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Abstract

Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic
adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is
increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes
current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We
delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase
activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze
current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid
abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid
fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to

cold stress.

Introduction

Cold shapes plants’ native ranges and life strategies (Das et al.
2021). In crop plants, cold limits distribution, growing season,
quality, and yield (Powell et al. 2012; Jha et al. 2017), because it dis-
rupts multiple cellular processes, including membrane composi-
tion, and forces metabolic adjustments. Extensive research has
identified thousands of transcripts and metabolites responding
to temperature drops, highlighting the complexity of cold toler-
ance (Kaplan et al. 2007; Vu et al. 2022). Plants have evolved re-
markable adaptive mechanisms to cope with natural seasonal
fluctuations, but climate change enhances this challenge.
Climate change has already altered the timing and location of
cold waves due to reduced sea ice affecting the polar vortex and
jet stream (Tachibana et al. 2019; Zhang et al. 2020). Coupled
with damage from cold spells following crop de-hardening in re-
sponse to warmer springs (Snyder and Paulo de Melo-Abreu
2005), there is a pressing need to better understand these
mechanisms.

The word “cold” is a general one, and because plants efficiently
distinguish different levels of stress, additional words have been
adopted. Here, we differentiate chilling from freezing based on
the temperature threshold (chilling: above 0°C, freezing: below
0°C). Additionally, “cold acclimation” refers to adaptive changes
plants undergo after nonlethal cold exposure that allow them to
tolerate subsequent colder temperatures, independent of the spe-
cific temperatures used, which vary by species/variety.

Membranes are one of the first responders to cold stress, sens-
ing not only its presence but also its severity and triggering a cas-
cade of responses (Mori et al. 2018). This update review delves into
the physical properties of membranes and their constituent lipids
(Section I). We then explore how these lipids are modified and

transported (Section II), how cold affects them at the subcellular
level (Section 1II), and identify trends in glycerolipid responses to
cold stress (Section IV). Finally, we conclude by highlighting out-
standing questions in the field.

Section 1: The properties of lipids and their
effects on membranes

Here we describe the physical properties of plant membrane lipids
that form the rationale for lipid exchanges as an adaptive re-
sponse to temperature. Understanding these principles is essen-
tial for rationalizing the many observed lipid exchanges and
engineering lipid-based interventions for agriculture and biotech-
nology. We include recent updates from experimental and molec-
ular dynamics simulations on membrane permeability and the
roles of hexagonal II (Hy) phase.

Plant membranes, like all membranes, serve the cell as diffu-
sion barriers, capacitors, and platforms for signaling (Hope 1956;
Sussman and Harper 1989). These functions rely on the mem-
brane’s ability to provide a permeability barrier to passive diffu-
sion of water and ions. Membrane permeability is in turn
directly affected by temperature (Mills and Needham 2005).
Increasing temperatures increase molecular motion within a
membrane, causing disorder and increasing leakage (Fig. 1A,
“liquid disordered”) (Frallicciardi et al. 2022). Similarly, decreasing
temperatures also increase leakage, though through different
mechanisms. Initially, decreasing temperatures decrease molec-
ular motion, pushing the membrane toward a more ordered phase,
with less leakage (Fig. 1A, “liquid ordered”) (Ghysels et al. 2019).
As temperatures continue to lower, membranes can experience
increased lateral phase separation of their lipid components
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Figure 1. The interaction of temperature with lipid membranes. A) Membrane phases observed at different temperatures. The lamellar phases can be
disordered (highest passive leakage), ordered (low passive leakage), or include phase-separated gel regions (very low passive leakage). During severely
low temperatures accompanied by dehydration, Hy; phase lipid fusions are observed. B) Shapes of lipids contribute to the phases they form individually
and thus their influence on bilayer properties including fluidity, lateral pressure, and mechanical strength. The shape is influenced by the ratio of the
hydrophilic headgroup to the hydrophobic tails. Conical lipids (green cone) include many species of PA, PE, PS, and MGDG; inverted conical lipids
(orange cone) include lysolipids; shorter lipids (purple rectangle) include phytosterols and in some species shorter chain glycerolipids. Cylindrical lipids
include PI, PC, PG, DGDG, SQDG, LCBs, and ceramides. C) Progressive desaturation of an 18-carbon fatty acyl group showing the change in its shape to be
increasingly wide and short, promoting more rigidifying or fluidizing properties as indicated by a cylinder or cone, respectively. Coloring is standard,
with red indicating oxygen, grey carbon, and white hydrogen. The same scale and coloring are also represented in (D) the structure of the most common
long-chain base in Arabidopsis, and (E) the structure of sitosterol, a representative phytosterol. Structures of headgroups and glycerol for the most
common membrane fluidizing lipids (F) and membrane rigidifying lipids (G). Abbreviations: Hy;, hexagonal II; LCB, long chain base; MGDG,
monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI,
phosphatidylinositol; PS, phosphatidylserine; R, remainder group; SQDG, sulfoquinovosyldiacylglcyerol.

