and radial kernels showed prediction accuracies > 90% 
for our interpretable models. Ensemble techniques like RF also 
showed high prediction accuracies, although no efforts were 
made in the current experiment to decipher the black-box 
ensemble technique. 

 
Fig. 6. Decision Tree Classification Aligned, Branch, and Ran 
(Random) Fiber based on different process parameters. Ran = 

Random Fiber 
 
Table 2. Classification Machine Learning Summary 

Technique Additional Parameter 
information 

Prediction 
Accuracy 

NB Null* 94% 
KNN Tuned Neighbour Size (k =12) 53% 

SVM-L Linear Kernal 94% 
SVM-P Polynomial Kernal 74% 
SVM-R Radial Kernal 97% 

DT Pruned (CP = 0.01) 93% 
RF N = 500 Decision Trees 98% 

*Null: No additional parameters 
 
3.6. Pearson Correlation for collinearity determination 

The Pearson Correlation Coefficient (r) indicates the linear 
correlation between two variables. In regression-based 
machine learning techniques, it provides insights into choosing 
suitable models (either linear or non-linear fitting) for a given 
dataset. Figure 7 displays the Pearson Correlation matrix. It is 
noticeable that Alignment Coherency (Align) exhibits a 
significant positive correlation with nc-distance (named ‘Dist’ 
in Figure 7) and voltage. It also shows a significant negative 
correlation with the plate gap (P.Gap). Additionally, the inter-
fiber distance (Fib.D) displays a notable negative correlation 
with bulk flowrate (Flow). Consequently, we employed both 
linear machine learning models such as Lasso and Ridge 
regression, as well as non-linear model fits like Random Forest 

(RF) and Gradient Boosting. The proper choice of linear versus 
non-linear regressor machine learning models are crucial for 
numerical data as it may lead to higher or lower prediction 
accuracies of numerical data based on the chosen model type. 
 
3.7. Ridge & LASSO regressor 
   Table 3 provides a summary of the intercept and predictor 
coefficients for the linear machine learning techniques (Ridge 
and Lasso) applied to our alignment coherency and inter-fiber 
distance data. In the alignment coherency data, the ridge 
regression model coefficients exhibit smaller values compared 
to those of the inter-fiber distance. The plate gap exerts the 
most significant influence on alignment coherency, displaying 
an inverse relationship. Hence, within the tested plate gap range 
(2 - 6 cm), smaller plate gaps lead to better alignment 
coherency. Furthermore, bulk flowrate has the least impact on 
the alignment model, as indicated by the ridge regression 
coefficient. The optimal penalty lambda (‘Optm Lambda’ in 
Table 3) sets the bulk flowrate coefficient to zero (indicated by 
x on Table 3) due to its negligible effect on the alignment 
coherency lasso model. In contrast, for the inter-fiber distance 
model, the bulk flowrate has the most significant effect. With 
an increase in flowrate, the bulk volume of formed fibers rises, 
subsequently reducing the inter-fiber distance due to higher 
fiber density. Both the Ridge and Lasso regression models for 
the alignment coherency data exhibit high R2 values (~81%), 
whereas those for the inter-fiber distance show only 55%. This 
discrepancy can be attributed to the non-linear relationship 
between the predictors and the inter-fiber distance, as 
demonstrated in the Pearson correlation matrix in Figure 7. 
 

 
Fig. 7. Pearson’s Correlation Table for (a) alignment coherency (%) 

(Align) and (b) Inter-Fiber Distance (Fib.D) in relation to the 
different predictors. 

 
3.8.  Decision Tree and Random Forest (RF) regressor 

Given the non-linear relationship between the predictors 
and the response variables, we turned to employing non-linear 
machine learning models, such as decision trees. The decision 
tree, optimized with the appropriate CP, achieved R2 values of 
71% and 64% on the training set data. The decision tree 
regressor resulted in intricate tree structures, as illustrated in 
Figure 8. 
 

In our regression-type problems, single decision trees didn't 
perform well on our test data, despite fitting the training data 
very effectively. Decision trees exhibit this bias-variance trade-
off issue in regression problems, displaying low bias in the 
training set but resulting in higher variance in test sets. To 
enhance the efficiency of our regression model, we opted for 
Random Forest (RF) with n = 1000. Subsequently, it 
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demonstrated slightly improved R2 values for both the 
alignment coherency and inter-fiber distance data, as indicated 
in Table 4. 
 
Table 3. Ridge and Lasso Regression model co-efficient. 