(Fig. 1A, “phase separation”). The precise temperatures at which
phase separations are experienced change with composition, as
reviewed by Shaw et al. (2021). This is more likely in membranes
that already have lateral segregation of lipids, such as the plasma
membrane (Grosjean et al. 2015; Mamode Cassim et al. 2019), or
the thylakoid and mitochondrial inner membranes, which rely
on the presence of nonbilayer phases (Garab et al. 2022). These
membranes likely have increased leakage as temperatures cool
due to their uneven distribution of surface pressure (Mills and
Needham 2005; Shinoda 2016; Cordeiro 2018). The final mecha-
nism of low-temperature-induced membrane damage is the for-
mation of Hy phase membrane fusions (Fig. 1A, “Hy phase
fusions”). Freeze-induced dehydration of closely apposed mem-
branes prompts a critical phase transition from a lamellar to a
Hy phase, observed in the plasma membrane, chloroplast, and
vacuolar membranes from multiple non-acclimated, freezing-
tolerant species (Webb et al. 1994; Uemura et al. 1995;
Uemura and Steponkus 1997; Nagao et al. 2008). Although Hy
is now recognized as a common membrane property (Jouhet
2013; Garab et al. 2022), the return of freezing-induced Hy; to la-
mellar phase is coincident with irreversible cellular damage
(Gordon-Kamm and Steponkus 1984); thus, it is likely these Hy
phases are unresolvable.

Recent advances in modeling have improved our understanding
of the passive permeability of a membrane. Based on physical ex-
periments, we understood passive permeability depended on the
area per lipid (Mathai et al. 2008; Nagle et al. 2008), and their phase,
with gel phases having significantly less permeability than other
phases (Guler et al. 2009). Lipid packing influences a membrane’s
ability to exclude water and to maintain a specific phase at a given
temperature (Mathai et al. 2008; Shinoda 2016; Ghysels et al. 2019).
Thus, the spatial agreement between the sizes of the lipid head-
groups and fatty acids (FAs) within the membrane bilayer signi-
ficantly influences its physical properties, and plants make
multiple lipid exchanges during temperature stress that result
in less membrane damage (Fig. 1B; Uemura et al. 1995; Uemura
and Steponkus 1997). Recent molecular dynamics simulations
coupled with stopped-flow kinetic experiments by Frallicciardi
and colleagues suggest that at least yeast plasma membranes are
significantly more ordered than previously believed and challenge
the importance of lipid surface area-based models (Frallicciardi
et al. 2022). Plant glycerolipid properties are excellently reviewed
elsewhere (Garab et al. 2022; Stephanie et al. 2022) and are summar-
ized in Box 1 and 2. In the following paragraphs, we describe more
recently studied properties of sphingolipids and phytosterols, the
2 other major plant membrane lipid structural classes.
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Box 1. Glycerolipid properties

¢ Conical lipids modify lateral pressure and increase flex-
ibility of biological membranes.

e Cylindrical lipids decrease lateral pressure, permeabil-
ity, and increase rigidity.

e Longer tails increase lateral phase separation, decreas-
ing permeability.

e Shorter tails increase membrane permeability and
flexibility.

e More double bonds increase fatty acyl width (Fig. 1C).

Sphingolipids are a diverse structural class of lipids connected by
the presence of a long chain base (LCB; Fig. 1D) and concentrated in
the outer leaflet of the plasma membrane. The simplest sphingolipid
is simply an LCB, which may be bonded to a fatty acyl group and a
headgroup to form more complex sphingolipids. A sphingolipid’s
fatty acyl group is modified similarly to those of glycerolipids,
though they may also be hydroxylated, typically at the C2 position
(reviewed in Huby et al. 2020). A sphingolipid LCB may be desatu-
rated and hydroxylated like its FA, while free LCBs are typically hy-
droxylated at C1 and may be hydroxylated at additional positions,
they may alternatively be phosphorylated at C1 (Huby et al. 2020).
Sphingolipids tend to have longer, more saturated acyl groups
than most glycerolipids, increasing the packing density, phase sepa-
ration, and thickness of the plasma membrane (Mamode Cassim
et al. 2019). Larger sphingolipid headgroups are common, including
the most common class in plants: glycosylinositolphosphorylcera-
mides (GIPCs; Cacas et al. 2012). GIPCs preferentially associate
with phytosterols to make large, ordered regions in artificial mem-
branes (Grosjean et al. 2015; Mamode Cassim et al. 2021), and this
role has been suggested for them in vivo as well.

In concert with glycerolipids and sphingolipids, free phytoster-
ols form a critical part of cell membranes, where their relatively
short and flat structure (Fig. 1E) increases order and facilitates
bidirectional regulation of membrane temperature response
(Hartmann 1998). They preferentially associate with some mem-
brane lipids, and in doing so enhance phase separation of lipid
mixtures, including, but not limited to, sphingolipids (Grosjean
et al. 2015). This feature is crucial for maintaining the high integ-
rity, low permeability, and specialized domain structure of plas-
ma membranes (Dufourc 2008; Grosjean et al. 2015). Similarly,
phytosterols can have sugar head groups, including sterylgluco-
sides and acylated sterylglucosides (Rogowska and Szakiel 2020).
Phytosterols also have multiple potential signaling roles (Clouse
2002; Du et al. 2022). Currently, no coherent model exists to link
biological lipid mixtures— including hundreds to thousands of
different glycerolipid, phytosterol, and, in the plasma membrane,
sphingolipid components—to membrane fluidity.

Section 2: An overview of membrane
remodeling

Membrane remodeling is necessary for temperature tolerance.
Here, we discuss the major mechanisms through which subcellu-
lar membrane lipids are modified, acyl editing and headgroup ex-
change, in a subcellular context moving from the endoplasmic
reticulum (ER) to energy-making organelles.

Glycerolipid modification occurs predominantly in the ER.
Phosphatidic acid (PA), diacylglycerol (DAG), and phosphatidylcho-
line (PC) are central glycerolipid metabolites serving as intermediates

Box 2. Glycerolipid properties cont.

¢ Headgroup size is relative to most common tail sizes, for
example, small (Fig. 1F) and wide (Fig. 1G).

e Lysolipids with a single acyl group have wide heads and
narrow tails.

e Charged headgroups decrease passive ion transport.

e Sugar headgroups can provide phosphate-free mem-
brane hydration shells.

¢ Lipid headgroups often drive specific protein interactions.

for acyl chain modification and exchange of complex lipid head-
group classes (Li-Beisson et al. 2013). FAs synthesized in the plastid
are incorporated into PA and DAG via the parallel operation of 2 glyc-
erolipid synthesis pathways: the eukaryotic pathway (incorporating
18C FAs at the 2 positions of the glycerol backbone) in the ER and
the prokaryotic pathway (incorporating 16C FAs at the middle po-
sition of glycerol) in the chloroplast (Fig. 2), though the prokaryotic
pathway was lost in some plants over evolutionary time
(Mongrand et al. 1998). For a comprehensive review of prokaryotic
and eukaryotic lipid synthesis, readers are directed to (Holzl and
Dormann 2019) and (Jacquemyn et al. 2017), respectively.

Regardless of which glycerolipid synthesis pathway is available
to the plant, the ER is the predominant site for acyl editing. Acyl ed-
iting is the exchange of fatty acyl groups between membrane lipid
classes via acyl-CoA intermediates (Bates et al. 2012). Acyl-CoA itself
can be elongated in the ER by a multi-enzyme complex (Batsale et al.
2023), while acyl groups attached to PC can be desaturated by
membrane-bound FA desaturases in the ER and then transferred
to other lipid headgroups (Miquel and Browse 1992; Nguyen et al.
2019). Similar modifications occur to both the LCB and acyl group
of sphingolipids (Luttgeharm et al. 2016). Alternatively, to acyl edit-
ing, FAs may be catabolized via peroxisomal p-oxidation (Graham
2008) or shuttled into triacylglycerol (TAG). TAG, a nonpolar glycer-
olipid, is synthesized from DAG and an acyl donor in the ER mem-
brane and accumulates in lipid droplets (Bates et al. 2009; Guzha
et al. 2023). In unstressed vegetative tissues, only trace amounts
of TAG are accumulated (Lu et al. 2020).

Lipid modification in the ER also occurs through headgroup ex-
change. PA and DAG produced from de novo glycerolipid synthesis
are converted to the phospholipids PC, phosphatidylglycerol (PG),
phosphatidylinositol (PI), phosphatidylethanolamine (PE), and
phosphatidylserine (PS) in reactions that take place in the ER
membrane (Somerville and Browse 1991). In addition to phospho-
lipids, ceramides are also synthesized in the ER (Chen et al. 2006),
which are further glycosylated to produce a diverse family of
sphingolipids (Liu et al. 2021a).

Lipid transfer between the ER and the plasma membrane, mito-
chondria, plastid, and other associated membranes is critical for
cellular function (Fig. 2, dashed lines) and is reviewed by
(Michaud and Jouhet 2019). Vesicular trafficking via the secretory
pathway is a well-characterized route for phospholipid transport
between the ER and the plasma membrane (Jirgens 2004), as well
as the dominant route for sphingolipid transport (Kajiwara et al.
2008). Recent data show lipids can also be transported via mem-
brane contact sites, especially between the ER, plastid enve-
lope, mitochondria, and plasma membranes (Leterme and
Michaud 2022).