Predictor Ridge  
(alignment 
coherency) 

Lasso  
(alignment 
coherency) 

Ridge  
(inter 
fiber) 

Lasso  
(inter 
fiber) 

Optm Lambda 0.0041 0.0003 1.84 0.081 
(Intercept) 0.3865 0.4191 152.285 126.552 

Bulk Flowrate 0.0024 x -10.4783 -32.4854 
Plate Gap -0.0332 -0.0312 5.6418 12.254 

NC Distance 0.01114 0.0107 1.3911 3.9987 
Voltage 0.01644 0.0153 6.2760 16.2154 

 
3.9. Gradient Boost (GB) regressor 

To enhance our prediction accuracy using decision tree 
variants, we turned to an ensemble method, Gradient Boosting. 
This approach constructs the next best model by combining 
previous models, aiming to minimize prediction errors. 
Boosting not only decreases model bias but also enhances 
generalization for predicting unknown datasets, exhibiting 
lower variance when compared to methods like RF and other 
ensemble techniques. The key lies in determining an optimal 
learning rate that prevents the model from overfitting the 
training data. In our model, we optimized the learning rate 
using a looped function, varying the rate from 10-10 to 1, and 
minimizing the R2 on the test set for each iteration. The 
optimized Gradient Boosting models achieved high R2 values 
(~80%) for both the alignment and inter-fiber distance test 
datasets. 
 

The figure displaying the relative influence of predictors in 
reducing the mean square error (MSE) in the training dataset 
for the Gradient Boosting (GB) model is presented in Figure 
9. The relative influence assigns standardized numeric values 
on a scale of 1-100 to each of the predictors such that their 
cumulative equals to 100 [77]. Predictors that are more crucial 
in reducing the MSE in the training models are assigned a 
higher relative influence over others [77].  Plate Gap (P.Gap) 
and needle-to-collector distance (Dist) appeared to exert the 
most significant influence on the alignment coherency and 
inter-fiber distance models, as depicted in Figure 9a and 9b, 
respectively. Therefore, for our regression analysis, the 
ensemble method using Gradient Boosting demonstrated the 
most accurate predictions on the test set. Figures 9c and 9d 
illustrate the comparison between actual and predicted data for 
the GB model in alignment coherency and inter-fiber distance, 
respectively. 
 

Table 3 includes a summary of the machine learning 
models utilized, along with their corresponding R2 values and 
parameter optimization details. While linear regression models 
offered interpretability, their predictive accuracy was limited 
due to the nonlinear correlation between predictors and 
responses. The Decision Tree technique exhibited low bias, 
resulting in a good training set R2, but suffered from high 
variance, leading to a poor test set R2. To enhance the bias-
variance trade-off [78], the incorporation of ensemble 
techniques, such as gradient boosting, improved test set 
accuracy, albeit at the expense of reduced model 
interpretability. 
 

 
Fig. 8. Pruned Decision Trees for (a) Alignment Coherency (b) Inter 

Fiber distance. 
 

In the current project, we examined only two continuous 
response variables using four process parameters as predictors. 
Other factors, such as solution and fluidic properties of the 
core/sheath materials, relative humidity, and environmental 
temperature, were not included in the modeling process. 
Additionally, many other essential macro and micro 
parameters, including fiber diameter, cross-sectional hollow 
portion for microtubular structures, and fiber surface pore 
composition, have not been modeled using machine learning 
approaches.  

3.10. Discussion and Future Scope 
The present paper delves into the applications of 

interpretable machine learning techniques for the classification 
and regression modeling of the electrospinning technique. 
While black-box models such as Neural Networks, Long-
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Short-Term Memory (LSTM), and recurrent neural networks 
(RNN), etc. may offer more accurate predictions, relying solely 
on these models does not inherently provide an explanation of 
how the predictions are made. Nowadays, various model-
agnostic interpretability techniques are employed to unveil the 
workings of these black-box techniques, aiming to combine 
high accuracy with model interpretability. Partial dependency 
(PD) plots serve as an example of such techniques, where 
individual predictors are perturbed to observe their effects on 
the response variable [79]. However, PD plots assume 
independence among inputs [80], may generate unrealistic 
scenarios through predictor perturbation [81], and fail to 
consider interactions between predictor variables. Similar to 
PD plots, individual conditional expectations (ICE) plots 
decode black-box models based on data perturbations [82]. 
While PD plots aim to average the effect of a feature across the 
entire dataset, ICE plots analyze the effect of a single feature 
on one observation [83]. Shapley values represent a refinement 
over PD plots, incorporating feature interactions and avoiding 
unrealistic predictor settings to provide a more realistic 
portrayal of black-box models [84]. Local interpretable model-
agnostic explanations (LIME) offer another approach to 
interpreting black-box models by providing local 
interpretations using surrogate models such as general linear 
models (GLM) and LASSO [85]. Hence, the surrogate models 
elucidate the black-box model within the local region. Tree-
based surrogate models, such as decision trees, are also utilized 
to interpret black-box models by identifying feature importance 
through node splitting [86]. In the future, our objective is to 
develop models based on artificial neural networks (ANN) and 
provide interpretability for these constructed models using 
model-agnostic interpretation techniques. 