Energetic organelle membranes are the sites of distinct lipid
synthesis, modification, and transfer. The chloroplast is both a
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Figure 2. Lipid modification and transfer occurs within and between distinct organellar membranes. Lipid synthesis (solid lines) begins with FAs
synthesized in the chloroplast, which are activated to acyl-CoAs and then incorporated into membrane lipids through de novo lipid synthesis in the
chloroplast or ER or through acyl editing in the ER. FFAs and PUFAs released via lipase activity in the chloroplast, ER, and plasma membranes are
reincorporated as activated acyl-CoAs into new lipids. Lipids are transported across distinct membrane compartments via vesicular or nonvesicular
trafficking (dashed lines). Note that indicated transport may be indirect. For space reasons, the location of lipids in the figure is indicative of the
organellar compartment but not the specific suborganellar membranes where the lipids are synthesized. Abbreviations: Cer, ceramide; CL, cardiolipin;
DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; ER, endoplasmic reticulum; FFA, free fatty acid; LMGDG, lysomonogalactosyldiacylglycerol;
LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; MGDG, monogalactosyldiacylglycerol; OGDG, oligogalactosyldiacylglycerol; PA,
phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine;
PUFA, polyunsaturated fatty acid; SQDG, sulfoquinovosyldiacylglycerol; TAG, triacylglycerol; TGDG, trigalactosyldiacylglycerol.

location of lipid synthesis and a reservoir of unique lipids required
for efficient photosynthesis (Li and Yu 2018), namely monogalac-
tosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG),
PC, PG, sulfoquinovosyldiacylglycerol (SQDG), and trace amounts
of PI (Garab etal. 2022; Stephanie et al. 2022). De novo lipid synthe-
sis can occur in the chloroplast membranes via the prokaryotic
pathway (Holzl and Dormann 2019). Additionally, PA, PC, and
DAG originating from the ER are efficiently transported to the
chloroplast (Wang et al. 2013; Marechal and Bastien 2014; Yin
et al. 2015). Transport of PA and DAG from the ER to the chloro-
plast is a requirement of photosynthetic lipid synthesis, even in
plants that retain a chloroplast-localized de novo lipid synthesis
pathway (Kunst et al. 1988; LaBrant et al. 2018).

The addition of UDP-galactose to DAG produces the most abun-
dant lipid in the plastid, MGDG (Awai et al. 2001). MGDG subse-
quently can be converted to DGDG by the addition of a second
galactose (Dormann et al. 1995). FAs can be released from either
MGDG or DGDG and then reincorporated into other chloroplast
lipids or exported for recycling into glycerolipids in the ER
(Ellinger et al. 2010; Higashi et al. 2018). The chloroplast mem-
branes also contain low levels of anionic lipids, namely the phos-
pholipid PG and the sulfolipid SQDG, which are essential for
photoautotrophic growth (Yu and Benning 2003). A third anionic
lipid, glucuronosyl diacylglycerol, is present during phosphate
deprivation (Okazaki et al. 2013). The acyl groups of PG can be de-
saturated by chloroplast envelope desaturases (Gao et al. 2009),
and the resultant FAs can be incorporated into the ER acyl editing
pool (Wang et al. 2017). Transfer of PG through membrane contact

sites is highly likely (Babiychuk et al. 2003; Liu et al. 2023). Bulk
transfer of galactolipids, particularly DGDG, likely occurs through
the same sites, observed primarily during phosphate starvation
(Michaud et al. 2016).

Most of the membrane lipids in mitochondria are glycerolipids,
predominately cardiolipin (CL), PC, and PE, with smaller amounts
of PI, PS, PG, PA, MGDG, and DGDG (Liu et al. 2023). CL is unique to
the mitochondria and is synthesized through condensation of
CDP-DAG and PG, generating a 4-acyl chain lipid that fluidizes
the membrane (Bligny and Douce 1980; Katayama et al. 2004;
Unsay et al. 2013).

Section 3: Membrane dynamics in
temperature stress

In this section, we describe membrane changes resulting from
chilling and freezing, including head group and FA composition
and phase transitions, and briefly touch on lipids affecting signal-
ing within the context of the plasma, mitochondrial, ER, and
chloroplast membranes. The topic of signaling lipids is broad, en-
compassing both lipids and lipid-derived products. For further in-
formation, we refer readers to additional reviews on this subject
(Wang and Chapman 2013, Hou et al. 2016; Ali et al. 2018; Cook
etal. 2021; Wu et al. 2022; Liang et al. 2023).

The plasma membrane is a first responder to temperature
stress. Chilling temperatures rigidify the plasma membrane, trig-
gering calcium flow into the cytoplasm through mechanosensitive
ion channels MID1-COMPLEMENTING ACTIVITY1 and 2 (Knight
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Figure 3. The impact of freezing on organelle morphology, functionality, and lipid remodeling. Low temperatures rigidify the plasma membrane and
cause it to pull away from the cell wall. This mechanical pressure causes freeze-induced vesicles on the plasma membrane. Cytoplasmic dehydration,
coupled with PLDa-driven lipase activity, promotes the formation of the Hy; phase between organelles. Together, these structural changes cause an
influx of calcium, and this along with membrane damage induces changes to the lipid composition of the cell. The ER serves as the central hub for lipid
modification, where lipase-derived products (PA and DAG) are utilized for lipid synthesis, acyl editing, or conversion into TAG for storage. Additionally,
the ER aids in increasing membrane lipid desaturation via FAD2/3 to maintain integrity. Simultaneously, mitochondria and chloroplasts enhance
membrane unsaturation. CL levels increase in the inner membrane of the mitochondria, altering mitochondrial architecture. The chloroplast outer
envelope enzyme SFR2 catalyzes the production of oligogalactolipids via the transfer of galactose head groups from MGDG. This process is crucial for
freezing tolerance. The inset table at the bottom right summarizes Arabidopsis thaliana lipids consistently observed in chilling and freezing as shown in
Section 4, Tables 1 and 2. Arrow direction indicates increased (1) or decreased ({) lipid levels during cold compared with control. Locations of lipids in the

inset table are shown, while lysolipids are not because their location is unknown. Abbreviations: CL, cardiolipin; DAG, diacylglycerol; DGATSs,
DIACYLGLYCEROL ACYLTRANSFERASES; ER, endoplasmic reticulum; FAD2/3, FATTY ACID DESATURASE 2 or 3; HII, hexagonal II; MGDG,
monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PDATs, PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASES; PE,
phosphatidylethanolamine; PLDa, PHOSPHOLIPASE Da; SFR2, SENSITIVE TO FREEZING 2; TAG, triacylglycerol.

etal. 1996; Mori et al. 2018), and membrane rupture (Yamazakietal.
2008a). A recent report suggests that ANNEXIN1 also allows calci-
um influx during chilling (Liu et al. 2021b), though how has yet to
be identified, possibly due to the protein family’s multifunctional
roles (Laochavisit and Davies 2009). The calcium flux triggers multi-
ple transcription cascades, resulting in additional protein and lipid
changes to maintain membrane fluidity and integrity (Fig. 3;
Takahashi et al. 2013). Importantly, the sudden burst of intracellu-
lar calcium initiates plasma membrane resealing specifically dur-
ing freezing through both lipid remodeling and protein
recruitment (Yamazaki et al. 2008a). Additionally, the plasma
membrane can quickly accumulate freeze-induced vesicles, which
have been shown to mitigate the dehydration and mechanical
stress imposed during freezing (Yamazaki et al. 2008b).

The plasma membrane consists of glycerolipids, sphingolipids,
and phytosterols, with sphingolipids concentrated on the outer
leaflet. The glycerolipids experience notable modifications upon
chilling through the actions of phospholipases (Ruelland et al.
2002; Liet al. 2009a) and DAG kinases (Arisz et al. 2013), which cat-
alyze the production of PA. PA serves as a signaling molecule and a
central metabolite, acting as an intermediate of headgroup re-
modeling (Testerink and Munnik 2011), and PA levels were re-
cently correlated with freezing tolerance (Vu et al. 2022). PA
rapidly accumulates within minutes of chilling stress and

directly affects transcription of cold-responsive genes and binds to
regulatory proteins (reviewed in Wu et al. 2022). When present in
low levels in freezing temperatures, PA can act as a signaling mole-
cule; however, if PA accumulates to high levels during freezing,
membrane damage and cell death result (Welti et al. 2002; Zheng
et al. 2016). Failure to make necessary lipid adjustments during
cold acclimation leads to a transition of the plasma membrane
from a stable lamellar phase to Hy phase fusions with other
membranes during freezing (Section I, Fig. 1A), which ruptures
the cell upon thawing (Fig. 3, Uemura et al. 1995; Li et al. 2004).
Importantly, this transition of the plasma membrane to Hy is de-
pendent on PHOSPHOLIPASE Da. (PLDa), which favors PC hydrolysis.
In the absence of PLDa, the PC to PE ratio becomes unbalanced (Welti
et al. 2002). This change favors Hy and could contribute to plasma
membrane damage (Jouhet 2013).