 
Table 4. Regression Machine Learning Summary 

Technique Parameter info Alignment  R2 Fiber Dist R2 
RIDGE Tuned Lambda 81% 55% 
LASSO Tuned Lambda  80% 59% 

DT Pruned (CP = 0.001) 71% 64% 
RF nTrees = 1000 76% 74% 
GB  (lambda = 0.67) 81% 82% 

 
In future investigations, we intend to employ a more 

comprehensive set of predictors to forecast the outcomes of the 
electrospinning process across a wider range of response 
parameters. The experiments will include more categorical 
measures based on the jetting and fiber collection methods as 
well as numeric measures for regression modelling. We also 
intend to use deep-learning techniques with larger datasets on 
top of the existing machine learning techniques. The deep 
learning techniques will be used with the model-agnostic 
interpretability techniques to combine high prediction 
accuracies with model interpretability that will ensure proper 
and educated use of black box machine learning models. 
Additionally, we plan to utilize an in-situ process monitoring 
system to gather qualitative process information related to the 
electrospinning jet, including parameters like whipping length, 
branching distance, and the number of whips. This data will 
enable us to create a more accurate model for predicting the 
final fibrous structure outcome. The goal of using fibrous 
micro-tubular structure in future experiments will be to aid in 
nutrient and oxygen transport to and removal of waste and 
biochemical byproducts from tissue culture in 3D micro-
environments in hydrogel scaffolds. 

 
Fig. 9. The relative influence plots obtained from the gradient 
boosting random forest for (a) alignment coherency (%) and 
(b) inter fiber distance (μm). Actual vs predicted plots for the 
(c) alignment coherency (%) and (d) inter fiber distance (μm) 

from the gradient boosting decision tree regression. 

4. Conclusion 

In this study, we leveraged ML techniques to model both 
categorical and numerical responses in electrospinning, based 
on diverse predictors. The work emphasized the use of 
traditional machine learning techniques that combine the 
advantages of good prediction accuracy, interpretability, and 
training on limited experimental data. Classification 
algorithms, including Naïve Bayes, Support Vector Classifier, 
and Random Forest, showcased remarkable accuracy in 
classifying electrospinning outcomes such as aligned fibers, 
random fiber formations (both emanating from single jets), and 
jet branching within the test dataset. Gaussian Naïve Bayes 
revealed that high voltage and shorter needle-collector 
distances predominantly instigated jet branching. 
Concurrently, larger plate gaps were pinpointed by the Naïve 
Bayes method as key determinants for random fiber formation. 
The Support Vector Classifier, utilizing an optimally tuned 
radial kernel, emerged as the most adept model for 
classification tasks. Its qualitative insights aligned with those 
from Naïve Bayes, emphasizing larger plate gaps and shorter 
spinning distances as pivotal for generating random fibrous 
structures. Decision tree models highlighted voltage values 
exceeding 17 kV as essential indicators for jet branch 
formation. 
 
In terms of regression, Ridge and Lasso models indicated a 
direct relationship between needle-collector distance and 
voltage with alignment coherency, while an inverse 
relationship was observed with the plate gap. Conversely, bulk 
flow rate inversely correlated with inter-fiber distance. Linear 
models effectively captured alignment coherency data, 
showcasing strong linear correlations with predictors via the 
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Pearson Correlation. However, predictions for inter-fiber 
distance were suboptimal due to inherent non-linearities. 
Incorporating non-linear regressors, such as the Decision Tree 
Regressor, led to a modest enhancement in predictive 
performance. Remarkably, ensemble methods like Random 
Forest and Gradient Boosting consistently delivered the highest 
prediction accuracies across both classification and regression 
tasks. This research accentuates the efficacy of ML in 
accurately classifying and predicting outcomes in 
electrospinning micro-fibrous structures. Looking ahead, we 
aim to integrate ML with in-situ process monitoring, enabling 
real-time data acquisition for continuous training and 
optimization of the fabrication process. 
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