Sphingolipids and phytosterols serve as both structural compo-
nents of the plasma membrane and signalers of its health
(Rogowska and Szakiel 2020; Haslam and Feussner 2022). During
chilling, total sphingolipid levels increase, including the most abun-
dant sphingolipids, GIPCs (Nagano et al. 2014). Simultaneously, total
LCB levels decline (Guillas et al. 2013). LCB kinases that promote deg-
radation of LCBs are known to be important for cold tolerance
(Dutilleul et al. 2012; Dutilleul et al. 2015; Huang et al. 2017), possibly
to avoid LCB induction of cell death responses known to occur in
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response to other stresses (Lambour et al. 2022). Together, sphingo-
lipids and phytosterols can form lateral phase separations known as
detergent-resistant regions or nanodomains (Grosjean et al. 2015),
and phytosterol changes in response to chilling have also been docu-
mented in a few species (Rogowska and Szakiel 2020; Du et al. 2022)
and are correlated with increased survival (Vu et al. 2022). Currently,
the role of nanodomains in cold tolerance remains unknown, and al-
ternative explanations for phytosterol changes exist (Dufourc 2008;
Aboobucker and Suza 2019).

In addition to head group modifications, the plasma membrane
requires increased acyl chain desaturation to tolerate freezing
(Uemura et al. 1995), though these reactions primarily occur in
the ER. Glycerolipid desaturases FATTY ACID DESATURASE2
(FAD2) (Miquel et al. 1993) and FAD3 (Matos et al. 2007) as well
as sphingolipid desaturases D8 SPHINGOLIPID DESATURASE
(Chen et al. 2012) and ACYL DESATURASE 2 (Chen and Thelen
2013; Smith et al. 2013) have been implicated in maintaining the
plasma membrane desaturation level during cold acclimation.

The ER orchestrates desaturation and lipid synthesis to main-
tain endomembrane integrity during low temperatures. The ER
is the primary site for eukaryotic lipid synthesis and lipid modifi-
cation (Section 2). While the ER can undergo low temperature—
induced biophysical changes to form multiplex lamellae
(Fujikawa and Takabe 1996; Kobayashi et al. 2014), much of the
work done on the ER focuses on how its enzymes affect membrane
integrity in multiple subcellular compartments (Fig. 3).

As cellular membranes adapt to low temperatures, lipids are
transported to the ER for remodeling (Section 2). Desaturation is
critical for tolerance and mediated by ER FA desaturases, includ-
ing FAD2 and FAD3 (Browse and Somerville 1991). Evidence of the
importance of ER FADs includes decreased chilling tolerance in
FAD? loss-of-function mutants (Miquel et al. 1993). Protoplasts
supplemented with polyunsaturated PC (indicating increased
FAD3 activity) show enhanced survival at freezing temperatures
due to reduced plasma membrane lysis (Steponkus et al. 1988).
Similarly, overexpression of ER FADs also enhances chilling toler-
ance in multiple species (e.g. Wang et al. 2019; Wang et al. 2021).
Cold stress also activates acyl editing in the ER to increase acyl
chain length and decrease fluidity (Box 1). This is observed in
both rice and Arabidopsis, where longer acyl chains on PA accu-
mulate, indicating a preference for remodeling longer chains
under cold conditions (Zheng et al. 2016). Additionally, overex-
pression of 3-KETOACYL-COA SYNTHASE 1, which lengthens
acyl chains, enhances plasma membrane integrity (Chen et al.
2020), underscoring the role of acyl editing in adapting membrane
lipid compositions to fluctuating temperatures.

A final type of ER lipid restructuring in response to low temper-
atures is converting membrane lipids into TAG. There are multi-
ple hypotheses for the role of TAG accumulation in abiotic
stress, as it is essential. At least 3 enzymes were shown to have
a role in TAG production during low temperatures, 2 of which
have phenotypic consequences depending on the severity of the
temperature ramp applied (Arisz et al. 2018; Tan et al. 2018;
Demski et al. 2020; Shomo et al. 2024). TAG accumulation may
buffer plant reductant systems (Schmid-Siegert et al. 2016; Yu
et al. 2021), remove acyl groups from the membrane rapidly (Lu
et al. 2020), be an energy or reductant storage critical for recovery
(Yu et al. 2021), or some combination of these possibilities.

Mitochondrial lipid saturation level is important for respiratory
function. Like other membranes, mitochondrial membranes bal-
ance their acyl saturation level for functional responses, including
respiration and efficient electron transfer (Fig. 3, Caiveau et al.
2001). In fad2 loss-of-function cell cultures treated with low

temperatures, the mitochondrial membranes were more rigid
(Matos et al. 2007), implying that saturation level is critical for
cold responses. Additionally, CL is vital for mitochondrial struc-
ture and function in Arabidopsis, protecting against damage
from environmental stresses (Pineau et al. 2013; Pan et al. 2014).
While not directly linked to low-temperature tolerance, the
shared physiological responses to cold stress and other stressors
suggest CL may be a target for mitochondrial temperature adap-
tation. Mutants affecting the desaturation of CL precursors also
impact low-temperature tolerance (Chen and Thelen 2013),
highlighting the importance of CL in mitochondrial resilience.

The chloroplast responds tolow temperatures through uniquelip-
id modifications. Cold tolerance is frequently studied in green shoot
tissues because soil or substrate is frozen. Chloroplast membranes
are directly damaged by freezing (Uemura and Steponkus 1997)
and are extensively remodeled to maintain photosynthetic capacity
and their structure (Fig. 3, reviewed in Cook et al. 2021). PA and DAG
production is necessary for chloroplast lipid biosynthesis (Dubots
etal. 2012), and they are generated in response to chilling and freez-
ing (Weltietal. 2002; Vuetal. 2022). The stromal DAG lipase ADIPOSE
TRIGLYCERIDE LIPASE-LIKE is upregulated in low temperatures (Yu
et al. 2023), and loss-of-function mutations in PLDa and PLD§ show
changes to plastid-derived PA and altered freezing tolerance (Welti
et al. 2002; Li et al. 2009b). Chloroplast-specific FAs do not accumu-
late in large amounts in PA, suggesting that PA is a temporary store
for movement into TAG (Tan et al. 2018). SENSITIVE TO FREEZING2
also produces DAG during low temperatures, which is processed
into TAG (Moellering et al. 2010).

Unique lipids are generated in chloroplasts in response to chilling
and freezing stress. Under non-stress conditions, the ratio of MGDG
to DGDG in Arabidopsis is approximately 2:1 (Block et al. 1983).
During freezing, the ratio of MGDG:DGDG is shifted to approximately
1.25:1 by SENSITIVE TO FREEZING2, which uses MGDG as a sub-
strate to processively synthesize oligogalactolipids on the chloro-
plast outer envelope, also yielding DAG, which is further catalyzed
to TAG (Moellering et al. 2010; Roston et al. 2014). While the biophys-
ical properties of oligogalactolipids remain unknown, their ability
to form lamellar phases may prevent Hy formation and membrane
fusion with opposing extraplastidic membranes (Chng et al. 2022).
A second unique lipid generated in response to cold is acyl-
MGDG, which contains a third acyl chain added to the headgroup
via ACYLATED GALACTOLIPID ASSOCIATED PHOSPHOLIPASE1
(Nilsson et al. 2015). Like oligogalactolipids, acyl lipids increase
after temperatures drop below 0, suggesting their importance to
membrane freezing (Vu et al. 2022), though their physical proper-
ties are yet to be studied. Furthermore, the origin of the substrate
MGDG remains unclear. The photosynthetic thylakoid mem-
branes are the largest source of MGDG, but the enzymes generat-
ing oligogalactolipids or acyl-MGDG are located at the outer
envelope membrane (Roston et al. 2014) or cytoplasm (Nilsson
et al. 2015), respectively. Thus, it is currently unclear to what ex-
tent thylakoidal MGDG is modified by these enzymes in the cold.
This lack of knowledge is partly due to our poor understanding
of lipid transport to the thylakoid membrane (Garcia-Cerdan
et al. 2020). Lastly, the acyl chains of PG exclusive to the chloro-
plast have also been implicated in chilling tolerance. Cold-tolerant
species tend to have PG composed of more cis-unsaturated
FAs, while the PG in sensitive plants has more saturated and
trans-unsaturated FAs (Murata 1983, Murata et al. 1992). When
the ability of PG to incorporate cis-unsaturations is blocked
(Wolter et al. 1992; Gao et al. 2020), normally chilling-tolerant
Arabidopsis becomes sensitive, suggesting that cis-unsaturated
FAs in PG are essential for chilling tolerance.
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Another explanation for the variations in lipid level changes be-
tween studies is the age of the plant. During early developmental
stages, plants are more sensitive to cold (Lyons 1973) and may be
less protected by acclimation (Limin and Fowler 2006). The study
applying chilling to the youngest plants (Chen and Thelen 2013)
showed more significant lipid changes than chilling in older
plants, comparing PC, PI, and DGDG levels (Table 1). In freezing,
studies performed at 28 days (Li et al. 2008; Tan et al. 2018) were
less likely to have statistically relevant changes in PG, PI, PS, and
DGDG compared with studies performed at 35 or 42 days (Zheng
etal. 2016). Though it is impossible to exclude the role of other ex-
perimental differences, these observations suggest the age of
Arabidopsis is important for lipid responses.

Compared with Arabidopsis, there are relatively fewer cold lip-
idomics studies in sorghum and maize (Table 3). One pattern aris-
ing from them is consistent with the conclusion of Arabidopsis
cold severity sensing. Sorghum variety RTx430 reversed the direc-
tion of PG, MGDG, and DGDG lipid level changes between 12 and
36 hours of 10 °C exposure (Marla et al. 2017). Maize variety
HE334 showed increases in PC and PE levels at 10 °C and decreases
at4or5°C (Guetal 2017; Gu et al. 2018). These lipid level rever-
sals suggest that all plants respond to cold severity with differing
lipid changes.

Genetic variance contributes to altered lipid patterns. Genetic
variance across genotypes increases the variation of lipid changes
inresponse to cold conditions. An Arabidopsis study involving 15 eco-
types illustrates this phenomenon, where both common and unique
lipid changes were reported between ecotypes (Degenkolbe et al.
2012). In sorghum, cold responses of PG, PC, DGDG, and SQDG levels
were affected by genetic variance (Table 3) (Guo et al. 2016; Marla
et al. 2017). Within groups of similarly tolerant sorghum varieties
(HKZ,Kao, NSZ), changes in PC, MGDG, DGDG, and SQDG levelsin re-
sponse to cold were more similar (Marla et al. 2017). In maize, com-
parisons between He334 and LH244 showed differences in changes
to PC, PE, and PS levels (Gu et al. 2017; Gu et al. 2018; Gao et al.
2024), though these studies also differin the age of the plants at onset
and duration of cold application, preventing a strong conclusion.
Between species, the only consistent lipid change is that of PA, which
tends toincrease (Tables 1, 2, and 3), consistent with the recentiden-
tification of PA as 1 of 4 lipids whose changes correlate with improved
temperature tolerance (Vuet al. 2022). Together, the Arabidopsis and
sorghum studies strongly suggest the importance of genetic and spe-
cies variation. A remaining question is whether this is due to the dif-
fering impact of the same cold temperature applied to plants with
different tolerance levels or if it truly underpins a different metabolic
strategy for tolerance. Part of the answer may come from continuing
genome-wide association studies, which can identify genes among
varieties of a species associated with temperature tolerance and lipid
metabolism (Lietal. 2019; Pranneshraj et al. 2022). Another will have
to come from continued careful measurements of lipid behaviors
during temperature stress.

In summary, lipid responses to cold were affected by genetic var-
iance, plant age, stage, and severity and length of applied cold. In
addition to these biological effects, noise was added from differing
methodological choices made, including extraction and mass spec-
trometry equipment and methods used and choice of lipids ana-
lyzed. We also note differences in application of abiotic stresses
likely play a factor: for example, light intensity, water sufficiency,
time of day, etc. We refer readers to appropriate lipid extraction
(Bengtsson et al. 2021; Mahboub et al. 2021) and lipidomics methods
(Gutbrod et al. 2021; Tamura et al. 2021) and encourage thorough
descriptions of growth parameters and analysis of as many com-
mon headgroup classes (Tables 1, 2, and 3) as is practical.
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Concluding remarks

In summary, this review delves into the intricate adaptations of
plant membrane lipids to cold stress, highlighting the vital roles
of glycerolipids, sphingolipids, and phytosterols. We explore
how biochemical pathways, including acyl editing, headgroup ex-
change, and abundance changes, equip plants to survive chilling
conditions. Additionally, our analysis of lipidomic data from
Arabidopsis, maize, and sorghum underscores the complexity
and variability of lipid responses across different species and
stress intensities. Despite these advances, significant knowledge
gaps remain. See Outstanding Questions, particularly, regarding
the functional impacts of specific lipids, the subcellular dynamics
and transport of lipids, and the specificity of membrane metabolic
strategies of cold tolerance. Addressing these gaps is crucial for
enhancing our predictive capabilities and improving plant resil-
ience against increasingly frequent and severe cold events.

Outstanding questions box:

e What are the roles of Hy phase and plasma membrane
nanodomains during freezing?

e What are the roles of phytosterols outside the plasma
membrane during cold?

e How do unusual lipids that change levels during cold
(TGDG, acyl-MGDG, CL, and phosphorylated LCBs) im-
pact membrane temperature tolerance?

e What happens to organelle membranes other than
chloroplast membranes in the cold?

e Are thylakoid lipids remodelled by enzymes in other
membranes? If so, how does transport occur?

e Whatis the role of TAG accumulation in cold tolerance?

e How relevantis comparing plant varieties with different
tolerance levels at the same temperature when they ac-
climate at different temperatures in their native
environments?

e Do differencesin how lipids respond to cold observed be-
tween species reflect a different metabolic strategy for
tolerance?

Advances box:

¢ Computational modeling of lipid environments continu-
ally increases in effectiveness. Recent data suggest the
increased importance of lateral phase separations.
This combines with recent studies showing phytosterols
and sphingolipids form temperature-dependent lateral
phase separations in artificial membranes.

e Membrane contact sites are better established, improv-
ing the understanding of lipid transport between multi-
ple subcellular compartments.

e Multiple studies of TAG accumulation during low tem-
peratures imply hypotheses for its utility in cold stress.

e Multiple recent cold lipidomic studies in Arabidopsis,
sorghum, and maize allow comparisons between
studies.
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